Polyaxial pedicle screw

Abstract
A polyaxial bone anchor including a housing, a bone screw, and a retainer for pivotably coupling the head of the bone screw to the housing. The retainer is positioned into the bore of the housing and includes a plurality of alternating tabs and slots circumferentially arranged to define a cavity for receiving the head portion of the bone screw therein. The retainer is axially moveable in the housing from a first position in which the head portion is not passable through the lower opening of the retainer to a second position in which the head portion is passable through the lower opening of the retainer.
Description
TECHNICAL FIELD

The disclosure is directed to vertebral anchors for use with orthopedic fixation systems. More particularly, the disclosure is directed to polyaxial pedicle screws including structures for securely coupling a bone screw to a housing of the polyaxial pedicle screw.


BACKGROUND

The spinal column of a patient includes a plurality of vertebrae linked to one another by facet joints and an intervertebral disc located between adjacent vertebrae. The facet joints and intervertebral disc allow one vertebra to move relative to an adjacent vertebra, providing the spinal column a range of motion. Diseased, degenerated, damaged, or otherwise impaired facet joints and/or intervertebral discs may cause the patient to experience pain or discomfort and/or loss of motion, thus prompting surgery to alleviate the pain and/or restore motion of the spinal column.


One possible method of treating these conditions is to immobilize a portion of the spine to allow treatment. Traditionally, immobilization has been accomplished by rigid stabilization. For example, in a conventional spinal fusion procedure, a surgeon restores the alignment of the spine or the disc space between vertebrae by installing a rigid fixation rod between pedicle screws secured to adjacent vertebrae. Bone graft is placed between the vertebrae, and the fixation rod cooperates with the screws to immobilize the two vertebrae relative to each other so that the bone graft may fuse with the vertebrae.


Dynamic stabilization has also been used in spinal treatment procedures. Dynamic stabilization does not result in complete immobilization, but instead permits a degree of mobility of the spine while also providing sufficient support and stabilization to effect treatment. One example of a dynamic stabilization system is the Dynesys® system available from Zimmer Spine, Inc. of Minneapolis, MN Such dynamic stabilization systems typically include a flexible member positioned between pedicle screws installed in adjacent vertebrae of the spine. A flexible cord can be threaded through the boro in the flexible member and secured to the pedicle screws while cooperating with the flexible member to permit mobility of the spine.


Thus, it may be desirable to provide alternative vertebral anchors which may be used in spinal stabilization systems which are configured to secure elongate members or other structures to one or more vertebrae of a spinal segment of a spinal column in a desired configuration in treating various spinal disorders.


Accordingly, it is desirable to develop a pedicle screw that provides polyaxial rotation which is easily assembled and configured to be secured in a desired angular orientation when secured to an elongated member of a vertebral stabilization system.


SUMMARY

The disclosure is directed to several alternative designs, materials and methods of assembling vertebral anchor structures and assemblies.


Accordingly, one illustrative embodiment is a polyaxial bone anchor. The polyaxial bone anchor includes a housing having an upper end, a lower end and a bore extending through the housing from the upper end to the lower end. The bore opens out at the lower end at a lower opening. The housing also includes a channel configured for receiving an elongate stabilization member therethrough which extends from a first side surface of the housing to a second side surface of the housing opposite the first side surface transverse to the bore. The bone anchor also includes a retainer positioned into the boro of the housing which has an outermost diameter greater than a diameter of the lower opening. The retainer includes a plurality of alternating tabs and slots circumferentially arranged to define a cavity therein. Also included is a bone screw including a head portion and a shank extending from the head portion. The head portion of the bone screw is positionable in the cavity of the retainer with the shank extending from the lower end of the housing by deflecting the tabs radially outward to enlarge a lower opening, of the retainer into the cavity from a diameter less than a diameter of the head portion to a diameter greater than or equal to the diameter of the head portion. The bone anchor also includes means for applying a force to move the retainer toward the lower end of the housing while the retainer is positioned in the bore.


Another illustrative embodiment is a polyaxial bone anchor. The bone anchor includes a housing having an upper end, a lower end and a bore extending through the housing from the upper end to the lower end. The bore opens out at the lower end at a lower opening. The housing also includes a channel configured for receiving an elongate stabilization member therethrough which extends from a first side surface of the housing to a second side surface of the housing opposite the first side surface transverse to the bore. The bone anchor also includes a retainer positionable in the bore of the housing. The retainer is movable in the bore of the housing between a first position and a second position. The retainer is closer to the lower end of the housing in the first position and closer to the upper end of the housing in the second position. Additionally, the bone anchor includes a bone screw including a head portion and a shank extending from the head portion. The head portion of the bone screw is positionable in a cavity of the retainer with the shank extending from the lower end of the housing. The head portion of the bone screw is insertable into the cavity of the retainer from the lower end of the housing when the retainer is in the second position, but is not removable from the cavity of the retainer when the retainer is in the first position.


Another illustrative embodiment is a polyaxial bone anchor including a housing, a bone screw, a spacer, a collar and a resilient spring meatus. The housing has an upper end, a lower end and a bore extending through the housing from the upper end to the lower end. A lower portion of the housing includes a plurality of deflectable tabs arranged around a perimeter of the housing. The housing includes a channel configured for receiving an elongate stabilization member therethrough which extends from a first side surface of the housing to a second side surface of the housing opposite the first side surface transverse to the bore. The spacer is positionable in the bore of the housing and movable in the bore of the housing between a first position and a second position. The spacer is closer to the lower end of the housing in the first position and closer to the upper end of the housing in the second position. The bone screw includes a head portion and a shank extending from the head portion. The head portion of the bone screw is positionable in a cavity of the spacer with the shank extending from the lower end of the housing. The collar is positionable circumferentially exterior of the plurality of deflectable tabs to inhibit outward radial deflection of the plurality of tabs. The resilient spring means biases the spacer toward the first position into engagement with the head portion of the bone screw. The head portion of the bone screw is insertable into the bore of the housing from the lower end of the housing by deflecting the plurality of tabs radially outward, but is not removable from the housing when the collar is positioned circumferentially exterior of the plurality of deflectable tabs.


Yet another illustrative embodiment is a method of assembling a polyaxial bone anchor. A housing is provided having an upper end, a lower end and a bore extending through the housing from the upper end to the lower end. The bore opens out at the lower end at a lower opening. The housing also includes a channel configured for receiving an elongate stabilization member therethrough which extends from a first side surface of the housing to a second side surface of the housing opposite the first side surface transverse to the bore. A retainer is inserted into the bore of the housing from the lower end of the housing by passing the retainer through the lower opening. The retainer has an outermost diameter greater than a diameter of the lower opening. The retainer includes a plurality of alternating tabs and slots formed therein providing the retainer with sufficient flexibility to be urged through the lower opening from the lower end of the housing by radially compressing the retainer. A head portion of a bone screw is inserted into a cavity of the retainer from the lower end of the housing by moving the retainer toward the upper end of the housing allowing the plurality of tabs to splay radially outward to accommodate passage of the head portion of the bone screw into the cavity of the retainer. The retainer, with the head portion of the bone screw positioned in the cavity of the retainer, is urged back toward the lower end of the housing to retain the head portion of the bone screw in the cavity of the retainer. The retainer is biased toward the lower end of the housing by a biasing spring means. The above summary of some example embodiments is not intended to describe each disclosed embodiment or every implementation of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 is an exploded perspective view of components of an exemplary vertebral anchor;



FIG. 1A is a cross-sectional view of the vertebral anchor of FIG. 1 with the housing coupled to the head portion of the bone screw;



FIG. 1B is a cross-sectional view of the vertebral anchor of FIG. 1 while coupling the housing to the head portion of the bone screw;



FIG. 2 is an exploded perspective view of components of another exemplary vertebral anchor;



FIG. 2A is a cross-sectional view of the vertebral anchor of FIG. 2 with the housing coupled to the head portion of the bone screw;



FIG. 2B is a cross-sectional view of the vertebral anchor of FIG. 2, transverse to the cross-sectional view of FIG. 2A, with the housing coupled to the head portion of the bone screw;



FIG. 2C is a cross-sectional view of the vertebral anchor of FIG. 2 while coupling the housing to the head portion of the bone screw;



FIG. 3 is an exploded perspective view of components of another exemplary vertebral anchor;



FIG. 3A is a cross-sectional view of the vertebral anchor of FIG. 3 with the housing coupled to the head portion of the bone screw;



FIG. 3B is a cross-sectional view of the vertebral anchor of FIG. 3 while coupling the housing to the head portion of the bone screw;



FIG. 4 is an exploded perspective view of components of another exemplary vertebral anchor;



FIG. 4A is a cross-sectional view of the vertebral anchor of FIG. 4 with the housing coupled to the head portion of the bone screw;



FIG. 4B is a cross-sectional view of the vertebral anchor of FIG. 4 while coupling the housing to the head portion of the bone screw;



FIG. 5 is an exploded perspective view of components of yet another exemplary vertebral anchor;



FIG. 5A is a cross-sectional view of the vertebral anchor of FIG. 5 with the housing coupled to the head portion of the bone screw; and



FIG. 5B is a cross-sectional view of the vertebral anchor of FIG. 5 while coupling the housing to the head portion of the bone screw.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the term “about” may be indicative as including numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that, range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


Although some suitable dimensions, ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.


Referring now to FIG. 1, there is shown a first exemplary embodiment of a vertebral anchor 10, shown as a polyaxial pedicle screw. The vertebral anchor 10 may include several components. For example, the vertebral anchor 10 may include a housing 12 pivotably coupled to a bone screw 14. The bone screw 14 may include a shaft portion 16, which may in some instances be threaded extending from a head portion 18, which may in some instances be spherically shaped. The shaft 16 may be configured to be installed into a bony region of a vertebra of the spinal column. For example, the shaft 16 may be installed into a pedicle of a vertebra, or other region of a vertebra. The bone screw 14 may be pivotable relative to the housing 12 such that the longitudinal axis of the bone screw 14 is positioned at one of multiple angular orientations relative to the longitudinal axis of the housing 12.


The housing 12 may include a channel 20, such as a U-shaped channel extending from one side of the housing 12 to an opposite second side of the housing 12. The channel 20 may be defined between opposing first, and second legs 22, 24 of the housing 12. The housing 12 may also include a bore 26 extending through the housing 12 along a longitudinal axis from the upper end 28 to the lower end 30 of the housing 12 which intersects the channel 20.


The housing 12 of the vertebral anchor 10 may be configured to receive an elongate member 40 of a vertebral stabilization system, such as a rigid or flexible fixation element, including a spinal rod or flexible cord, therein. For example, the channel 20 may be open to the upper end 28 of the housing 12 such that the elongate member 40 may be positioned in the channel 20 in a top-loaded fashion in which the elongate member 40 is moved into the channel 20 of the housing 12 in a direction generally perpendicular to the longitudinal axis of the channel 20 of the housing 12.


The vertebral anchor 10 may also include a securing element, such as a threaded fastener 34 (e.g., a set screw, cap) configured to rotatably engage the housing 12 to secure a portion of the elongate member 40 in the channel 20. For example, the threaded fastener 34 may include threads which mate with a threaded portion 32 formed in the legs 22, 24 of the housing 12. In other embodiments, the fastener 34 may include one or more flanges, cam surfaces, or other engagement features that engage with one or more channels, grooves, surfaces, or other engagement features of the housing 12 through rotation of the fastener 34. The fastener 34 may be rotatably engaged between the spaced apart legs 22, 24 of the housing 12 which define the channel 20 therebetween.


The vertebral anchor 10 may also include one or more components for coupling the housing 12 to the head portion 18 of the bone screw 14. For instance, the vertebral anchor 10 may include a retainer 42 positionable in the bore 26 of the housing 12 which includes a cavity 44 for receiving the head portion 18 of the bone screw 14 therein. In some instances, the cavity 44 may be a spherically concave cavity complementing the spherical shape of the head portion 18 of the bone screw 14. The retainer 42 may be formed of a resilient material, such as a pliable polymeric material or a malleable metallic material, providing the retainer 42 a desired amount of flexibility. The retainer 42 may also include a plurality of alternating tabs 46 and slots 48 spaced around a periphery of the retainer 42 enhancing the flexibility of the retainer 42. For example, a radially inward force may be exerted on the tabs 46 to deflect the tabs 46 radially inward to radially compress the retainer 42, whereas a radially outward force may be exerted on the tabs 46 to deflect or splay the tabs 46 radially outward to radially enlarge the lower opening into the cavity 44 of the retainer 42.


The retainer 42 illustrated in FIG. 1 includes a first subset of slots 48a opening out to the upper end of the retainer 42 and a second subset of slots 48b opening out to the lower end of the retainer 42. The slots 48a may alternate with the slots 48b around the circumference of the retainer 42.


The vertebral anchor 10 may also include a spacer 50 extending from the retainer 42 toward the upper end 28 of the housing 12. The spacer 50 may be axially movable relative to the retainer 42. The spacer 50 may include a first portion extending from the retainer 42 which is configured to engage an elongate stabilization member 40 disposed in the channel 20 of the housing 12 and a second portion extending into a bore of the retainer 42 which is configured to engage the head portion 18 of the bone screw 14. The spacer 50 may include an enlarged annular portion positioned in the bore of the retainer 42 which interlocks with a radially inward extending annular lip of the retainer 42.


The vertebral anchor 10 may further include a resilient spring means biasing the retainer 42 toward the lower end 30 of the housing 12. As shown in FIG. 1, the resilient spring means may be a wave washer 52, however, in other instances the resilient spring means may be a helical spring, elastomeric member, an integral portion of the retainer 42, or another structure configured to urge the retainer 42 toward the lower end 30 of the housing 12.


The arrangement of components tor coupling the housing 12 to the head portion 18 of the bone screw 14 is further illustrated in FIG. 1A. As shown in FIG. 1A, the retainer 42 may be positioned in an enlarged portion 36 of the bore 26, surrounding the head portion 18 of the bone screw 14. The spacer 50 may be positioned between the retainer 42 and the elongate member 40, with a portion of the spacer 50 extending into the bore of the retainer 42 and directly engaging the head portion 18 of the bone screw 14. The wave washer 52 may be positioned in the bore 26 of the housing 12 and compressed between an annular rim of the housing 12 facing the lower end 30 of the housing 12 and an annular surface of the retainer 42 and/or spacer 50 facing the upper end 28 of the housing 12.


The retainer 42 may be movable in the bore 26 of the housing 12 along the longitudinal axis of the bore 26 between a first position in which the retainer 42 is closer to the lower end 30 of the housing 12 and a second position in which the retainer 42 is closer to the upper end 28 of the housing 12. The wave washer 52, or other resilient biasing means, may bias the retainer 42 toward the first position until a sufficient force is applied to the retainer 42 to overcome the biasing force of the wave washer 52 and moves the retainer 42 to the second position.


The retainer 42 may have an outermost diameter which is greater than the diameter of the lower opening 38 of the bore 26 extending through the housing 12, yet the outermost diameter of the retainer 42 may be less than an enlarged portion 36 of the bore 26 in which the retainer 42 is positioned, providing an annular space 54 between the outer circumferential surface of the retainer 42 and the circumferential surface of the bore 26. In some instances, the housing 12 may include an annular rim 56 defining the lower opening 38, in which the diameter of the lower opening 38 at the annular rim 56 is less than a diameter of the enlarged portion 36 of the bore 26 of the housing 12 toward the upper end 28 of the housing 12 from the annular rim 56. When in the first position, the wave washer 52 may push the retainer 42 against the annular rim 56, preventing the retainer 42 from radially expanding.


During assembly of the vertebral anchor 10, the retainer 42, as well as the wave washer 52 and the spacer 50 may be inserted into the lower opening 38 of the housing 12. For example, the plurality of alternating tabs 46 and slots 48 formed around the circumference of the retainer 42 may provide the retainer 42 with sufficient flexibility to be urged through the lower opening 38 front the lower end 30 of the housing 12 by radially compressing the retainer 42.


With the retainer 42, resilient spring means (e.g., the wave washer 52) and other components positioned in the bore 26 of the housing 12, the head portion 18 of the bone screw 14 may be inserted into the cavity 44 of the retainer 42 through the lower opening 38 from the lower end 30 in a bottom loaded manner. The diameter of the head portion 18 of the bone screw 14 may be less than the diameter of the lower opening 38 at the annular rim 56 to allow the head portion 18 to pass therethrough. As shown in FIG. 1B, the head portion 18 of the bone screw 14, or another structure, may apply a force against the retainer 42 opposing and overcoming the biasing force of the wave washer 52 which urges the retainer 42 to the second position in which the retainer 42 is moved toward the upper end 28 of the housing 12 along the longitudinal axis of the bore 26. Now positioned in an enlarged diameter portion 36 of the bore 26 and radially unconstrained by the interior surface of the bore 26 and/or the annular rim 56 at the lower opening 38 of the housing 12, the flexibility of the retainer 42 allows the retainer 42 to be radially expanded. For example, the plurality of labs 46 of the retainer 42 may be deflected radially outward in order to allow the head portion 18 of the bone screw 14 to pass into the cavity 44 of the retainer 42. The presence of the annular space 54 allows the retainer 42 to radially expand to accommodate insertion of the head portion 18 into the cavity 44.


Once the head portion 18 of the bone screw 14 is positioned in the cavity 44, the applied force to the retainer 42 may be removed, allowing the biasing force of the wave washer 52 or other biasing means to move the retainer 42 back to the first position toward the lower end 30 of the housing 12 and into engagement with the reduced diameter annular portion of the housing 12 to prevent further radial expansion or splaying of the retainer 42. In some instances, the retainer 42 may include a lower beveled surface which contacts the annular rim 56 of the housing 12 to urge the tabs 46 of the retainer 42 radially inward and/or prevent radial splaying to secure the head portion 18 of the bone screw 14 in the cavity 44 of the retainer 42.


When an elongate member 40 is secured in the channel 20 of the housing 12, a clamping force may be exerted against the head portion 18 of the bone screw 14. However, because the lower opening of the retainer 42 when at the first position has a diameter less than the diameter of the head portion 18 of the bone screw 14, the head portion 18 is prevented from being removed from the cavity 44 of the retainer 42 since the annular rim 56 of the housing 12 resists radial expansion of the lower opening of the retainer 42 when pressed thereagainst.


Another exemplary embodiment of a vertebral anchor 110, shown as a polyaxial pedicle screw, is illustrated in FIG. 2. The vertebral anchor 110 may include several components. For example, the vertebral anchor 110 may include a housing 112 pivotably coupled to a bone screw 114. The bone screw 114 may include a shaft portion 116, which may in some instances be threaded, extending from a head portion 118, which may in some instances be spherically shaped. The shaft 116 may be configured to be installed into a bony region of a vertebra of the spinal column. For example, the shaft 116 may be installed into a pedicle of a vertebra, or other region of a vertebra. The bone screw 114 may be pivotable relative to the housing 112 such that the longitudinal axis of the bone screw 114 is positioned at one of multiple angular orientations relative to the longitudinal axis of the housing 112.


The housing 112 may include a channel 120, such as a U-shaped channel extending from one side of the housing 112 to an opposite second side of the housing 112. The channel 120 may be defined between opposing first and second legs 122, 124 of the housing 112. The housing 112 may also include a bore 126 extending through the housing 112 along a longitudinal axis from the upper end 128 to the lower end 130 of the housing 112 which intersects the channel 120.


The housing 112 of the vertebral anchor 10 may be configured to receive an elongate member 140 of a vertebral stabilization system, such as a rigid or flexible fixation element, including a spinal rod or flexible cord, therein. For example, the channel 120 may be open to the upper end 128 of the housing 112 such that the elongate member 140 may be positioned in the channel 120 in a top-loaded fashion in which the elongate member 140 is moved into the channel 120 of the housing 112 in a direction generally perpendicular to the longitudinal axis of the channel 120 of the housing 112.


The vertebral anchor 110 may also include a securing element, such as a threaded fastener 134 (e.g., a set screw, cap) configured to rotatably engage the housing 112 to secure a portion of the elongate member 140 in the channel 120. For example, the threaded fastener 134 may include threads which mate with a threaded portion 132 formed in the legs 122, 124 of the housing 112. In other embodiments, the fastener 134 may include one or more flanges, cam surfaces, or other engagement features that engage with one or more channels, grooves, surfaces, or other engagement features of the housing 112 through rotation of the fastener 134. The fastener 134 may be rotatably engaged between the spaced apart legs 122, 124 of the housing 112 which define the channel 120 therebetween.


The vertebral anchor 110 may also include one or more components for coupling the housing 112 to the head portion 118 of the bone screw 114. For instance, the vertebral anchor 110 may include a retainer 142 positionable in the bore 126 of the housing 112 which includes a cavity 144 for receiving the head portion 118 of the bone screw 114 therein. In some instances, the cavity 144 may be a spherically concave cavity complementing the spherical shape of the head portion 118 of the bone screw 114. The retainer 142 may be formed of a resilient material, such as a pliable polymeric material or a malleable metallic material, providing the retainer 142 a desired amount of flexibility. A lower portion of the retainer 142 may also include a plurality of alternating tabs 146 and slots 148 spaced around a periphery of the lower portion of the retainer 142 enhancing the flexibility of the lower portion of the retainer 142. For example, a radially inward force may be exerted on the tabs 146 to deflect the tabs 146 radially inward to radially compress the retainer 142, whereas a radially outward force may be exerted on the tabs 146 to deflect or splay the tabs 146 radially outward to radially enlarge the lower opening into the cavity 144 of the retainer 142.


The upper portion of the retainer 142 illustrated in FIG. 2 may further include first and second legs 158, 160 defining a channel 162 therebetween aligned with the channel 120 of the housing 112 for receiving an elongate stabilization member 140 therethrough.


The vertebral anchor 110 may also include a spacer 150 extending from the retainer 142 toward the upper end 128 of the housing 112. The spacer 150 may be axially movable relative to the retainer 142. The spacer 150 may include a first portion extending from the retainer 142 which is configured to engage an elongate stabilization member 140 disposed in the channel 120 of the housing 112 and a second portion extending into a bore of the retainer 142 which is configured to engage the head portion 118 of the bone screw 114. In some instances, the spacer 150 may include structure, such as an enlarged annular portion which interlocks with structure of the retainer 142, such as an annular lip of the retainer 142.


In some instances, the vertebral anchor 110 may further include a resilient spring means (not shown) biasing the retainer 142 toward the lower end 130 of the housing 112. In some instances, the resilient spring means may be a wave washer, a helical spring, elastomeric member, an integral portion of the retainer 142, or another structure configured to urge the retainer 142 toward the lower end 130 of the housing 112.


The arrangement of components for coupling the housing 112 to the head portion 118 of the bone screw 114 is further illustrated in FIGS. 2A and 2B. As shown, the lower portion of the retainer 142 may be positioned in an enlarged portion 136 of the bore 126, surrounding the head portion 118 of the bone screw 114. The legs 158, 160 of the retainer 142 may be aligned with the legs 122, 124 of the housing 112 such that the channel 162 defined between the legs 158, 160 is aligned with the channel 120 defined between the legs 122, 124 of the housing 112. The spacer 150 may be positioned between the retainer 142 and the elongate member 140, with a portion of the spacer 150 extending into the bore of the retainer 142 and directly engaging the head portion 118 of the bone screw 114.


The retainer 142 may be movable in the bore 126 of the housing 112 along the longitudinal axis of the bore 126 between a first position in which the retainer 142 is closer to the lower end 130 of the housing 112 and a second position in which the retainer 142 is closer to the upper end 128 of the housing 112. In some instances, a resilient biasing means, such as a wave washer, a helical spring, elastomeric member, an integral portion of the retainer 142, or another structure, may bias the retainer 142 toward the first position until a sufficient force is applied to the retainer 142 to overcome the biasing force of the wave washer 152 and moves the retainer 142 to the second position.


The retainer 142 may have an outermost diameter which is greater than the diameter of the lower opening 138 of the bore 126 extending through the housing 112, yet the outermost diameter of the retainer 142 may be less than an enlarged portion 136 of the bore 126 in which the retainer 142 is positioned, providing an annular space 154 between the outer circumferential surface of the retainer 142 and the circumferential surface of the bore 126. In some instances, the housing 112 may include an annular rim 156 defining the lower opening 138, in which the diameter of the lower opening 138 at the annular rim 156 is less than a diameter of the enlarged portion 136 of the bore 126 of the housing 112 toward the upper end 128 of the housing 112 from the annular rim 156. When in the first position, a resilient biasing member may push the retainer 142 against the annular rim 156, preventing the retainer 142 from radially expanding. Alternatively, a clamping force exerted against the elongate member 140 by the fastener 134 may exert a force through the spacer 150 to the retainer 142, push the retainer 142 against the annular rim 156.


During assembly of the vertebral anchor 110, the retainer 142 and the spacer 150 may be inserted into the bore 126 of the housing 112 through the lower opening 138 of the housing 112 or from the upper end 128 of the housing 112. For example, the plurality of alternating tabs 146 and slots 148 formed around die circumference of the retainer 142 may provide the retainer 142 with sufficient flexibility to be radially compressed when being inserted into the bore 126.


With the retainer 142, spacer 150, and resilient spring means if present, positioned in the bore 126 of the housing 112, the head portion 118 of the bone screw 114 may be inserted into the cavity 144 of the retainer 142 through the lower opening 138 from the lower end 130 in a bottom loaded manner. The diameter of the head portion 118 of the bone screw 114 may be less than the diameter of the lower opening 138 at the annular rim 156 to allow the head portion 118 to pass therethrough. As shown in FIG. 2C, the head portion 118 of the bone screw 114, or another structure, may apply a force against the retainer 142 opposing and overcoming any biasing force, and thus urging the retainer 142 to the second position in which the retainer 142 is moved toward the upper end 128 of the housing 112 along the longitudinal axis of the bore 126. Now positioned in an enlarged diameter portion 136 of the bore 126 and radially unconstrained by the interior surface of the bore 126 and/or the annular rim 156 at the lower opening 138 of the housing 112, the flexibility of the retainer 142 allows the lower portion of the retainer 142 to be radially expanded. For example, the plurality of tabs 146 of the retainer 142 may be deflected radially outward in order to allow the head portion 118 of the bone screw 114 to pass into the cavity 144 of the retainer 142. The presence of the annular space 154 allows the retainer 142 to radially expand to accommodate insertion of the head portion 118 into the cavity 144.


Once the head portion 118 of the bone screw 114 is positioned in the cavity 144, the applied force to the retainer 142 may be removed, allowing the retainer 142 to move back to the first position toward the lower end 130 of the housing 112 and into engagement with the reduced diameter annular portion of the housing 112 to prevent further radial expansion or splaying of the lower portion of the retainer 142. In some instances, the retainer 142 may include a lower beveled surface which contacts the annular rim 156 of the housing 112 to urge the tabs 146 of the retainer 142 radially inward and/or prevent radial splaying to secure the head portion 118 of the bone screw 114 in the cavity 144 of the retainer 142.


When an elongate member 140 is secured in the channel 120 of the housing 112, a clamping force may be exerted against the head portion 118 of the bone screw 114. However, because the lower opening of the retainer 142 when at the first position has a diameter less than the diameter of the head portion 118 of the bone screw 114, the head portion 118 is prevented from being removed from the cavity 144 of the retainer 142 since the annular rim 156 of the housing 112 resists radial expansion of the lower opening of the retainer 142 when pressed thereagainst.


Another exemplary embodiment of a vertebral anchor 210, shown as a polyaxial pedicle screw, is illustrated in FIG. 3. The vertebral anchor 210 may include several components. For example, the vertebral anchor 210 may include a housing 212 pivotably coupled to a bone screw 214. The bone screw 214 may include a shaft portion 216, which may in some instances be threaded, extending from a head portion 218, which may in some instances be spherically shaped. The shaft 216 may be configured to be installed into a bony region of a vertebra of the spinal column. For example, the shaft 216 may be installed into a pedicle of a vertebra, or other region of a vertebra. The bone screw 214 may be pivotable relative to the housing 212 such that the longitudinal axis of the bone screw 214 is positioned at one of multiple angular orientations relative to the longitudinal axis of the housing 212.


The housing 212 may include a channel 220, such as a U-shaped channel extending from one side of the housing 212 to an opposite second side of the housing 212. The channel 220 may be defined between opposing first and second legs 222, 224 of the housing 212. The housing 212 may also include a bore 226 extending through the housing 212 along a longitudinal axis from the upper end 228 to the lower end 230 of the housing 212 which intersects the channel 220.


The housing 212 of the vertebral anchor 210 may be configured to receive an elongate member 240 of a vertebral stabilization system, such as a rigid or flexible fixation element, including a spinal rod or flexible cord, therein. For example, the channel 220 may be open to the upper end 228 of the housing 212 such that the elongate member 240 may be positioned in the channel 220 in a top-loaded fashion in which the elongate member 240 is moved into the channel 220 of the housing 212 in a direction generally perpendicular to the longitudinal axis of the channel 220 of the housing 212.


The vertebral anchor 210 may also include a securing element, such as a threaded fastener (hot shown) configured to rotatably engage the housing 212 to secure a portion of the elongate member 240 in the channel 220. For example, the threaded fastener may include threads which mate with a threaded portion 232 formed in the legs 222, 224 of the housing 212. In other embodiments, the fastener may include one or more flanges, cam surfaces, or other engagement features that engage with one or more channels, grooves, surfaces, or other engagement features of the housing 212 through rotation of the fastener. The fastener may be rotatably engaged between the spaced apart legs 222, 224 of the housing 212 which define the channel 220 therebetween.


The vertebral anchor 210 may also include one or more components for coupling the housing 212 to the head portion 218 of the bone screw 214. For instance, the vertebral anchor 210 may include a retainer 242 positionable in the bore 226 of the housing 212 which includes a cavity 244 for receiving the head portion 218 of the bone screw 214 therein, in some instances, the cavity 244 may be a spherically concave cavity complementing the spherical shape of the head portion 218 of the bone screw 214. The retainer 242 may be formed of a resilient material, such as a pliable polymeric material or a malleable metallic material, providing the retainer 242 a desired amount of flexibility. The retainer 242 may also include a plurality of alternating tabs 246 and slots 248 spaced around a periphery of the retainer 242 enhancing the flexibility of the retainer 242. For example, a radially inward force may be exerted on the tabs 246 to deflect the tabs 246 radially inward to radially compress the retainer 242, whereas a radially outward force may be exerted on the tabs 246 to deflect or splay the tabs 246 radially outward to radially enlarge the lower opening into the cavity 244 of the retainer 242.


The vertebral anchor 210 may further include a resilient spring means biasing the retainer 242 toward the lower end 230 of the housing 212. As shown in FIG. 3, the resilient spring means may be a wave washer 252, however, in other instances the resilient spring means may be a helical spring, elastomeric member, an integral portion of the retainer 242, or another structure configured to urge the retainer 242 toward the lower end 230 of the housing 212.


The arrangement of components for coupling the housing 212 to the head portion 218 of the bone screw 214 is further illustrated in FIG. 3A. As shown in FIG. 3A, the retainer 242 may be positioned in an enlarged portion 236 of the bore 226, surrounding the head portion 218 of the bone screw 214. The wave washer 252 may be positioned in the bore 226 of the housing 212 and compressed between an annular rim of the housing 212 facing the lower end 230 of the housing 212 and an annular surface of the retainer 242 facing the upper end 228 of the housing 212. An upper portion of the retainer 242 may extend through the wave washer 252 to directly engage the elongate member 240.


The retainer 242 may be movable in the bore 226 of the housing 212 along the longitudinal axis of the bore 226 between a first position in which the retainer 242 is closer to the lower end 230 of the housing 212 and a second position in which the retainer 242 is closer to the upper end 228 of the housing 212. The wave washer 252, or other resilient biasing means, may bias the retainer 242 toward the first position until a sufficient force is applied to the retainer 242 to overcome the biasing force of the wave washer 252 and moves the retainer 242 to the second position.


The retainer 242 may have an outermost diameter which is greater than the diameter of the lower opening 238 of the bore 226 extending through the housing 212, yet the outermost diameter of the retainer 242 may be less than an enlarged portion 236 of the bore 226 in which the retainer 242 is positioned, providing an annular space 254 between the outer circumferential surface of the retainer 242 and the circumferential surface of the bore 226. In some instances, the housing 212 may include an annular rim 256 defining the lower opening 238, in which the diameter of the lower opening 238 at the annular rim 256 is less than a diameter of the enlarged portion 236 of the bore 226 of the housing 212 toward the upper end 228 of the housing 212 from the annular rim 256. When in the first position, the wave washer 252 may push the retainer 242 against the annular rim 256, preventing the retainer 242 from radially expanding.


During assembly of the vertebral anchor 210, the retainer 242, as well as the wave washer 252, may be inserted into the lower opening 238 of the housing 212. For example, the plurality of alternating tabs 246 and slots 248 formed around the circumference of the retainer 242 may provide the retainer 242 with sufficient flexibility to be urged through the lower opening 238 from the lower end 230 of the housing 212 by radially compressing the retainer 242.


With the retainer 242, resilient spring means (e.g., the wave washer 252) and any other components positioned in the bore 226 of the housing 212, the head portion 218 of the bone screw 214 may be inserted into the cavity 244 of the retainer 242 through the lower opening 238 from the lower end 230 in a bottom loaded manner. The diameter of the head portion 218 of the bone screw 214 may be less than the diameter of the lower opening 238 at the annular rim 256 to allow the head portion 218 to pass therethrough. As shown in FIG. 3B, the head portion 218 of the bone screw 214, or another structure, may apply a force against the retainer 242 opposing and overcoming the biasing force of the wave washer 252 which urges the retainer 242 to the second position in which die retainer 242 is moved toward the upper end 228 of the housing 212 along the longitudinal axis of the bore 226. Now positioned in an enlarged diameter portion 236 of the bore 226 and radially unconstrained by the interior surface of the bore 226 and/or the annular rim 256 at the lower opening 238 of the housing 212, the flexibility of the retainer 242 allows the retainer 242 to be radially expanded. For example, the plurality of tabs 246 of the retainer 242 may be deflected radially outward in order to allow the head portion 218 of the bone screw 214 to pass into the cavity 244 of the retainer 242. The presence of the annular space 254 allows the retainer 242 to radially expand to accommodate insertion of the head portion 218 into the cavity 244.


Once the head portion 218 of the bone screw 214 is positioned in the cavity 244, the applied force to the retainer 242 may be removed, allowing the biasing force of the wave washer 252 or other biasing means to move the retainer 242 back to the first position toward the lower end 230 of the housing 212 and into engagement with the reduced diameter annular portion of the housing 212 to prevent further radial expansion or splaying of the retainer 242. In some instances, the retainer 242 may include a lower beveled surface which contacts the annular rim 256 of the housing 212 to urge the tabs 246 of the retainer 242 radially inward and/or prevent radial splaying to secure the head portion 218 of the bone screw 214 in the cavity 244 of the retainer 242.


When an elongate member 240 is secured in the channel 220 of the housing 212, a clamping force may be exerted against the head portion 218 of the bone screw 214. However, because the lower opening of the retainer 242 when at the first position has a diameter less than the diameter of the head portion 218 of the bone screw 214, the head portion 218 is prevented from being removed from the cavity 244 of the retainer 242 since the annular rim 256 of the housing 212 resists radial expansion of the lower opening of the retainer 242 when pressed thereagainst.


Another exemplary embodiment of a vertebral anchor 310, shown as a polyaxial pedicle screw, is illustrated in FIG. 4. The vertebral anchor 310 may include several components. For example, the vertebral anchor 310 may include a housing 312 pivotably coupled to a bone screw 314. The bone screw 314 may include a shaft portion 316, which may in some instances be threaded, extending from a head portion 318, which may in some instances be spherically shaped. The shaft 316 may be configured to be installed into a bony region of a vertebra of the spinal column. For example, the shaft 316 may be installed into a pedicle of a vertebra, or other region of a vertebra. The bone screw 314 may be pivotable relative to the housing 312 such that the longitudinal axis of the bone screw 314 is positioned at one of multiple angular orientations relative to the longitudinal axis of the housing 312.


The housing 312 may include a channel 320, such as a U-shaped channel extending from one side of the housing 312 to an opposite second side of the housing 312. The channel 320 may be defined between opposing first and second legs 322, 324 of the housing 312. The housing 312 may also include a bore 326 extending through the housing 312 along a longitudinal axis from the upper end 328 to the lower end 330 of the housing 312 which intersects the channel 320.


The housing 312 of the vertebral anchor 310 may be configured to receive an elongate member 340 of a vertebral stabilization system, such as a rigid or flexible fixation element, including a spinal rod or flexible cord, therein. For example, the channel 320 may be open to the upper end 328 of the housing 312 such that the elongate member 340 may be positioned in the channel 320 in a top-loaded fashion in which the elongate member 340 is moved into the channel 320 of the housing 312 in a direction generally perpendicular to the longitudinal axis of the channel 320 of the housing 312.


The vertebral anchor 310 may also include a securing element, such as a threaded fastener (not shown) configured to rotatably engage the housing 312 to secure a portion of the elongate member 340 in the channel 320. For example, the threaded fastener may include threads which mate with a threaded portion 332 formed in the legs 322, 324 of the housing 312. In other embodiments, the fastener may include one or more flanges, cam surfaces, or other engagement features that engage with one or more channels, grooves, surfaces, or other engagement features of the housing 312 through rotation of the fastener. The fastener may be rotatably engaged between the spaced apart legs 322, 324 of the housing 312 which define the channel 320 therebetween.


The vertebral anchor 310 may also include one or more components for coupling the housing 312 to the head portion 318 of the bone screw 314. For instance, the vertebral anchor 310 may include a retainer 342 positionable in the bore 326 of the housing 312 which includes a cavity 344 for receiving the head portion 318 of the bone screw 314 therein. In some instances, the cavity 344 may be a spherically concave cavity complementing the spherical shape of the head portion 318 of the bone screw 314. The retainer 342 may be formed of a resilient material, such as a pliable polymeric material or a malleable metallic material, providing the retainer 342 a desired amount of flexibility. The retainer 342 may also include a plurality of alternating tabs 346 and slots 348 spaced around a periphery of the retainer 342 enhancing the flexibility of the retainer 342. For example, a radially inward three may be exerted on the tabs 346 to deflect the tabs 346 radially inward to radially compress the retainer 342, whereas a radially outward force may be exerted on the tabs 346 to deflect or splay the tabs 346 radially outward to radially enlarge the lower opening into the cavity 344 of the retainer 342.


The vertebral anchor 310 may further include a resilient spring means biasing die retainer 342 toward the lower end 330 of the housing 312. As shown in FIG. 4, the resilient spring means may an integral portion of the retainer 342. For instance, the retainer 342 may be a portion of the retainer 342 including one or more circumferential or helical slots 352 formed therein. Circumferential slots may extend less than 360° around the circumference, whereas a helical slot may extend less than, greater than or equal to 360° around the retainer 342. The slots 352 may be interposed between an annular upper portion 350 and the lower portion including the tabs 346 and defining the cavity 344. Thus, the retainer 342 may be a monolithic structure including the annular upper portion 350, the intermediate portion including the slots 352 and the lower portion including the tabs 346. However, in other embodiments, the resilient spring means may be a wave washer, a helical spring, elastomeric member, or another structure configured to urge the retainer 342 toward the lower end 330 of the housing 312.


The circumferential or helical slots 352 formed in the retainer 342 may allow the intermediate portion of the retainer 342 to be resiliently compressed between the annular upper portion 350 and the lower portion of the retainer 342. For example, when an axially compressive force is applied to the retainer 342, the axial length of the retainer 342 may be reduced as the width of the slots 352 is reduced. When the applied compressive force is removed or reduced, the axial length of the retainer 342 may be increased. Thus, the slots 352 formed around the intermediate portion may provide a pseudo-spring.


The arrangement of components for coupling the housing 312 to the head portion 318 of the bone screw 314 is further illustrated in FIG. 4A. As shown in FIG. 4A, the retainer 342 may be positioned in an enlarged portion 336 of the bore 326, surrounding the head portion 318 of the bone screw 314. The upper portion 350 of the retainer 342 may directly engage the elongate member 340.


The retainer 342 may be movable in the bore 326 of the housing 312 along the longitudinal axis of the bore 326 between a first position in which the retainer 342 is closer to the lower end 330 of the housing 312 and a second position in which the retainer 342 is closer to the upper end 328 of the housing 312. The resilient nature of the compressed intermediate portion having the slots 352, or other resilient biasing means, may bias the retainer 342 toward the first position until a sufficient force is applied to the retainer 342, to overcome the biasing force of the intermediate portion having the slots 352 and moves the retainer 342 to the second position.


The retainer 342 may have an outermost diameter which is greater than the diameter of the lower opening 338 of the bore 326 extending through the housing 312, yet the outermost diameter of the retainer 342 may be less than an enlarged portion 336 of the bore 326 in which the retainer 342 is positioned, providing an annular space 354 between the outer circumferential surface of the retainer 342 and the circumferential surface of the bore 326. In some instances, the housing 312 may include an annular rim 356 defining the lower opening 338, in which the diameter of the lower opening 338 at the annular rim 356 is less than a diameter of the enlarged portion 336 of the bore 326 of the housing 312 toward the upper end 328 of the housing 312 from the annular rim 356. When in the first position, the forces generated by the compressed intermediate portion having the slots 352 may push the retainer 342 against the annular rim 356, preventing the retainer 342 from radially expanding.


During assembly of the vertebral anchor 310, the retainer 342 may be inserted into the lower opening 338 of the housing 312. For example, the plurality of alternating tabs 346 and slots 348 formed around the circumference of the retainer 342 may provide the retainer 342 with sufficient flexibility to be urged through the lower opening 338 from the lower end 330 of the housing 312 by radially compressing the retainer 342.


With the retainer 342 positioned in the bore 326 of the housing 312, the head portion 318 of the bone screw 314 may be inserted into the cavity 344 of the retainer 342 through the lower opening 338 from the lower end 330 in a bottom loaded manner. The diameter of the head portion 318 of the bone screw 314 may be less than the diameter of the lower opening 338 at the annular rim 356 to allow the head portion 318 to pass therethrough. As shown in FIG. 4B, the head portion 318 of the bone screw 314, or another structure, may apply a force against the retainer 342 opposing and overcoming the biasing force of the intermediate portion having the slots 252 which urges the retainer 342 to the second position in which the retainer 342 is moved toward the upper end 328 of the housing 312 along the longitudinal axis of the bore 326. Now positioned in an enlarged diameter portion 336 of the bore 326 and radially unconstrained by the interior surface of the bore 326 and/or the annular rim 356 at the lower opening 338 of the housing 312, the flexibility of the retainer 342 allows the retainer 342 to be radially expanded. For example, the plurality of tabs 346 of the retainer 342 may be deflected radially outward in order to allow the head portion 318 of the bone screw 314 to pass into the cavity 344 of the retainer 342. The presence of the annular space 354 allows the retainer 342 to radially expand to accommodate insertion of the head portion 318 into the cavity 344.


Once the head portion 318 of the bone screw 314 is positioned in the cavity 344, the applied force to the retainer 342 may be removed, allowing the biasing force of the intermediate portion having the slots 252 or other biasing means to move the retainer 342 back to the first position toward the lower end 330 of the housing 312 and into engagement with the reduced diameter annular portion of the housing 312 to prevent further radial expansion or splaying of the retainer 342. In some instances, the retainer 342 may include a lower beveled surface which contacts the annular rim 356 of the housing 312 to urge the tabs 346 of the retainer 342 radially inward and/or prevent radial splaying to secure the head portion 318 of the bone screw 314 in the cavity 344 of the retainer 342.


When an elongate member 340 is secured in the channel 320 of the housing 312, a clamping force may be exerted against the head portion 318 of the bone screw 314. However, because the lower opening of the retainer 342 when at the first position has a diameter less than the diameter of the head portion 318 of the bone screw 314, the head portion 318 is prevented from being removed from the cavity 344 of the retainer 342 since the annular rim 356 of the housing 312 resists radial expansion of the lower opening of the retainer 342 when pressed thereagainst.


Yet another exemplary embodiment of a vertebral anchor 410, shown as a polyaxial pedicle screw, is illustrated in FIG. 5. The vertebral anchor 410 may include several components. For example, the vertebral anchor 410 may include a housing 412 pivotably coupled to a bone screw 414. The bone screw 414 may include a shaft portion 416, which may in some instances be threaded, extending from a head portion 418, which may in some instances be spherically shaped. The shaft 416 may be configured to be installed into a bony region of a vertebra of the spinal column. For example, the shaft 416 may be installed into a pedicle of a vertebra, or other region of a vertebra. The bone screw 414 may be pivotable relative to the housing 412 such that the longitudinal axis of the bone screw 414 is positioned at one of multiple angular orientations relative to the longitudinal axis of the housing 412.


The housing 412 may include a channel 420, such as a U-shaped channel extending from one side of the housing 412 to an opposite second side of the housing 412. The channel 420 may be defined between opposing first and second legs 422, 424 of the housing 412. The housing 412 may also include a bore 426 extending through the housing 412 along a longitudinal axis from the upper end 428 to the lower end 430 of the housing 412 which intersects the channel 420.


The housing 412 of the vertebral anchor 410 may be configured to receive an elongate member 440 of a vertebral stabilization system, such as a rigid or flexible fixation element, including a spinal rod or flexible cord, therein. For example, the channel 420 may be open to the upper end 428 of the housing 412 such that the elongate member 440 may be positioned in the channel 420 in a top-loaded fashion in which the elongate member 440 is moved into the channel 420 of the housing 412 in a direction generally perpendicular to the longitudinal axis of the channel 420 of the housing 412.


The vertebral anchor 410 may also include a securing element, such as a threaded fastener (not shown) configured to rotatably engage the housing 412 to secure a portion of the elongate member 440 in the channel 420. For example, the threaded fastener may include threads which mate with a threaded portion 432 formed in the legs 422, 424 of the housing 412. In other embodiments, the fastener may include one or more flanges, cam surfaces, or other engagement features that engage with one or more channels, grooves, surfaces, or other engagement features of the housing 412 through rotation of the fastener. The fastener may be rotatably engaged between the spaced apart legs 422, 424 of the housing 412 which define the channel 420 therebetween.


The vertebral anchor 410 may also include one or more components for coupling the housing 412 to the head portion 418 of the bone screw 414. For instance, a lower portion of the housing 412 may include a cavity 444 for receiving the head portion 418 of the bone screw 414 therein. In some instances, the cavity 444 may be a spherically concave cavity complementing the spherical shape of the head portion 418 of the bone screw 414. The lower portion of the housing 412 may be formed of a resilient material, such as a pliable polymeric material or a malleable metallic material, providing the lower portion of the housing 412 a desired amount of flexibility. The lower portion of the housing 412 may include a plurality of alternating tabs 446 and slots 448 spaced around a periphery of the lower portion of the housing 412 enhancing the flexibility of the lower portion of the housing 412. For example, a radially inward force may be exerted on the tabs 446 to deflect the tabs 446 radially inward, whereas a radially outward force may be exerted on the tabs 446 to deflect or splay the tabs 446 radially outward to radially enlarge the lower opening 438 into the cavity 444 of the lower portion of the housing 412.


A collar 470 may be provided which may be positioned circumferentially around the tabs 446 of the lower portion of the housing 412 to prevent radial outward deflection or splaying of the tabs 446 when the housing 412 is coupled to the bone screw 414. In some instances, the collar 470 may include opposing flat or planar side surfaces to facilitate manipulation of the collar 470.


The vertebral anchor 410 may also include a spacer 450 positioned in the bore 426 having a first portion which is configured to engage an elongate stabilization member 440 disposed in the channel 420 of the housing 412 and a second portion which is configured to engage the head portion 418 of the bone screw 414.


The vertebral anchor 410 may further include a resilient spring means biasing the spacer 450 toward the lower end 430 of the housing 412 and into engagement with the head portion 418 of the bone screw 414. As shown in FIG. 5, the resilient spring means may be a wave washer 452, however, in other instances the resilient spring means may be a helical spring, elastomeric member, an integral portion of the spacer 450, or another structure configured to urge the spacer 450 toward the lower end 430 of the housing 412.


The arrangement of components for coupling the housing 412 to the head portion 418 of the bone screw 414 is further illustrated in FIG. 5A. As shown in FIG. 5A, the head portion 418 of the bone screw 414 may be positioned in the cavity 444, surrounded by the tabs 446 of the housing 412. The spacer 450 may be positioned between the head portion 418 of the bone screw 414 and the elongate member 440, with a portion of the spacer 450 extending through the wave washer 452. The wave washer 452 may be positioned between the spacer 450 and the housing 412 and compressed between an annular rim of the housing 412 facing the lower end 430 of the housing 412 and an annular surface of an enlarged diameter portion of the spacer 450 facing the upper end 428 of the housing 412. The collar 470 may be positioned circumferentially around the tabs 446 of the lower portion of the housing 412, preventing radial outward deflection or splaying of the tabs 446.


During assembly of the vertebral anchor 10, the head portion 418 of the bone screw 412 may be passed into the cavity 444 of the lower portion of the housing 412 from the lower end 430 of the housing 412 by radially deflecting or splaying the plurality of tabs 446 radially outward from a first, equilibrium position to a second position in which the diameter of the annular rim 456 is greater than or equal to the diameter of the head portion 418, as shown in FIG. 5B.


Once the head portion 418 of the bone screw 414 is positioned in the cavity 444 above the annular rim 456, the tabs 446 will move back toward the first, equilibrium position with the annular rim 456 surrounding a portion of the head portion 418 below the greatest extent of the head portion 418. The collar 470 may then be positioned circumferentially around the tabs 446 of the lower portion of the housing 412, preventing further radial outward deflection or splaying of the tabs 446. In some instances, the collar 470 may include a beveled surface 472 proximate the upper opening of the collar 470 which facilitates advancing the collar 470 over the annular rim 447 of the tabs 446.


When an elongate member 440 is secured in the channel 420 of the housing 412, a clamping force may be exerted against the head portion 418 of the bone screw 414. However, the annular rim 456 of the housing 414, which has a diameter less than the diameter of the head portion 418 of the bone screw 414 when at the first position, prevents the head portion 418 from being removed from the cavity 444 since the collar 470 prevents radial slaying of the tabs 446.


Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.

Claims
  • 1. A polyaxial bone anchor comprising: a housing having an upper end, a lower end and a bore extending through the housing from the upper end to the lower end, the bore opening out at the lower end at a lower opening, the housing including a channel configured for receiving an elongate stabilization member therethrough which extends from a first side surface of the housing to a second side surface of the housing opposite the first side surface transverse to the bore;a retainer positioned into the bore of the housing and having an outermost diameter greater than a diameter of the lower opening, the retainer including: a lower portion having a plurality of alternating tabs and slots circumferentially arranged to define a cavity therein;an upper portion extending into the channel of the housing configured to support the elongate stabilization member off a bottom of the channel; andan intermediate portion residing between the lower portion and the upper portion, wherein the intermediate portion includes a resilient spring that enables the intermediate portion to be compressed between the upper portion and the lower portion; anda bone screw including a head portion and a shank extending from the head portion, the head portion of the bone screw positionable in the cavity of the retainer with the shank extending from the lower end of the housing by deflecting the tabs radially outward to enlarge a lower opening of the retainer into the cavity from a diameter less than a diameter of the head portion to a diameter greater than or equal to the diameter of the head portion.
  • 2. The polyaxial bone anchor of claim 1, wherein the retainer is moved toward the upper end of the housing while being positioned in the bore in order to insert the head portion of the bone screw into the cavity of the retainer.
  • 3. The polyaxial bone anchor of claim 2, wherein the retainer is insertable into the bore of the housing without the head portion of the bone screw positioned in the cavity of the retainer, yet with the head portion of the bone screw positioned in the cavity of the retainer, the retainer is prevented from being removed from the bore of the housing.
  • 4. The polyaxial bone anchor of claim 1, wherein the housing includes an annular rim defining the lower opening, wherein the diameter of the lower opening at the annular rim is less than a diameter of the bore of the housing toward the upper end of the housing from the annular rim.
  • 5. The polyaxial bone anchor of claim 4, wherein the retainer includes a lower beveled surface which contacts the annular rim of the housing, thereby preventing the tabs of the retainer from deflecting radially outward in order to secure the head portion of the bone screw in the cavity of the retainer.
  • 6. The polyaxial bone anchor of claim 1, wherein the retainer is movable in the bore of the housing between a first position and a second position, the retainer being closer to the lower end of the housing in the first position and closer to the upper end of the housing in the second position, wherein the head portion of the bone screw is insertable into the cavity of the retainer from the lower end of the housing when the retainer is in the second position, but is not removable from the cavity of the retainer when the retainer is in the first position.
  • 7. The polyaxial bone anchor of claim 6, wherein an annular rim defining the lower opening of the housing contacts a lower beveled surface of the retainer to prevent radially outward deflection of a plurality of tabs of the retainer in order to secure the head portion of the bone screw in the cavity of the retainer.
  • 8. The polyaxial bone anchor of claim 1, wherein the lower portion has a larger outer diameter than the upper portion.
  • 9. The polyaxial bone anchor of claim 1, wherein the head portion of the bone screw is bottom loaded into the housing.
  • 10. The polyaxial bone anchor of claim 1, wherein the resilient spring is an integral part of the retainer.
  • 11. The polyaxial bone anchor of claim 10, wherein the resilient spring comprises a circumferential or helical slot formed in the retainer.
  • 12. The polyaxial bone anchor of claim 10, wherein the resilient spring comprises a circumferential slot formed in the retainer.
  • 13. The polyaxial bone anchor of claim 12, wherein the circumferential slot extends less than 360 degrees around a circumference of the retainer.
  • 14. The polyaxial bone anchor of claim 10, wherein the resilient spring comprises a helical slot formed in the retainer.
  • 15. The polyaxial bone anchor of claim 14, wherein the helical slot extends greater than 360 degrees around a circumference of the retainer.
  • 16. The polyaxial bone anchor of claim 14, wherein the helical slot extends less than 360 degrees around a circumference of the retainer.
  • 17. The polyaxial bone anchor of claim 14, wherein the helical slot extends approximately 360 degrees around a circumference of the retainer.
  • 18. The polyaxial bone anchor of claim 1, wherein the resilient spring comprises a pseudo-spring.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/248,817, filed Feb. 9, 2021, now U.S. Pat. No. 11,166,751, which is a continuation of U.S. patent application Ser. No. 16/894,991, filed Jun. 8, 2020, now U.S. Pat. No. 10,945,766, which is a continuation of U.S. patent application Ser. No. 16/222,666, filed Dec. 17, 2018, now U.S. Pat. No. 10,925,646, which is a continuation of U.S. patent application Ser. No. 15/469,908, filed Mar. 27, 2017, now U.S. Pat. No. 10,182,844, which is a continuation of U.S. patent application Ser. No. 14/924,521, filed Oct. 27, 2015, now U.S. Pat. No. 9,636,148, which is a continuation of U.S. patent application Ser. No. 13/778,684, filled Feb. 27, 2013, now U.S. U.S. Pat. No. 9,198,695, which is a 371 of international PCT/US2011/049533, filed on Aug. 29, 2011, which claims priority to U.S. Provisional Application 61/378,182, filed on Aug. 30, 2010, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (353)
Number Name Date Kind
1474050 Mccurdy Nov 1923 A
2173104 Fuller Sep 1939 A
3433510 Hulterstrum Mar 1969 A
4273116 Chiquet Jun 1981 A
4419026 Leto Dec 1983 A
4483334 Murray Nov 1984 A
4570982 Blose et al. Feb 1986 A
4693240 Evans Sep 1987 A
4708510 Mcconnell et al. Nov 1987 A
4763644 Webb Aug 1988 A
4805602 Puno et al. Feb 1989 A
4836196 Park et al. Jun 1989 A
4841959 Ransford Jun 1989 A
4854304 Zielke Aug 1989 A
4867144 Karas et al. Sep 1989 A
4887595 Heinig et al. Dec 1989 A
4887596 Sherman Dec 1989 A
4946458 Harms et al. Aug 1990 A
5002542 Frigg Mar 1991 A
5005562 Cotrel Apr 1991 A
5084049 Asher et al. Jan 1992 A
5085660 Lin Feb 1992 A
5092893 Smith Mar 1992 A
5129388 Vignaud et al. Jul 1992 A
5129900 Asher et al. Jul 1992 A
5133716 Plaza Jul 1992 A
5133717 Chopin Jul 1992 A
5176678 Tsou Jan 1993 A
5261909 Sutterlin et al. Nov 1993 A
5261912 Frigg Nov 1993 A
5312404 Asher et al. May 1994 A
5312405 Korotko et al. May 1994 A
5330477 Crook Jul 1994 A
5364399 Lowery et al. Nov 1994 A
5395371 Miller et al. Mar 1995 A
5429639 Judet Jul 1995 A
5437671 Lozier et al. Aug 1995 A
5466237 Byrd, III et al. Nov 1995 A
5470333 Ray Nov 1995 A
5474555 Puno et al. Dec 1995 A
5476462 Allard et al. Dec 1995 A
5498262 Bryan Mar 1996 A
5498263 Dinello et al. Mar 1996 A
5501684 Schlapfer et al. Mar 1996 A
5527314 Brumfield et al. Jun 1996 A
5531746 Errico et al. Jul 1996 A
5545164 Howland Aug 1996 A
5549608 Errico et al. Aug 1996 A
5562661 Yoshimi et al. Oct 1996 A
5569247 Morrison Oct 1996 A
5575792 Errico et al. Nov 1996 A
5578033 Errico et al. Nov 1996 A
5584834 Errico et al. Dec 1996 A
5591165 Jackson Jan 1997 A
5591166 Bernhardt et al. Jan 1997 A
5601552 Cotrel Feb 1997 A
5601553 Trebing et al. Feb 1997 A
5609593 Errico et al. Mar 1997 A
5609594 Errico et al. Mar 1997 A
5628740 Mullane May 1997 A
5647873 Errico et al. Jul 1997 A
5669910 Korhonen et al. Sep 1997 A
5681319 Biedermann et al. Oct 1997 A
5688272 Montague et al. Nov 1997 A
5688273 Errico et al. Nov 1997 A
5716355 Jackson et al. Feb 1998 A
5716356 Biedermann et al. Feb 1998 A
5716357 Rogozinski Feb 1998 A
5725528 Errico et al. Mar 1998 A
5725588 Errico et al. Mar 1998 A
5728098 Sherman et al. Mar 1998 A
5733286 Errico et al. Mar 1998 A
5738685 Halm et al. Apr 1998 A
5782833 Haider Jul 1998 A
5810818 Errico et al. Sep 1998 A
5873878 Harms et al. Feb 1999 A
5876402 Errico et al. Mar 1999 A
5879350 Sherman et al. Mar 1999 A
5879351 Viart Mar 1999 A
5885286 Sherman et al. Mar 1999 A
5891145 Morrison et al. Apr 1999 A
5902303 Eckhof et al. May 1999 A
5947966 Drewry et al. Sep 1999 A
5954725 Sherman et al. Sep 1999 A
5961517 Biedermann et al. Oct 1999 A
5980523 Jackson Nov 1999 A
6010503 Richelsoph et al. Jan 2000 A
6015409 Jackson Jan 2000 A
6022350 Ganem Feb 2000 A
6050997 Mullane Apr 2000 A
6053917 Sherman et al. Apr 2000 A
6063090 Schlapfer May 2000 A
6074391 Metz-stavenhagen et al. Jun 2000 A
6077262 Schlapfer et al. Jun 2000 A
6080156 Asher et al. Jun 2000 A
6086588 Ameil et al. Jul 2000 A
6090110 Metz-stavenhagen Jul 2000 A
6090111 Nichols Jul 2000 A
6099528 Saurat Aug 2000 A
6110172 Jackson Aug 2000 A
6113600 Drummond et al. Sep 2000 A
RE37161 Michelson et al. May 2001 E
6261287 Metz-Stavenhagen Jul 2001 B1
6296642 Morrison et al. Oct 2001 B1
6302888 Mellinger et al. Oct 2001 B1
6309391 Crandall et al. Oct 2001 B1
6331179 Freid et al. Dec 2001 B1
6355040 Richelsoph et al. Mar 2002 B1
RE37665 Ralph et al. Apr 2002 E
6367321 Miyairi Apr 2002 B1
6382436 Wang May 2002 B1
6402752 Schäffler-Wachter et al. Jun 2002 B2
6436100 Berger Aug 2002 B1
6440137 Horvath et al. Aug 2002 B1
6451021 Ralph et al. Sep 2002 B1
6471703 Ashman Oct 2002 B1
6471705 Biedermann et al. Oct 2002 B1
6485491 Farris et al. Nov 2002 B1
6533786 Needham et al. Mar 2003 B1
6537276 Metz-Stavenhagen Mar 2003 B2
6547789 Ventre et al. Apr 2003 B1
6547790 Harkey, III et al. Apr 2003 B2
6551320 Lieberman Apr 2003 B2
6554832 Shluzas Apr 2003 B2
6554834 Crozet et al. Apr 2003 B1
6562040 Wagner May 2003 B1
6565567 Haider May 2003 B1
6582436 Schlapfer et al. Jun 2003 B2
6582466 Gauchet Jun 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6595992 Wagner et al. Jul 2003 B1
6595993 Donno et al. Jul 2003 B2
6610063 Kumar et al. Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6623485 Doubler Sep 2003 B2
6626907 Campbell et al. Sep 2003 B2
6626908 Cooper et al. Sep 2003 B2
6635059 Randall et al. Oct 2003 B2
6648885 Friesem Nov 2003 B1
6648887 Ashman Nov 2003 B2
6656179 Schaefer et al. Dec 2003 B1
6656181 Dixon et al. Dec 2003 B2
6660004 Barker et al. Dec 2003 B2
6663632 Frigg Dec 2003 B1
6663635 Frigg et al. Dec 2003 B2
6672788 Hathaway Jan 2004 B2
6673073 Schäfer Jan 2004 B1
6676661 Martin Benlloch et al. Jan 2004 B1
6679833 Smith et al. Jan 2004 B2
6682529 Stahurski Jan 2004 B2
6689133 Morrison et al. Feb 2004 B2
6689134 Ralph et al. Feb 2004 B2
6695843 Biedermann et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699249 Schlapfer et al. Mar 2004 B2
6706045 Lin Mar 2004 B2
6712818 Michelson Mar 2004 B1
6716213 Shitoto Apr 2004 B2
6716214 Jackson Apr 2004 B1
6716247 Michelson Apr 2004 B2
6723100 Biedermann et al. Apr 2004 B2
6726689 Jackson Apr 2004 B2
6730093 Saint Martin May 2004 B2
6730127 Michelson May 2004 B2
6733502 Altarac et al. May 2004 B2
6736816 Ritland May 2004 B2
6736820 Biedermann et al. May 2004 B2
6740086 Richelsoph May 2004 B2
6746449 Jones et al. Jun 2004 B2
6755829 Bono et al. Jun 2004 B1
6755835 Schultheiss et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6761723 Buttermann et al. Jul 2004 B2
6767351 Orbay et al. Jul 2004 B2
6770075 Howland Aug 2004 B2
6780186 Errico et al. Aug 2004 B2
6790209 Beale et al. Sep 2004 B2
6827719 Ralph et al. Dec 2004 B2
6830571 Lenke Dec 2004 B2
6835196 Biedermann et al. Dec 2004 B2
6837889 Shluzas Jan 2005 B2
6840940 Ralph et al. Jan 2005 B2
6843791 Serhan Jan 2005 B2
6858031 Morrison et al. Feb 2005 B2
6869432 Schlapfer et al. Mar 2005 B2
6869433 Glascott Mar 2005 B2
6872208 Mcbride et al. Mar 2005 B1
6932817 Baynham et al. Aug 2005 B2
6945972 Frigg et al. Sep 2005 B2
6950997 Dickey et al. Sep 2005 B2
6953462 Lieberman Oct 2005 B2
6955677 Dahners Oct 2005 B2
6958065 Ueyama et al. Oct 2005 B2
6964664 Freid et al. Nov 2005 B2
6964665 Thomas et al. Nov 2005 B2
6974460 Carbone et al. Dec 2005 B2
6979334 Dalton Dec 2005 B2
6981973 McKinley Jan 2006 B2
RE39035 Finn et al. Mar 2006 E
7018378 Biedermann et al. Mar 2006 B2
7018379 Drewry et al. Mar 2006 B2
7066937 Shluzas Jun 2006 B2
7128743 Metz-Stavenhagen Oct 2006 B2
7144396 Shluzas Dec 2006 B2
7377923 Purcell et al. May 2008 B2
7445627 Hawkes et al. Nov 2008 B2
7604656 Shluzas Oct 2009 B2
7682377 Konieczynski et al. Mar 2010 B2
7699876 Barry et al. Apr 2010 B2
7789900 Levy et al. Sep 2010 B2
8021397 Farris et al. Sep 2011 B2
8192470 Biedermann et al. Jun 2012 B2
8197517 Lab et al. Jun 2012 B1
8298265 Purcell et al. Oct 2012 B2
8308782 Jackson Nov 2012 B2
8540753 Jackson Sep 2013 B2
8663298 Keyer et al. Mar 2014 B2
8696712 Biedermann et al. Apr 2014 B2
8840652 Jackson Sep 2014 B2
8882817 Jones et al. Nov 2014 B2
9198695 Shluzas et al. Dec 2015 B2
9320545 Jackson Apr 2016 B2
9486246 Matthis et al. Nov 2016 B2
9636148 Shluzas May 2017 B2
9700354 Jackson Jul 2017 B2
10085774 Jackson Oct 2018 B2
10182844 Shluzas et al. Jan 2019 B2
10188432 Jackson Jan 2019 B2
10398474 Jackson Sep 2019 B2
10398475 Jackson et al. Sep 2019 B2
10588667 Purcell et al. Mar 2020 B2
10799272 Jackson Oct 2020 B2
10925646 Shluzas et al. Feb 2021 B2
10945766 Shluzas et al. Mar 2021 B2
10952777 Jackson Mar 2021 B2
11076889 Jackson Aug 2021 B2
11109896 Jackson et al. Sep 2021 B2
11147591 Jackson Oct 2021 B2
11147597 Jackson Oct 2021 B2
11197696 Jackson Dec 2021 B2
11246627 Jackson Feb 2022 B2
11389207 Purcell et al. Jul 2022 B2
11426208 Jackson et al. Aug 2022 B2
11497532 Jackson et al. Nov 2022 B2
11596449 Jackson et al. Mar 2023 B2
20010001119 Lombardo May 2001 A1
20020035366 Walder et al. Mar 2002 A1
20020045898 Freid et al. Apr 2002 A1
20020082602 Biedermann et al. Jun 2002 A1
20020103487 Errico et al. Aug 2002 A1
20020111626 Ralph et al. Aug 2002 A1
20020143341 Biedermann et al. Oct 2002 A1
20020173789 Howland Nov 2002 A1
20020193795 Gertzbein et al. Dec 2002 A1
20030004512 Farris et al. Jan 2003 A1
20030023243 Biedermann et al. Jan 2003 A1
20030045879 Minfelde et al. Mar 2003 A1
20030073996 Doubler et al. Apr 2003 A1
20030093078 Ritland May 2003 A1
20030105460 Crandall et al. Jun 2003 A1
20030118395 Abels et al. Jun 2003 A1
20030125741 Biedermann et al. Jul 2003 A1
20030149432 Frigg et al. Aug 2003 A1
20030163133 Altarac et al. Aug 2003 A1
20030176862 Taylor et al. Sep 2003 A1
20030199873 Richelsoph Oct 2003 A1
20030208204 Bailey et al. Nov 2003 A1
20030216735 Altarac et al. Nov 2003 A1
20040006342 Altarac et al. Jan 2004 A1
20040024464 Errico et al. Feb 2004 A1
20040092934 Howland May 2004 A1
20040097933 Lourdel et al. May 2004 A1
20040102781 Jeon May 2004 A1
20040127906 Culbert et al. Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040147929 Biedermann et al. Jul 2004 A1
20040158247 Sitiso et al. Aug 2004 A1
20040181224 Biedermann et al. Sep 2004 A1
20050033289 Warren et al. Feb 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131537 Hoy et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050131545 Chervitz et al. Jun 2005 A1
20050192571 Abdelgany Sep 2005 A1
20050203515 Doherty et al. Sep 2005 A1
20050228392 Keyer et al. Oct 2005 A1
20050261687 Garamszegi et al. Nov 2005 A1
20060004359 Kramer et al. Jan 2006 A1
20060009769 Lieberman Jan 2006 A1
20060009770 Speirs et al. Jan 2006 A1
20060015104 Dalton Jan 2006 A1
20060015105 Warren et al. Jan 2006 A1
20060025767 Khalili Feb 2006 A1
20060025768 Lott et al. Feb 2006 A1
20060025770 Schlapfer et al. Feb 2006 A1
20060036242 Nilsson et al. Feb 2006 A1
20060036252 Baynham et al. Feb 2006 A1
20060052783 Dant et al. Mar 2006 A1
20060052784 Dant et al. Mar 2006 A1
20060052786 Dant et al. Mar 2006 A1
20060058788 Hammer et al. Mar 2006 A1
20060084981 Shluzas Apr 2006 A1
20060149240 Jackson Jul 2006 A1
20060149241 Richelsoph et al. Jul 2006 A1
20060155277 Metz-Stavenhagen Jul 2006 A1
20060235392 Hammer et al. Oct 2006 A1
20060241599 Konieczynski et al. Oct 2006 A1
20060241603 Jackson Oct 2006 A1
20060276791 Shluzas Dec 2006 A1
20060293665 Shluzas Dec 2006 A1
20070055241 Matthis et al. Mar 2007 A1
20070093818 Biedermann et al. Apr 2007 A1
20070093826 Hawkes et al. Apr 2007 A1
20070118132 Culbert et al. May 2007 A1
20070123868 Culbert et al. May 2007 A1
20070161996 Biedermann et al. Jul 2007 A1
20070161999 Biedermann et al. Jul 2007 A1
20070219556 Altarac et al. Sep 2007 A1
20070225712 Altarac et al. Sep 2007 A1
20070225713 Altarac et al. Sep 2007 A1
20070270813 Garamszegi Nov 2007 A1
20070288004 Alvarez Dec 2007 A1
20080009862 Hoffman Jan 2008 A1
20080015576 Whipple Jan 2008 A1
20080015579 Whipple Jan 2008 A1
20080015580 Chao Jan 2008 A1
20080015597 Whipple Jan 2008 A1
20080045953 Garamszegi Feb 2008 A1
20080097436 Culbert et al. Apr 2008 A1
20080177322 Davis et al. Jul 2008 A1
20080269809 Garamszegi Oct 2008 A1
20080287998 Doubler et al. Nov 2008 A1
20090143827 Levy Jun 2009 A1
20090163956 Biedermann et al. Jun 2009 A1
20100137920 Hammill, Sr. et al. Jun 2010 A1
20100152787 Walsh Jun 2010 A1
20100198272 Keyer Aug 2010 A1
20100228293 Courtney Sep 2010 A1
20100234902 Biedermann Sep 2010 A1
20100262196 Barrus et al. Oct 2010 A1
20110040336 Hammill, Sr. et al. Feb 2011 A1
20120310284 Gerchow Dec 2012 A1
20130131734 Longtain May 2013 A1
20130150852 Shluzas et al. Jun 2013 A1
20150032162 Biedermann Jan 2015 A1
20160045229 Shluzas et al. Feb 2016 A1
20160262803 Nelson Sep 2016 A1
20170196595 Shluzas et al. Jul 2017 A1
20170209184 Fiechter Jul 2017 A1
20190110817 Shluzas et al. Apr 2019 A1
20200297389 Shluzas et al. Sep 2020 A1
20210161561 Shluzas et al. Jun 2021 A1
Foreign Referenced Citations (31)
Number Date Country
19507141 Sep 1996 DE
1121902 Sep 2004 EP
1579816 Sep 2005 EP
1634537 Nov 2007 EP
1190678 Jun 2008 EP
1570795 Aug 2008 EP
2729291 Jul 1996 FR
2796545 Jan 2001 FR
2856578 Dec 2004 FR
2857850 Jan 2005 FR
2865373 Jul 2005 FR
2865375 Jul 2005 FR
2865378 Jul 2005 FR
2365345 Feb 2002 GB
WO-9825534 Jun 1998 WO
WO-03068083 Aug 2003 WO
WO-2004041100 May 2004 WO
WO-2004089245 Oct 2004 WO
WO-2004107997 Dec 2004 WO
WO-2005000136 Jan 2005 WO
WO-2005000137 Jan 2005 WO
WO-2005020829 Mar 2005 WO
WO-2005072632 Aug 2005 WO
WO-2005082262 Sep 2005 WO
WO-2005099400 Oct 2005 WO
WO-2006012088 Feb 2006 WO
WO-2006017616 Feb 2006 WO
WO-2006028537 Mar 2006 WO
WO-2009014540 Jan 2009 WO
WO-2010056846 May 2010 WO
WO-2012030712 Mar 2012 WO
Non-Patent Literature Citations (43)
Entry
“U.S. Appl. No. 13/778,684, Non Final Office Action mailed Apr. 22, 2015”, 10 pgs.
“U.S. Appl. No. 13/778,684, Notice of Allowance mailed Jul. 28, 2015”, 8 pgs.
“U.S. Appl. No. 13/778,684, Response filed Jun. 16, 2015 to Non Final Office Action mailed Apr. 22, 2015”, 9 pgs.
“U.S. Appl. No. 13/778,684, Response filed Sep. 24, 2013 to Restriction Requirement mailed Sep. 17, 2013”, 7 pgs.
“U.S. Appl. No. 13/778,684, Restriction Requirement mailed Sep. 17, 2013”, 9 pgs.
“U.S. Appl. No. 14/924,521, Non Final Office Action mailed Sep. 1, 2016”, 7 pgs.
“U.S. Appl. No. 14/924,521, Notice of Allowance mailed Dec. 27, 2016”, 7 pgs.
“U.S. Appl. No. 14/924,521, Preliminary Amendment filed Nov. 19, 2015”, 6 pgs.
“U.S. Appl. No. 14/924,521, Response filed Nov. 14, 2016 to Non Final Office Action mailed 09-01-6”, 8 pgs.
“U.S. Appl. No. 15/469,908, Non Final Office Action mailed May 16, 2018”, 11 pgs.
“U.S. Appl. No. 15/469,908, Notice of Allowance mailed Sep. 24, 2018”, 5 pgs.
“U.S. Appl. No. 15/469,908, Preliminary Amendment filed Apr. 12, 2017”, 7 pgs.
“U.S. Appl. No. 15/469,908, Response filed Jul. 12, 2018 to Non Final Office Action mailed May 16, 2018”, 18 pgs.
“U.S. Appl. No. 16/222,666, Corrected Notice of Allowability mailed Dec. 1, 2020”, 5 pgs.
“U.S. Appl. No. 16/222,666, Final Office Action mailed Aug. 10, 2020”, 13 pgs.
“U.S. Appl. No. 16/222,666, Non Final Office Action mailed Apr. 10, 2020”, 14 pgs.
“U.S. Appl. No. 16/222,666, Notice of Allowance mailed Oct. 22, 2020”, 5 pgs.
“U.S. Appl. No. 16/222,666, Preliminary Amendment filed Jan. 7, 2019”, 9 pgs.
“U.S. Appl. No. 16/222,666, Response filed Jul. 10, 2020 to Non Final Office Action mailed Apr. 10, 2020”, 18 pgs.
“U.S. Appl. No. 16/222,666, Response filed Oct. 12, 2020 to Final Office Action mailed Aug. 10, 2020”, 18 pgs.
“U.S. Appl. No. 16/894,991, Examiner Interview Summary mailed Sep. 9, 2020”, 3 pages.
“U.S. Appl. No. 16/894,991, Non Final Office Action mailed Jul. 2, 2020”, 9 pgs.
“U.S. Appl. No. 16/894,991, Notice of Allowance mailed Nov. 10, 2020”, 5 pgs.
“U.S. Appl. No. 16/894,991, Preliminary Amendment filed Jun. 9, 2020”, 7 pgs.
“U.S. Appl. No. 16/894,991, Response filed Sep. 30, 2020 to Non Final Office Action mailed Jul. 2, 2020”, 18 pgs.
“U.S. Appl. No. 17/248,817, Corrected Notice of Allowability mailed Jul. 16, 2021”, 2 pgs.
“U.S. Appl. No. 17/248,817, Non Final Office Action mailed Apr. 2, 2021”, 8 pgs.
“U.S. Appl. No. 17/248,817, Notice of Allowance mailed Jul. 14, 2021”, 7 pgs.
“U.S. Appl. No. 17/248,817, Preliminary Amendment filed Feb. 11, 2021”, 8 pgs.
“U.S. Appl. No. 17/248,817, Response filed Jun. 30, 2021 to Non Final Office Action mailed Apr. 2, 2021”, 18 pgs.
“European Application Serial No. 11758601.6, Decision to Grant mailed Oct. 8, 2015”, 2 pgs.
“European Application Serial No. 11758601.6, Examination Notification Art. 94(3) mailed Oct. 17, 2014”, 5 pgs.
“European Application Serial No. 11758601.6, Office Action mailed May 12, 2015”, 6 pgs.
“European Application Serial No. 11758601.6, Response filed Feb. 26, 2015 to Examination Notification Art. 94(3) mailed Oct. 17, 2014”, 10 pgs.
“International Application Serial No. PCT/US2011/049533, International Preliminary Report on Patentability mailed Mar. 14, 2013”, 16 pgs.
“International Application Serial No. PCT/US2011/049533, International Search Report mailed Jan. 25, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/049533, Written Opinion mailed Jan. 25, 2012”, 14 pgs.
U.S. Appl. No. 13/778,684 U.S. Pat. No. 9,198,695, filed Feb. 27, 2013, Polyaxial Pedicle Screw.
U.S. Appl. No. 14/924,521 U.S. Pat. No. 9,636,148, filed Oct. 27, 2015, Polyaxial Pedicle Screw.
U.S. Appl. No. 15/469,908 U.S. Pat. No. 10,182,844, filed Mar. 27, 2017, Polyaxial Pedicle Screw.
U.S. Appl. No. 16/222,666 U.S. Pat. No. 10,925,646, filed Dec. 17, 2018, Polyaxial Pedicle Screw.
U.S. Appl. No. 16/894,991 U.S. Pat. No. 10,945,766, filed Jun. 8, 2020, Polyaxial Pedicle Screw.
U.S. Appl. No. 17/248,817, filed Feb. 9, 2021, Polyaxial Pedicle Screw.
Related Publications (1)
Number Date Country
20220022923 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
61378182 Aug 2010 US
Continuations (7)
Number Date Country
Parent 17248817 Feb 2021 US
Child 17498340 US
Parent 16894991 Jun 2020 US
Child 17248817 US
Parent 16222666 Dec 2018 US
Child 16894991 US
Parent 15469908 Mar 2017 US
Child 16222666 US
Parent 14924521 Oct 2015 US
Child 15469908 US
Parent 13778684 Feb 2013 US
Child 14924521 US
Parent PCT/US2011/049533 Aug 2011 WO
Child 13778684 US