Wear-resistant, polycrystalline diamond compacts (“PDCs”) are utilized in a variety of mechanical applications. For example, PDCs are used in drilling tools (e.g., cutting elements, gage trimmers, etc.), machining equipment, bearing apparatuses, wire-drawing machinery, and in other mechanical apparatuses.
PDCs have found particular utility as superabrasive cutting elements in rotary drill bits, such as roller-cone drill bits and fixed-cutter drill bits. A PDC cutting element typically includes a superabrasive diamond layer commonly known as a diamond table. The diamond table is formed and bonded to a substrate using a high-pressure/high-temperature (“HPHT”) process. The PDC cutting element may also be brazed directly into a preformed pocket, socket, or other receptacle formed in a bit body. The substrate may often be brazed or otherwise joined to an attachment member, such as a cylindrical backing. A rotary drill bit typically includes a number of PDC cutting elements affixed to the bit body. It is also known that a stud carrying the PDC may be used as a PDC cutting element when mounted to a bit body of a rotary drill bit by press-fitting, brazing, or otherwise securing the stud into a receptacle formed in the bit body.
Conventional PDCs are normally fabricated by placing a cemented carbide substrate into a container or cartridge with a volume of diamond particles positioned on a surface of the cemented carbide substrate. A number of such cartridges may be loaded into an HPHT press. The substrate(s) and volume of diamond particles are then processed under HPHT conditions in the presence of a catalyst material that causes the diamond particles to bond to one another to form a matrix of bonded diamond grains defining a polycrystalline diamond (“PCD”) table. The catalyst material is often a metal-solvent catalyst (e.g., cobalt, nickel, iron, or alloys thereof) that is used for promoting intergrowth of the diamond particles.
In one conventional approach, a constituent of the cemented carbide substrate, such as cobalt from a cobalt-cemented tungsten carbide substrate, liquefies and sweeps from a region adjacent to the volume of diamond particles into interstitial regions between the diamond particles during the HPHT process. The cobalt acts as a metal-solvent catalyst to promote intergrowth between the diamond particles, which results in the formation of a matrix of bonded diamond grains having diamond-to-diamond bonding therebetween, with interstitial regions between the bonded diamond grains being occupied by the metal-solvent catalyst.
Despite the availability of a number of different types of PDCs, manufacturers and users of PDCs continue to seek PDCs with improved wear resistance, thermal stability, and manufacturability.
Embodiments of the invention relate to a PDC that is less susceptible to brazing damage due to the use of at least one transition layer disposed between at least one PCD layer and a substrate thereof. It is currently believed that including the at least one transition layer between the PCD layer and the substrate may reduce the tensile stresses present in the substrate to make the substrate less susceptible to liquid metal embrittlement (“LME”) and help reduce the tensile stresses generated in the PCD layer during brazing of the PDC to another structure such as a drill bit body to help prevent damage to the PCD layer during brazing. Methods for manufacturing a PDC that includes at least one transition layer between the PCD table and the substrate and embodiments utilizing the disclosed PDCs in various articles and apparatuses, such as rotary drill bits, bearing apparatuses, wire-drawing dies, machining equipment, and other articles and apparatuses are also disclosed.
In an embodiment, a PDC includes at least one PCD layer, a cemented carbide substrate, and at least one transition layer disposed between and bonded to the cemented carbide substrate and the PCD layer. The at least one transition layer is formulated with a coefficient of thermal expansion (“CTE”) that is less than a CTE of the cemented carbide substrate and greater than a CTE of the polycrystalline diamond table. At least a portion of the at least one PCD layer includes a plurality of diamond grains defining a plurality of interstitial regions and a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively may exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less.
In another embodiment, a method for manufacturing a PDC is described. The method includes disposing at least one layer that includes a plurality of diamond grains and at least one additive between at least one layer of diamond particles and a cemented carbide substrate in a pressure transmitting medium to form a cell assembly, and subjecting the cell assembly to an HPHT process of a temperature of at least 1000° C. and a pressure of at least 7.5 GPa in the pressure transmitting medium to form a PDC. The PDC so-formed includes at least one PCD layer, a cemented carbide substrate, and at least one transition layer disposed between the PCD layer and the cemented carbide substrate. The at least one transition layer exhibits a CTE that is less than a CTE of the cemented carbide substrate and greater than a CTE of the PCD layer.
Further embodiments relate to applications utilizing the disclosed PCD and PDCs in various articles and apparatuses, such as rotary drill bits, bearing apparatuses, wire-drawing dies, machining equipment, and other articles and apparatuses.
Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.
The drawings illustrate several embodiments of the invention, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.
Embodiments of the invention relate to a PDC that is less susceptible to brazing damage due to the use of at least one transition layer disposed between at least one PCD layer and a substrate (e.g., a cemented carbide substrate) thereof. It is currently believed that including the at least one transition layer between the PCD layer and the substrate can reduce the stresses present in the substrate to make the substrate less susceptible to LME and help reduce the stresses generated in the PCD layer (e.g., during brazing of the PDC to another structure such as a drill bit body) to help prevent damage of the PCD layer. Methods for manufacturing a PDC that includes at least one transition layer between the PCD layer and the substrate and embodiments utilizing the disclosed PDCs in various articles and apparatuses, such as rotary drill bits, bearing apparatuses, wire-drawing dies, machining equipment, and other articles and apparatuses are also disclosed.
Referring to
The PCD layer 106 includes a plurality of diamond grains directly bonded together via diamond-to-diamond bonding (e.g., sp3 bonding) to define a plurality of interstitial regions. At least a portion of the interstitial regions or, in some embodiments, substantially all of the interstitial regions may be occupied by a metal-solvent catalyst, such as iron, nickel, cobalt, or alloys of any of the foregoing metals. The PCD layer 106 may exhibit an average grain size of about 50 μm or less, such as about 30 μm or less or about 20 μm or less. For example, the average grain size of the diamond grains may be about 10 μm to about 18 μm and, in some embodiments, about 15 μm to about 25 μm. In some embodiments, the average grain size of the diamond grains may be about 10 μm or less, such as about 2 μm to about 5 μm or submicron.
According to various embodiments, when the PCD layer 106 is sintered at a pressure of at least about 7.5 GPa, the PCD layer 106 may exhibit a coercivity of 115 Oe or more, a high-degree of diamond-to-diamond bonding, a specific magnetic saturation about 15 G·cm3/g or less, and a metal-solvent catalyst content of about 7.5 weight % (“wt %”) or less. For example, the PCD layer 106 may exhibit a coercivity of 115 Oe or more, a high-degree of diamond-to-diamond bonding, a specific magnetic saturation about 15 G·cm3/g or less, and a metal-solvent catalyst content of about 7.5 wt % or less, such as about 1 wt % to about 7.5 wt %, about 1 wt % to about 6 wt %, about 3 wt % to about 6 wt %, less than about 3 wt %, or a residual amount to about 1 wt %.
As discussed above, the metal-solvent catalyst that occupies at least a portion of the interstitial regions of the PCD layer 106 may be present in the PCD layer 106 in an amount of about 7.5 wt % or less, such as about 1 wt % to about 7.5 wt %, about 1 wt % to about 6 wt %, about 3 wt % to about 6 wt %, less than about 3 wt %, or a residual amount to about 1 wt %. By maintaining the metal-solvent catalyst content below about 7.5 wt %, the PCD layer 106 may exhibit a desirable level of thermal stability suitable for subterranean drilling applications.
As will be discussed in more detail in connection with
The transition layer 104 includes diamond grains and at least one additive that together define interstitial regions having the metal-solvent catalyst disposed in at least a portion of the interstitial regions. The at least one additive may be chosen from tungsten carbide particles, cemented tungsten carbide particles (e.g., individual particles formed of tungsten carbide particles cemented together with cobalt or a cobalt alloy), chromium carbide particles, cubic boron nitride crystals, or mixtures thereof. For example, the cemented tungsten carbide particles may be formed in by sintering, crushing the sintered product into a plurality of particles, and classified the crushed particles to a specific particle size range. The amount of the at least one additive present in the transition layer 104 may be about 1 volume % (“vol %”) to about 80 vol % of the transition layer 104, such as about 1 vol % to about 50 vol %, about 1 vol % to about 5 vol %, about 2 vol % to about 5 vol %, about 1 vol % to about 10 vol %, about 3 vol % to about 10 vol %, about 2 vol % to about 10 vol %, about 10 vol % to about 25 vol %, about 25 vol % to about 50 vol %, or about 10 vol % to about 25 vol %, with the balance substantially being diamond grains and metal-solvent catalyst. In some embodiments, the transition layer 104 may include about 10 vol % to about 80 vol % diamond grains (e.g., about 50 vol % to about 75 vol %) and about 1 wt % to about 7 wt % metal-solvent catalyst occupying the interstitial regions between the at least one additive and the diamond grains, and the balance substantially being the at least one additive (e.g., about 18 vol % to about 49 vol %). Depending upon the volume % of the at least one additive in the transition layer 104, the transition layer 104 so-formed may also exhibit diamond-to-diamond bonding between the diamond grains thereof when the volume % of the at least one additive is relatively low and may exhibit limited or substantially no diamond-to-diamond bonding when the volume % of the at least one additive is relatively high. In some embodiments, the PCD layer 106 may be substantially free of the at least one additive, while in other embodiments, a small amount of the at least one additive may migrate into the PCD layer 106 during formation thereof.
Many physical characteristics of the PCD layer 106 may be determined by measuring certain magnetic properties of the PCD layer 106 because the metal-solvent catalyst may be ferromagnetic. The amount of the metal-solvent catalyst present in the PCD layer 106 may be correlated with the measured specific magnetic saturation of the PCD layer 106. A relatively larger specific magnetic saturation indicates relatively more metal-solvent catalyst in the PCD layer 106.
The mean free path between neighboring diamond grains of the PCD layer 106 may be correlated with the measured coercivity of the PCD layer 106. A relatively large coercivity indicates a relatively smaller mean free path. The mean free path is representative of the average distance between neighboring diamond grains of the PCD layer 106 and, thus, may be indicative of the extent of diamond-to-diamond bonding between the diamond grains in the PCD layer 106. A relatively smaller mean free path, in well-sintered PCD, may indicate relatively more diamond-to-diamond bonding.
As merely one example, ASTM B886-03 (2008) provides a suitable standard for measuring the specific magnetic saturation and ASTM B887-03 (2008) e1 provides a suitable standard for measuring the coercivity of the PCD layer 106. Although both ASTM B886-03 (2008) and ASTM B887-03 (2008) e1 are directed to standards for measuring magnetic properties of cemented carbide materials, either standard may be used to determine the magnetic properties of PCD. A KOERZIMAT CS 1.096 instrument (commercially available from Foerster Instruments of Pittsburgh, Pa.) is one suitable instrument that may be used to measure the specific magnetic saturation and the coercivity of the PCD layer 106. To measure the magnetic properties of the PCD layer 106, the PCD layer 106 may be separated from the transition layer 104 and the substrate 102 by cutting along the interface between the PCD layer 106 and the transition layer 104 using electrical-discharge machining (e.g., wire electrical-discharge machining) and/or a grinding process.
Generally, as the sintering pressure that is used to form the PCD layer 106 increases, the coercivity of the PCD layer 106 may increase and the magnetic saturation may decrease. The PCD layer 106 defined collectively by the bonded diamond grains and the metal-solvent catalyst therein may exhibit a coercivity of about 115 Oe or more and a metal-solvent catalyst content of less than about 7.5 wt % as indicated by a specific magnetic saturation of about 15 G·cm3/g or less. In a more detailed embodiment, the coercivity of the PCD layer 106 may be about 115 Oe to about 250 Oe and the specific magnetic saturation of the PCD layer 106 may be greater than zero G·cm3/g to about 15 G·cm3/g. In an even more detailed embodiment, the coercivity of the PCD layer 106 may be about 115 Oe to about 175 Oe and the specific magnetic saturation of the PCD layer 106 may be about 5 G·cm3/g to about 15 G·cm3/g. In yet an even more detailed embodiment, the coercivity of the PCD layer 106 may be about 155 Oe to about 175 Oe and the specific magnetic saturation of the PCD layer 106 may be about 10 G·cm3/g to about 15 G·cm3/g. The specific permeability (i.e., the ratio of specific magnetic saturation to coercivity) of the PCD layer 106 may be about 0.10 G·cm3/Oe·g or less, such as about 0.060 G·cm3/Oe·g to about 0.090 G·cm3/Oe·g. Despite the average grain size of the bonded diamond grains being less than about 50 μm, the metal-solvent catalyst content in the PCD layer 106 may still be less than about 7.5 wt % resulting in a desirable thermal stability.
A PCD layer formed by sintering diamond grains having the same diamond particle size distribution as a PCD embodiment of the invention, but sintered at a pressure of, for example, up to about 5.5 GPa and at temperatures in which diamond is stable may exhibit a coercivity of about 100 Oe or less and/or a specific magnetic saturation of about 16 G·cm3/g or more. Thus, in one or more embodiments of the invention, the PCD layer 106 exhibits a metal-solvent catalyst content of less than 7.5 wt % and a greater amount of diamond-to-diamond bonding between diamond grains than that of a PCD layer sintered at a lower pressure, but with the same precursor diamond particle size distribution and catalyst.
Referring to
The at least one layer of diamond particles 112 may exhibit an average particle size of about 50 μm or less, such as about 30 μm or less or about 20 μm or less. For example, the average particle size of the diamond particles may be about 10 μm to about 18 μm and, in some embodiments, about 15 μm to about 18 μm. In some embodiments, the average particle size of the diamond grains may be about 10 μm or less, such as about 2 μm to about 5 μm or submicron. The diamond particles size distribution of the diamond particles may exhibit a single mode, or may be a bimodal or greater grain size distribution. The transition-layer mixture 110 includes an intermixed blend of a plurality of diamond particles and at least one additive. Suitable examples for the at least one additive include, but are not limited to, tungsten carbide, chromium carbide, cubic boron nitride, combinations thereof, or the like. The amount of the at least one additive present in the transition-layer mixture 110 may be about 1 vol % to about 80 vol % of the transition layer 104, such as about 1 vol % to about 50 vol %, about 1 vol % to about 5 vol %, about 2 vol % to about 5 vol %, about 1 vol % to about 10 vol %, about 3 vol % to about 10 vol %, about 2 vol % to about 10 vol %, about 10 vol % to about 25 vol %, about 25 vol % to about 50 vol %, or about 10 vol % to about 25 vol %, with the balance substantially being diamond particles.
The substrate 102 may include a metal-solvent catalyst (e.g., cobalt) therein. The at least one layer of diamond particles 112, the transition-layer mixture 110, and the substrate 102 may be subjected to an HPHT process using HPHT conditions previously described. The PDC 100 so-formed includes the PCD layer 106 integrally formed with the transition layer 104 and the substrate 102. The transition layer 104 is bonded to the interfacial surface 108 of the substrate 102 and, in turn, the PCD layer 106 is bonded to the transition layer 104.
The substrate 102, the transition-layer mixture 110, and at least one layer of diamond particles 112 may be arranged in a pressure transmitting medium to form a cell assembly. The cell assembly with the pressure transmitting medium enclosing the substrate 102, the transition-layer mixture 110, and the at least one layer of diamond particles 112 disposed therein may be subjected to an HPHT process using an ultra-high pressure press at a temperature of at least about 1000° C. (e.g., about 1100° C. to about 2200° C., or about 1200° C. to about 1450° C.) and a pressure in the pressure transmitting medium of at least about 7.5 GPa (e.g., about 7.5 GPa to about 15 GPa) for a time sufficient to sinter the diamond particles together in the presence of the metal-solvent catalyst to form the PCD layer 106 and the transition layer 104 from the transition-layer mixture 110 that bonds the PCD layer 106 to the substrate 102.
In order to efficiently sinter the diamond particles of the at least one layer of diamond particles 112 and the transition-layer mixture 110, the substrate 102, the transition-layer mixture 110, and the at least one layer of diamond particles 112 may be enclosed in a pressure transmitting medium, such as a refractory metal can, graphite structure, pyrophyllite, or other suitable pressure transmitting structure to form the cell assembly. Examples of suitable gasket materials and cell structures for use in manufacturing PDCs are disclosed in U.S. Pat. No. 6,338,754 and U.S. patent application Ser. No. 11/545,929, each of which is incorporated herein, in its entirety, by this reference. Another example of a suitable pressure transmitting material is pyrophyllite, which is commercially available from Wonderstone Ltd. of South Africa. The cell assembly, including the contents therein, may subjected to an HPHT process using an ultra-high pressure press at a temperature of at least about 1000° C. (e.g., about 1100° C. to about 2200° C., or about 1200° C. to about 1450° C.) and a pressure in the pressure transmitting medium of at least about 7.5 GPa (e.g., about 7.5 GPa to about 15 GPa) for a time sufficient to sinter the diamond particles of the at least one layer of diamond particles 112 together in the presence of the metal-solvent catalyst to form the PCD layer 106 and sinter the transition-layer mixture 110 together to form the transition layer 104 that bonds the PCD layer 106 to the substrate 102. The PCD layer 106 so formed includes a matrix of PCD comprising bonded diamond grains defining interstitial regions occupied by the metal-solvent catalyst. For example, the pressure in the pressure transmitting medium employed in the HPHT process may be at least about 8.0 GPa, at least about 9.0 GPa, at least about 10.0 GPa, at least about 11.0 GPa, at least about 12.0 GPa, or at least about 14 GPa.
The pressure values employed in the HPHT processes disclosed herein refer to the pressure in the pressure transmitting medium at room temperature (e.g., about 25° C.) with application of pressure using an ultra-high pressure press and not the pressure applied to the exterior of the cell assembly. The actual pressure in the pressure transmitting medium at sintering temperature may be slightly higher. The ultra-high pressure press may be calibrated at room temperature by embedding at least one calibration material that changes structure at a known pressure such as, PbTe, thallium, barium, or bismuth in the pressure transmitting medium. Further, optionally, a change in resistance may be measured across the at least one calibration material due to a phase change thereof. For example, PbTe exhibits a phase change at room temperature at about 6.0 GPa and bismuth exhibits a phase change at room temperature at about 7.7 GPa. Examples of suitable pressure calibration techniques are disclosed in G. Rousse, S. Klotz, A. M. Saitta, J. Rodriguez-Carvajal, M. I. McMahon, B. Couzinet, and M. Mezouar, “Structure of the Intermediate Phase of PbTe at High Pressure,” Physical Review B: Condensed Matter and Materials Physics, 71, 224116 (2005) and D. L. Decker, W. A. Bassett, L. Merrill, H. T. Hall, and J. D. Barnett, “High-Pressure Calibration: A Critical Review,” J. Phys. Chem. Ref. Data, 1, 3 (1972).
In an embodiment, a pressure of at least about 7.5 GPa in the pressure transmitting medium may be generated by applying pressure to a cubic high-pressure cell assembly that encloses the substrate 102, the transition-layer mixture 110, and the at least one layer of diamond particles 112 using anvils, with each anvil applying pressure to a different face of the cubic high-pressure assembly. In such an embodiment, a surface area of each anvil face of the anvils may be selectively dimensioned to facilitate application of pressure of at least about 7.5 GPa to the cell assembly. For example, the surface area of each anvil may be less than about 12.0 cm2, such as about 8 cm2 to about 10 cm2. The anvils may be made from a cobalt-cemented tungsten carbide or other material having a sufficient compressive strength to help reduce damage thereto through repetitive use in a high-volume commercial manufacturing environment. Optionally, as an alternative to or in addition to selectively dimensioning the surface area of each anvil face, two or more internal anvils may be embedded in the cubic high-pressure cell assembly to further intensify pressure. For example, the article W. Utsumi, N. Toyama, S. Endo and F. E. Fujita, “X-ray diffraction under ultra-high pressure generated with sintered diamond anvils,” J. Appl. Phys., 60, 2201 (1986) is incorporated herein, in its entirety, by this reference and discloses that sintered diamond anvils may be embedded in a cubic pressure transmitting medium for intensifying the pressure applied by an ultra-high pressure press to a workpiece also embedded in the cubic pressure transmitting medium.
If the substrate 102 includes a metal-solvent catalyst (e.g., cobalt in a cobalt-cemented tungsten carbide substrate), the metal-solvent catalyst therein may liquefy and infiltrate the transition-layer mixture 110 and the at least one layer of diamond particles 112 to promote growth between adjacent diamond particles of the at least one layer of diamond particles 112 and the transition-layer mixture 110 to form the PCD layer 106 and the transition layer 104. For example, if the substrate 102 is a cobalt-cemented tungsten carbide substrate, cobalt from the substrate 102 may be liquefied and infiltrate the at least one layer of diamond particles 112 and the transition-layer mixture 110 to catalyze formation of diamond-to-diamond bonding in at least the PCD layer 106. Depending upon the volume % of the at least one additive in the transition-layer mixture 110, the transition layer 104 so-formed may also exhibit diamond-to-diamond bonding between the diamond grains thereof when the volume % of the at least one additive is relatively low and may exhibit limited or substantially no diamond-to-diamond bonding when the volume % of the at least one additive is relatively high.
Employing selectively dimensioned anvil faces and/or internal anvils in the ultra-high pressure press used to process the at least one layer of diamond particles 112 and the transition-layer mixture 110 and substrate 102 enables forming the at least one lateral dimension “d” of the PCD layer 106 to be about 0.80 cm or more. Referring again to
In other embodiments, a PCD layer according to an embodiment may be separately formed using a HPHT sintering process and, subsequently, bonded to the transition layer 104 by brazing, using a separate HPHT bonding process, or any other suitable joining technique, without limitation. For example, the PCD layer so-formed may be leached to remove substantially all of the metal-solvent catalyst therefrom and bonded to the transition layer 104 during or after formation of the transition layer 104. In an embodiment, the leached PCD layer may be bonded to the transition layer 104 in an HPHT process during or after formation of the transition layer 104, and a metallic infiltrant (e.g., cobalt from a cobalt-cemented tungsten carbide substrate) may infiltrate into the leached PCD layer during the HPHT process. In a further embodiment, the metallic infiltrant may be leached from the infiltrated PCD layer to a selected depth from an exterior working surface thereof. In yet another embodiment, a substrate may be formed by depositing a binderless carbide (e.g., tungsten carbide via chemical vapor deposition) onto the separately formed PCD layer and transition layer.
In some embodiments, at least the PCD layer 106 shown in
Although the PDC 100 illustrated in
Referring to
Referring now to
The finite element model models a maximum tensile stress in the PCD layer 106 of the PDC 100 when the substrate 102 is a cobalt-cemented tungsten carbide (“WC—Co”) substrate and the PCD layer 106 and transition layer 104 are of equal thicknesses. The transition layer 104 adjacent the WC—Co substrate 102 is a mixture of diamond and WC particles (i.e., pure WC particles). The volume percent of WC is listed on the graph. The PCD layer 106 is substantially free of WC particles. In the model, the PCD layer 106 was modeled as 100% diamond. Data was generated for three different thickness of the PCD layer 106 and the transition layer 104, which is listed on the graph (0.060-inch, 0.090-inch, and 0.120-inch). The y-axis of the graph shows the maximum tensile stress in the PCD layer 106 at a simulated brazing temperature of approximately 720° C. As can be seen from
Finite element models of so-called standard PDCs have shown the maximum braze-temperature tensile stress to be about 82,000 psi. Standard PDCs are fabricated, for example, in an HPHT process at a pressure of 5-6 GPa and a temperature of about 1400° C. In contrast, the high-pressure fabricated PDCs described herein are fabricated at a pressure of at least 7.5 GPa and a temperature of at least 1000° C. High-pressure fabricated PDCs lacking a transition layer (i.e., 0 vol % WC in
As can be seen from
As an alternative to or in addition to the use of at least one transition layer for stress management in a PDC, in some embodiments, LME-type damage and braze-temperature induced damage may also be reduced in the PDCs described herein by annealing after the HPHT sintering process. Referring now to
In another embodiment for the annealing process, a PDC may be annealed at atmospheric pressure or under partial vacuum (e.g., about 10−5 ton to about 10−3 ton). In an embodiment, annealing may be performed at a temperature of about 650° C. to about 900° C. to about for about 5 to about 30 minutes at atmospheric pressure or under partial vacuum. Results of such a process are illustrated in
The residual compressive stress in the PCD layer or table that is relieved by the annealing process described in relation to
The residual compressive stresses in the PCD layer or table of the PDC so-formed may be controlled by adjusting the cooling rate from Tmax at which sintering of the diamond particles occurs. It is currently believed that the PCD layer or table exhibits relatively higher the residual compressive stresses when the cooling rate from Tmax is relatively faster. In some embodiments in which higher residual compressive stresses in the PCD layer or table are desired, the annealing step may be omitted and the PDC may be rapidly cooled from Tmax during the HPHT process by adjusting the electrical power (e.g., to zero power) to the heater in the cell assembly that heats the PDC constituents being HPHT processed.
The disclosed PDC embodiments may be used in a number of different applications including, but not limited to, use in a rotary drill bit (
The PCD and/or PDCs disclosed herein (e.g., the PDC 100 shown in
In use, the bearing surfaces 1012 of one of the thrust-bearing assemblies 1002 bear against the opposing bearing surfaces 1012 of the other one of the bearing assemblies 1002. For example, one of the thrust-bearing assemblies 1002 may be operably coupled to a shaft to rotate therewith and may be termed a “rotor.” The other one of the thrust-bearing assemblies 1002 may be held stationary and may be termed a “stator.”
The radial-bearing apparatus 1100 may be employed in a variety of mechanical applications. For example, so-called “roller cone” rotary drill bits may benefit from a radial-bearing apparatus disclosed herein. More specifically, the inner race 1102 may be mounted to a spindle of a roller cone and the outer race 1104 may be mounted to an inner bore formed within a cone and that such an outer race 1104 and inner race 1102 may be assembled to form a radial-bearing apparatus.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting. Additionally, the words “including,” “having,” and variants thereof (e.g., “includes” and “has”) as used herein, including the claims, shall be open ended and have the same meaning as the word “comprising” and variants thereof (e.g., “comprise” and “comprises”).
Number | Name | Date | Kind |
---|---|---|---|
3101260 | Cheney | Aug 1963 | A |
3141746 | De Lai | Jul 1964 | A |
3574580 | Stromberg et al. | Apr 1971 | A |
4425315 | Tsuji et al. | Jan 1984 | A |
4604106 | Hall et al. | Aug 1986 | A |
4610600 | Bleier | Sep 1986 | A |
4610699 | Yazu et al. | Sep 1986 | A |
4636253 | Nakai et al. | Jan 1987 | A |
4643741 | Yu et al. | Feb 1987 | A |
4694918 | Hall | Sep 1987 | A |
4729440 | Hall | Mar 1988 | A |
4811801 | Salesky et al. | Mar 1989 | A |
5355969 | Hardy et al. | Oct 1994 | A |
5370195 | Keshavan et al. | Dec 1994 | A |
5469927 | Griffin | Nov 1995 | A |
5605199 | Newton | Feb 1997 | A |
5769176 | Sumiya et al. | Jun 1998 | A |
5875862 | Jurewicz et al. | Mar 1999 | A |
5889219 | Moriguchi et al. | Mar 1999 | A |
6090343 | Kear et al. | Jul 2000 | A |
6132675 | Corrigan et al. | Oct 2000 | A |
6227318 | Siracki | May 2001 | B1 |
6241035 | Portwood | Jun 2001 | B1 |
6290008 | Portwood et al. | Sep 2001 | B1 |
6338754 | Cannon et al. | Jan 2002 | B1 |
6342301 | Yoshida et al. | Jan 2002 | B1 |
6408959 | Bertagnolli et al. | Jun 2002 | B2 |
6443248 | Yong et al. | Sep 2002 | B2 |
6460637 | Siracki et al. | Oct 2002 | B1 |
6655234 | Scott | Dec 2003 | B2 |
6749033 | Griffin et al. | Jun 2004 | B2 |
6913633 | Fries et al. | Jul 2005 | B2 |
6915866 | Middlemiss | Jul 2005 | B2 |
6987318 | Sung | Jan 2006 | B2 |
7108598 | Galloway | Sep 2006 | B1 |
7216661 | Welty et al. | May 2007 | B2 |
7350601 | Belnap et al. | Apr 2008 | B2 |
7435478 | Keshavan | Oct 2008 | B2 |
7462003 | Middlemiss | Dec 2008 | B2 |
7493972 | Schmidt et al. | Feb 2009 | B1 |
7516804 | Vail | Apr 2009 | B2 |
7517589 | Eyre | Apr 2009 | B2 |
7543662 | Belnap et al. | Jun 2009 | B2 |
7575805 | Achilles et al. | Aug 2009 | B2 |
7628234 | Middlemiss | Dec 2009 | B2 |
7740673 | Eyre | Jun 2010 | B2 |
7757791 | Belnap et al. | Jul 2010 | B2 |
7866418 | Bertagnolli et al. | Jan 2011 | B2 |
8020645 | Bertagnolli et al. | Sep 2011 | B2 |
8158258 | Bertagnolli et al. | Apr 2012 | B2 |
8197936 | Keshavan | Jun 2012 | B2 |
8297382 | Bertagnolli et al. | Oct 2012 | B2 |
20040062928 | Raghavan et al. | Apr 2004 | A1 |
20040140132 | Middlemiss | Jul 2004 | A1 |
20050050801 | Cho et al. | Mar 2005 | A1 |
20050139397 | Achilles et al. | Jun 2005 | A1 |
20050210755 | Cho et al. | Sep 2005 | A1 |
20050262774 | Eyre et al. | Dec 2005 | A1 |
20060038156 | Welty et al. | Feb 2006 | A1 |
20060162969 | Belnap et al. | Jul 2006 | A1 |
20060165993 | Keshavan | Jul 2006 | A1 |
20060180354 | Belnap et al. | Aug 2006 | A1 |
20060266558 | Middlemiss et al. | Nov 2006 | A1 |
20070014965 | Chodelka et al. | Jan 2007 | A1 |
20080022806 | Sumiya | Jan 2008 | A1 |
20080023231 | Vail | Jan 2008 | A1 |
20080115424 | Can et al. | May 2008 | A1 |
20080142276 | Griffo et al. | Jun 2008 | A1 |
20080178535 | Wan | Jul 2008 | A1 |
20080185189 | Griffo et al. | Aug 2008 | A1 |
20080206576 | Qian et al. | Aug 2008 | A1 |
20080302579 | Keshavan et al. | Dec 2008 | A1 |
20090152018 | Sani | Jun 2009 | A1 |
20090208301 | Kuroda et al. | Aug 2009 | A1 |
20100084196 | Bertagnolli et al. | Apr 2010 | A1 |
20100112332 | Kuroda et al. | May 2010 | A1 |
20100186304 | Burgess et al. | Jul 2010 | A1 |
20100225311 | Bertagnolli et al. | Sep 2010 | A1 |
20100242375 | Hall et al. | Sep 2010 | A1 |
20100307069 | Bertagnolli et al. | Dec 2010 | A1 |
20100307070 | Bertagnolli et al. | Dec 2010 | A1 |
20100310855 | Bertagnolli et al. | Dec 2010 | A1 |
20110017517 | Scott et al. | Jan 2011 | A1 |
20110017519 | Bertagnolli et al. | Jan 2011 | A1 |
20110031032 | Mourik et al. | Feb 2011 | A1 |
20110031033 | Mourik et al. | Feb 2011 | A1 |
20110031037 | Bellin et al. | Feb 2011 | A1 |
20110042147 | Fang et al. | Feb 2011 | A1 |
20110042149 | Scott et al. | Feb 2011 | A1 |
20110083908 | Shen et al. | Apr 2011 | A1 |
20110189468 | Bertagnolli et al. | Aug 2011 | A1 |
20120241226 | Bertagnolli et al. | Sep 2012 | A1 |
20130015001 | Bertagnolli et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
0462955 | Dec 1991 | EP |
121251 | Jun 1985 | JP |
WO 2004106004 | Dec 2004 | WO |
WO 2006099194 | Sep 2006 | WO |
WO 2007020518 | Feb 2007 | WO |
WO 2011011290 | Jan 2011 | WO |
WO 2011017592 | Feb 2011 | WO |
Entry |
---|
U.S. Appl. No. 12/830,878, filed Jul. 6, 2010, Wiggins et al. |
U.S. Appl. No. 13/789,099, filed Mar. 7, 2013, Bertagnolli et al. |
U.S. Appl. No. 13/790,172, filed Mar. 8, 2013, Bertagnolli et al. |
U.S. Appl. No. 12/244,960, mail date Sep. 27, 2010, Notice of Allowance. |
U.S. Appl. No. 12/244,960, mail date Nov. 29, 2010, Notice of Allowance. |
U.S. Appl. No. 12/244,960, mail date Dec. 22, 2010, Issue Notification. |
U.S. Appl. No. 12/690,998, mail date Feb. 27, 2012, Office Action. |
U.S. Appl. No. 12/690,998, mail date Jul. 17, 2012, Notice of Allowance. |
U.S. Appl. No. 12/690,998, mail date Oct. 10, 2012, Issue Notification. |
U.S. Appl. No. 12/785,014, mail date Sep. 10, 2012, Restriction Requirement. |
U.S. Appl. No. 12/785,014, mail date Feb. 5, 2013, Notice of Allowance. |
U.S. Appl. No. 12/858,906, mail date Oct. 5, 2012, Office Action. |
U.S. Appl. No. 12/858,949, mail date Dec. 23, 2010, Office Action. |
U.S. Appl. No. 12/858,949, mail date Jun. 8, 2011, Office Action. |
U.S. Appl. No. 12/858,949, mail date Jul. 28, 2011, Notice of Allowance. |
U.S. Appl. No. 12/858,949, mail date Aug. 31, 2011, Issue Notification. |
U.S. Appl. No. 12/846,604, mail date Aug. 8, 2011, Office Action. |
U.S. Appl. No. 12/846,604, mail date Feb. 27, 2012, Notice of Allowance. |
U.S. Appl. No. 12/846,604, mail date Mar. 28, 2012, Issue Notification. |
U.S. Appl. No. 13/085,689, mail date, Mar. 15, 2013, Office Action. |
U.S. Appl. No. 13/623,764, mail date Jan. 14, 2013, Office Action. |
U.S. Appl. No. 13/623,764, mail date Apr. 16, 2013, Notice of Allowance. |
U.S. Appl. No. 12/608,155, filed Oct. 29, 2009, Sani. |
U.S. Appl. No. 13/275,372, filed Oct. 18, 2011, Mukhopadhyay. |
U.S. Appl. No. 13/648,913, filed Oct. 10, 2012, Mukhopadhyay. |
U.S. Appl. No. 12/785,014, mail date May 22, 2013, Issue Notification. |
U.S. Appl. No. 13/790,172, mail date May 15, 2013, Office Action. |
U.S. Appl. No. 11/545,929, filed Oct. 10, 2006, Bertganolli, et al. |
ASTM B887-03 (2008) “Standard Test Method for Determination of Coercivity (Hcs) of Cemented Carbides”. |
ASTM B886-03 (2008), “Standard Test Method for Determination of Magnetic Saturation (Ms) of Cemented Carbides”. |
G. Rousse, S. Klotz, A.M. Saitta, J. Rodriguez-Carvajal, M.I. McMahon, B. Couzinet, and M. Mezouar, “Structure of the Intermediate Phase of PbTe at High Pressure”, Physical Review B: Condensed Matter and Materials Physics, 71, 224116 (2005). |
D.L. Decker, W.A. Basset, L. Merrill, H.T. Hall, and J.D. Barnett; “High-Pressure Calibration a Critical Review”, J. Phys. Chem. Ref. Data, vol. 1, No. 3 (1972). |
W. Utsumi, N. Toyama, S. Endo and F.E. Fujita, “X-ray diffraction under ultra-high pressure generated with sintered diamond anvils,” J. Appl. Phys., 60, 2201 (1986). |
U.S. Appl. No. 12/858,906, mail date Apr. 10, 2013, Office Action. |
U.S. Appl. No. 13/909,193, filed Jun. 4, 2013, Miess, et al. |
U.S. Appl. No. 13/085,689, mail date Jul. 17, 2013, Office Action. |
U.S. Appl. No. 13/085,689, mail date Oct. 30, 2013, Office Action. |
U.S. Appl. No. 13/486,578, mail date Sep. 20, 2013, Office Action. |
U.S. Appl. No. 13/623,764, mail date Jul. 29, 2013, Notice of Allowance. |
U.S. Appl. No. 13/623,764, mail date Dec. 11, 2013, Issue Notification. |
U.S. Appl. No. 13/790,172, mail date Oct. 21, 2013, Office Action. |
U.S. Appl. No. 13/789,099, mail date Nov. 20, 2013, Office Action. |
Tze-Pin Lin, Michael Hood, George A. Cooper, and Redd H. Smith, Residual Stresses in Polycrystalline Diamond Compacts, J. Am. Ceram. Soc. 77[6] pp. 1562-1568 (1994). |
DR Moyle, ER Kimmel “Utilization of magnetic saturation measurements for carbon control in cemented carbides” Dec. 1984, American Society of Metals Metals/Materials Technology series 1984 ASM/SCTE conference on technology advancements in cemented carbide production 8415-009. |
Akashi et al; “Synthetis of Sintered Diamond with High Electrical Resistivity and Hardness”; J.Am. Ceram. Soc.; vol. 70, No. 10; 1987; pp. C-237-X-239. |
Bochechka et al; “The Study of HP-HT Interaction between Co-Base Melts and Diamond Powders”; High Pressure Chemical Engineering; 1996; p. 457. |
Ekimov et al.; “Sintering of a Nanodiamond in the Presence of Cobalt”; Inorganic Materials; vol. 45, No. 5; 2009; pp. 491-494. |
Godick; “Message from Neil B. Godick”; PHLburg Technologies, Inc.; Oct. 2008. |
Osipov et al; “A contribution to the study of the diamond solid state sintering.”; Ceramica; vol. 49; 2003; pp. 151-157. |
Shige et al; “Sintering of Diamond Powder Electroless-Plated with Co Metal”, Science and Technology of New Diamond, pp. 251-255 (1990). |
Tardim; “A Novel Method for Obtaining Polycrystalline Diamond Cutters”; Materials Science Forum; vols. 660-661; 2010; pp. 477-482. |
German; “Particle Packing Characteristics”, Metal Powder Industries Federation; pp. 101-103; 1989 (6 pages). |
International Search Report and Written Opinion from International Application No. PCT/US2009/054398 Mailed Feb. 2, 2010. |
International Search Report and Written Opinion from International Application PCT/US2010/059619 mailed Mar. 4, 2011. |
U.S. Appl. No. 12/244,960, mail date Apr. 27, 2010, Restriction Requirement. |
U.S. Appl. No. 12/244,960, mail date Jun. 16, 2010, Office Action. |
Number | Date | Country | |
---|---|---|---|
20120261197 A1 | Oct 2012 | US |