The invention relates to a poly-axial hinge mechanism and, in particular, to a poly-axial hinge mechanism to support and define a movement path of a closure fitted to a captive frame and closure installation.
The invention has been developed primarily with respect to doors fitted to a captive doorframe and will be described hereinafter with reference to this application. However, it will be appreciated that the invention is not limited thereto and is applicable to other closures fitted to captive frames such as windows, hatches and portals, for example.
Captive hinged door systems are a relatively new development in physical security. A door is held captive from opening by both a hinge stile frame and an opposed latch stile frame whereby a door can be swung open once clear of the latch stile frame. While the captive hinged door systems maintain a conventional hinged action to move between the open and closed positions, to close and secure a captive door first requires the door to swing into a closed position against the doorframe, and then move sideways to “capture” the door with the two door stile members then residing in two corresponding channel sections formed into the doorframe structure, so as to prevent the door from swinging open. The door can be opened by first sliding the door sideways so it is no longer held “captive” within the doorframe, and then the door can swing open.
A captive hinged door system has a door of the appropriate size and structure to connect the hinge mechanism and operate into and out of the doorframe as required. The system further requires the captive doorframe that includes two capture channels formed into the frame structure as well as a multi-axial hinge mechanism to connect the door to the doorframe and allow the door to move with the required swing and linear actions. In practice, a movement control mechanism is required to guide and limit movement of the door.
The captive doorframe incorporates two opposing channel sections. The “hinge stile channel” is formed into the doorframes' “hinge stile member” and the “capture stile channel” is formed into the opposing “capture stile member”. The two channels are shaped so that when the door is closed against the doorframe and secured within said channels, the door is in the “closed captive” position. The two opposing channel sections surround the full length of the opposing edge surfaces and a portion of their respective adjoining side surfaces of the door's hinge stile and capture stile. In the “closed captive” position any load applied to a door to force it in an inward or outward direction, is transmitted directly to the capture channels and thereby to the entire doorframe structure and not upon the lock or hinge mechanism.
With a captive doorframe, the shape of the capture channel sections allow the door that is closed against the doorframe stop member and not engaged in the capture stile channel section to be in the “closed non-captive” position, to move in a linear direction to enter and leave the capture stile channel section, while remaining in the doorframe's hinge stile channel. The hinge stile channel shape further allows a closed door that is in the “closed non-captive” position, where the door is closed against the doorframe stop member and the door's capture stile is not located within the doorframe's capture stile channel, to swing to the open position, and in so doing move the door hinge stile out of captivity within the doorframe hinge stile member channel, and thereafter, swing back to the closed non-captive position where the door covers the doorframe opening and the door “hinge” stile is again captive within the doorframe hinge stile channel section, and then further allow the door to move in a linear direction to return the door's “capture” stile to captivity within the frames “capture” stile channel.
A poly-axial hinge mechanism is described in International Patent Application No. PCT/AU2016/050656 where a hinge mechanism includes three pivot axes or hinges that produce no defined door movement parameters, so the hinge function is limited to connecting the door to the doorframe in such a manner as to support the door to allow the door to move with both the required linear sliding and rotational actions to engage with and disengage from the captive doorframe.
With the captive hinged door system of the type described in the International Patent Application No. PCT/AU2016/050656 the door operating parameters and movement path are controlled and defined by the combination of the door's contact with the doorframe structure and the door movement guidance mechanism that is an independent mechanism affixed between the door and doorframe structures.
With the captive hinged door system of the type described in the International Patent Application No. PCT/AU2016/050656 the door relies entirely upon the separate door movement guidance mechanism to define the door's operating path to allow the door to swing open and closed with a conventional hinged door action. The mechanism further causes the door to correctly leave and enter the captive hinge stile channel section when the door is swung to the opened and closed positions respectively. The separate door movement guidance mechanism is further responsible for controlling when the door's sliding action can occur. The guidance mechanism restricts the door's sideways sliding motion to only occur when the door is closed against the doorframe or the door's sideways movement is constrained by part of the door's outer capture stile residing within the doorframe structure and thereby having the movement limited by the doorframe capture stile member.
Unfortunately, this prior known mechanism is relatively complex and is understood to not insignificantly add to the cost of a captive door installation. Furthermore, that mechanism is believed to be unnecessarily vulnerable to attack and damage which would prevent its use in many security conscience situations.
The genesis of this invention is a desire to provide a poly-axial hinge for a hinged closure such as a door in a captive frame closure system that overcomes one or more of the disadvantages of the prior art, or to provide a useful alternative.
According to an aspect of the invention there is provided a poly-axial closure hinge comprising:
a primary hinge assembly defining a primary pivot axis and configured to extend intermediate a closure head frame and a lower end proximal to a floor surface, the primary hinge configured to have a closure rotatably mounted thereto such that the closure is movable thereabout between a closed position covering an opening and an open position;
a secondary hinge having a secondary pivot axis defined by the primary hinge and configured to extend along or proximal to an edge of the closure, the second pivot axis being substantially parallel to and spaced apart from the primary hinge axis; and
a hinge locking assembly configured to fix movement of the primary and secondary hinges relative to each other about the secondary pivot axis when moved from the closed position and allow limited movement of the secondary hinge relative to the primary hinge when in the closed position, the hinge locking assembly including:
In preferred embodiments, the secondary pivot locking assembly includes a latch operating arm being rotatably mounted to the primary hinge and configured for movement caused by a cam plate that is disposed about the primary pivot axis, and whereupon rotation of the primary hinge about the primary axis causes the latch operating arm to move between the engaged and disengaged positions. Moving the latch operating arm to the engaged position causes the associated latch arm to move to the latch engaged position, and moving the latch operating arm to the disengaged position will cause the associated latch arm to move to the latch disengaged position. The latch operating arm is moved to the engaged position when the hinge is moved away from the closed position, and moves to the disengaged position when the hinge is in the closed position.
In preferred embodiments, the secondary pivot locking assembly further includes a latch arm being rotatably mounted to the primary hinge and configured for movement caused by the latch operating arm. When the latch arm is moved to the latch engaged position by the latch operating arm, the latch arm will move to the proximity of the locking plate locking arm and thereby prevent the hinge locking plate locking arm from disengaging with the hinge locking plate, and when the latch arm is moved to the latch disengaged position, the latch arm moves under the effect of the return spring to the latch disengaged position where the hinge locking plate locking arm can move to a position where it is disengaged from the hinge locking plate.
In preferred embodiments, the secondary pivot locking assembly further includes a hinge plate locking arm being rotatably mounted on the secondary hinge and movable between the locked position wherein the said hinge plate locking arm is engaged with the hinge locking plate and thereby prevents the hinge locking plates rotation about its pivotal mounting, and the unlocked position wherein the hinge plate locking arm is spaced apart from the hinge locking plate and thereby allows the hinge locking plate to rotate about the said plate pivotal mounting. More preferably, the hinge locking arm is caused to move to and from the locked and unlocked positions by the hinge rotation about the primary axis, and where the hinge moves away from the closed position, the hinge locking arm moves to the locked position and thereby engaged with the hinge locking plate.
In preferred embodiments, the secondary pivot locking assembly includes a hinge locking plate that is rotatably mounted to the secondary lock and is movable between the locked position where the locking arm can be engaged and prevents the locking plate's rotational movement and the unlocked position where the locking arm cannot be engaged with the hinge locking plate and thereby allowing the locking plate to rotate. Further the hinge locking plate includes a locking pin recess to allow the locking pin to move within when the secondary hinge moves rotationally relative to the primary hinge about the secondary axis, and thereby when the hinge locking plate is not in the locked position, cause the hinge locking plate to rotate about the rotational mounting. With the hinge locking plate in the locked position with the locking arm engaged to prevent the locking plate rotating, the locking pin is held in a fixed position within the locking pin recess and thereby prevents the rotational movement about the second axis of the secondary hinge assembly relative to the primary hinge until the locking arm is disengaged from the hinge locking plate to thereby allow the hinge locking plate to rotate and thereby allow the locking pin to move within the locking pin recess when the primary hinge moves relative to the secondary hinge about the secondary axis.
In preferred embodiments, the hinge locking plate assembly includes a latch operating arm configured for movement between a locked position causing said hinge locking plate locking arm to lock the hinge locking plate and an unlock position wherein the latch operating arm is moved clear of the hinge locking plate locking arm; a latch operating arm rotatably mounted and movable between an unlock position wherein said hinge locking plate locking arm is spaced apart from the hinge locking plate and a locked position wherein the hinge locking plate locking arm locks the hinge locking plate, the latch operating arm moving between the locked and unblocked positions in response to rotation about the primary hinge. More preferably, the latch operating arm is moved by a cam plate disposed about the primary hinge.
Preferably, a roller guide disposed on a marginal edge of the closure such that when the closure is in the closed position the roller guide is adjacent a roller disposed on and extending from an adjacent closure frame. As the closure moves from the closed non-captive position to the open position the roller guide surface that is approximately tangential to the primary pivot axis will cause the closure to move to the position where the hinge locking plate locking arm can engage with the hinge locking plate as the closure opens.
More preferably, the latch operating arm and the latch arm are resiliently biased into the unlocked position, and when the closure in the closed position the hinge locking plate locking arm can be moved to the unlocked position. It is noted that in order to allow the door to move a first requirement is that the two arms are to be in the unlocked position. This allows the locking arm to be moved into the unlocked position and thereby allow the door to move sideways
Also preferably, the hinge locking plate locking arm is resiliently biased to the locked position, and when the closure is in the closed position, the hinge plate locking arm is moved to the unlocked position and allows the limited movement of the closure in the plane thereof.
Also preferable, the primary hinge is pivotally mounted to, or adjacent to, a closure frame hinge stile and includes an elongate torque bar extending from an upper end at or adjacent the closure frame head to a lower end at or adjacent a closure frame lower end and where the torque bar maintains the upper and lower extremities of the secondary pivot axis in the primary hinge parallel to and separate from the primary pivot axis.
It can therefore be seen there is advantageously provided a poly-axial closure hinge for a captive closure frame provides an integrated structure or integrated mechanism that provides a restraint or otherwise controls the door (or other closure) movement by controlling the movement of one or more of the hinge pivot axes so that the door moves within the defined operating parameters that are required to make the door function as described above. Further, the poly-axial closure hinge produces defined door movement parameters so the hinge function is limited to connecting the door to the doorframe in such a manner as to supporting the door to causes the door to be moved within the defined parameters for both the required linear sliding and rotational actions.
Yet further, poly-axial hinge mechanism of the preferred embodiments advantageously controls the door movement path in such a manner that the door can swing in either direction about a single axis between the open position and closed non-captive positions in a defined path that is in the same or similar manner to a conventionally hinged door without the door having the ability for an additional linear movement action until the door is in a position covering the doorframe opening and closed against the doorframe stop, or in a position where the doorframe capture stile member will limit the door's linear movement. It will also be appreciated the poly-axial hinge, controls the door during the opening or closing movement to allow the door hinge stile to move into and out of containment within the doorframe hinge stile channel member without being reliant upon contact with the said hinge stile channel member.
It will be further appreciated that where the preferred embodiments provide an integrated door movement control mechanism in addition to providing the closure (or door in the preferred embodiments) support functions to enable the door to have a simultaneous single planar rotational and linear movement. The hinge mechanism further advantageously provides the required door guidance and operating features so the door moves within defined parameters that allow the door to rotate as required to move in either direction between the open and closed positions, as well as allow the door to have a linear movement only when the door is positioned within the confines of the doorframe structure or and closed against the doorframe so the door can move into, and out of, the closed captive position where the door stiles reside within the doorframe capture channel members.
A preferred embodiment of the invention will be described, by way of example, with reference to the accompanying drawings in which:
Referring to the drawing generally, like reference numerals are used to denote like components unless otherwise noted. In
Referring also to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
When the door 5 moves in a linear action to and from the closed non-captive and captive positions, the locking arm operating surface 52 maintains contact with the inside face of the doorframe hinge stile capture channel 7 and thereby causes the locking arm 47 to maintain the position of disengagement from the locking plate catch surface 48. The door 5 movement to the closed captive position has caused the primary hinge sub assembly 11 to rotate about the secondary pivot axis 20 relative to the secondary hinge to the shown position and thereby cause hinge locking pin 30 to move within the locking pin capture recess 42 and thereby cause the hinge locking plate 43 to rotate about the hinge locking plate pivot pin 44.
Further, the door 5 movement to the closed captive position has caused the primary hinge latching sub assembly 11 to rotate about the primary pivot axis 19 so the latch operating arm contact surface 53 makes contact with the latch operating cam 27 at a position so the latch operating arm 35 can rotate about the latch operating arm pivot pin 34 and thereby allow the latch arm 33 to reside in a position where it allows the locking arm 47 to maintain the position where it cannot latch with the hinge locking plate catch surface 48.
Referring to
Further, the door 5 movement to the closed non-captive position has caused the primary hinge sub assembly 11 to rotate about the primary pivot axis 19 so the latch operating arm contact surface 53 maintains contact with the latch operating cam 27 at a position so the latch operating arm 35 can rotate about the latch operating arm pivot pin 34 and thereby allow the latch arm 33 to reside in a position where it allows the locking arm 47 to be in the position where it cannot latch with the hinge locking plate catch surface 48 Further, from the closed non-captive position, the door 5 can swing about the primary pivot axis 19 towards the open position.
Referring to
Further, as the door moves away from the closed non-captive position towards the open position, the doorframe head guide roller 55 (not shown) that is affixed to the captive doorframe head member 3 moves within the roller guide recess 45 to cause the door 5 to rotate about primary pivot axis 19 in a position so the locking arm 47 can engage with the hinge locking plate catch surface 48. The said roller 55 will disengage from the roller guide recess 45 as the door swings further open. As the door moves away from the closed non-captive position towards the open position, the multi-axial control hinge mechanism 6 rotates about the primary pivot axis 19 and thereby causes the locking arm pivot pin 46 and locking arm operating surface 52 to move away from the doorframe hinge stile capture channel 7 side surface, which allows the locking arm spring 49 to causes the locking arm 47 to rotate about locking arm pivot pin 46 and thereby engage the locking arm catch with the hinge locking plate catch surface 48, and in so doing prevent the hinge locking plate 43 rotating about the hinge locking plate pivot pin 44 and thereby with the hinge locking pin 30 engaged within the locking pin capture recess 42, the upper door pivot assembly 21 is locked and unable to rotate about secondary pivot axis 20 to maintain its current position relative to the primary hinge sub assembly 11 until the locking arm 47 is disengaged from the hinge locking plate catch surface 48. The door 5 rotational movement towards the open position has caused the primary hinge sub assembly 11 to rotate about the primary pivot axis 19 so the latch operating arm contact surface 53 maintains contact with the latch operating cam 27 at a position to cause the latch operating arm 35 to rotate about the latch operating arm pivot pin 34. This causes the latch arm 33 to move to a position where it allows the locking arm 47 to move towards the position where it will prevent the latch arm 33 from disengaging from the hinge locking plate catch surface 48. Further, from the position shown the door 5 can swing about the primary pivot axis 19 towards the open position.
Referring to
Referring to
From the foregoing, it can be seen preferred embodiments provide a poly- or multi-axial closure hinge mechanism having a pair of pivot or hinge assemblies to create a mechanism with two parallel pivot axes being the primary and secondary axes, and where the mechanism supports and controls the door's movements to allow the door to rotate about a defined axis to allow the door to swing between the open and closed positions on a defined path and further provide the door with slidable movement control that will not allow the door to move sideways in the plane of the door intermediate the capture stiles of the doorframe. This changes (increases) the radial distance from the centre of the primary pivot axis to the outer marginal edge of the door stile member until the door is in a position to move sideways between the captive and non-captive positions. In other words, preferred embodiments provide a multiaxial movement control hinge mechanism that has the doorframe pivot assembly consisting of the upper and lower primary pivot blocks being rigidly affixed to the outer surface or adjoining structure of the doorframe's hinge stile member and pivotally affixed to the primary hinge assembly on the primary pivot axis. The multiaxial movement control hinge mechanism has the primary hinge sub assembly pivotally affixed on the secondary pivot axis to the secondary hinge assembly consisting of the upper door pivot plate assembly and the lower door pivot plate assembly. Further the upper door pivot plate assembly is rigidly affixed to the top of a door in a position that is at, or adjacent to, the door hinge stile member, and the lower door pivot plate assembly is rigidly affixed to the bottom of a door in a position that is at, or adjacent to, the door hinge stile member. The primary and secondary pivot axes are parallel and spaced apart at a determined distance.
Preferred embodiments also provide a poly-axial closure hinge mechanism that has the structure to support the door and allow the door to move rotationally and move sideways so that the door remains correctly aligned with the doorframe, and to allow the door to swing between the open and closed non-captive positions on a rotational axis. Where the door open position is when the door hinge stile member does not reside within the doorframe hinge stile capture channel and the door does not cover the doorframe opening and further the closed non-captive position is where the door covers the doorframe opening with the door closed against the doorframe head member internal stop surfaces and the door hinge stile resides within the doorframe hinge stile capture channel and the door capture stile member is not engaged within the doorframe capture stile capture channel. Further the invention structure allows the door to move sideways in a linear action that is parallel to the doorframe head's longitudinal axis, from the closed non-captive position to the closed captive position where the door capture stile resides within the doorframe capture stile channel section, and further, then allows the door to move back to the closed non-captive position.
It can be seen that a preferred poly-axial closure hinge mechanism includes the integrated door movement control mechanism consisting of the hinge locking mechanism that locks and unlocks the primary hinge sub assembly and secondary hinge assembly to prevent or allow them to rotate about the secondary pivot axis and thereby. When locked, the integrated door movement control mechanism prevents linear door movement when the door moves away from the doorframe head stop member and thereby allows the door to swing in either direction between the open and closed positions on a defined path that replicates a normal hinged door action. Further when the door is in the position where it is closed against the doorframe head member stop and thereby unlocking the integrated door movement control mechanism to allow the door to have a linear movement in either direction between the closed captive and the closed non-captive positions. To allow the door to move between the open and closed positions requires the door to only pivot about the primary pivot axis, while the secondary pivot axis is locked by the hinge locking mechanism so the upper door pivot plate assembly cannot rotate about the secondary pivot axis relative to the primary hinge sub assembly. Further for the door to move in a linear action requires the primary hinge sub assembly to rotate about the primary pivot axis and the secondary pivot axis is to be unlocked so both the primary hinge sub assembly and the secondary hinge assembly can rotate relative to each other about the secondary pivot axis.
In preferred embodiments, the integrated movement control mechanism controls the door pivot angle about the secondary pivot axis between to the primary hinge sub assembly and the upper door pivot plate assembly elements that are affixed to the door structure and the other corresponding secondary hinge assembly elements that are attached to the door structure, so that during the door swing action from the closed position towards the open position the door will rotate only about the primary pivot axis to enable the door to leave the doorframe hinge stile channel section without contact with the said hinge stile capture channel section, and then during the door's return movement to the closed non captive position, to cause the door hinge stile to enter and then reside within the doorframe hinge stile capture channel without the door hinge stile becoming in contact with the doorframe hinge stile capture channel section.
In preferred embodiments, the integrated door movement control mechanism ensures the poly-axial closure hinge mechanism operates the door within the required operating parameters by controlling the distance and position between the door hinge stile member and the doorframe hinge stile capture channel and other elements of the hinge stile member, when the door moves between the closed and open positions and in return. Further the said multiaxial movement control hinge mechanism controls the position of the door relative to the doorframe's hinge capture channel's internal side surfaces during the door's linear movement within the doorframe capture channels. Further, the said multiaxial movement control hinge mechanism allows when required, the door to move in a linear direction to have the door capture stile engage with or disengage from the doorframe capture channel.
Preferred embodiments of the poly-axial hinge mechanism is to be used in conjunction with a door or other type aperture closing device and a captive doorframe that preferably includes both hinge stile and capture stile members that include an appropriately shaped channel section with opposing openings to capture a door in such a manner as to provide the required movement and security and structural functions.
Preferably, the poly-axial movement control hinge mechanism includes a primary hinge sub assembly rotatably coupled to the doorframe and two door pivot plate assemblies that are rotationally coupled to the primary hinge sub assembly and rigidly coupled to the door structure to allow a door to move with both a controlled lateral sideways movement between the captive and non-captive positions and a swing movement to move between the open and closed positions. In such preferred embodiments, the primary hinge sub assembly has a substantially longitudinally extending hinge torque bar extending between an upper end and a lower end; an upper pivot shaft disposed at or adjacent the upper end of the primary hinge torque bar; an upper frame mounting block disposed at or adjacent the upper end of the upper pivot shaft; an upper hinge plate assembly disposed adjacent the upper end of the primary hinge torque bar assembly; an upper hinge plate assembly adapted to produce a pivot housing to receive the upper door pivot plate assembly pivot pin and thereby rotate within; and upper hinge plate assembly to include a rigidly mounted locking pin at a prescribed distance from the secondary axis an in a position to engage with the hinge locking plate locking pin capture recess. Also included is an upper hinge plate latching mechanism adapted to operate in responsive to the door opening angle to allow or prevent the hinge locking mechanism to unlock and thereby allow the primary hinge sub assembly and secondary hinge assembly to rotate about the secondary pivot axis; a lower pivot shaft disposed at or adjacent the lower end of the primary hinge torque bar; a lower frame mounting block disposed at or adjacent the bottom end of the lower pivot shaft; a lower hinge plate assembly disposed adjacent the lower end of the primary hinge torque bar assembly; and a lower hinge plate assembly adapted to produce a pivot housing to receive the lower door pivot plate assembly pivot pin and thereby rotate within. Further, the upper door pivot plate assembly has a plate structure to form a rigid assembly with which to a rigidly affix to the door and to affix other components which includes an upper door pivot pin which is rigidly affixed and adapted to rotationally engage with the upper door pivot housing and thereby rotationally affix to the upper hinge plate assembly. Further the upper door pivot plate assembly having a locking mechanism to engage with the upper hinge plate assembly to prevent rotation about the secondary axis of the upper door pivot pin within the upper hinge plate door pivot pin housing; a locking mechanism that operates in response to the position of the upper door pivot plate assembly in relation to the doorframe hinge stile capture channel; a guide assembly to cooperate with the doorframe assembly to correctly position the upper door pivot plate assembly within the doorframe capture channel: a lower door pivot plate assembly and has a plate structure to form a rigid assembly with which to affix to the door and to which affix other components including a rigidly mounted lower door pivot pin adapted to rotationally affix to the lower hinge plate assembly.
The foregoing describes only one embodiment of the present invention and modifications, obvious to those skilled in the art, can be made thereto without departing from the scope of the present invention.
The term “comprising” (and its grammatical variations) as used herein is used in the inclusive sense of “including” or “having” and not in the exclusive sense of “consisting only of”.
Number | Date | Country | Kind |
---|---|---|---|
2019900430 | Feb 2019 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2020/050112 | 2/11/2020 | WO | 00 |