1. Field of the Invention
This invention generally relates to poly(ester amide) (PEA) polymer blends having a PEA polymer and a material or polymer capable of hydrogen-bonding with the PEA polymer, which have a glass transition temperature (Tg) higher than the PEA polymer and are useful for coating an implantable device such as a drug-delivery stent.
2. Description of the Background
Poly(ester amide) polymers are known for their relatively low glass transition temperatures. For example, co-poly-{[N,N′-sebacoyl-bis-(L-leucine)-1,6-hexylene diester]-[N,N′-sebacoyl-L-lysine benzyl ester]} (PEA-Bz) and co-poly{[N,N′-sebacoyl-bis-(L-leucine)-1,6-hexylene diester]-[N,N′-sebacoyl-L-lysine 4-amino-TEMPO amide]} (PEA-TEMPO) have a Tg of approximately 23° C. and 33° C., respectively.
Complications related to low Tg manifest themselves as reduced release rate control, potential sticking and adhesion to the delivery balloon, and reduced shelf life stability. Low Tg materials have higher drug permeabilities, which necessitates the use of greater amounts of polymer to control release rate of the drug. Moreover, the low Tg can enable the drug to diffuse within the coating. In other words, the drug configuration within a given coating can change with time until an equilibrium state is reached, resulting in release rate shifts. Low Tg materials also tend to be softer, they can be more adhesive to balloons, and are more prone to failure during mechanical perturbations such as crimping and expansion.
The embodiments of the present invention provide for methods addressing these issues.
Provided herein are poly(ester amide) (PEA) compositions that include one or more PEA polymers and a material capable of hydrogen bonding with the PEA molecules. The PEA compositions provided herein can form coatings that have improved stability, drug release rate, and mechanical characteristics. The PEA compositions can also be used to form the implantable device itself, one example of which is a stent.
In some embodiments, the PEA polymer blends can be used optionally with a biobeneficial material and/or optionally a bioactive agent to coat an implantable device. In some other embodiments, the PEA polymer blends can be used with one or more biocompatible polymers, which can be biodegradable, bioabsorbable, non-degradable, or non-bioabsorbable polymer.
The implantable device can be a stent that can be a metallic, biodegradable or nondegradable stent. The stent can be intended for neurovasculature, carotid, coronary, pulmonary, aorta, renal, biliary, iliac, femoral, popliteal, or other peripheral vasculature. The stent can be used to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
a, 1b and 1c are SEM (scanning electron micrographs) of stents coated with poly(ester amide) and PolyActive™.
Provided herein are poly(ester amide) (PEA) compositions that include one or more PEA polymers and a material capable of hydrogen bonding with the PEA molecules. The PEA compositions provided herein can form coatings that have improved stability, drug release rate, and mechanical characteristics. The PEA compositions can also be used to form the implantable device itself, one example of which is a stent.
In some embodiments, the PEA polymer blends can be used optionally with a biobeneficial material and/or optionally a bioactive agent to coat an implantable device. In some other embodiments, the PEA polymer blends can be used with one or more biocompatible polymers, which can be biodegradable, bioabsorbable, non-degradable, or non-bioabsorbable polymer.
The implantable device can be a stent that can be a metallic, biodegradable or nondegradable stent. The stent can be intended for neurovasculature, carotid, coronary, pulmonary, aorta, renal, biliary, iliac, femoral, popliteal, or other peripheral vasculature. The stent can be used to treat or prevent a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
Polymers Capable of Forming Hydrogen Bonds with Poly(Ester Amide)
Hydrogen bonding is an important form of molecule-molecule interactions that occur between hydrogen atoms bonded to an atom with high electronic negativity, typically fluorine, oxygen and nitrogen, and the unshared electron pairs located on other electronegative atoms. A hydrogen bond can be generally described as
where X2 can be an electronic donor or acceptor and X1 and X2 are independently fluorine, oxygen, or nitrogen atoms or groupings.
The amide groups in the PEA polymer backbone can participate in hydrogen bonding as both donors and acceptors. This behavior is well known in nylon polymers. However, the stereochemistry of the PEA chain is such that a close packed arrangement, which would allow for hydrogen bonding between the polymer chains, does not occur. In order to elicit an interaction between PEA chains, polymeric fillers can be added to PEA. These fillers can serve as a bridge between PEA chains if they are capable of hydrogen bonding. In this way, the amide groups in the PEA chain can hydrogen bond to the filler, which, in turn, can hydrogen bond to another PEA chain, thereby reducing the mobility of the PEA polymer chains and thus increasing the effective Tg of the material.
As used herein, poly(ester amide) encompasses a polymer having at least one ester grouping and at least one amide grouping in the backbone. One example is the PEA polymer made according to Scheme I. Other PEA polymers are described in U.S. Pat. No. 6,503,538 B1. An example of the PEA polymer includes diacid, diol, and amino acid subunits, the pendant groups of which may or may not include biobeneficial moieties.
PEA polymers can be made by condensation polymerization utilizing, among others, diacids, diols, diamines, and amino acids. Some exemplary methods of making PEA are described in U.S. Pat. No. 6,503,538 B1.
Many polymers are capable of forming hydrogen bonds with the PEA polymer chain. To select a proper polymer filler, two conditions must be given: (1) it must be acceptable for the polymeric filler to be released, and (2) some hydrogen bonding polymers are hydrophilic and a very hydrophilic polymer will increase water absorption of the material, which lowers the Tg of the material, increases drug diffusivity, and lowers the strength, negating the desired effect of increasing Tg of the PEA material. Therefore, a preferred polymer filler will be capable of forming hydrogen bonds with the PEA polymer chain but will not substantially increase water absorption of the material. For example, such a polymer filler will have a hydrophicility close to or below about the hydrophicility of poly(vinyl alcohol).
Tg as used herein generally refers to the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure. In other words, Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs, and it is discernible in a heat-capacity-versus-temperature graph for a polymer. When an amorphous or semicrystalline polymer is heated, its coefficient of expansion and heat capacity both increase as the temperature rises, indicating increased molecular motion. As the temperature rises, the sample's actual molecular volume remains constant. Therefore, a higher coefficient of expansion points to a free volume increase of the system and increased freedom of movement for the molecules. The increasing heat capacity corresponds to increasing heat dissipation through movement.
As used herein, the term “low Tg” refers to a Tg of below about the Tg of PEA-BZ (Tg=23° C.) or below about the Tg of PEA-TEMPO (Tg=33° C.).
Suitable hydrogen bonding polymers can be biodegradable or non-degradable or durable polymers, or combinations thereof. Non-degradable polymers that may be blended with a PEA polymer must have a number-average molecular weight or weight-average molecular weight below approximately 40,000 Daltons to allow them to be secreted by the kidneys. Biodegradable polymers that may be blended with a PEA polymer must be able to degrade into fragments having a number-average or weight-average molecular weight below about 40,000 Daltons to allow them to be secreted by the kidneys. Specific non-degradable polymer candidates include, but are not limited to, polymers or copolymers of monomers containing a hydroxyl group, a carboxyl group or an amino group, examples of which are poly(vinyl alcohol), poly(vinyl alcohol-co-vinyl acetate), polyacrylic acid, poly(ethylene-co-acrylic acid), polymethacrylic acid, poly(ethylene-co-vinyl alcohol), poly(acrylamide), poly(hydroxypropyl methacrylamide), poly(2-hydroxyethyl methacrylate), poly(2-methoxyethyl methacrylate), poly(2-ethoxyethyl methacrylate), poly(2-methoxyethyl acrylate), poly(vinyl pyrrolidone), poly(pyrrole), (non-water soluble cellulose acetate, non-water soluble hydroxyethyl cellulose, non-water soluble hydroxypropyl cellulose, cellulose ethers such as methyl cellulose and ethyl cellulose, poly(urethanes), poly(urethane-ureas), poly(ureas), poly(tetramethylene glycol), poly(propylene glycol), poly(ethylene glycol), and combinations thereof.
In some embodiments, biodegradable polymers capable of hydrogen bonding with PEA polymers can be, for example, poly(imino carbonates), peptides, gelatin, collagen, non-water soluble chitosan, agarose, elastin, poly(alginic acid), alginate, dextrose, dextran, poly(glutamic acid), poly(lysine), copolymers containing poly(ethylene glycol) and polybutylene terephthalate segments (PEG/PBT) (PolyActive™), poly(aspartic acid), poly(leucine), poly(leucine-co-hydroxyethyl glutamine), poly(benzyl glutamate), poly(glutamic acid-co-ethyl glutamate), poly(amino acids), or a combination thereof. poly(ortho esters), poly(anhydrides), poly(D,L-lactic acid), poly (L-lactic acid), poly(glycolic acid), copolymers of poly(lactic) and glycolic acid, poly(phospho esters), poly(β-hydroxybutyrate), poly(caprolactone), poly(trimethylene carbonate), poly(oxaesters), poly(oxaamides), poly(ethylene carbonate), poly(propylene carbonate), poly(phosphoesters), poly(phosphazenes), copolymers thereof with PEG, or combinations thereof.
In some embodiments, the hydrogen-bonding filler can be a block copolymer having flexible poly(ethylene glycol) and poly(butylene terephthalate) blocks (PEGT/PBT) (e.g., PolyActive™). PolyActive™ is intended to include AB, ABA, BAB copolymers having such segments of PEG and PBT (e.g., poly(ethylene glycol)-block-poly(butyleneterephthalate)-block poly(ethylene glycol) (PEG-PBT-PEG). PolyActive™ (commonly expressed in the formula XPEGTMPBTN where X is the molecular weight of the PEG segment, M is weight percentage of PEG segments, and N is the weight percentage of PBT segments) has PEG blocks or segments that can form hydrogen-bonding with PEA molecules in that the oxygen atom in PolyActive™ can act as a donor atom to form a hydrogen bond as shown below:
The carbonyl oxygens in the ester linkages of PolyActive™ can also act as hydrogen bond donor atoms. As a result, the Tg of the PEA/PolyActive™ blend will be higher than that of PEA. In addition, the PEA component in the blend will have drug-release properties better than PolyActive™ alone because PolyActive™ does not give good drug-release control when used alone. In this embodiment, the PEA and PolyActive™ can be used as a blend to coat an implantable device or to form the implantable device itself or in separate layers to coat an implantable device. For example, the PEA/PolyActive™ blend can be coated onto a stent as a drug delivery matrix. Alternatively, the PEA and PolyActive™ can be coated onto an implantable device in separate layers, where, in the interphase between a PolyActive™ and a PEA layer, the hydrogen-bonding shown above may still exist between the PolyActive molecules and the PEA molecules at the interface. In one embodiment, the PEA can be conjugated to a biobeneficial moiety. The biobeneficial moiety is derived from a biobeneficial material defined below. For example, the PEA/biobeneficial moiety conjugate can be PEA-PEG, PEA-phosphoryl choline (PEA-PC), or PEA-choline.
In some other embodiments, dendrimers and/or star-shaped polymers having —NH2 or —COOH pendant or end groups can be blended into PEA to facilitate hydrogen-bonding. The star polymers or dendrimers can contain a conjugated active agent in addition to the hydrogen bonding moieties such as —COOH or —NH2. Other filler materials such as an absorbable glass with Fe, Ca and/or P can be blended into a PEA polymer. The electrostatic interaction may also enhance the Tg of the blend thus formed.
In some embodiments, the hydrogen-bonding filler polymers can be a bioactive component that would modulate biological outcome additively or synergistically with a drug in a drug-delivery coating formed of a PEA polymer. Such bioactive component can be, for example, laminin V, silk elastin, or hyaluronic acid-benzyl ester for faster healing, resten NG, or other antisense oligonucleotide fragment with antiproliferative properties, MMPI for preventing SMC migration, and/or cellulose acetate-co-pentasaccharide for local factor Xa inhibition, etc.
The PEA with hydrogen-bonding fillers can form a coating optionally with a biobeneficial material. The combination can be mixed, blended, or coated in separate layers. The biobeneficial material useful in the coatings described herein can be a polymeric material or non-polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one that enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol) (PEG), poly(propylene glycol) and poly(tetramethylene glycol), copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), e.g., poly(2-hydroxyethyl methacrylate), hydroxypropyl methacrylate (HPMA), e.g., poly(hydroxypropyl methacrylate), hydroxypropylmethacrylamide, poly(ethylene glycol) acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid or carboxylate bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(acrylamide), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene-PEG, poly(styrene sulfonate), polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, hydrophobically modified hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, hirudin, fibrin, chondroitan sulfate, chitin, alginate, silicones, and combinations thereof. In some embodiments, the coating can exclude any one of the aforementioned polymers.
In a further embodiment, the biobeneficial material can be garlic oil, fullerene, metallic materials such as Ca, Mg, and Tantalum ions.
In a preferred embodiment, the biobeneficial material can include a polyether such as poly(ethylene glycol) (PEG) or polyalkylene oxide.
The polymeric coatings or the polymeric substrate described herein may optionally include one or more bioactive agents. These bioactive agents can be any agent which is a therapeutic, prophylactic, or diagnostic agent. These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules that bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(N1-tetrazolyl)-rapamycin(ABT-578), 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Antiomax® (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti-inflammatory agents including steroidal and non -steroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, combinations thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, bioactive RGD, and genetically engineered epithelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. The device itself, such as a stent, can also be made from the described inventive polymers or polymer blends.
In accordance with embodiments of the invention, a coating of the various described embodiments can be formed on an implantable device or prosthesis, e.g., a stent. For coatings including one or more active agents, the agent will remain on the medical device such as a stent during delivery and expansion of the device, and released at a desired rate and for a predetermined duration of time at the site of implantation. Preferably, the medical device is a stent. A stent having the above-described coating is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
The embodiments of the present invention will be illustrated by the following set forth examples. All parameters and data are not to be construed to unduly limit the scope of the embodiments of the invention.
Vision 12 mm small stents (available from Guidant Corporation) are coated according to the following configurations:
Configuration 1
Primer layer: 100 μg PolyActive™, from a 2% PolyActive™ (300PEGT55PBT45) solution in a solvent mixture of 1,1,2-trichloroethane and chloroform (80/20) (w/w), and baked at 50° C. for 1 hour;
Drug layer: 120 μg everolimus, coated from a 2% drug solution dissolved in a solvent mixture of acetone/xylene (60/40) (w/w), baked at 50° C. for 1 hour;
PEA release rate control layer: 100 μg PEA, coated from a 2% PEA solution in ethanol; baked at 50° C. for 1 hour;
PolyActive™ biobeneficial layer: 200 μg PolyActive™, coated from a 2% PolyActive™ (300PEGT55PBT45) solution in a solvent mixture of 1,1,2-trichloroethane and chloroform (80/20) (w/w), and baked at 50° C. for 1 hour.
Configuration 2
Primer layer: 100 μg PolyActive™, from a 2% PolyActive™ (300PEGT55PBT45) solution in a solvent mixture of 1,1,2-trichloroethane and chloroform (80/20) (w/w), and baked at 50° C. for 1 hour;
Drug layer: 120 μg everolimus, coated from a 2% drug solution dissolved in a solvent mixture of acetone/xylene (60/40) (w/w), and baked at 50° C. for 1 hour;
PEA release rate control layer: 200 μg PEA, coated from a 2% PEA solution in ethanol; baked at 50° C. for 1 hour;
PolyActive™ biobeneficial layer: 200 μg PolyActive™, coated from a 2% PolyActive™ (300PEGT55PBT45) solution in a solvent mixture of 1,1,2-trichloroethane and chloroform (80/20) (w/w), and baked at 50° C. for 1 hour.
Configuration 3
Primer layer: 100 μg PolyActive™, from a 2% PolyActive™ (300PEGT55PBT45) solution in a solvent mixture of 1,1,2-trichloroethane and chloroform (80/20) (w/w), and baked at 50° C. for 1 hour;
Drug layer: 120 μg everolimus, coated from a 2% drug solution dissolved in a solvent mixture of acetone/xylene (60/40) (w/w), and baked at 50° C. for 1 hour;
PEA release rate control layer: 400 μg PEA, coated from a 2% (w/w) PEA solution in ethanol; baked at 50° C. for 1 hour;
PolyActive™ biobeneficial layer: 200 μg PolyActive™, coated from a 2% PolyActive™ (300PEGT55PBT45) solution in a solvent mixture of 1,1,2-trichloroethane and chloroform (80/20) (w/w), and baked at 50° C. for 1 hour.
The stents coated according to the above configurations are shown in
A first composition is prepared by mixing the following components:
The first composition can be applied onto the surface of bare 12 mm small VISION™ stent (Guidant Corp.). The coating can be sprayed and dried to form a primer layer. A spray coater can be used having a 0.014 round nozzle maintained at ambient temperature with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). About 20 μg of the coating can be applied per one spray pass. Between spray passes, the stent can be dried for about 10 seconds in a flowing air stream at about 50° C. About 110 μg of wet coating can be applied. The stents can be baked at about 50° C. for about one hour, yielding a primer layer composed of approximately 100 μg of PEA-TEMPO.
(a) about 1.8% (w/w) of the polymer of PEA-TEMPO;
(b) about 0.2% (w/w) of poly(imino carbonate)
(b) about 0.5% (w/w) of everolimus; and
(c) the balance, a solvent mixture of ethyl alcohol and dimethylformamide (80/20) (w/w)
The second composition can be applied onto the dried primer layer to form the drug-polymer layer, using the same spraying technique and equipment used for applying the primer layer. About 300 μg of wet coating can be applied followed by drying and baking at about 60° C. for about 2 hours, yielding a dry drug-polymer layer having solids content of about 275 μg.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
5258020 | Froix | Nov 1993 | A |
5272012 | Opolski | Dec 1993 | A |
5292516 | Viegas et al. | Mar 1994 | A |
5298260 | Viegas et al. | Mar 1994 | A |
5300295 | Viegas et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5306786 | Moens et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5417981 | Endo et al. | May 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5462990 | Hubbell et al. | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5485496 | Lee et al. | Jan 1996 | A |
5516881 | Lee et al. | May 1996 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5581387 | Cahill | Dec 1996 | A |
5584877 | Miyake et al. | Dec 1996 | A |
5605696 | Eury et al. | Feb 1997 | A |
5607467 | Froix | Mar 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5610241 | Lee et al. | Mar 1997 | A |
5616338 | Fox, Jr. et al. | Apr 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5644020 | Timmermann et al. | Jul 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5674242 | Phan et al. | Oct 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5702754 | Zhong | Dec 1997 | A |
5711958 | Cohn et al. | Jan 1998 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5721131 | Rudolph et al. | Feb 1998 | A |
5723219 | Kolluri et al. | Mar 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5746998 | Torchilin et al. | May 1998 | A |
5759205 | Valentini | Jun 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5783657 | Pavlin et al. | Jul 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5849859 | Acemoglu | Dec 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5854376 | Higashi | Dec 1998 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5861387 | Labrie et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5869127 | Zhong | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5879713 | Roth et al. | Mar 1999 | A |
5902875 | Roby et al. | May 1999 | A |
5905168 | Dos Santos et al. | May 1999 | A |
5910564 | Gruning et al. | Jun 1999 | A |
5914387 | Roby et al. | Jun 1999 | A |
5919893 | Roby et al. | Jul 1999 | A |
5925720 | Kataoka et al. | Jul 1999 | A |
5932299 | Katoot | Aug 1999 | A |
5955509 | Webber et al. | Sep 1999 | A |
5958385 | Tondeur et al. | Sep 1999 | A |
5962138 | Kolluri et al. | Oct 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5997517 | Whitbourne | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6011125 | Lohmeijer et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6034204 | Mohr et al. | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6051576 | Ashton et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6054553 | Groth et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6060518 | Kabanov et al. | May 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne et al. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6120491 | Kohn et al. | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120788 | Barrows | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6136333 | Cohn et al. | Oct 2000 | A |
6143354 | Koulik et al. | Nov 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6159978 | Myers et al. | Dec 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6172167 | Stapert et al. | Jan 2001 | B1 |
6177523 | Reich et al. | Jan 2001 | B1 |
6180632 | Myers et al. | Jan 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6211249 | Cohn et al. | Apr 2001 | B1 |
6214901 | Chudzik et al. | Apr 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6245753 | Byun et al. | Jun 2001 | B1 |
6245760 | He et al. | Jun 2001 | B1 |
6248129 | Froix | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6258371 | Koulik et al. | Jul 2001 | B1 |
6262034 | Mathiowitz et al. | Jul 2001 | B1 |
6270788 | Koulik et al. | Aug 2001 | B1 |
6277449 | Kolluri et al. | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6344035 | Chudzik et al. | Feb 2002 | B1 |
6346110 | Wu | Feb 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6365172 | Barrows | Apr 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6387379 | Goldberg et al. | May 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6482834 | Spada et al. | Nov 2002 | B2 |
6494862 | Ray et al. | Dec 2002 | B1 |
6503538 | Chu et al. | Jan 2003 | B1 |
6503556 | Harish et al. | Jan 2003 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6524347 | Myers et al. | Feb 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6528526 | Myers et al. | Mar 2003 | B1 |
6530950 | Alvarado et al. | Mar 2003 | B1 |
6530951 | Bates et al. | Mar 2003 | B1 |
6540776 | Sanders Millare et al. | Apr 2003 | B2 |
6544223 | Kokish | Apr 2003 | B1 |
6544543 | Mandrusov et al. | Apr 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6585755 | Jackson et al. | Jul 2003 | B2 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585926 | Mirzaee | Jul 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
6616765 | Hossaony et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6625486 | Lundkvist et al. | Sep 2003 | B2 |
6645135 | Bhat | Nov 2003 | B1 |
6645195 | Bhat et al. | Nov 2003 | B1 |
6656216 | Hossainy et al. | Dec 2003 | B1 |
6656506 | Wu et al. | Dec 2003 | B1 |
6660034 | Mandrusov et al. | Dec 2003 | B1 |
6663662 | Pacetti et al. | Dec 2003 | B2 |
6663880 | Roorda et al. | Dec 2003 | B1 |
6666880 | Chiu et al. | Dec 2003 | B1 |
6673154 | Pacetti et al. | Jan 2004 | B1 |
6673385 | Ding et al. | Jan 2004 | B1 |
6689099 | Mirzaee | Feb 2004 | B2 |
6695920 | Pacetti et al. | Feb 2004 | B1 |
6703040 | Katsarava et al. | Mar 2004 | B2 |
6706013 | Bhat et al. | Mar 2004 | B1 |
6709514 | Hossainy | Mar 2004 | B1 |
6712845 | Hossainy | Mar 2004 | B2 |
6713119 | Hossainy et al. | Mar 2004 | B2 |
6716444 | Castro et al. | Apr 2004 | B1 |
6723120 | Yan | Apr 2004 | B2 |
6733768 | Hossainy et al. | May 2004 | B2 |
6740040 | Mandrusov et al. | May 2004 | B1 |
6743462 | Pacetti | Jun 2004 | B1 |
6749626 | Bhat et al. | Jun 2004 | B1 |
6753071 | Pacetti et al. | Jun 2004 | B1 |
6758859 | Dang et al. | Jul 2004 | B1 |
6759054 | Chen et al. | Jul 2004 | B2 |
6764505 | Hossainy et al. | Jul 2004 | B1 |
6926919 | Hossainy et al. | Aug 2005 | B1 |
7063884 | Hossainy et al. | Jun 2006 | B2 |
20010007083 | Roorda | Jul 2001 | A1 |
20010014717 | Hossainy et al. | Aug 2001 | A1 |
20010018469 | Chen et al. | Aug 2001 | A1 |
20010020011 | Mathiowitz et al. | Sep 2001 | A1 |
20010029351 | Falotico et al. | Oct 2001 | A1 |
20010037145 | Guruwaiya et al. | Nov 2001 | A1 |
20010051608 | Mathiowitz et al. | Dec 2001 | A1 |
20020005206 | Falotico et al. | Jan 2002 | A1 |
20020007213 | Falotico et al. | Jan 2002 | A1 |
20020007214 | Falotico | Jan 2002 | A1 |
20020007215 | Falotico et al. | Jan 2002 | A1 |
20020009604 | Zamora et al. | Jan 2002 | A1 |
20020016625 | Falotico et al. | Feb 2002 | A1 |
20020032414 | Ragheb et al. | Mar 2002 | A1 |
20020032434 | Chudzik et al. | Mar 2002 | A1 |
20020051730 | Bodnar et al. | May 2002 | A1 |
20020071822 | Uhrich | Jun 2002 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020082679 | Sirhan et al. | Jun 2002 | A1 |
20020087123 | Hossainy et al. | Jul 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020094440 | Llanos et al. | Jul 2002 | A1 |
20020111590 | Davila et al. | Aug 2002 | A1 |
20020120326 | Michal | Aug 2002 | A1 |
20020123801 | Pacetti et al. | Sep 2002 | A1 |
20020142039 | Claude | Oct 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20020165608 | Llanos et al. | Nov 2002 | A1 |
20020176849 | Slepian | Nov 2002 | A1 |
20020183581 | Yoe et al. | Dec 2002 | A1 |
20020188037 | Chudzik et al. | Dec 2002 | A1 |
20020188277 | Roorda et al. | Dec 2002 | A1 |
20030004141 | Brown | Jan 2003 | A1 |
20030028243 | Bates et al. | Feb 2003 | A1 |
20030028244 | Bates et al. | Feb 2003 | A1 |
20030031780 | Chudzik et al. | Feb 2003 | A1 |
20030032767 | Tada et al. | Feb 2003 | A1 |
20030036794 | Ragheb et al. | Feb 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030040712 | Ray et al. | Feb 2003 | A1 |
20030040790 | Furst | Feb 2003 | A1 |
20030059520 | Chen et al. | Mar 2003 | A1 |
20030060877 | Falotico et al. | Mar 2003 | A1 |
20030065377 | Davila et al. | Apr 2003 | A1 |
20030072868 | Harish et al. | Apr 2003 | A1 |
20030073961 | Happ | Apr 2003 | A1 |
20030083646 | Sirhan et al. | May 2003 | A1 |
20030083739 | Cafferata | May 2003 | A1 |
20030097088 | Pacetti | May 2003 | A1 |
20030097173 | Dutta | May 2003 | A1 |
20030099712 | Jayaraman | May 2003 | A1 |
20030105518 | Dutta | Jun 2003 | A1 |
20030113439 | Pacetti et al. | Jun 2003 | A1 |
20030150380 | Yoe | Aug 2003 | A1 |
20030157241 | Hossainy et al. | Aug 2003 | A1 |
20030158517 | Kokish | Aug 2003 | A1 |
20030190406 | Hossainy et al. | Oct 2003 | A1 |
20030207020 | Villareal | Nov 2003 | A1 |
20030211230 | Pacetti et al. | Nov 2003 | A1 |
20040018296 | Castro et al. | Jan 2004 | A1 |
20040029952 | Chen et al. | Feb 2004 | A1 |
20040047978 | Hossainy et al. | Mar 2004 | A1 |
20040047980 | Pacetti et al. | Mar 2004 | A1 |
20040052858 | Wu et al. | Mar 2004 | A1 |
20040052859 | Wu et al. | Mar 2004 | A1 |
20040054104 | Pacetti | Mar 2004 | A1 |
20040060508 | Pacetti et al. | Apr 2004 | A1 |
20040062853 | Pacetti et al. | Apr 2004 | A1 |
20040063805 | Pacetti et al. | Apr 2004 | A1 |
20040071861 | Mandrusov et al. | Apr 2004 | A1 |
20040072922 | Hossainy et al. | Apr 2004 | A1 |
20040073298 | Hossainy | Apr 2004 | A1 |
20040086542 | Hossainy et al. | May 2004 | A1 |
20040086550 | Roorda et al. | May 2004 | A1 |
20040096504 | Michal | May 2004 | A1 |
20040098117 | Hossainy et al. | May 2004 | A1 |
20060093842 | DesNoyer et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
42 24 401 | Jan 1994 | DE |
0 514 406 | Nov 1992 | EP |
0 604 022 | Jun 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 665 023 | Aug 1995 | EP |
0 701 802 | Mar 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 809 999 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 850 651 | Jul 1998 | EP |
0 879 595 | Nov 1998 | EP |
0 910 584 | Apr 1999 | EP |
0 923 953 | Jun 1999 | EP |
0 953 320 | Nov 1999 | EP |
0 970 711 | Jan 2000 | EP |
0 982 041 | Mar 2000 | EP |
1 023 879 | Aug 2000 | EP |
1 192 957 | Apr 2002 | EP |
1 273 314 | Jan 2003 | EP |
2001-190687 | Jul 2001 | JP |
872531 | Oct 1981 | SU |
876663 | Oct 1981 | SU |
905228 | Feb 1982 | SU |
790725 | Feb 1983 | SU |
1016314 | May 1983 | SU |
811750 | Sep 1983 | SU |
1293518 | Feb 1987 | SU |
0 301 856 | Feb 1989 | SU |
0 396 429 | Nov 1990 | SU |
WO 9112846 | Sep 1991 | WO |
WO 9409760 | May 1994 | WO |
WO 9510989 | Apr 1995 | WO |
WO 9524929 | Sep 1995 | WO |
WO 9640174 | Dec 1996 | WO |
WO 9710011 | Mar 1997 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9746590 | Dec 1997 | WO |
WO 9808463 | Mar 1998 | WO |
WO 9817331 | Apr 1998 | WO |
WO 9832398 | Jul 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9901118 | Jan 1999 | WO |
WO 9938546 | Aug 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0203890 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0018446 | Apr 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0115751 | Mar 2001 | WO |
WO 0117577 | Mar 2001 | WO |
WO 0145763 | Jun 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 0151027 | Jul 2001 | WO |
WO 0174414 | Oct 2001 | WO |
WO 0218477 | Mar 2002 | WO |
WO 0226162 | Apr 2002 | WO |
WO 0234311 | May 2002 | WO |
WO 02056790 | Jul 2002 | WO |
WO 02058753 | Aug 2002 | WO |
WO 02102283 | Dec 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03022323 | Mar 2003 | WO |
WO 03028780 | Apr 2003 | WO |
WO 03037223 | May 2003 | WO |
WO 03039612 | May 2003 | WO |
WO 03080147 | Oct 2003 | WO |
WO 03082368 | Oct 2003 | WO |
WO 2004000383 | Dec 2003 | WO |
WO 2004009145 | Jan 2004 | WO |
WO 2005061024 | Jul 2005 | WO |
WO 2005089824 | Sep 2005 | WO |
WO 2005097220 | Oct 2005 | WO |
WO 2005118681 | Dec 2005 | WO |
WO 2006004792 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060093842 A1 | May 2006 | US |