The present invention relates in general to plastics and more specifically to the inclusion of a phosphite compound in a polycarbonate composition to reduce static charge and resultant “water spotting” defects on plastic parts.
Plastic parts such as headlamp lenses molded from polycarbonate tend to develop a static charge during the injection molding process. This static charge can be problematic if the lenses are hard-coated as over spray from the coating process may become attracted to surface of the lenses and subsequently result in defects described by molders as “water-spots.” In addition, the lenses may be more prone to attract contaminants such as airborne dust particles, which cause visible defects after coating.
Therefore, a need exists in the art for a process of reducing static charge build up in polycarbonate parts.
Accordingly, the present invention provides such a process for reducing static charge build up in polycarbonate parts.
It has been surprisingly found that the use of diphosphites such as bis(2,4-dicumylphenyl)pentaerythritol diphosphite significantly reduces the level of static charge in polycarbonate headlamp lenses and results in essentially defect free parts after hard-coating. Bis(2,4-dicumylphenyl)pentaerythritol diphosphite also exhibited superior performance in lab and production samples compared to the state of the art, tris(2,4-di-tert-butylphenyl)phosphite.
These and other advantages and benefits of the present invention will be apparent from the Detailed Description of the Invention herein below.
The present invention will now be described for purposes of illustration and not limitation in conjunction with the figures, wherein:
The present invention will now be described for purposes of illustration and not limitation. Except in the operating examples, or where otherwise indicated, all numbers expressing quantities, percentages, and so forth in the specification are to be understood as being modified in all instances by the term “about.”
The present invention provides a process for reducing static charge in a polycarbonate part involving combining a polycarbonate and a diphosphite to form a composition and molding a part from the composition, wherein the part exhibits reduced static charge compared to a part made without addition of the diphosphite.
Suitable polycarbonate resins for useful in the present invention are homopolycarbonates and copolycarbonates, both linear or branched resins and mixtures thereof.
The polycarbonates have a weight average molecular weight of preferably 10,000 to 200,000, more preferably 20,000 to 80,000 and their melt flow rate, per ASTM D-1238 at 300° C., is preferably 1 to 65 g/10 min., more preferably 2 to 35 g/10 min. They may be prepared, for example, by the known diphasic interface process from a carbonic acid derivative such as phosgene and dihydroxy compounds by polycondensation (See, German Offenlegungsschriften 2,063,050; 2,063,052; 1,570,703; 2,211,956; 2,211,957 and 2,248,817; French Patent 1,561,518; and the monograph by H. Schnell, “Chemistry and Physics of Polycarbonates”, Interscience Publishers, New York, N.Y., 1964).
In the present context, dihydroxy compounds suitable for the preparation of the polycarbonates of the invention conform to the structural formulae (1) or (2) below.
wherein
Among the dihydroxy compounds useful in the practice of the invention are hydroquinone, resorcinol, bis-(hydroxyphenyl)-alkanes, bis-(4droxyl-phenyl)-ethers, bis-(hydroxyphenyl)-ketones, bis-(4ydroxyl-phenyl)-sulfoxides, bis-(hydroxyphenyl)-sulfides, bis-(hydroxyphenyl)-sulfones, and α,α-bis-(hydroxyphenyl)-diisopropylbenzenes, as well as their nuclear-alkylated compounds. These and further suitable aromatic dihydroxy compounds are described, for example, in U.S. Pat. Nos. 5,401,826, 5,105,004; 5,126,428; 5,109,076; 5,104,723; 5,086,157; 3,028,356; 2,999,835; 3,148,172; 2,991,273; 3,271,367; and 2,999,846, the contents of which are incorporated herein by reference.
Further examples of suitable bisphenols are 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A), 2,4-bis-(4-hydroxyphenyl)-2-methyl-butane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, α,α′-bis-(4-hydroxy-phenyl)-p-diisopropylbenzene, 2,2-bis-(3-methyl-4-hydroxyphenyl)-propane, 2,2-bis-(3-chloro-4-hydroxyphenyl)-propane, 4,4′-dihydroxy-diphenyl, bis-(3,5-dimethyl-4-hydroxyphenyl)-methane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfide, bis-(3,5-dimethyl-4-hydroxy-phenyl)-sulfoxide, bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfone, dihydroxy-benzophenone, 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane, α,α′-bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropyl-benzene and 4,4′-sulfonyl diphenol.
Examples of particularly preferred aromatic bisphenols are 2,2-bis-(4-hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane and 1,1-bis-(4-hydroxy-phenyl)-3,3,5-trimethylcyclohexane. The most preferred bisphenol is 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A).
The polycarbonates useful in the invention may entail in their structure units derived from one or more of the suitable bisphenols.
Among the resins suitable in the practice of the invention are phenolphthalein-based polycarbonate, copolycarbonates and terpolycarbonates such as are described in U.S. Pat. Nos. 3,036,036 and 4,210,741, both of which are incorporated by reference herein.
The polycarbonates useful in the invention may also be branched by condensing therein small quantities, e.g., 0.05 to 2.0 mol % (relative to the bisphenols) of polyhydroxyl compounds. Polycarbonates of this type have been described, for example, in German Offenlegungsschriften 1,570,533; 2,116,974 and 2,113,374; British Patents 885,442 and 1,079,821 and U.S. Pat. No. 3,544,514, which is incorporated herein by reference. The following are some examples of polyhydroxyl compounds which may be used for this purpose: phloroglucinol; 4,6-dimethyl-2,4,6-tri-(4-hydroxy-phenyl)-heptane; 1,3,5-tri-(4-hydroxyphenyl)-benzene; 1,1,1-tri-(4-hydroxyphenyl)-ethane, tri-(4-hydroxyphenyl)-phenyl-methane; 2,2-bis-[4,4-(4,4′-dihydroxydiphenyl)]-cyclohexyl-propane; 2,4-bis-(4-hydroxy-1-isopropylidine)-phenol; 2,6-bis-(2′-dihydroxy-5′-methylbenzyl)-4-methyl-phenol; 2,4-dihydroxybenzoic acid; 2-(4-hydroxy-phenyl)-2-(2,4-dihydroxy-phenyl)-propane and 1,4-bis-(4,4′-dihydroxytri-phenylmethyl)-benzene. Some of the other polyfunctional compounds are 2,4-dihydroxy-benzoic acid, trimesic acid, cyanuric chloride and 3,3-bis-(4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
In addition to the polycondensation process mentioned above, other processes for the preparation of the polycarbonates of the invention are polycondensation in a homogeneous phase and transesterification. The suitable processes are disclosed in U.S. Pat. Nos. 3,028,365; 2,999,846; 3,153,008; and 2,991,273 which are incorporated herein by reference.
The preferred process for the preparation of polycarbonates is the interfacial polycondensation process. Other methods of synthesis in forming the polycarbonates of the invention, such as disclosed in U.S. Pat. No. 3,912,688, incorporated herein by reference, may be used. Suitable polycarbonate resins are available in commerce, for instance, from Bayer MaterialScience under the MAKROLON trademark.
Triphenyl phosphine shown in structural formula (3) below is frequently used in the commercial production of polycarbonate parts
Phosphites, such as tris(2,4-di-tert-butylphenyl)phosphite, shown in structural formula (4) below are also used in commercial production of molded parts,
Both of these types of compounds have shown themselves to be less than satisfactory as molders frequently complain of the presence of “water-spots” when producing plastic parts from compositions containing them.
Diphosphites, such as bis(2,4-dicumylphenyl)pentaerythritol diphosphite, shown in structural formula (5) below, proved superior to the state of the art compounds in reducing static charge build-up.
The diphosphite is preferably included in an amount of from 0.04% by weight to 0.4% by weight based on the weight of the composition. The diphosphite may be present in the composition in the present invention in an amount ranging between any combination of these values, inclusive of the recited values.
The present invention is further illustrated, but is not to be limited, by the following examples. All quantities given in “parts” and “percents” are understood to be by weight, unless otherwise indicated.
The following materials were used in generating the samples depicted in the Examples:
The following physical properties were determined: tensile modulus was determined according to ISO 527, Izod impact was determined according to ISO 180/1A, heat deflection temperature was determined according to ISO 75 and Vicat softening temperature was determined according to ISO 306.
Lab and production sample evaluation to assess level of static charge was performed using talcum powder or carbon black for the visualization of dust patterns. Monroe probe measurements were performed to more provide quantitative measures of relative static charge.
As can be appreciated by the above, the order of effectiveness in reducing static charge and resultant “water-spots” is
The foregoing examples of the present invention are offered for the purpose of illustration and not limitation. It will be apparent to those skilled in the art that the embodiments described herein may be modified or revised in various ways without departing from the spirit and scope of the invention. The scope of the invention is to be measured by the appended claims.
Number | Date | Country | |
---|---|---|---|
61667115 | Jul 2012 | US |