1. Field of the Invention
The present invention relates to ion conductive polymers, fuel cell membranes and membrane electrode assemblies.
2. Background Art
Proton conductive polymer membranes are an important component in a fuel cell device. To achieve optimal fuel cell performance, the proton conductive polymer membrane must maintain a high ionic conductivity and mechanical stability at high and low relative humidity. Aromatic perfluorocyclobutane random copolymers have been disclosed in U.S. Pat. No. 6,559,237 as improved membrane materials for fuel cells. Due to the chain configuration of random copolymers, however, water swelling at high humidity and membrane shrinking at low humidity are common problems with random copolymers. A random copolymer membrane lacks the mechanical robustness to withstand the rigors of hydration and dehydration within an operating fuel cell.
Accordingly, there is a need to provide a further improved proton conductive polymer membrane that maintains robust mechanical properties and high ionic conductivity at a wide range of humidity conditions.
The present invention solves one or more problems of the prior art by providing in at least one embodiment a method of forming an ionomeric membrane. The ionomeric membrane comprises a polymer unit having formula 1:
wherein:
P1, P2, are each independently absent, —O—, —S—, —SO—, —SO2—, —CO—, —NH—, —NR2—, or —R3—;
R1 is —OR5, —NRS, —X, —NHR5Z2, or —OR5Z2, —NHSO2CF3;
R2 is C1-25 alkyl or C1-25 aryl;
R3 is C1-25 alkylene, C1-25 perfluoroalkylene, or C1-25 arylene;
R4 is trifluoromethyl, C1-25 alkyl, C1-25 perfluoroalkylene, C1-25 aryl, or another E1 group;
R5 is C1-25 alkyl or C1-25 aryl;
E1 is an aromatic-containing moiety;
Z2 is —SO3H, —PO3H, —OH, or —NH2;
X is an —OH, a halogen, an ester,
i is an integer from 1 to 10,000; and
Q1 is a fluorinated cyclobutyl moiety, the method comprising:
a) reacting a polymer comprising a polymer unit having formula 3 in chlorosulfonic acid to form a first precipitate, the first precipitate comprising a polymer comprising a polymer unit having formula 4 and dissolves in a polar aprotic solvent to form a first solution:
b) forming a polymeric membrane from the first solution, the polymeric membrane including the polymer comprising a polymer unit having formula 4; and
c) reacting the polymer comprising a polymer unit having formula 4 with a nucleophilic compound to form the base polymer having polymer unit 1.
It should be understood that the detailed description and specific examples, while disclosing exemplary embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Exemplary embodiments of the present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Reference will now be made in detail to presently preferred compositions, embodiments and methods of the present invention, which constitute the best modes of practicing the invention presently known to the inventors. The Figures are not necessarily to scale. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for any aspect of the invention and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
Except in the examples, or where otherwise expressly indicated, all numerical quantities in this description indicating amounts of material or conditions of reaction and/or use are to be understood as modified by the word “about” in describing the broadest scope of the invention. Practice within the numerical limits stated is generally preferred. Also, unless expressly stated to the contrary: percent, “parts of,” and ratio values are by weight; the term “polymer” includes “oligomer,” “copolymer,” “terpolymer,” “block”, “random,” “segmented block,” and the like; the description of a group or class of materials as suitable or preferred for a given purpose in connection with the invention implies that mixtures of any two or more of the members of the group or class are equally suitable or preferred; description of constituents in chemical terms refers to the constituents at the time of addition to any combination specified in the description, and does not necessarily preclude chemical interactions among the constituents of a mixture once mixed; the first definition of an acronym or other abbreviation applies to all subsequent uses herein of the same abbreviation and applies mutatis mutandis to normal grammatical variations of the initially defined abbreviation; and, unless expressly stated to the contrary, measurement of a property is determined by the same technique as previously or later referenced for the same property.
It is also to be understood that this invention is not limited to the specific embodiments and methods described below, as specific components and/or conditions may, of course, vary. Furthermore, the terminology used herein is used only for the purpose of describing particular embodiments of the present invention and is not intended to be limiting in any way.
It must also be noted that, as used in the specification and the appended claims, the singular form “a,” “an,” and “the” comprise plural referents unless the context clearly indicates otherwise. For example, reference to a component in the singular is intended to comprise a plurality of components.
Throughout this application, where publications are referenced, the disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains.
The following description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The term “block” as used herein means a portion of a macromolecule, comprising many constitutional units, that has at least one feature that is not present in adjacent portions.
The term “block macromolecule” as used herein means a macromolecule that is composed of blocks in linear sequence.
The term “block polymer” as used herein means a substance composed of block macromolecules.
The term “block copolymer” as used herein means a polymer in which adjacent blocks are constitutionally different, i.e., each of these blocks comprises constitutional units derived from different characteristic species of monomer or with different composition or sequence distribution of constitutional units.
The term “random copolymer” as used herein means a copolymer consisting of macromolecules in which the probability of finding a given repeating unit at any given site in the chain is independent of the nature of the adjacent units.
With reference to
In an embodiment of the present invention, a method of forming an ionomeric membrane is provided. The ionomeric membrane comprises a polymer unit having formula 1:
wherein:
P1, P2, are each independently absent, —O—, —S—, —SO—, —SO2—, —CO—, —NH—, —NR2—, or —R3—;
R1 is —OR5, —NRS, —X, —NHR5Z2, or —OR5Z2, —NHSO2CF3;
R2 is C1-25 alkyl or C1-25 aryl;
R3 is C1-25 alkylene, C1-25 perfluoroalkylene, or C1-25 arylene;
R4 is trifluoromethyl, C1-25 alkyl, C1-25 perfluoroalkylene, C1-25 aryl, or another E1 group;
R5 is C1-25 alkyl or C1-25 aryl;
i is an integer;
E1 is an aromatic-containing moiety;
Z2 is —SO3H, —PO3H, —OH, or —NH2;
X is an —OH, a halogen, an ester,
i is an integer from 1 to 10,000; and
Q1 is a fluorinated cyclobutyl moiety.
With reference to
In step b), a polymeric membrane is formed from the first solution. The polymeric membrane includes the polymer comprising a polymer unit having formula 4 which is now in the form of a membrane. In step c), the polymer comprising a polymer unit having formula 4 is reacted with a nucleophilic compound to form a base polymer having polymer unit 1.
Continuing to refer to
In a variation of the present embodiment, the ionomeric polymer further includes a polymer unit having formula 2:
E2 is an aromatic-containing moiety;
P3, P4, are each independently absent, —O—, —S—, —SO—, —SO2—, —CO—, —NH—, —NR2—, or —R3—;
R2 is C1-25 alkyl or C1-25 aryl;
R3 is C1-25 alkylene, C1-25 perfluoroalkylene, or C1-25 arylene;
j is an integer from 1 to 10,000; and
Q2 is a fluorinated cyclobutyl moiety.
In a variation of the present embodiment, E1 and E2 each independently include one or more of the following moieties:
Examples for Q1 and Q2 in the above formulae are:
The following examples illustrate the various embodiments of the present invention. Those skilled in the art will recognize many variations that are within the spirit of the present invention and scope of the claims.
Synthesis of PFCB Polymer with Sulfonyl Chloride Groups. Structure 2. In a 100-mL screw-cap jar with a magnetic stirrer, 2.5 g (42 mmol BPVE) of perfluorocyclobutane polymer TRJ-3058 [structure 5 consisting of a 2:1 ratio of BPVE oligomer (Mn=8K) copolymerized with 6F monomer, Mn=50K, Tetramer Technologies, Pendleton, S.C.] is dissolved in dichloromethane (50.0 g, >99.9%, Aldrich, cat# 439233). Chlorosulfonic acid (6.25 g, 2.5 wt eq., 12.8 mol. eq.) is added and the reaction mixture is stirred mechanically while maintaining an internal reaction temperature of 36° C. After 15-20 minutes a purple chlorosulfonated-PFCB polymer precipitates out of solution and then after 1 hour, the supernatant dichloromethane is decanted off. The collected precipitate is blended and washed thoroughly with methylene chloride and then filtered. The collected polymer with sulfonyl chloride groups (and having the structure 6) is then dried under vacuum at 25° C. for 16 hrs. This polymer dissolves in N,N-dimethylacetamide.
Nucleophilic Substitution of Structure 5 Sulfonyl Chloride Groups to Form Polymer 3.
To a 250-mL round-bottom flask is added CF3SO2NNaSi(CH3)3 [3.71 g, 15.3 mmol, made as described in Thomas, B. H., G. Shafer, J. J. Ma, M.-H. Tu, D. D. DesMarteau, J. Fluorine Chem., 125 (2004)1231-1240], N,N-dimethylacetamide (DMAc) (100 mL) and polymer 6 (3.8 grams, 7.6 mmol SO2Cl). The reaction mixture is stirred at 80° C. under nitrogen for 2 days. The resultant solution is added to 2 M sulfuric acid (1 L) to precipitate a polymer that is filtered and vacuum dried. The polymer is then coated from a 10 wt. % solids solution in DMAc onto windowpane glass, and the wet film is then heated at 80° C. until dry. The film is floated off of the glass by immersion in water and then is air dried.
A 10 wt % solution is prepared by dissolving 1.0 g of the sulfonamide polymer in 9.0 grams of N,N-dimethylacetamide (>99.9%, Aldrich, cat# 270555) at 50° C. over a period of 2 hours. The solution is homogenized at 15,000 rpm for a few minutes.
Preparation of KF-2751 Elastomer Solution
A 10 wt % solution of Kynar® vinylidene fluoride resin, grade 2751-00 (Arkema, Lot#03C8106) is prepared by dissolving 20 g of the elastomer powder in 180 grams of N,N-dimethylacetamide (>99.9%, Aldrich, cat# 270555) by rolling in a jar at room temperature overnight.
Preparation of Blend Solution
An ionomer/elastomer blended solution is prepared by mixing 7 g of a 10 wt % N,N-dimethylacetamide solution of polymer 7 with 3 g of a 10 wt % solution of KF-2751 in N,N-dimethylacetamide and homogenizing at 20,000 RPM twice for 3 minute intervals to yield clear yellow solutions. The solution is filtered through a 5 micron Mitex™ membrane PTFE filters using high pressure directly into centrifuge tubes. The tubes are capped and spun for 10 minutes at 3,000 rpm to remove air bubbles.
Membrane Coating
A sheet of window pane glass is placed on the vacuum table on an Erichson casting table with platen set at 80° C. The surface is wiped clean with iso-propanol and the ionomer solution is coated at a blade gap of 10 mil at a draw speed of 12.5 mm/s at 50° C. Drying is continued at 80° C. for 20 minutes and the membranes are cut away in 10 cm×10 cm sections for characterization.
A sheet of window pane glass is placed on the vacuum table on an Erichson casting table with platen set at 80° C. The surface is wiped clean with iso-propanol and the ionomer solution is coated at a blade gap of 10 mil at a draw speed of 12.5 mm/s at 50° C. Drying is continued at 80° C. for 20 minutes and the membranes are cut away in 10 cm×10 cm sections for characterization.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5006408 | Green et al. | Apr 1991 | A |
5021602 | Clement et al. | Jun 1991 | A |
5037917 | Babb et al. | Aug 1991 | A |
5066746 | Clement et al. | Nov 1991 | A |
5159037 | Clement et al. | Oct 1992 | A |
5159038 | Babb et al. | Oct 1992 | A |
5910378 | Debe et al. | Jun 1999 | A |
6124060 | Akita et al. | Sep 2000 | A |
6183668 | Debe et al. | Feb 2001 | B1 |
6277512 | Hamrock et al. | Aug 2001 | B1 |
6444343 | Prakash et al. | Sep 2002 | B1 |
6523699 | Akita et al. | Feb 2003 | B1 |
6559237 | Mao et al. | May 2003 | B1 |
6847518 | Fukuda et al. | Jan 2005 | B2 |
6875537 | Tani et al. | Apr 2005 | B2 |
6926984 | Asano et al. | Aug 2005 | B2 |
6933068 | Asano et al. | Aug 2005 | B2 |
6953653 | Smith et al. | Oct 2005 | B2 |
6986962 | Oyanagi et al. | Jan 2006 | B2 |
7001929 | Goto et al. | Feb 2006 | B2 |
7045241 | Akita et al. | May 2006 | B2 |
20010018144 | Watakabe et al. | Aug 2001 | A1 |
20020014405 | Arcella et al. | Feb 2002 | A1 |
20030017379 | Menashi | Jan 2003 | A1 |
20040214058 | Tada et al. | Oct 2004 | A1 |
20040214065 | Kanaoka et al. | Oct 2004 | A1 |
20050014927 | Akita | Jan 2005 | A1 |
20050043487 | Felix et al. | Feb 2005 | A1 |
20050048342 | Wakahoi et al. | Mar 2005 | A1 |
20050053810 | Kato et al. | Mar 2005 | A1 |
20050058864 | Goebel | Mar 2005 | A1 |
20050064260 | Otsuki et al. | Mar 2005 | A1 |
20050100770 | Sugawara et al. | May 2005 | A1 |
20050106440 | Komiya | May 2005 | A1 |
20050116206 | Kakuta et al. | Jun 2005 | A1 |
20050130024 | Otsuki et al. | Jun 2005 | A1 |
20050142397 | Wakahoi et al. | Jun 2005 | A1 |
20050143530 | Iwadate et al. | Jun 2005 | A1 |
20050175886 | Fukuda et al. | Aug 2005 | A1 |
20050197467 | Komiya et al. | Sep 2005 | A1 |
20050227138 | Fukuda et al. | Oct 2005 | A1 |
20050233181 | Wariishi et al. | Oct 2005 | A1 |
20050260474 | Asano et al. | Nov 2005 | A1 |
20060019147 | Fukuda et al. | Jan 2006 | A1 |
20060127728 | Otsuki et al. | Jun 2006 | A1 |
20060177719 | Fuller et al. | Aug 2006 | A1 |
20070042242 | Tada et al. | Feb 2007 | A1 |
20070099054 | Fuller et al. | May 2007 | A1 |
20070141237 | Okiyama et al. | Jun 2007 | A1 |
20080027152 | Maier et al. | Jan 2008 | A1 |
20090278083 | Fuller et al. | Nov 2009 | A1 |
20090278091 | MacKinnon et al. | Nov 2009 | A1 |
20090281245 | MacKinnon et al. | Nov 2009 | A1 |
20090281262 | MacKinnon et al. | Nov 2009 | A1 |
20090281270 | Fuller et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2003535929 | Dec 2003 | JP |
2005129298 | May 2005 | JP |
2005166557 | Jun 2005 | JP |
2005179380 | Jul 2005 | JP |
2009 249 487 | Oct 2009 | JP |
2004051776 | Jun 2004 | WO |
2007052954 | May 2007 | WO |