This application claims priority to German parent application 10 2004 030 980.9, which is hereby incorporated by reference in its entirety.
The invention relates to a transparent, biaxially oriented polyester film which comprises polyester and poly(m-xyleneadipamide). The invention also relates to a process for the production of the film and to its use.
Transparent, biaxially oriented polyester films which feature improved barrier properties are known from the prior art. In most instances, the films obtain their improved barrier properties off-line after the production process via a further processing step. Examples here are extrusion coating, coating or lamination with barrier materials, coating in-vacuo with metals or with ceramic substances, or plasma polymerization combined with vacuum-coating.
An exception to these principles is the process described in more detail in WO 99/62694, in which a multilayer, coextruded polyester film which comprises at least one layer comprised of EVOH (ethylene-vinyl alcohol) is simultaneously biaxially oriented. This film features good mechanical properties, but in particular features good barrier properties with respect to oxygen transmission. The best value given for achievable oxygen transmission OTR (oxygen transmission rate) in the specification is 5 cm3/(m2·bar·d). One disadvantage, inter alia, of the process is that regrind produced during the production process cannot be reintroduced into the production process without sacrificing the good optical and physical properties of the film.
Another exception is the film of EP-A-0 675 158, which is a stretched composite film based on polyester with improved barrier properties with respect to gases. At least one of the two sides of the film has been covered with a layer of thickness 0.3 μm or less comprised of polyvinyl alcohol whose number-average degree of polymerization is 350 and above, the average roughness Rz of that side to be coated of the base film being 0.30 μm or less, and this side being characterized by a certain distribution of the elevations on the film surface. The oxygen transmission of this composite film is less than 3 cm3/(m2·bar·d). A disadvantage of this composite film is its very low stability, e.g. with respect to moisture. On contact with water or steam the adhesion of the barrier coating comprised of polyvinyl alcohol to the polyester film is lost, with the result that the barrier coating can be washed off the polyester film.
Another exception is the biaxially oriented film described in JP 2001-001399, which is comprised of a mixture of polyethylene terephthalate and poly(m-xyleneadipamide) (MXD6). The proportion of poly(m-xyleneadipamide) (MXD6) in the film is from 10 to 40% by weight, and the corresponding proportion of polyethylene terephthalate is from 60 to 90% by weight. According to the invention, the film is simultaneously biaxially oriented. The following data are given for the stretching parameters in the specification: The stretching ratios in both directions are from 2.5 to 5.0. However, in the examples the film is merely oriented by a factor of 3.0 in the machine direction and by a factor of 3.3 transversely to the machine direction. The overall stretching ratio is therefore 9.9. The stretching temperatures in both directions are from 80 to 140° C. In the examples, the film is stretched at 90° C. in both directions.
According to JP 2001-001399, when a simultaneously oriented film is compared with a film which has been oriented sequentially (e.g. first in machine direction (MD or MDO) and then transversely (TD or TDO)), it has lower haze and gives more reliable processing, i.e. can be produced with fewer break-offs during the second stretching process (e.g. transversely). According to the above specification, the amount of crystallization arising during the sequential (non-inventive) orientation in the first stretching step (e.g. MDO) is so great that the film becomes cloudy during the second (subsequent) orientation process and becomes more delicate with respect to further orientation. According to the (comparative) examples 3 and 4 described in the specification, a polyester film with from 10 to 40% of MXD6 cannot be produced by the process which operates sequentially, because it tears in the second stretching process.
The biaxially oriented films produced according to JP 2001-001399 by the simultaneous process feature low haze, but in particular feature a good barrier with respect to permeation by oxygen. The oxygen transmission OTR achieved by the film is smaller than 30 cm3/(m2·bar·d). According to the invention, the haze of the film is smaller than 15%. However, the film has a number of disadvantages:
It has a comparatively low level of mechanical strength properties. In particular, the modulus of elasticity and the ultimate tensile strength are unsatisfactory.
It tends to block and is therefore difficult to wind.
It has comparatively rough surfaces. The film also has a matt appearance, which is undesirable for many applications. It is therefore also comparatively difficult to print, to metallize, or to coat.
It was an object of the present invention to provide a biaxially oriented polyester film which features very good barrier properties, in particular with respect to oxygen transmission. The film should also differ from films of the prior art in having the following advantageous properties/combinations of properties:
a higher level of mechanical strength properties, in particular a higher modulus of elasticity, high gloss and therefore good printability, good metallizability, and good coatability, good windability (without blocking), permitting processing to give a saleable roll without winding defects, capability for cost-effective production, meaning, by way of example, that stretching processes conventionally used in industry are used to produce the film, these being capable of operation at high speed, e.g. above 350 m/min (above 400 m/min). There should be no need to resort to the expensive simultaneous stretching process, which according to the prior art operates at markedly lower speed (<350 m/min) and width (<5 m), and is therefore less cost-effective, and during production of the film it should be possible to reintroduce an amount which is preferably from 5 up to 60% by weight of the regrind produced into the production process (extrusion and biaxial orientation) without any significant resultant adverse effect on the physical and optical properties of the film, but in particular on the barrier properties with respect to oxygen.
The object is achieved via a biaxially oriented and transparent polyester film preferably produced by the sequential stretching process and comprising a concentration which is preferably from 5 to 45% by weight of poly(m-xyleneadipamide) (MXD6) and having a modulus of elasticity which is preferably at least 3500 N/mm2 in both orientation directions (MD and TD).
The film preferably comprises fillers at a concentration which is preferably from 0.02 to 1% by weight.
The film also comprises a thermoplastic polyester, whose proportion is preferably 55% by weight. The proportion of poly(m-xyleneadipamide) in the film is preferably from 5 to 45% by weight, in particular from 5 to 40% by weight.
Unless otherwise stated, all of the % by weight data are based on the total weight of the inventive film.
Poly(m-xyleneadipamide) (MXD6), also termed poly-m-xylyleneadipamide or PA-MXD6, is a polycondensate (polyarylamide) comprised of m-xylylenediamine and adipic acid and is marketed in various grades, all of which are in principle suitable for the inventive purpose. However, preference is given to grades whose melt viscosity is smaller than 6000 poise (=600 Pa.s, T=280° C., shear rate Ypoint≧100 s−1).
When compared with films of the prior art, the biaxially oriented transparent polyester film of the present invention has better mechanical and better optical properties, and also in particular has increased gloss. The film moreover features excellent barrier properties, in particular with respect to transmission of gases such as oxygen.
The oxygen transmission (OTR) of the film is preferably less than 45 cm3/(m2·d·bar); less than 40 cm3/(m2·d·bar) and more preferably less than 30 cm3/m2·d·bar) based on a film of thickness 12 μm.
The film also exhibits the desired processing and winding behavior. In particular, it exhibits no tendency to adhere to rollers or to other mechanical parts, no blocking problems, and no longitudinal corrugations during winding. The film can readily produce a customer roll with very good winding quality.
The film of the present invention is preferably comprised of the inventive polymer mixture. In this case, the film has a single-layer structure (cf.
The film, or the base layer of the film, is preferably comprised of at least 55% by weight of thermoplastic polyester (component 1). Examples of materials suitable for this are polyesters comprised of ethylene glycol and terephthalic acid (polyethylene terephthalate, PET), ethylene glycol and naphthalene-2,6-dicarboxylic acid (polyethylene 2,6-naphthalate, PEN), 1,4-bishydroxymethylcyclohexane and terephthalic acid (poly-1,4-cyclohexanedimethylene terephthalate, PCDT), or else made from ethylene glycol, naphthalene-2,6-dicarboxylic acid and biphenyl-4,4′-dicarboxylic acid (polyethylene 2,6-naphthalate bibenzoate, PENBB). Preference is given to polyesters comprised of at least 90 mol %, in particular at least 95 mol %, of ethylene glycol units and terephthalic acid units, or of ethylene glycol units and naphthalene-2,6-dicarboxylic acid units. The remaining monomer units derive from other diols and other dicarboxylic acids. For component I of the film, or of the base layer (B), it is also advantageously possible to use copolymers or mixtures or blends comprised of the homo- and/or copolymers mentioned.
For the last-mentioned case it is particularly advantageous for the component I used in the film or in the base layer (B) to comprise a polyester copolymer based on isophthalic acid and terephthalic acid or based on terephthalic acid and naphthalene-2,6-dicarboxylic acid. In this case, the film is easy to produce and the optical properties of the film are particularly good, as also are the barrier properties achieved in the film. One particular advantage is that if, for example, a polyester copolymer based on isophthalic acid and terephthalic acid is used the extrusion temperature can be lowered, and this is particularly advantageous for processing of the MXD6. If, by way of example, 280° C. is required for the extrusion of polyethylene terephthalate, the extrusion temperature can be lowered to below 260° C. if a polyester copolymer based on isophthalic acid and terephthalic acid is used. The MXD6 then remains ductile for the stretching phase that follows, and this is discernible, by way of example, in high process stability and in very good mechanical properties.
In this case, component I of the film or of the base layer (B) of the film in essence comprises a polyester copolymer comprised predominantly of isophthalic acid units and of terephthalic acid units and of ethylene glycol units, and component II of the film comprises in essence the abovementioned inventive poly(m-xyleneadipamide) (MXD6). However, mixtures comprised of polyethylene terephthalate and polyethylene isophthalate are also preferred as component I.
The preferred copolyesters (component I), which provide the desired properties of the film (in particular the optical properties, together with orientability) are those comprised of terephthalate units and of isophthalate units, and of ethylene glycol units. The proportion of ethylene terephthalate in these copolymers is preferably from 70 to 98 mol %, and the corresponding proportion of ethylene isophthalate is from 30 to 2 mol %. Among these, preference is in turn given to those copolyesters in which the proportion of ethylene terephthalate is from 76 to 98 mol %, and the corresponding proportion of ethylene isophthalate is from 24 to 2 mol %, and very particular preference is given to those copolyesters in which the proportion of ethylene terephthalate is from 80 to 98 mol % and the corresponding proportion of ethylene isophthalate is from 20 to 2 mol %.
Examples of other suitable aliphatic diols which may be constituents of the inventive polyesters are diethylene glycol, triethylene glycol, aliphatic glycols of the formula HO—(CH2)n—OH, where n is an integer from 2 to 6 (in particular 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol) or branched aliphatic glycols having up to 6 carbon atoms, and cycloaliphatic diols having one or more rings and, if appropriate, containing heteroatoms. Among the cycloaliphatic diols, mention should be made of cyclohexanediols (in particular 1,4-cyclohexanediol). Examples of suitable other aromatic diols have the formula HO—C6H4—X—C6H4—OH, where X is —CH2—, —C(CH3)2—, —C(CF3)2—, —O—, —S— or —SO2—. Bisphenols of the formula HO—C6H4—C6H4—OH are also very suitable.
Suitable other aromatic dicarboxylic acids which may be constituents of the inventive polyesters are preferably benzenedicarboxylic acids, naphthalene dicarboxylic acids (such as naphthalene-1,4- or -1,6-dicarboxylic acid), biphenyl-x,x′-dicarboxylic acids (in particular biphenyl-4,4′-dicarboxylic acid), diphenylacetylene-x,x′-dicarboxylic acids (in particular diphenylacetylene4,4′-dicarboxylic acid) or stilbene-x,x′-dicarboxylic acids. Among the cycloaliphatic dicarboxylic acids mention should be made of cyclohexanedicarboxylic acids (in particular cyclohexane-1,4-dicarboxylic acid). Among the aliphatic dicarboxylic acids, the C3-C19 alkanediacids are particularly suitable, and the alkane moiety here may be straight-chain or branched.
One way of preparing the polyesters is the known transesterification process. Here, the starting materials are dicarboxylic esters and diols, which are reacted using the customary transesterification catalysts, such as the salts of zinc, of calcium, of lithium or of manganese. The intermediates are then polycondensed in the presence of well known polycondensation catalysts, such as antimony trioxide or titanium salts. Another equally good preparation method is the direct esterification process in the presence of polycondensation catalysts. This starts directly from the dicarboxylic acids and the diols. The inventive polyesters are moreover obtainable from various producers.
According to the invention, the base layer (B) or the film comprises an amount of in particular from 5 to 40% by weight and particularly preferably from 5 to 35% byweight of poly(m-xyleneadipamide) (MXD6) (component II) as another component.
For the processing of the polymers it has proven advantageous for the poly(m-xyleneadipamide) (MXD6) to be selected in such a way that the viscosities of the respective polymer melts do not differ excessively. Otherwise, additional elevations/protrusions, flow disruption, or streaking on the finished film can sometimes be expected. Furthermore, the polymers then tend to separate. In accordance with the experiments carried out here, the melt viscosity of the poly(m-xyleneadipamide) (MXD6) should preferably be below certain values. For the purposes of the present invention, very good results are obtained if the melt viscosity of the MXD6 is smaller than 6000 poise (measured in a capillary rheometer of diameter 0.1 mm, of length 10 mm, and with a shear rate of Ypoint≧100 s-1, melt temperature 280° C.), preferably smaller than 5000 poise, and particularly preferably smaller than 4000 poise.
Similar factors also apply to the viscosity of the polyester used. For the purposes of the present invention, very good results are obtained if the melt viscosity of the polyester is smaller than 2400 poise (measured in a capillary rheometer of diameter 0.1 mm, of length 10 mm, and with a shear rate of Ypoint≧100 s-1, melt temperature 280° C.), preferably smaller than 2200 poise, and particularly preferably smaller than 2000 poise.
The form in which the poly(m-xyleneadipamide) (MXD6) is incorporated into the film is advantageously either that of pure pelletized material or that of pelletized concentrate (masterbatch). In the case of processing by way of a masterbatch, its concentration is preferably from 10 to 60% by weight of MXD6. To this end, the pelletized polyester is premixed with the poly(m-xyleneadipamide) (MXD6) or with the poly(m-xyleneadipamide) (MXD6) masterbatch, and then introduced into the extruder. In the extruder, the components are further mixed and heated to processing temperature. It is advantageous here for the inventive process if the extrusion temperature is above the melting point TM of the poly(m-xyleneadipamide) (MXD6), generally above the melting point of the poly(m-xyleneadipamide) (MXD6) by at least 5° C., preferably by from 5 to 50° C., in particular however by from 5 to 40° C. A twin-screw extruder is clearly a preferred extrusion unit for the processing of the mixture, and also for the preparation of the masterbatch from components I and II. Another factor worthy of mention is that even the single-screw extruder achieves good results, thus making this principle generally applicable.
The film of the present invention has at least a single-layer structure. It is then comprised of the inventive mixture, preferably produced by the inventive process. The film can moreover have additional layers, e.g. an outer layer (C) arranged on the base layer (B), or else intermediate layers, e.g. between the base layer (B) and the outer layer (C). Typical film structures are then, by way of example, B (=monofilm), or BC, or BZC, where (Z) is an intermediate layer and (C) is an outer layer, or else ABC or ABA, where the outer layers A and C may be identical or different.
For the outer layers and for the intermediate layers, it is possible in principle to use polymers which are the same as those for the base layer B. However, other materials may also be present in these other layers, in which case these layers are then preferably comprised of a mixture of polymers, of copolymers, or of homopolymers, this mixture preferably containing ethylene isophthalate units and/or ethylene 2,6-naphthalate units, and/or ethylene terephthalate units. Up to 10 mol % of the polymers may be comprised of other comonomers.
The other components present in these other layers may also advantageously comprise (polyester) copolymers or (polyester) mixtures or blends comprised of homo- and/or copolymers.
It is particularly advantageous to use a polyester copolymer based on isophthalic acid and terephthalic acid in the outer layer (C) and/or (A). In this case, the optical properties of the film are particularly good.
In this case, the outer layer (C) and/or (A) of the film in essence comprises a polyester copolymer which is mainly comprised of isophthalic acid units and of terephthalic acid units, and of ethylene glycol units. The remaining monomer units derive from other aliphatic, cycloaliphatic, or aromatic diols and from other dicarboxylic acids, these being those which may also occur in the base layer. The preferred copolyesters which provide the desired properties of the film (in particular the optical properties) are those comprised of terephthalate units and of isophthalate units, and of ethylene glycol units. The proportion of ethylene terephthalate is preferably from 40 to 97 mol %, and the corresponding proportion of ethylene isophthalate is preferably from 60 to 3 mol %. Preference is given to copolyesters in which the proportion of ethylene terephthalate is from 50 to 90 mol % and the corresponding proportion of ethylene isophthalate is from 50 to 10 mol %, and very particular preference is given to copolyesters in which the proportion of ethylene terephthalate is from 60 to 85 mol % and the corresponding proportion of ethylene isophthalate is from 40 to 15 mol %.
In another embodiment, the outer layer (C) and/or (A) also comprises poly(m-xyleneadipamide) (MXD6) (component II) as further component, its amount preferably being from 0 to 80% by weight, in particular from 2 to 60% by weight, and particularly preferably from 4 to 40% by weight, based on the weight of the respective outer layer.
The thickness of the outer layers is preferably greater than 0.5 μm, and is preferably in the range from 1.0 to 20 μm, and particularly preferably in the range from 1.5 to 10 μm.
The base layer (B) and any outer and intermediate layers present may also comprise conventional additives, e.g. stabilizers and antiblocking agents. They are advantageously added to the polymer or polymer mixture before melting begins. Examples of stabilizers used are phosphorus compounds, such as phosphoric acid or phosphoric esters.
Typical antiblocking agents (also termed pigments or fillers in this context) are inorganic and/or organic particles, such as calcium carbonate, amorphous silica, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, lithium fluoride, the calcium, barium, zinc, or manganese salts of the dicarboxylic acids used, carbon black, titanium dioxide, kaolin, or crosslinked polystyrene particles, or crosslinked acrylate particles.
Other additives which may be selected are mixtures of two or more different antiblocking agents or mixtures of antiblocking agents of the same constitution but different particle size. The particles may be added to the individual layers in conventional concentrations, e.g. in the form of a glycolic dispersion during the polycondensation process, or by way of masterbatches during the extrusion process (or else in the form of “direct additive addition” [DAA] directly into the extruder during the extrusion process).
According to the invention, the film comprises fillers at a concentration which is preferably from 0.02 to 1% by weight, and preferably comprises fillers at a concentration of from 0.04 to 0.8% by weight, and particularly preferably comprises fillers at a concentration of from 0.06 to 0.6% by weight, based on the weight of the film. (EP-A-0 602 964 gives by way of example a detailed description of suitable fillers and suitable antiblocking agents.)
If the filler concentration is less than 0.02% by weight, the film can block and then, by way of example, can no longer be wound. If, in contrast, the filler concentration is more than 1.0% by weight, the film sometimes loses its high transparency and becomes cloudy. It cannot then be used as a packaging film, for example.
In one preferred embodiment of the invention, the filler content in the outer layers (A and/or C) is less than 0.6% by weight, preferably less than 0.5% by weight, and particularly preferably less than 0.4% by weight, based on the weight of the respective outer layer.
By way of example, the inventive film has excellent suitability for the packaging of foods (e.g. cheese, meat, etc). The film has excellent resistance to solvents, and also to water. By way of example, it has been found that when the inventive film is extracted in an atmosphere comprising water vapor at 121° C. the amount of extract was not measurable.
The total thickness of the inventive polyester film can vary within wide limits and depends on the intended application. It is generally from 6 to 300 μm, preferably from 8 to 200 μm, particularly preferably from 10 to 100 μm, and where outer layers have been applied the proportion made up by the base layer (B) is preferably from 40 to 99% of total thickness.
The present invention also provides a process for production of the film. An advantageous method for production of the film introduces the respective components (component I=polyester homopolymer or polyester copolymer or a mixture thereof, component II=poly(m-xyleneadipamide) (MXD6) pellets) directly into the extruder. The materials can be extruded at from about 250 to 300° C. For reasons of process technology (thorough mixing of the various polymers) it has proven particularly advantageous here to carry out the extrusion of the mixture in a vented twin-screw extruder (but a single-screw extruder can also be used with success in a less preferred variant).
The polymers for any outer layers (C and/or A) present are advantageously introduced into the (coextrusion) system by way of other extruders; here again, twin-screw extruders are in principle to be preferred over single-screw extruders. The melts are shaped in a coextrusion die to give flat melt films and mutually superposed in layers. The multilayer film is then drawn off and solidified with the aid of a chill roller and, if appropriate, other rollers.
According to the invention, the biaxial stretching process is carried out sequentially. It is preferable here to begin by stretching longitudinally (i.e. in machine direction MD) and then to stretch transversely (i.e. perpendicularly to the machine direction, TD). By way of example, the longitudinal stretching can be carried out with the aid of two rollers rotating at different speeds corresponding to the desired stretching ratio. For the transverse stretching process use is generally made of an appropriate tenter frame.
The temperature at which the biaxial stretching process is carried out can vary within a relatively wide range, and depends on the desired properties of the film.
According to the invention, the film is stretched longitudinally (MDO) in a temperature range from, preferably, 80 (heating temperatures 80-130° C., depending on the stretching ratio and on the stretching process used) to 130° C. (stretching temperatures 80-130° C., depending on the stretching ratio and on the stretching process used), and the transverse stretching process is carried out in a temperature range from, preferably, 90 (start of the stretching process) to 140° C. (end of the stretching process).
According to the invention, the longitudinal stretching ratio is greater than 3.0, and is preferably in the range from 3.1:1 to 5.0:1, preferably in the range from 3.2:1 to 4.9:1, and particularly preferably in the range from 3.3:1 to 4.8:1. According to the invention, the transverse stretching ratio is greater than 3.0, and is preferably in the range from 3.2:1 to 5.0:1, preferably in the range from 3.3:1 to 4.8:1, and particularly preferably in the range from 3.4:1 to 4.6:1.
The longitudinal orientation of the film may be carried out by standard methods, e.g. with the aid of two rollers rotating at different speeds corresponding to the desired stretching ratio. This is called single-gap stretching. In this stretching process, the film is heated to the stretching temperature on two or more preheat rollers arranged in series, and is stretched by the desired stretching ratio AMD (cf.
The longitudinal orientation of the film is preferably carried out in a multistage process, particularly preferably in a two-stage process, e.g. with the aid of two or more rollers running at different speeds corresponding to the desired stretching ratio. In the case of the two-stage stretching process, the film is preferably oriented by the process published in EP-A-0 049 108, whose United States equivalent is U.S. Pat. No.4,370,291 (cf.
In the heat-setting process which follows, the film is kept at a temperature of about 150-250° C. for a period of about 0.1-10 s. The film is then wound up conventionally.
The gloss of the film surfaces is preferably greater than 80 when the angle of incidence is 20°. In one preferred embodiment, the gloss of the film surfaces is more than 100, and it is more than 120 in one particularly preferred embodiment.
The haze of the film is preferably smaller than 20%. In one preferred embodiment, the haze of the film is smaller than 15%, and it is smaller than 10% in one particularly preferred embodiment. Low haze makes the film particularly suitable for the packaging application.
Another advantage of the invention is that the production costs of the inventive film are not substantially above those of a film comprised of standard polyesters. It has also been ensured that an amount that is preferably from 5 to 60% by weight, in particular from 10 to 50% by weight, in each case based on the total weight of the film, of cut material arising directly in the plant during film production can be used again in the form of regrind for film production, without any significant resultant adverse effect on the physical properties of the film.
The inventive film is particularly suitable for packaging of foods or of other consumable items. It also has excellent suitability for metallizing or vacuum-coating with ceramic substances. It features excellent barrier properties with respect to gases such as oxygen and CO2.
The table below (Table 1) gives the most important inventive and preferred properties of the film.
Test Methods
The following methods were used to characterize the raw materials and the films:
(DIN=Deutsches Institut fur Normung [German Institute for Standardization]
ASTM=American Society for Testing and Materials)
(1) Oxygen Transmission (OTR=Oxygen Transmission Rate)
The level of the oxygen barrier was measured using an OXTRAN® 100 from Mocon Modern Controls (USA) to DIN 53 380, Part 3 (23° C., 50% relative humidity, on both sides of the film). OTR was always measured here on film thickness 12 μm.
(2) Haze
Haze of the film was determined to ASTM D1003-52.
(3) SV (Standard Viscosity)
Standard viscosity SV (DCA) is measured in dichloroacetic acid by a method based on DIN 53726. Intrinsic viscosity (IV) is calculated from standard viscosity as follows:
IV (DCA)=6.907·10−4 SV (DCA)+0.063096
(4) Gloss
Gloss was determined to DIN 67530. Reflectance was measured, this being an optical value characteristic of a film surface. Using a method based on the standards ASTM D523-78 and ISO 2813, the angle of incidence was set at 20° or 60°. A beam of light hits the flat test surface at the set angle of incidence and is reflected or scattered by the surface. A proportional electrical variable is displayed, representing light rays hitting the photoelectronic detector. The value measured is dimensionless and has to be stated together with the angle of incidence. The gloss test values given in the examples were measured at an angle of incidence of 20°.
(5) Roughness
The roughness Ra of the film was determined to DIN 4768 with a cut-off of 0.25 mm. This test was not carried out on a glass plate, but in a ring. In the ring method, the film is clamped into a ring so that neither of the two surfaces is in contact with a third surface (e.g. glass).
(6) Modulus of Elasticity
Modulus of elasticity is determined to DIN 53 457 or ASTM 882.
(7) Ultimate Tensile Strength, Tensile Strain at Break
Ultimate tensile strength and tensile strain at break are determined to DIN 53 455.
(8) Coefficient of Friction
The coefficient of friction was determined using DIN 53375 or ASTM 1894.
The following Examples illustrate the invention. The products used (trade marks and producer) are in each case stated only once, and then also apply to the subsequent Examples.
Chips comprised of polyethylene terephthalate (prepared by way of the transesterification process using Mn as transesterification catalyst, Mn concentration in polymer: 100 ppm; dried at a temperature of 150° C. to a residual moisture level below 100 ppm) and poly(m-xyleneadipamide) (MXD6) (likewise dried at a temperature of 150° C.) were introduced to the extruder (twin-screw extruder with two vents) in a mixing ratio of 90:10, and a single-layer film was extruded. The film was oriented longitudinally (in two stages) and transversely, and a transparent film with total thickness 12 μm was obtained.
The production conditions in the individual steps of the process are as follows:
The surfaces of the film had the high gloss demanded, and the film had the low haze demanded, the low OTR demanded, and the high mechanical strength demanded. The film was moreover capable of very efficient production, i.e. without break-offs, and also exhibited the desired processing behavior (inter alia good winding quality, e.g. no blocking points, no longitudinal corrugations, no raised edges).
Chips comprised of a copolyester comprised of terephthalate and of isophthalate units, and of ethylene glycol units (the proportion of ethylene terephthalate being 90 mol % and the proportion of ethylene isophthalate being 10 mol %, prepared by way of the transesterification process using Mn as transesterification catalyst, Mn concentration in polymer: 100 ppm; dried at a temperature of 100° C. to a residual moisture level below 100 ppm) and poly(m-xyleneadipamide) (MXD6) (likewise dried at a temperature of 100° C.) were introduced to the extruder (twin-screw extruder with two vents) in a mixing ratio of 90:10, and a single-layer film was extruded. The film was oriented longitudinally (in two stages) and transversely, and a transparent film with total thickness 12 μm was obtained.
The production conditions in the individual steps of the process are as follows:
The surface of the film had the high gloss demanded, and the film had the low haze demanded, the low OTR demanded, and the high mechanical strength demanded. The film was moreover capable of very efficient production, i.e. without break-offs, and also exhibited the desired processing behavior (inter alia good winding quality, e.g. no blocking points, no longitudinal corrugations, no raised edges).
The mixing ratio of MXD6 and polyethylene terephthalate was changed from that of Example 1. In this Example, chips comprised of polyethylene terephthalate and poly(m-xyleneadipamide) (MXD6, dried) were introduced in a mixing ratio of 85:15 into the extruder (twin-screw extruder), and a single-layer film was extruded. The film was oriented longitudinally (in two stages) and transversely, and a transparent film was obtained with total thickness 12 μm.
The production conditions in the individual steps of the process are as follows:
The surface of the film had the high gloss demanded, and the film had the low haze demanded, the low OTR demanded, and the high mechanical strength demanded. The film was moreover capable of very efficient production, i.e. without break-offs, and also exhibited the desired processing behavior, as in the preceding Examples.
The mixing ratio of MXD6 and polyethylene terephthalate was changed from that of Example 1. In this Example, chips comprised of polyethylene terephthalate and poly(m-xyleneadipamide) (MXD6, dried) were introduced in a mixing ratio of 75:25 into the extruder (twin-screw extruder), and a single-layer film was extruded. The film was oriented longitudinally (in two stages) and transversely, and a transparent film was obtained with total thickness 12 μm.
The production conditions in the individual steps of the process are as follows:
The surface of the film had the high gloss demanded, and the film had the low haze demanded, the low OTR demanded, and the high mechanical strength demanded. The film was moreover capable of very efficient production, i.e. without break-offs, and also exhibited the desired processing behavior, as in the preceding Examples.
The mixing ratio of MXD6 and polyethylene terephthalate was changed from that of Example 1. In this Example, chips comprised of polyethylene terephthalate and poly(m-xyleneadipamide) (MXD6) were introduced in a mixing ratio of 60:40 into the extruder (twin-screw extruder), and a single-layer film was extruded. The film was oriented longitudinally (in two stages) and transversely, and a transparent film was obtained with total thickness 12 μm.
The production conditions in the individual steps of the process are as follows:
The surface of the film had the high gloss demanded, and the film had the low haze demanded, the low OTR demanded, and the high mechanical strength demanded. The film was moreover capable of very efficient production, i.e. without break-offs, and also exhibited the desired processing behavior, as in the preceding Examples.
Unlike in Example 1, coextrusion was now used to produce a three-layer film with ABA structure. The composition of the base layer (B) here was unchanged from Example 1. For this process, chips comprised of polyethylene terephthalate and of a filler were also introduced into the extruder (twin-screw extruder) for the outer layers (A). A transparent, three-layer film with ABA structure and total thickness 12 μm was obtained. The thickness of each of the outer layers (A) was 1.0 μm.
Outer Layer (A):
The production conditions in the individual steps of the process were similar to those in Example 1. The film had the low haze demanded and the low OTR demanded. The film was moreover capable of very efficient production, i.e. without break-offs, and also exhibited the desired processing behavior.
A film was produced corresponding to Example 1 of JP 2001-001399. The roughness values for this film are too high, and the gloss of the film, and in particular the mechanical properties, are not within the inventive range. The wound-up roll also exhibits blocking points (points where there was blocking of the laps of film) due to absence of fillers within the film.
The properties and the structure of the films produced in the Examples and in the comparative examples (CE) are given in Table 2.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 030 980.9 | Jun 2004 | DE | national |