Polyanhydrides with therapeutically useful degradation products

Abstract
An aromatic polyanhydride comprising a repeating unit having the structure
Description
TECHNICAL FIELD

The present invention relates to biocompatible aromatic polyanhydrides having improved degradation properties and processability and unique therapeutic properties. In particular, the present invention relates to aromatic polyanhydrides produced from ortho-substituted bis-aromatic carboxylic acid anhydrides. The present invention also relates to ortho-substituted bis-aromatic dicarboxylic acids useful in the preparation of the aromatic polyanhydrides of the present invention.


BACKGROUND ART

Biocompatible and biodegradable aromatic polyanhydrides are disclosed by U.S. Pat. Nos. 4,757,128 and 4,997,904. However, unless incorporated into a copolymer containing a more hydrophilic monomer, such as sebacic acid, the aromatic polyanhydrides of the prior art have slow degradation times as well as relatively insoluble degradation products. A major drawback to the prior art aromatic polyanhydrides is their insolubility in most organic solvents.


Biocompatible and biodegradable aromatic polyanhydrides prepared from para-substituted bis-aromatic dicarboxylic acids are disclosed by U.S. Pat. No. 5,264,540. The para-substitution pattern results in higher melt and glass transition temperatures and decreased solubility, thus ultimately making these para-substituted polymers difficult to process.


A need exists for biocompatible and biodegradable aromatic polyanhydrides having improved degradation and processing properties, as well as therapeutic utilities.


SUMMARY OF THE INVENTION

This need is met by the present invention. It has now been discovered that the preparation of aromatic polyanhydrides from ortho-substituted bis-aromatic carboxylic acid anhydrides disrupts the crystallinity of the resulting polymer, enhancing solubility and processability, as well as degradation properties. Therefore, according to one aspect of the present invention, an aromatic polyanhydride is provided having a repeated unit within the structure of Formula I:




embedded image



wherein Ar is a substituted or unsubstituted aromatic ring and R is a difunctional organic moiety substituted on each Ar ortho to the anhydride group. Ar and R are preferably selected so that the hydrolysis products of the polyanhydrides have a chemical structure resembling pharmaceutically-active materials, particularly salicyclates such as aspirin, non-steroidal anti-inflammatory naphthyl or phenyl propionates such as ibuprofen, ketoprofen, naproxen, and the like, or other aromatic anti-inflammatory compounds such as indomethacin, indoprofen, and the like. In particular, Ar is preferably a phenyl group and R is preferably —Z1—R1—Z1— in which R1 is a difunctional moiety and both Z1's are independently either an ether, ester, amide, anhydride, carbonate, urethane or sulfide groups. R1 is preferably an alkylene group containing from 1 to 20 carbon atoms, or a group with 2-20 carbon atoms having a structure selected from (—CH2—CH2—O—)m, (—CH2—CH2—CH2—O—)m, and (—CH2—CHCH3—O—)m.


Ortho-substituted bis-aromatic carboxylic acid anhydrides of the present invention are novel and non-obvious intermediate compounds having utility in the preparation of the aromatic polyanhydrides of the present invention. Therefore, according to another aspect of the present invention, ortho-substituted bis-aromatic carboxylic acid anhydrides are provided having the structure of Formula II:




embedded image



wherein Ar and R, and the preferred species thereof, are the same as described above with respect to Formula I and R is substituted on each Ar ortho to the anhydride group.


The present invention also includes ortho-substituted bis-aromatic dicarboxylic acids, which are novel and non-obvious intermediate compounds having utility in the preparation of ortho-substituted bis-aromatic carboxylic acid anhydrides. Therefore, according to another aspect of the present invention, an ortho-substituted bis-aromatic dicarboxylic acid is provided having the structure of HOOC—Ar—R—Ar—COOH, wherein Ar and R, and the preferred species thereof, are the same as described above with respect to Formula I, and R is substituted on each Ar ortho to each carboxylic acid group.


The aromatic polyanhydrides of the present invention meet the need for moldable biocompatible biodegradable polymers. Therefore, the present invention also includes implantable medical devices containing the aromatic polyanhydrides of the present invention. When Ar and R are selected so that the aromatic polyanhydride hydrolyzes to form therapeutic salicyclates, the aromatic polyanhydrides have potential uses as biocompatible, biodegradable scaffolding implants for tissue reconstruction in which the degradation products have anti-thrombogenic qualities.


In addition, the aromatic polyanhydrides that hydrolyze to form therapeutic salicyclates have potential uses as anti-inflammatory dosage forms, including dosage forms for oral administration, particularly in the treatment of digestive disorders, including bowel disorders such as inflammatory bowel disease, Crohn's disease, and the like. Ar and R may also be selected so that the aromatic polyanhydrides hydrolyze to form therapeutic non-steroidal anti-inflammatory naphthyl and phenyl propionates that resemble compounds such as ibuprofen, ketoprofen, naproxen, and the like, and other aromatic anti-inflammatory compounds such as indomethacin, indoprofen, and the like.


Therefore, the present invention also includes a method for treating inflammation by administering to a patient in need thereof a quantity of the aromatic polyanhydride of the present invention in which Ar and R are selected so that aromatic polyanhydride hydrolyzes to form therapeutic salicyclates at the site of inflammation in an amount effective to relieve the inflammation. The aromatic polyanhydrides may be administered orally. This is particularly useful in the treatment of digestive inflammation, such as inflammatory bowel disease, because the therapeutic salicyclates are formed in the gastro-intestinal tract of the patient. Methods for treating inflammation with aromatic polyanhydrides that hydrolyze to form therapeutic naphthyl or phenyl propionates are included in the present invention as well, as well as methods for treating inflammation with aromatic polyanhydrides that hydrolyze to form indomethacin or indoprofen.


The present invention therefore also includes anti-inflammatory oral dosage forms consisting essentially of the aromatic polyanhydrides of the present invention that hydrolyze to form therapeutic salicyclates or naphthyl or phenyl propionates, or indomethacin or indoprofen, and a pharmaceutically acceptable excipient. The oral dosage forms may further include a biologically or pharmaceutically active compound to be co-administered with the therapeutic degradation products.


Ar and R may also be selected so that the aromatic polyanhydrides hydrolyzes to form therapeutic antiulcerative drugs such as rosaprostol, therapeutic antifibrotic aminobenzoates and therapeutic vasoconstricting phenylethanolamines and vasoconstricting drugs such as midodrine. Therefore, the present invention also includes a method for therapeutic treatment by administering to a patient in need thereof a quantity of the aromatic polyanhydride of the present invention in which Ar and R are selected so that aromatic polyanhydride hydrolyzes to form rosaprostol, antifibrotic aminobenzoates, vasoconstricting phenylethanolamines and midodrine. The present invention also includes oral dosage forms consisting essentially of the aromatic polyanhydrides of the present invention in which Ar and R are selected so that the aromatic polyanhydrides hydrolyze to form rosaprostol, antifibrotic aminobenzoates, vasoconstricting phenylethanolamines and midodrine.


In another embodiment of the present invention, the aromatic polyanhydrides are combined with a quantity of biologically or pharmaceutically active compound sufficient for effective site-specific or systemic drug delivery as described by Gutkowsky et al., J. Biomater. Res., 29, 811-21 (1995) and Hoffman, J. Controlled Release, 6, 297-305 (1987). The biologically or pharmaceutically active compound may be physically admixed, embedded or dispersed in the polymer matrix. Alternatively, derivatives of biologically and pharmaceutically active compounds can be attached to repeating units of the polymers of the present invention by covalent bonds linked to an Ar ring or an R organic moiety. This provides for sustained release of the biologically or pharmaceutically active compound.


Another aspect of the present invention provides a method for site-specific or systemic drug delivery by implanting in the body of a patient in need thereof an implantable drug delivery device containing a therapeutically effective amount of a biologically or pharmaceutically active compound in combination with an aromatic polyanhydride of the present invention.


A more complete appreciation of the invention and many more other intended advantages can be readily obtained by reference to the following detailed description of the preferred embodiments and claims, which disclose the principles of the invention and the best modes which are presently contemplated for carrying them out.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides aromatic polyanhydrides with improved degradation properties and processability having repeating units with the structure of Formula I in which Ar and R are the same as described above with respect to Formula I. R preferably has a structure of —Z1—R1—Z1—, in which R1 is a difunctional organic moiety and both Z1's are difunctional moieties independently selected from ethers, esters, amides, anhydrides, urethanes, carbamates, carbonates, sulfides, and the like. R1 may be an alkylene group containing from 1 to 20, and preferably 6, carbon atoms, or R1 may be a group having from 2 to 30, and preferably 6, carbon atoms having a structure selected from (—CH2—CH2—O—)m, (—CH2—CH2—CH2—O—)m, and (—CH2—CHCH3—O—)m, or R1 may have the structure —R2—Z2—R3—, wherein R2 and R3 are independently alkylene groups containing from 1 to 19 carbon atoms or groups having from 2 to 18 carbon atoms having a structure selected from (—CH2—CH2—O—)m, (—CH2—CH2—CH2—O—)m, and (—CH2—CHCH3—O—)m, and Z2 is selected from the difunctional moieties described above with respect to Z1.


Ar may be an alkylaryl group, in which a difunctional organic moiety is positioned between each anhydride carbonyl group and the corresponding aromatic ring. Preferably, however, each carbonyl group is directly substituted on the corresponding aromatic ring.


Preferred polymers of the present invention have repeating units with the structure of Formula I in which Ar is a phenyl ring and R is selected from —Z1—(—CH2—)n—Z1—, —Z(—CH2—CH2—O—)m—Z1—, —Z(—CH2—CH2—CH2—O—)m—Z1—, and —Z(—CH2—CHCH3—O—)m—Z1—, wherein Z1 is an ether, ester or amide group and n is from 1 to 20 inclusive, and preferably is 6, and m is selected so that R has from 2 to 20, and preferably 6, carbon atoms.


The aromatic polyanhydrides of the present invention may be prepared by the method described in Conix, Macromol. Synth., 2, 95-99 (1996), in which dicarboxylic acids are acetylated in an excess of acetic anhydride at reflux temperatures followed by melt condensation of the resulting carboxylic acid anhydride at 180° C. for 2-3 hours. The resulting polymers are isolated by precipitation into diethyl ether from methylene chloride. The described process is essentially the conventional method for polymerizing bis-aromatic dicarboxylic acid anhydrides into aromatic polyanhydrides.


Aromatic polyanhydrides in accordance with the present invention have weight average molecular weights of at least about 1500 daltons, up to about 35,000 daltons, calculated by Gel Permeation Chromatography (GPC) relative to narrow molecular weight polystyrene standards.


The aromatic polyanhydrides of the present invention are produced from orth-substituted bis-aromatic carboxylic acid anhydrides having the structure of Formula II in which Ar, R and the preferred species thereof are the same as described above with respect to Formula I. As noted above, ortho-substituted bis-aromatic carboxylic acid anhydrides are prepared by acetylation of the corresponding ortho-substituted bis-aromatic carboxylic acids in an excess of acetic anhydride at reflux temperatures. The dicarboxylic acids have the structure of Formula III, wherein Ar, R and the preferred species thereof are the same as described above with respect to Formula I.


The dicarboxylic acids are prepared by reacting a stiochiometric ratio of aromatic carboxylic acid having the structure Z3—Ar—COOH and a compound having a structure Z4—R—Z4 wherein Ar is a substituted or unsubstituted aromatic ring on which Z3 is substituted ortho to the carboxylic acid group, R is a difunctional organic moiety and Z3 and Z4 are functional groups selected to provide the linkage desired between the difunctional organic moiety and the two aromatic rings.


Suitable Z3 and Z4 functional groups, and the manner in which they may be reacted to produce the bis-aromatic dicarboxylic acids of the present invention, may be readily determined by those of ordinary skill in the art without undue experimentation. For example, for aromatic polyanhydrides having the structure of Formula I in which Ar is a phenyl group and R is —O—(CH2—)6—O—, the ortho-substituted bis-aromatic dicarboxylic acid starting material may be prepared by reacting o-salicylic acid with 1,6-dibromohexane.


The aromatic polyanhydrides of the present invention can be isolated by known methods commonly employed in the field of synthetic polymers to produce a variety of useful articles with valuable physical and chemical properties. The new polymers can be readily processed by solvent casting to yield films, coatings, dishes and sponges with different geometric shapes for design of various medical implants, and may also be processed by compression molding and extrusion. Medical implant applications include the use of aromatic polyanhydrides to form shaped articles such as vascular graphs and stents, bone plates, sutures, implantable sensors, implantable drug delivery devices, stents for tissue regeneration, and other articles that decompose harmlessly within a known time period.


The polymers of the present invention include aromatic polyanhydrides having a repeating unit with the structure of Formula I in which Ar and R are selected to provide aromatic polyanhydrides that hydrolyze to form therapeutically useful salicyclates. As noted above, the salicyclates may be employed to treat inflammation, particularly digestive inflammation such as inflammatory bowel disorders. Thus, implantable or ingestible drug delivery devices of the present invention include oral dosage forms consisting essentially of the aromatic polyanhydrides of the present invention that hydrolyze to form therapeutic salicyclates, in combination with a pharmaceutically acceptable excipient. The oral dosage forms function to deliver salicyclates to the site of inflammation, either directly, or by being absorbed into the bloodstream from the digestive tract. The salicyclates may be supplemented with other therapeutic agents in the polymer matrix.


Examples of the therapeutic salicyclates include, but are not limited to, thymotic acid, 4,4-sulfinyldinailine, 4-sulfanilamidosalicylic acid, sulfanilic acid, sulfanilylbenzylamine, sulfaloxic acid, succisulfone, salicylsulfuric acid, salsallate, salicylic alcohol, orthocaine, mesalamine, gentisic acid, enfenamic acid, cresotic acid, aminosalicylic acid, aminophenylacetic acid, acetylsalicylic acid, and the like. The identification of Ar and R moieties that provide aromatic polyanhydrides that hydrolyze to form such therapeutically useful salicyclates can be readily determined by those of ordinary skill in the art without undue experimentation.


Ar and R may also be selected so that the aromatic polyanhydrides hydrolyze to form therapeutic non-steroidal anti-inflammatory phenyl and naphthyl propionates, indomethacin and indoprofen. The identification of Ar and R moieties that provide aromatic polyanhydrides that hydrolyze to form such therapeutic anti-inflammatory compounds can also be readily determined by those of ordinary skill in the art without undue experimentation.


Ar and R may also be selected so that the aromatic polyanhydrides hydrolyze to form other therapeutic compounds. For example, Ar and R may be selected to provide an aromatic polyanhydride that hydrolyzes to form the antiulcerative drug rosaprostol. Ar and R may also be selected to provide aromatic polyanhydrides that hydrolyze to form antifibrotic aminobenzoates. Ar and R may further be selected to provide polyanhydrides that hydrolyze to form the vasoconstricting drug midodrine, as well as vasoconstricting phenylethanolamines. Again, the identification of Ar and R moieties that provide aromatic polyanhydrides that hydrolyze to form such therapeutic compounds can readily be determined by those of ordinary skill in the art without undue experimentation.


Pharmaceutically acceptable excipients for oral administration are well known and include diluents such as lactose, sucrose, mannitol, sorbitol, cellulose, glycine, and the like, lubricants such as silica, talc, stearic acid and salts thereof, and the like, binders such as magnesium aluminum silicate, starches such as corn starch, methyl cellulose, and the like, and disintegrating agents such as starches, agar, and the like, as well as dyestuffs, flavors and sweeteners. The dosage forms are manufactured in a manner that is in itself well known, for example, by means of conventional mixing, granulating or dragee-making processes.


The quantity of aromatic polyanhydride that hydrolyzes to form an amount of therapeutic salicyclate effective to relieve inflammation can be readily determined by those of ordinary skill in the art without undue experimentation. The quantity essentially corresponds stiochiometrically to the amount of salicyclate known to produce an effective treatment. Oral dosage forms of aromatic polyanhydrides that hydrolyze to form other therapeutic non-steroidal anti-inflammatory compounds and other therapeutic compounds are prepared and administered in a similar manner.


The ortho-substituted aromatic polyanhydrides of the present invention exhibit desirable adhesion to cell cultures. The disruption of crystallinity is believed to improve the attachment and growth of cells and may facilitate specific interactions with proteins, peptides and cells. The aromatic polyanhydrides of the present invention are thus useful as scaffolding implants for tissue reconstruction. The polymer surfaces may also be modified by simple chemical protocols to attach specific peptides or to immobilize proteins to elicit selective cellular responses in tissue engineering applications or in implant design.


Controlled drug delivery systems may also be prepared, in which a biologically or pharmaceutically active agent is physically embedded or dispersed into the polymeric matrix, physically admixed with, or covalently bonded to the aromatic polyanhydride. Covalent bonding is accomplished by providing an aromatic polyanhydride having reactive functional groups on one or more Ar groups or R moieties and reacting the polyanhydride with a derivatized or underivatized biologically or pharmaceutically active compound capable of reacting with the functional group on the aromatic polyanhydride to form a covalent bond. Thus, biologically or pharmaceutically active compounds may be linked to aromatic polyanhydrides by means of ester groups, amide groups, and the like.


Examples of biologically or pharmaceutically active compounds suitable for the use in the present invention include acyclovir, cephradrine, malphalan, procaine, ephedrine, adriamicin, daunomycin, plumbagin, atropine, quinine, digoxin, quinidine, biologically active peptides, chlorin e6, cephadrine, cephalothin, penicillin IV, nicotinic acid, chemodeoxycholic acid, chlorambucil, and the like. Biologically active compounds, for the purposes of the present invention, are additionally defined as including cell mediators, biologically active ligands, and the like. The compounds are covalently bonded to the aromatic polyanhydride by methods well understood by those of ordinary skill in the art. Drug delivery compounds may also be formed by physically blending the biologically or pharmaceutically active compound to be delivered with the aromatic polyanhydrides of the present invention using conventional techniques well-known to those of ordinary skill in the art.


The following non-limiting examples set forth hereinbelow illustrate certain aspects of the invention. All parts and percentages are by weight unless otherwise noted and all temperatures are in degrees Celsius. Except for acetic anhydride and ethyl ether (Fisher Scientific), all solvents and reagents were obtained from Aldrich Chemical. All solvents were HPLC grade. All other reagents were of analytical grade and were purified by distillation or recrystallization.


All compounds were characterized by a proton nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, gel permeation chromatography (GPC), high performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). Infrared spectroscopy was performed on an AT1 Mattson Genesis (M100) FTIR Spectrophotometer. Samples were prepared by solvent casting on NaCl plates. 1H and 13C NMR spectroscopy was obtained on a Varian 200 MHz or Varian 400 MHz spectrometer in solutions of CDCl3 or DMSO-d6 with solvent as the internal reference.


GPC was performed on a Perkin-Elmer Advanced LC Sample Processor (ISS 200) with PE Series 200 LC Pump and a PE Series LC Refractive Index Detector to determine molecular weight and polydispersity. The data analysis was carried out using Turbochrom 4 software on a DEC Celebris 466 computer. Samples were dissolved in tetrahydrofuran and eluted through a mixed bed column (PE PL gel, 5 μm mixed bed) at a flow rate of 0.5 mL/min. Samples (about 5 mg/mL) were dissolved into the tetrahydrofuran and filtered using 0.5 μm PTFE syringe filters prior to column injection. Molecular weights were determined relative to narrow molecular weight polystyrene standards (Polysciences, Inc.).


Thermal analysis was performed on a Perkin-Elmer system consisting of a TGA 7 thermal gravimetric analyzer equipped with PE AD-4 autobalance and Pyris 1 DSC analyzer. Pyris software was used to carry out data analysis on a DEC Venturis 5100 computer. For DSC, an average sample weight of 5-10 mg was heated at 10° C./min. at a 30 psi flow of N2. For TGA, an average sample weight of 10 mg was heated at 20° C./min under a 8 psi flow of N2. Sessile drop contact angle measurements were obtained with an NRL Goniometer (Rame-hart) using distilled water. Solutions of polymer in methylene chloride (10% wt/vol.) were spun-coated onto glass slips, at 5,000 rpm for 30 seconds.


EXAMPLES
Example I
Preparation of 1,6-Bis(o-Carboxyphenoxy) Hexane Dicarboxylic Acid

To a mixture of salicylic acid (77.12 g, 0.5580 mole) and distilled water (84 mL) sodium hydroxide (44.71 g, 1.120 mole) was added. The reaction was brought to reflux temperature before 1,6-dibromohexane (45.21 g, 0.2790 mole) was added drop-wise. Reflux was continued for 23 hours after which additional sodium hydroxide (11.17 g, 0.2790 mole) was added. The mixture was refluxed for 16 more hours, cooled, filtered, and washed with methanol. The yield was 48.8%.


Example II
Preparation of 1,6-Bis(o-Carboxyphenoxy) Hexane Monomer (o-CPH)

The dicarboxylic acid of Example I was acetylated in an excess of acidic anhydride at reflux temperature. The resulting monomer was precipitated from methylene chloride into an excess of diethyl ether. The yield was 66.8%.


Example III
Preparation of Poly(1,6-Bis(o-Carboxyphenoxy) Hexane) (Poly(o-CPH))

The monomer of Example II was polymerized in a melt condensation performed at 180° C. for 3 hours under vacuum in a reaction vessel with a side arm. The polymerization vessel was flushed with nitrogen at frequent intervals. The polymer was isolated by precipitation into diethyl ether from methylene chloride. The yield was quantitative.


All compounds were characterized by nuclear magnetic resonance spectroscopy, GPC, differential scanning calorimetry (DSC), thermal gravimetric analysis, contact angle measurements, UV spectroscopy, mass spectroscopy, elemental analysis and high pressure liquid chromatography (HPLC).


The o-CPH monomer was polymerized by melt polycondensation for 60 minutes at temperatures ranging from 100° to 300° C. Analysis of the resulting polymers by GPC indicated that the highest molecular weight, coupled with the lowest polydispersity index occurred at 260° C.


The poly(o-CPH) was generally soluble in methylene chloride and chloroform, while the poly(p-CPH) was not. The poly(o-CPH) was slightly soluble in tetrahydrofuran, acetone and ethyl acetate.


Disks of poly(o-CPH), poly(p-CPH) and, as a reference, poly(lactic acid glycolic acid) were prepared and placed in 0.1 phosphate buffer solution at 37° C. for 4 weeks. The degradation media was replaced periodically. The degradation profile was linear up to three weeks time.


In currently used polyanhydride systems, the aromatic groups are para-substituted. This substitution pattern results in higher melt and glass transition temperatures and decreased solubility, thus ultimately making these para-substituted polymers difficult to process.


Poly(o-CPH), unlike poly(p-CPH), has both a lower melting point (65° C. vs. 143° C.) and glass transition temperature (35° C. vs. 47° C.). It is also possible to solution cast poly(o-CPH) using low-boiling solvents whereas poly(p-CPH) is relatively insoluble in most organic and aqueous solvents. This structural modification gives a polymer whose hydrolysis products are chemically similar to aspirin. Aspirin is an anti-inflammatory agent derived from salicylic acid, which is one of the reagents used to synthesize the inventive polyanhydrides. Therefore, the degradation products of this polymer may actually aid in patient recovery. Because of pliability and ease of processing, the aromatic polyanhydrides of the present invention have great potential as polymer scaffolds for wound healing.


Example IV
Preparation of 1,3-bis(o-carboxyphenoxy)propane Dicarboxylic Acid

1,3-dibromopropane (14.7 mL, 0.145 mole) was added to a mixture of salicylic acid (40.0 g, 0.290 mole), distilled water (44 mL) and sodium hydroxide (23.2 g, 0.580 mole) using the method described in Example I. After 4 hours, additional sodium hydroxide (5.79 g, 0.145 mole) was added to the reaction mixture. Reflux was continued for another 4 hours, after which the mixture was cooled, filtered and washed using the methods described in Example I. The yield was 37.7%


Example V
Preparation of poly(1,3-bis(o-carboxyphenoxy)propane)

The dicarboxylic acid of Example IV was acetylated using the methods of Example II. The acetylated dicaboxylic acid was then polymerized using the methods described in Example III. The resulting polymer had a Mw of 8,500 daltons and a polydispersity of 2.3.


Contact angle measurements on solvent-cast films demonstrated that the hexyl chain of the polymer of Example III increased the surface hydrophobicity relative to the shorter propyl chain of the polymer of Example V. A comparison of thermal characteristics emphasized the effects of lengthening the alkyl chain. In particular, the polymer of Example III has a Tg of 34° C. and a Td of 410° C., while the polymer of Example V had a Tg of 50° C. and a Td of 344° C. Thus, the hexyl chain decreased the glass transition temperature (Tg) relative to the propyl chain, reflecting the increased flexibility of the polymer chain. The opposite trend was observed for decomposition temperatures (Td), with the longer alkyl chain increasing the Td.


Optimum polycondensation conditions were determined for the polymer of Example III. Optimum conditions were defined as those that yielded a crude polymer with the highest molecular weight and highest Tg. Higher reaction temperatures decreased the Mw values (measured by GPC) with a concurrent increase in polydispersity. As expected for a condensation polymerization, longer reaction times yielded polymers with higher molecular weights. However, over longer reaction times, there appeared a subsequent decrease in Tg. Based on these results, the optimum conditions were defined as temperatures of 220° C. for 150 minutes under a vacuum.


Example VI
Preparation of 1,8-bis[o-(benzylcarboxy)carboxy phenyl]octane dicarboxylic acid ester

The initial synthesis of poly(anhydride-ester) dicarboxylic acid monomers was attempted using the same methodology used for the poly(anhydride-ether) dicarboxylic monomers of Example III. It was found, however, that the reactivity of the phenol was enhanced by benzylation of the carboxylic acid group. In addition, the solubility of benzyl salicylate in organic media increased the ability of the reaction to move forward.


Thus, benzyl salicylate (1.530 g, 6.720 mmole) and distilled tetrahydrofuran were combined under an inert atmosphere in a reaction flask. An ice-salt bath was placed under the reaction flask and the addition of 60% sodium hydride (0.4840 g, 12.10 mmole) followed. After one hour, sebacoyl chloride (0.7850 g, 3.280 mmole) was added drop-wise to the 0° C. reaction mixture. After 30 minutes, the reaction mixture was vacuum filtered, the filtrate collected and the solvent removed to reveal to yield the free carboxylate as a white solid residue. Purification was performed using a chromatron with ethyl acetate/methylene chloride (20/80) as the solvent system. The yield was 43%.


Example VII
Polymerization of Poly(1,8-bis(o-dicarboxyphenyl) octane)

To remove the benzyl protecting groups, the 1,8-bis[(benzylcarboxy)carboxyphenyl]octane dicarboxylic acid ester of Example VI (0.06000 g, 0.9620 mole) was dissolved in methylene chloride in a reaction flask (60.00 mL). The catalyst Pd—C (10%, 1.200 g) was added to the reaction flask. After 30 minutes, the reaction was complete. The reaction mixture was filtered and the solvent removed to yield the free dicarboxylic acid as a white solid residue which was recrystallized using petroleum ether and methylene chloride. The yield was 45%.


The dicarboxylic acid was acetylated using the methods described in Example II and the acetylated dicarboxylic acid was then polymerized using the methods described in Example III. The resulting polymer had a Mw of 3,000 daltons and a polydispersity of 1.40.


Subsequent polymerizations yielded polymers with Mw's ranging from 2,000 to 5,000 daltons with corresponding polydispersities of approximately 1.40.


The poly(anhydride esters) of Example VII were compression molded into circular discs and placed in phosphate buffered saline solution under acidic, neutral and basic conditions. Over the course of a three-week degradation study, the polymers in the acidic and neutral solutions showed no observable changes, whereas the polymer in the basic media showed significant morphological changes over time.


Example VIII
Preparation of Poly[(1,8-bis(o-dicarboxyphenyl) octane)-(1,6-bis(p-carboxyphenoxy) hexane]copolymers

The 1,8-bis(o-dicarboxyphenyl) octane of Example II was copolymerized with 1,6-bis(p-carboxyphenoxy) hexane using the methods described in Example III. In an in vivo mouse study, each mouse was implanted with 2 polymers, the copolymer of Example VIII and poly(1,6-bis(p-carboxyphenoxy)hexane). Each polymer was compression molded for 1 to 5 minutes at 1 to 20 K psi depending on the thickness of polymer needed. The polymer was placed under the palatal gingival mucosa adjacent to the first maxillary molars. The mice were sacrificed at 1, 4 and 10 day intervals and demonstrated the biocompatibility an biodegradability in vivo of the polymers of the present invention, with salicylic acid being released upon degradation, via hydrolysis of the polymer backbone.


STATEMENT OF INDUSTRIAL APPLICABILITY

The polymers of the present invention have a variety of pharmaceutical applications, particularly as anti-inflammatory compounds.


The foregoing examples and description of the preferred embodiment should be taken as illustrating, rather than as limiting, the present invention as defined by the claims. As would be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the spirit and the scope of the invention, and all such variations are intended to be included within the scope of the following claims.

Claims
  • 1. An aromatic polyanhydride comprising a repeating unit having the structure:
  • 2. The aromatic polyanhydride of claim 1, wherein the therapeutic salicylate is selected from the group consisting of thymotic acid, 4-sulfanilamidosalicylic acid, salicylsulfuric acid, salsalate, mesalamine, gentisic acid, enfenamic acid, cresotic acid, aminosalicylic acid and aminophenylacetic acid.
  • 3. A drug delivery system comprising the aromatic polyanhydride of claim 1 physically admixed with a biologically or pharmaceutically active agent.
  • 4. A drug delivery system comprising a biologically or pharmaceutically active agent physically embedded or dispersed into a polymeric matrix formed from the aromatic polyanhydride of claim 1.
  • 5. A drug delivery system comprising a biologically or pharmaceutically active agent covalently bonded to the aromatic polyanhydride of claim 1.
  • 6. An implantable medical device comprising the aromatic polyanhydride of claim 1.
  • 7. The implantable medical device of claim 6, wherein said device is a scaffolding implant for tissue reconstruction.
  • 8. A method for site-specific or systemic drug delivery comprising implanting in the body of a patient in need thereof an implantable drug delivery device comprising a therapeutically effective amount of the aromatic polyanhydride of claim 1.
  • 9. A method for treating inflammation comprising administering to a patient in need thereof an effective amount of the aromatic polyanhydride of claim 1.
  • 10. The method of claim 9, wherein the aromatic polyanhydride is administered orally.
  • 11. The method of claim 9, wherein the inflammation is digestive inflammation.
  • 12. The method of claim 9, wherein the inflammation is caused by a digestive disorder.
  • 13. The method of claim 12, wherein the digestive disorder is a bowel disorder.
  • 14. The method of claim 12, wherein the digestive disorder is an inflammatory bowel disease.
  • 15. The method of claim 12, wherein the digestive disorder is Crohn's disease.
  • 16. A method for treating inflammation comprising orally administering to a patient in need thereof an effective amount of the aromatic polyanhydride of claim 2.
  • 17. A dosage form comprising an effective amount of the aromatic polyanhydride of claim 1 and a pharmaceutically acceptable excipient.
  • 18. The dosage form of claim 17 that is an oral dosage form.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/516,464, filed Sep. 6, 2006, U.S. Pat. No. 7,534,852 which is a continuation of U.S. patent application Ser. No. 09/508,217, filed Jun. 18, 2004, U.S. Pat. No. 7,122,615, which claims priority to International Patent Application No. PCT/US1998/018816 filed Sep. 10, 1998 and U.S. Provisional Application No. 60/058,328 filed Sep. 10, 1997, the entireties of which are incorporated herein by reference.

US Referenced Citations (77)
Number Name Date Kind
2607799 Weesner Aug 1952 A
4062855 Allan et al. Dec 1977 A
4126445 Allan et al. Nov 1978 A
4164560 Folkman et al. Aug 1979 A
4298595 Parkinson et al. Nov 1981 A
4591496 Cohen et al. May 1986 A
4757128 Domb et al. Jul 1988 A
4792598 Ziegast Dec 1988 A
4857311 Domb et al. Aug 1989 A
4868274 Gupta et al. Sep 1989 A
4886870 D'Amore et al. Dec 1989 A
4888176 Langer et al. Dec 1989 A
4891225 Langer et al. Jan 1990 A
4906474 Langer et al. Mar 1990 A
4916204 Domb et al. Apr 1990 A
4997904 Domb Mar 1991 A
4999417 Domb Mar 1991 A
5032216 Felten Jul 1991 A
5082925 Shalaby et al. Jan 1992 A
5160745 DeLuca et al. Nov 1992 A
5175235 Domb et al. Dec 1992 A
5259968 Emert et al. Nov 1993 A
5264540 Cooper et al. Nov 1993 A
5290494 Coombes et al. Mar 1994 A
5317079 Domb et al. May 1994 A
5364725 Wilson et al. Nov 1994 A
5498729 Domb Mar 1996 A
5512131 Kumar et al. Apr 1996 A
5514764 Frechet et al. May 1996 A
5518730 Fuisz May 1996 A
5545409 Laurencin et al. Aug 1996 A
5629009 Laurencin et al. May 1997 A
5721131 Rudolph et al. Feb 1998 A
5776748 Singhvi et al. Jul 1998 A
5798115 Santerre et al. Aug 1998 A
5837278 Geistlich et al. Nov 1998 A
5891477 Lanza et al. Apr 1999 A
5902599 Anseth et al. May 1999 A
5937758 Maracas et al. Aug 1999 A
5958911 Evans et al. Sep 1999 A
5969020 Shalaby et al. Oct 1999 A
6123956 Baker et al. Sep 2000 A
6153212 Mao et al. Nov 2000 A
6171610 Vacanti et al. Jan 2001 B1
6280772 Pinkus Aug 2001 B1
6365149 Vyakarnam et al. Apr 2002 B2
6468519 Uhrich Oct 2002 B1
6486214 Uhrich Nov 2002 B1
6602915 Uhrich Aug 2003 B2
6613807 Uhrich Sep 2003 B2
6685928 Uhrich et al. Feb 2004 B2
6689350 Uhrich Feb 2004 B2
7122615 Uhrich Oct 2006 B1
7396527 Uhrich Jul 2008 B2
7411031 Uhrich et al. Aug 2008 B2
7534852 Uhrich May 2009 B2
7662864 Kanamathareddy et al. Feb 2010 B2
7666398 Uhrich Feb 2010 B2
20030035787 Uhrich Feb 2003 A1
20030059469 Uhrich Mar 2003 A1
20040038948 Uhrich Feb 2004 A1
20040044125 Uhrich Mar 2004 A1
20040096476 Uhrich et al. May 2004 A1
20050031577 Uhrich Feb 2005 A1
20050053577 Uhrich Mar 2005 A1
20050089506 Uhrich Apr 2005 A1
20050249697 Uhrich et al. Nov 2005 A1
20060013851 Giroux Jan 2006 A1
20060057179 Giroux Mar 2006 A1
20060188546 Giroux Aug 2006 A1
20070014832 Uhrich Jan 2007 A1
20070098800 Giroux et al. May 2007 A1
20070196417 Uhrich Aug 2007 A1
20080226583 Uhrich Sep 2008 A1
20080233078 Uhrich Sep 2008 A1
20090035248 Uhrich et al. Feb 2009 A1
20100152410 East et al. Jun 2010 A1
Foreign Referenced Citations (45)
Number Date Country
750424 Mar 2003 AU
2393676 Jul 2002 CA
288311 Mar 1991 DE
0288387 Mar 1991 DE
0246341 Nov 1987 EP
0580386 Jul 1992 EP
0498283 Aug 1992 EP
S45-004740 Feb 1970 JP
51-134729 Nov 1976 JP
53-082743 Jul 1978 JP
56-007716 Jan 1981 JP
6255797 Dec 1985 JP
61186309 Aug 1986 JP
06-328857 Nov 1994 JP
07-149044 Jun 1995 JP
9000237 Aug 1991 NL
WO 9109831 Jul 1991 WO
WO 9739738 Oct 1997 WO
WO 9744016 Nov 1997 WO
WO 9749385 Dec 1997 WO
WO 9836013 Aug 1998 WO
WO 9912990 Apr 1999 WO
WO 9929885 Jun 1999 WO
WO 9936107 Jul 1999 WO
WO 0066730 Nov 2000 WO
WO 0128492 Apr 2001 WO
WO 0141753 Jun 2001 WO
WO 0209767 Feb 2002 WO
WO 0209768 Feb 2002 WO
WO 0209769 Feb 2002 WO
WO 03046034 Jun 2003 WO
WO 03065928 Aug 2003 WO
WO 03066053 Aug 2003 WO
WO 03072020 Sep 2003 WO
WO 2004006863 Jan 2004 WO
WO 2004039355 May 2004 WO
WO 2004045549 Jun 2004 WO
WO 2005039489 May 2005 WO
WO 2005042600 May 2005 WO
WO 2006127667 Nov 2006 WO
WO 2007143698 Dec 2007 WO
WO 2008034019 Mar 2008 WO
WO 2008103744 Aug 2008 WO
WO 2008128193 Oct 2008 WO
WO 2009026544 Feb 2009 WO
Related Publications (1)
Number Date Country
20100074937 A1 Mar 2010 US
Provisional Applications (1)
Number Date Country
60058328 Sep 1997 US
Continuations (2)
Number Date Country
Parent 11516464 Sep 2006 US
Child 12428088 US
Parent 09508217 US
Child 11516464 US