The present application claims priority pursuant to 35 U.S.C. 119(e) to U.S. Provisional Application, Ser. No. 60/742,251, filed Dec. 5, 2005.
1. Field of the Invention
The present invention relates generally to telecommunication line equipment. More particularly, the invention relates to multiple cross connect hardware gels and methods for fabricating such gels.
2. Technical Background
Non-silicone sealants are useful for environmental protection in outdoor located equipment as well as outdoor located telecommunication equipment. Silicone sealants often wick or flow to neighboring telecommunication equipment, which can adversely affect certain components of equipment. Therefore, a need exists to replace silicone sealants with non-silicone sealants.
Furthermore, it is often desired to use polycarbonate as a material for many portions of such telecommunication equipment, for at least the reason of the relatively cost-effective price of polycarbonate. However, it is well known that many sealants may chemically attack polycarbonate over time, thus causing failure of such equipment in certain situations. Therefore, a need exists for a non-silicone sealant that does not significantly chemically attack polycarbonate components.
The various embodiments of the present invention address the above needs and achieve other advantages by providing a polyester gel that is adapted for use with polycarbonate components, including housings for electronic components, such that the gel does not chemically attack or otherwise compromise the material properties of the polycarbonate component. The polyester gel, once cured, is able to retain and seal electrical components without undesirable wicking and without undesirable chemical corrosion of associated polycarbonate components.
In one aspect, the present invention is directed to a composition including a part A including a maleinized polybutadiene family member in an amount of at least 50 parts of part A, a plasticizer in an amount of at least 30 parts of part A, and a stabilizer in an amount of at least 1 part of part A. The composition also includes a part B including a liquid hydroxyl terminated polymer of butadiene in an amount of at least 60 parts of part B, a plasticizer in an amount of at least 30 parts of part B, and a catalyst in at least 0.0007 parts of part B, wherein parts A and B are about in a one to one ratio.
In one embodiment, the stabilizer includes tetrakis-(methylene-(3,5-diterbutyl-4-hydrocinnamate) methane.
In one embodiment, the maleinized polybutadiene family member has a molecular weight of less than 2800 and an anhydride equivalent weight of more than 1000.
In one embodiment, the maleinized polybutadiene family member has a molecular weight of about 2700 and an anhydride equivalent weight of about 1238.
In one embodiment, the maleinized polybutadiene family member has a viscosity at 25° C. of about 6500 cps and a number of functional groups per chain ratio of two.
In one embodiment, the liquid hydroxyl terminated polymer of butadiene comprises a Poly bd R-45HTLO resin.
In one aspect, the present invention is directed to a composition comprising a gel, wherein the gel has a tensile strength of about 0.04 MegaPascals (MPa), an elongation to break of about 290 percent, a toughness of about 0.09 MPa, and a shore 000 hardness of about 81.
In one embodiment, the gel has a dielectric constant at 25° C. of about 2.7 and an ionic conductivity of less than 1 (ohms-cm)−1.
In one embodiment, the gel has a tensile strength of 0.046 MPa, an elongation to break of 292.4 percent, and a toughness of 0.094 MPa.
Additional features and advantages of the invention are set out in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present exemplary embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed, and not for reasons of limitation. The accompanying drawings are included to provide a further understanding of the invention and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the detailed description, serve to explain the principles and operations thereof, and are not provided for reasons of limitation.
Reference will now be made in detail to several exemplary embodiments of the invention, and examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
The connector 10 of
In one aspect, the present invention is directed to a composition including a part A including a maleinized polybutadiene family member in an amount of at least 50 parts of part A, a plasticizer in an amount of at least 30 parts of part A, and a stabilizer in an amount of at least 1 part of part A. The composition also includes a part B including a liquid hydroxyl terminated polymer of butadiene in an amount of at least 60 parts of part B, a plasticizer in an amount of at least 30 parts of part B, and a catalyst in at least 0.0007 parts of part B, wherein parts A and B are about in a one to one ratio with respect to weight. The resultant composition (a gel) of parts A and B combined has a tensile strength of about 0.046 (MPa), an elongation to break (%) of about 292.4, a toughness (MPa) of about 0.094, a hardness (shore 000) of about 81, and a dielectric constant at 25° C. of 2.7 (ohms-cm)−1. The gel is polyester gel which does not chemically attack the polycarbonate components of connector 10. Therefore, it has been empirically determined that connector 10 with the herein described gel as a sealing compound can withstand multiple temperature cycling and humidity exposure without failing or cracking. The gel is compatible with electronic circuitry and inside wire insulation also. An example of a liquid hydroxyl terminated polymer of butadiene is Poly bd R-45HTLO available from the Sartomer Company. The liquid hydroxyl terminated polymer of butadiene in part B can be from 60 to 70 parts. The plasticizer can be from 30 to 40 parts of part B, and the catalyst can be from 0.007 to 0.008 parts. A suitable catalyst is “Polycat 41” available from Air Products.
In one embodiment, the stabilizer includes tetrakis-(methylene-(3,5-diterbutyl-4-hydrocinnamate) methane. An example of a stabilizer is Irganox 1010 available from the Ciba Specialty Chemicals Corporation. The plasticizer can be from 50 parts to 30 parts of part A.
In one embodiment, the maleinized polybutadiene family member has a molecular weight of less than 2800 and an anhydride equivalent weight of more than 1000. An example of maleinized polybutadiene family member is Ricon 130 MA8 available from the Sartomer Company of Eston Pa. Ricon 130 MA8 has a Molecular weight (Mn) of about 2700 g/mole, a viscosity @25° of 6500 cps (centipoise), a number of functional groups per chain of 2, and an anhydride equivalent weight of about 1238. Therefore, in one embodiment, the maleinized polybutadiene family member has a molecular weight of about 2700 and an anhydride equivalent weight of about 1238. The Ricon 130 MA8 can be between 50 and 70 parts of part A. Typically, the plasticizers of parts A and B are the same plasticizer and are an inert component.
In one embodiment, the maleinized polybutadiene family member has a viscosity at 25° C. of about 6500 cps and a number of functional groups per chain ratio of two.
In one embodiment, the liquid hydroxyl terminated polymer of butadiene comprises a Poly bd R-45HTLO resin.
In one aspect, the present invention is directed to a composition comprising a gel, wherein the gel has a tensile strength of about 0.04 MegaPascals (MPa), an elongation to break of about 290 percent, a toughness of about 0.09 MPa, and a shore 000 hardness of about 81.
In one embodiment, the gel has a dielectric constant at 25° C. of about 2.7 and an ionic conductivity of less than 1 (ohms-cm)−1.
In one embodiment, the gel has a tensile strength of 0.046 MPa, an elongation to break of 292.4 percent, and a toughness of 0.094 MPa.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
60742251 | Dec 2005 | US |