Wellbores for the oil and gas industry are commonly drilled by a process of rotary drilling. In conventional wellbore drilling, a drill bit is mounted on the end of a drill string, which may be several miles long. At the surface of the wellbore, a rotary table or top drive turns the drill string, including the drill bit arranged at the bottom of the hole to increasingly penetrate the subterranean formation, while drilling fluid is pumped through the drill string. In other drilling configurations, the drill bit may be rotated using a mud motor arranged axially adjacent the drill bit in the downhole environment and powered using the circulating drilling fluid.
One common type of drill bit used to drill wellbores is known as a “fixed cutter” or “drag” bit. A fixed cutter drill bit generally includes a bit body formed from a high strength material and a plurality of cutters attached at selected locations about the bit body. Cutters on fixed cutter drill bits often include a substrate or support stud made of carbide (e.g., tungsten carbide), and a cutting surface layer or “diamond table,” which can be made of polycrystalline diamond. Such cutters are commonly referred to as polycrystalline diamond compact (“PDC”) cutters.
Various methods for securing diamond materials to a substrate have been actively investigated. Often, diamond is simultaneously formed and bonded to a substrate using a single high-temperature, high-pressure (HTHP) press cycle. However, this method conventionally uses a so-called catalyzing material, such as cobalt, to facilitate bonding between the diamond particles and between the as-formed diamond and the substrate. The presence of residual catalyzing material in the diamond can result in reduced thermal stability, so PDC cutters are often leached to remove residual cobalt from the working surface. In other cases, instead of attaching the diamond to the substrate in the press, PDC may first be formed and then attached to the substrate, such as by brazing using an active metal braze alloy.
The following figures are included to illustrate certain aspects of the present disclosure, and should not be viewed as exclusive embodiments. The subject matter disclosed is capable of considerable modifications, alterations, combinations, and equivalents in form and function, without departing from the scope of this disclosure.
The present application is related to downhole tools and, more particularly, to polycrystalline diamond compacts, such as cutters and bearing elements, and methods of manufacturing polycrystalline diamond compacts that have a multilayer joint.
Embodiments of the present disclosure relate to the attachment of a diamond table or “disk” to a substrate to form a polycrystalline diamond compact for an earth-boring drill bit. The diamond table may be coupled to the substrate using a multilayer joint created using a thin film deposition process, such as sputtering or chemical vapor deposition. The deposition process results in the generation of one or more thin, metallic films that enhance the joining strength of the diamond table to the substrate. Moreover, the materials used during the deposition process may be selected to better managing residual stresses and coefficient of thermal expansion mismatch between the diamond table and the substrate. The thin film deposition process may be undertaken at relatively low temperatures that minimize residual stresses at the joint between the diamond table and the substrate. As a result, the thermo-mechanical integrity and abrasion resistance of the polycrystalline diamond compact may be improved, thereby minimizing failure at the joint. The polycrystalline diamond compact may comprise a cutter or a bearing element used in the drill bit.
The bit body 102 further includes a plurality of cutters 116 each disposed within a corresponding cutter pocket 118 sized and shaped to receive the cutters 116. The cutters 116 are held in the blades 104 and corresponding cutter pockets 118 at predetermined angular orientations and radial locations to position the cutters 116 with a desired backrake angle against the formation being penetrated. As the bit body 102 is rotated, the cutters 116 are driven through the underlying rock by the combined forces of weight-on-bit and torque assumed at the drill bit 100.
Referring now to
The diamond table 124 may include one or more layers of an ultra-hard material, such as polycrystalline diamond (PCD), polycrystalline cubic boron nitride, impregnated diamond, or another super-abrasive material. In some embodiments, the diamond table 124 may be formed by subjecting particulate material to a high-temperature, high-pressure (HTHP) press cycle. In at least one embodiment, a material informally referred to in the art as a catalyst or catalyzing material, such as cobalt, may be provided to promote bonding between diamond particles during formation of the diamond table 124. Following the HTHP press cycle, in some embodiments, the diamond table 124 may be prepared for higher temperature resistance and/or higher wear/abrasion resistance. This can be achieved by removing the residual cobalt catalyst from the diamond table 124, such as through a leaching process, prior to bonding the diamond table 124 to the substrate that will be used to attach the resulting cutter to the drill bit. The resulting material of the leached diamond table 124 in that instance may be referred to as thermally stable polycrystalline (TSP) diamond.
In other embodiments, the TSP material may be produced without leaching, by forming the diamond with a non-cobalt catalyst during the HTHP press cycle. In such embodiments, a particulate mixture comprising grains of a hard material and a non-cobalt or carbonate catalyst material (e.g., a carbonate of one or more of magnesium, calcium, strontium, and barium) may be subjected to elevated temperatures (e.g., temperatures greater than about 2000° C.) and elevated pressures (e.g., pressures greater than about 7 GPa). This HTHP press cycle may result in the formation of inter-granular bonds between the particles of hard material, and thereby forming the inter-bonded grains of the TSP diamond material without the need for leaching. Accordingly, in at least one embodiment, the diamond table 124 may comprise TSP diamond, but may generally include any PCD that has been become thermally stable, whether leached or not. The as-formed diamond table 124 may subsequently be bonded to the substrate 120, as will be discussed below.
The resulting cutter 116 may be characterized and otherwise referred to herein as a “polycrystalline diamond compact.” Indeed, any structure that includes a PCD table attached to a substrate may be characterized as a polycrystalline diamond compact. As described below, for example, another type of polycrystalline diamond compact includes a bearing element made from a PCD table attached to a substrate. Those skilled in the art will readily appreciate that any polycrystalline diamond compact may be fabricated using the methods described herein.
The diamond table 124 generally defines or provides a working surface 126, at least a portion of which engages the formation during drilling for cutting/failing the formation. In the orientation shown in
Referring now to
In the illustrated embodiment, the multilayer joint 202 may include a base layer 204, one or more intermediate layers 206, and a braze layer 208. The base layer 204, the intermediate layer(s) 206, and the braze layer 208 may be collectively referred to herein as the component parts of the multilayer joint 202. Each component part may be formed or otherwise deposited using any chemical or physical thin film deposition technique known to those skilled in the art. Suitable thin film deposition processes that may be employed include, but are not limited to, physical vapor deposition, chemical vapor deposition, sputtering, pulsed laser deposition, chemical solution deposition, plasma enhanced chemical vapor deposition, cathodic arc deposition, electrohydrodynamic deposition (i.e., electrospray deposition), ion-assisted e-beam deposition, plating, thermal evaporation, and spin coating. The component parts of the multilayer joint 202 may be formed under high vacuum and/or inert atmosphere during the thin film deposition process.
In some embodiments, the component parts of the multilayer joint 202 may be sequentially deposited directly on the diamond table 124 during the thin film deposition process. In such embodiments, the diamond table 124 may be positioned within the deposition chamber of the particular thin film deposition technique and may serve as a type of substrate or carrier to build the multilayer joint 202. Following the deposition process, the diamond table 124, with the multilayer joint 202 deposited or otherwise formed thereon, may then be coupled or attached to the substrate 120 by brazing, which results in the formation of the cutter 200. In some embodiments, the brazing process may be undertaken under selective temperature and/or pressure parameters and in the presence of selective gases. As a result, the brazing process may incorporate and otherwise comprise vacuum brazing, hot pressing, and/or “lower” HPHT processes. Accordingly, in some embodiments, the cutter 200 may be formed through at least an initial HTHP press cycle that forms the diamond table 124, as generally described above (and optionally followed by a leaching process), and then a subsequent brazing operation that bonds the diamond table 124 to the substrate 120 using the multilayer joint 202.
In other embodiments, however, the multilayer joint 202 may be built up separate from the diamond table 124 using the thin film deposition process. In such embodiments, a separate carrier substrate may be positioned within the deposition chamber and the component parts of the multilayer joint 202 may be sequentially deposited on the carrier substrate during the thin film deposition process. Following the deposition process, the multilayer joint 202 may be detached from the carrier substrate as a free-standing multi-layer film (sometimes referred to as “foil”). The multilayer joint 202 may then be positioned between the diamond table 124 and the substrate 120 and subsequently subjected to brazing to bonds the diamond table 124 to the substrate 120 using the multilayer joint 202 and thereby forms the cutter 200.
As illustrated, the base layer 204 may constitute the initial layer of the multilayer joint 202, i.e., the layer adjacent the diamond table 124 to directly contact the diamond table 124 (i.e., at the bottom surface 130 of
In some embodiments, the base layer 204 may be doped and/or infiltrated with one or more materials to enhance the bond to the diamond table 124 and/or manipulate the coefficient of thermal expansion (CTE) of the base layer 204. For instance, the material of the base layer 204 may be doped and/or infiltrated with a ceramic, a metal with high ductility or yield stress, a polymeric material, or a mixture or combination thereof. Suitable ceramics that may be used to dope the base layer 204 include, but are not limited to, tungsten carbide, diamond, nanodiamond, nanocarbon, graphene, carbon nanotubes, and the like. As will be appreciated, doping the base layer 204 with carbide formers may prove advantageous in cases where other elements may preferential bond or consume the carbide former prior to forming attachment to the diamond table 124. Suitable metals that may be used to dope the base layer 204 include, but are not limited to, copper, silver, gold, nickel, and any combination thereof.
The braze layer 208 may be a material layer adjacent the substrate 120 and may be configured to bond the multilayer joint 202 and, therefore, the diamond table 124, to the substrate 120 (i.e., at the top surface 128 of
The one or more intermediate layers 206 may be configured to provide the multilayer joint 202 with optimal shear strength and minimal thermal stresses. While depicted in
The intermediate layer(s) 206 may be made of a variety of materials that exhibit a CTE that lies between that of the diamond table 124 and the substrate 120. For example, tungsten carbide exhibits a CTE (10−6/° K) of about 4.5 to about 6.5, diamond exhibits a CTE (10−6/° K) of about 1, and most metals exhibit a CTE (10−6/° K) of about 10 to about 20. Suitable materials for the intermediate layer(s) 206 include, but are not limited to, titanium, tungsten, chromium, zirconium, manganese, or any alloy thereof (e.g., a tungsten-titanium alloy, an iron-nickel alloy, Invar (64FeNi)). Similar to the base layer 204 and the braze layer 208, one or more of the intermediate layer(s) 206 may be doped and/or infiltrated with a material to manipulate the CTE of a given intermediate layer 206.
Suitable doping or infiltration materials are the same as listed above and, therefore, will not be listed again. The composition, thickness, and number of intermediate layers 206 used in the multilayer joint 202 will depend on final joint thickness for providing optimal shear strength and minimal thermal stresses.
The materials used for any of the base layer 204, the intermediate layer(s) 206, and the braze layer 208 may be selected based on one or more critical properties of the materials, such as melting temperature, CTE, ductility, and corrosion resistance. As will be appreciated, the temperature of the deposited materials during the deposition process should generally be maintained lower than the graphitization temperature of the diamond table 124 to prevent graphitization of the diamond in the diamond table 124. Typical diamonds have temperature limit of approximately 800-1200° C. (depending on atmospheric conditions) for graphitization. The values are in the range 1000-1200° C. in vacuum for TSP diamond. In some cases, the graphitization temperature may depend, at least in part, on the atmosphere within the deposition chamber of the particular thin film deposition technique being employed.
Referring now to
Unlike the multilayer joint 202 of
While the braze layer 208 is depicted in
In the gradient multilayer joint 302, the material layers may be transitioned in mixtures or blends of two or more materials during the thin film deposition process used to form the gradient multilayer joint 302. As will be appreciated, the gradient multilayer joint 302 may provide an operator with the ability to vary chemical compositions and thereby design or tune the materials of the gradient multilayer joint 302 to a predetermined or designed gradient. Similar to the multilayer joint 202 of
Referring now to
One or more intermediate layers may then be deposited on the base layer, as at 404. In some embodiments, the base layer 204 and the intermediate layer(s) 206 may be deposited in discrete or distinct layers of different materials. In other embodiments, however, the deposition transition from the material of the base layer 204 to the material of the intermediate layer(s) 206 (and between adjacent materials of multiple intermediate layers 206, if present) may be gradual, such that gradient layering of the materials may be achieved. In either case, the deposited material layers may prove useful in managing thermal stress, such as CTE between the diamond table 124 and the substrate 120. For instance, while the material for the base layer 204 may be selected to closely match the CTE of the diamond table 124, any subsequent materials of the intermediate layer(s) 206 may be selected to gradually transition the CTE closer to that of the substrate 120. In some embodiments, one or more of the base layer 204 and the intermediate layer(s) 206 may be doped and/or infiltrated during the deposition process to help manipulate or optimize the CTE. As a result, the deposited material layers may each exhibit a CTE that falls between that of the diamond table 124 and the substrate 120 to provide a transition between the two ends of the multilayer joint 202, 302.
The method 400 may continue by depositing a braze layer on the one or more intermediate layers, as at 406. The last layer or material of the intermediate layer(s) 206 may comprise a material (e.g., a metal or metal alloy) that may result in good adhesion to the material of the braze layer 208. Moreover, the material of the braze layer 208 may be selected such that the braze layer 208 forms a chemical bond with the substrate 120. One suitable material for the braze layer 208 is a silver-based braze alloy. Moreover, similar to the base layer 204 and the intermediate layer(s) 206, the braze layer 208 may be doped and/or infiltrated during the deposition process to help manipulate or optimize the CTE closer to that of the substrate 120. The diamond table 124 may then be attached to the substrate 120 via a brazing process with the multilayer joint 202, 302 positioned therebetween, as at 408.
Referring now to
The method 500 may then include attaching the diamond table to a substrate via a brazing process with the multilayer joint interposing the diamond table and the substrate, as at 504. In cases where the carrier is the carrier substrate, the multilayer joint may first be detached from the carrier substrate and then positioned between the diamond table and the substrate for the brazing process. The brazing process of 504 may include vacuum brazing, hot pressing, and “lower” HPHT processes, without departing from the scope of the disclosure. The brazing process may occur after the diamond table has already been formed via an HTHP press cycle. Following the brazing operation, remaining catalyst materials in the diamond table, and any other materials that may be detrimental to the diamond table during drilling, may be leached from the diamond table to thermally stabilize the diamond table.
In cases where the carrier is the diamond table, the materials of the multilayer joint may be deposited on the carrier at a temperature lower than a graphitization temperature of the diamond table. This may prove advantageous in preventing graphitization of the diamond table. In some embodiments, depositing the multilayer joint on the carrier may include depositing one or more first materials on the carrier, and gradually transitioning a deposition of the one or more first materials to a deposition of one or more second materials on the carrier. This results in gradient layering of the material layers of the multilayer joint, which may prove advantageous in providing a continuous change in CTE between the diamond table and the substrate rather than a step-wise change. Moreover, the gradient layering may be doped and/or infiltrated with a material configured to optimize and otherwise manipulate the CTE between the diamond table and the substrate.
As mentioned above, the principles of the present disclosure are not limited to cutters, but can equally be applied to any polycrystalline diamond compact that has a diamond table attached to a substrate. For example, the principles of the present disclosure may be applied to diamond table bearing elements, such as those used in rolling cutter assemblies.
Referring to
As illustrated, the assembly 600 may be coupled to and otherwise associated with a blade 104 of the drill bit 100. In other embodiments, however, the assembly 600 may be coupled to any other static component of the drill bit 100, without departing from the scope of the disclosure. For instance, in at least one embodiment, the assembly 600 may be coupled to the top of a blade 104 of the drill bit 100 or in a backup row. The leading face 106 of the blade 104 faces in the general direction of rotation for the blade 104. A cutter pocket 118 may be formed in the blade 104 at the leading face of the blade 104. The cutter pocket 118 may include or otherwise provide a receiving end 602a, a bottom end 602b, and a sidewall 604 that extends between the receiving and bottom ends 602a,b.
The assembly 600 may further include a generally cylindrical rolling cutter 606 configured to be disposed within the cutter pocket 118. The rolling cutter 606 may be similar in some respects to the cutter 116 of
The assembly 600 may further include a bearing element 610 arranged within the cutter pocket 118 at the bottom end 602b. During operation of the drill bit that houses the rolling cutter 606 (e.g., the drill bit 100 of
The makeup and construction of the bearing element 610 may be the same as the cutters 116 of
The assembly 600 may further include a retention mechanism 618 configured to secure the rolling cutter 606 within the cutter pocket 118. The retention mechanism 618 may be any device or mechanism configured to allow the rolling cutter 606 to rotate about its central axis 620 within the cutter pocket 118 while simultaneously preventing removal thereof from the cutter pocket 118. In some embodiments, as illustrated, the retention mechanism 618 may comprise a ball bearing system that includes an inner bearing race 622a, an outer bearing race 622b, and one or more ball bearings 624 (two shown) disposed within the inner and outer bearing races 622a,b. The inner bearing race 622a may be defined on the outer surface of the rolling cutter 606 (i.e., the outer surface of the substrate 120), and the outer bearing race 622b may be defined on the inner radial surface of the sidewall 604 of the cutter pocket 118.
In exemplary drilling operation, the rolling cutter 606 may be configured to engage an underlying subterranean formation. As the rolling cutter 606 contacts the underlying formation, the formation begins to shear and generates an opposing force that is assumed on the diamond table 214 in the direction A. Moreover, shearing of the formation may urge the rolling cutter 606 to rotate about the central axis 620. The opposing force in the direction A may be transmitted to the second end 608b of the rolling cutter 606 (e.g., the substrate 120), which engages the bearing element 610. Since the bearing element 610 is made of an ultra-hard material, such as TSP, the second end 608b may slidingly engage the bearing element 610, without which, the second end 608b could potentially gall the bottom end 602b end of the cutter pocket 118. With the bearing element 610, however, friction between the cutter pocket 118 and the second end 608b of the rolling cutter 606 may be dramatically reduced, thereby also decreasing the amount of heat generated during drilling. As a result, it will require less force to urge the rolling cutter 606 to rotate, and a drilling operator may be able to apply more force against the rolling cutter 606 in the direction A, and thereby increase the efficiency of the drilling operation.
Therefore, the disclosed systems and methods are well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the teachings of the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered, combined, or modified and all such variations are considered within the scope of the present disclosure. The systems and methods illustratively disclosed herein may suitably be practiced in the absence of any element that is not specifically disclosed herein and/or any optional element disclosed herein. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.
As used herein, the phrase “at least one of” preceding a series of items, with the terms “and” or “or” to separate any of the items, modifies the list as a whole, rather than each member of the list (i.e., each item). The phrase “at least one of” allows a meaning that includes at least one of any one of the items, and/or at least one of any combination of the items, and/or at least one of each of the items. By way of example, the phrases “at least one of A, B, and C” or “at least one of A, B, or C” each refer to only A, only B, or only C; any combination of A, B, and C; and/or at least one of each of A, B, and C.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/019577 | 3/10/2015 | WO | 00 |