Poly(ethylene chlorotrifluoroethylene) membranes

Information

  • Patent Grant
  • 7632439
  • Patent Number
    7,632,439
  • Date Filed
    Wednesday, January 31, 2007
    17 years ago
  • Date Issued
    Tuesday, December 15, 2009
    14 years ago
Abstract
Porous polymeric membranes including HALAR® (poly(ethylene chlorotrifluoroethylene)) and related compounds and the methods of production thereof which avoid the use of toxic solvents. Preferred solvents, coating agents and pore forming agents are citric acid ethyl ester or glycerol triacetate. The membranes may be in the form of a hollow fiber or flat sheet, and may include other agents to modify the properties of the membranes, such as the hydrophilic/hydrophilic balance. Leachable agents may also be incorporated into the membranes.
Description
FIELD OF THE INVENTION

The invention relates to HALAR® (ethylene chlorotrifluoroethylene copolymer, or poly(ethylene chlorotrifluoroethylene)) and related membranes for use in ultrafiltration and microfiltration and in particular to membranes in the form of hollow fibres, and to methods of preparing said membranes.


BACKGROUND OF THE INVENTION

The following discussion is not to be construed as an admission with regard to the common general knowledge in Australia.


Synthetic polymeric membranes are well known in the field of ultrafiltration and microfiltration for a variety of applications including desalination, gas separation, filtration and dialysis. The properties of the membranes vary depending on the morphology of the membrane i.e. properties such as symmetry, pore shape, pore size and the chemical nature of the polymeric material used to form the membrane.


Different membranes can be used for specific separation processes, including microfiltration, ultrafiltration and reverse osmosis. Microfiltration and ultrafiltration are pressure driven processes and are distinguished by the size of the particle or molecule that the membrane is capable of retaining or passing. Microfiltration can remove very fine colloidal particles in the micrometer and submicrometer range. As a general rule, microfiltration can filter particles down to 0.05 μm, whereas ultrafiltration can retain particles as small as 0.01 μm and smaller. Reverse Osmosis operates on an even smaller scale.


Microporous phase inversion membranes are particularly well suited to the application of removal of viruses and bacteria.


A large surface area is needed when a large filtrate flow is required. A commonly used technique to minimize the size of the apparatus used is to form a membrane in the shape of a hollow porous fibre. A large number of these hollow fibres (up to several thousand) are bundled together and housed in modules. The fibres act in parallel to filter a solution for purification, generally water, which flows in contact with the outer surface of all the fibres in the module. By applying pressure, the water is forced into the central channel, or lumen, of each of the fibres while the microcontaminants remain trapped outside the fibres. The filtered water collects inside the fibres and is drawn off through the ends.


The fibre module configuration is a highly desirable one as it enables the modules to achieve a very high surface area per unit volume.


In addition to the arrangement of fibres in a module, it is also necessary for the polymeric fibres themselves to possess the appropriate microstructure to allow microfiltration to occur.


Desirably, the microstructure of ultrafiltration and microfiltration membranes is asymmetric, that is, the pore size gradient across the membrane is not homogeneous, but rather varies in relation to the cross-sectional distance within the membrane. Hollow fibre membranes are preferably asymmetric membranes possessing tightly bunched small pores on one or both outer surfaces and larger more open pores towards the inside edge of the membrane wall.


This microstructure has been found to be advantageous as it provides a good balance between mechanical strength and filtration efficiency.


As well as the microstructure, the chemical properties of the membrane are also important. The hydrophilic or hydrophobic nature of a membrane is one such important property.


Hydrophobic surfaces are defined as “water hating” and hydrophilic surfaces as “water loving”. Many of the polymers used to cast porous membranes are hydrophobic polymers. Water can be forced through a hydrophobic membrane by use of sufficient pressure, but the pressure needed is very high (150-300 psi), and a membrane may be damaged at such pressures and generally does not become wetted evenly.


Hydrophobic microporous membranes are typically characterised by their excellent chemical resistance, biocompatibility, low swelling and good separation performance. Thus, when used in water filtration applications, hydrophobic membranes need to be hydrophilised or “wet out” to allow water permeation. Some hydrophilic materials are not suitable for microfiltration and ultrafiltration membranes that require mechanical strength and thermal stability since water molecules can play the role of plasticizers.


Currently, poly(tetrafluoroethylene) (PTFE), polyethylene (PE), polypropylene (PP) and poly(vinylidene fluoride) (PVDF) are the most popular and available hydrophobic membrane materials. PVDF exhibits a number of desirable characteristics for membrane applications, including thermal resistance, reasonable chemical resistance (to a range of corrosive chemicals, including sodium hypochlorite), and weather (UV) resistance.


While PVDF has to date proven to be the most desirable material from a range of materials suitable for microporous membranes, the search continues for membrane materials which will provide better chemical stability and performance while retaining the desired physical properties required to allow the membranes to be formed and worked in an appropriate manner.


In particular, a membrane is required which has a superior resistance (compared to PVDF) to more aggressive chemical species, in particular, oxidising agents and to conditions of high pH i.e. resistance to caustic solutions. In particular with water filtration membranes, chlorine resistance is highly desirable. Chlorine is used to kill bacteria and is invariably present in town water supplies. Even at low concentrations, a high throughput of chlorinated water can expose membranes to large amounts of chlorine over the working life of a membrane can lead to yellowing or brittleness which are signs of degradation of the membrane.


Microporous synthetic membranes are particularly suitable for use in hollow fibres and are produced by phase inversion. In this process, at least one polymer is dissolved in an appropriate solvent and a suitable viscosity of the solution is achieved. The polymer solution can be cast as a film or hollow fibre, and then immersed in precipitation bath such as water. This causes separation of the homogeneous polymer solution into a solid polymer and liquid solvent phase. The precipitated polymer forms a porous structure containing a network of uniform pores. Production parameters that affect the membrane structure and properties include the polymer concentration, the precipitation media and temperature and the amount of solvent and non-solvent in the polymer solution. These factors can be varied to produce microporous membranes with a large range of pore sizes (from less than 0.1 to 20 μm), and possess a variety of chemical, thermal and mechanical properties.


Hollow fibre ultrafiltration and microfiltration membranes are generally produced by either diffusion induced phase separation (the DIPS process) or by thermally induced phase separation (the TIPS process).


Determining the appropriate conditions for carrying out the TIPS process is not simply a matter of substituting one polymer for another. In this regard, casting a polymeric hollow fibre membrane via the TIPS process is very different to casting or extruding a bulk item from the same material. The TIPS procedure is highly sensitive, each polymer requiring careful selection of a co-solvent, a non-solvent, a lumen forming solvent or non-solvent, a coating solvent or non-solvent and a quench, as well as the appropriate production parameters, in order to produce porous articles with the desired chemically induced microstructure in addition to the overall extruded high fibre structure.


The TIPS process is described in more detail in PCT AU94/00198 (WO 94/17204) AU 653528, the contents of which are incorporated herein by reference.


The quickest procedure for forming a microporous system is thermal precipitation of a two component mixture, in which the solution is formed by dissolving a thermoplastic polymer in a solvent which will dissolve the polymer at an elevated temperature but will not do so at lower temperatures. Such a solvent is often called a latent solvent for the polymer. The solution is cooled and, at a specific temperature which depends upon the rate of cooling, phase separation occurs and the polymer rich phase separates from the solvent.


All practical thermal precipitation methods follow this general process which is reviewed by Smolders et al in Kolloid Z.u.Z Polymer, 43, 14-20 (1971). The article distinguishes between spinodal and binodal decomposition of a polymer solution.


The equilibrium condition for liquid-liquid phase separation is defined by the binodal curve for the polymer/solvent system. For binodal decomposition to occur, the solution of a polymer in a solvent is cooled at an extremely slow rate until a temperature is reached below which phase separation occurs and the polymer rich phase separates from the solvent.


It is more usual for the phases not to be pure solvent and pure polymer since there is still some solubility of the polymer in the solvent and solvent in the polymer, there is a polymer rich phase and a polymer poor phase. For the purposes of this discussion, the polymer rich phase will be referred to as the polymer phase and the polymer poor phase will be referred to as the solvent phase.


When the rate of cooling is comparatively fast, the temperature at which the phase separation occurs is generally lower than in the binodal case and the resulting phase separation is called spinodal decomposition.


According to the process disclosed in U.S. Pat. No. 4,247,498, the relative polymer and solvent concentrations are such that phase separation results in fine droplets of solvent forming in a continuous polymer phase. These fine droplets form the cells of the membrane. As cooling continues, the polymer freezes around the solvent droplets.


As the temperature is lowered, these solubilities decrease and more and more solvent droplets appear in the polymer matrix. Syneresis of the solvent from the polymer results in shrinkage and cracking, thus forming interconnections or pores between the cells. Further cooling sets the polymer. Finally, the solvent is removed from the structure.


Known thermal precipitation methods of porous membrane formation depend on the polymer rich phase separating from the solvent followed by cooling so that the solidified polymer can then be separated from the solvent. Whether the solvent is liquid or solid when it is removed from the polymer depends on the temperature at which the operation is conducted and the melting temperature of the solvent.


True solutions require that there be a solvent and a solute. The solvent constitutes a continuous phase and the solute is uniformly distributed in the solvent with no solute-solute interaction. Such a situation is almost unknown with the polymer solutions. Long polymer chains tend to form temporary interactions or bonds with other polymer chains with which they come into contact. Polymer solutions are thus rarely true solutions but lie somewhere between true solutions and mixtures.


In many cases it is also difficult to state which is the solvent and which is the solute. In the art, it is accepted practice to call a mixture of polymer and solvent a solution if it is optically clear without obvious inclusions of either phase in the other. By optically clear, the skilled artisan will understand that polymer solutions can have some well known light scattering due to the existence of large polymer chains. Phase separation is then taken to be that point, known as the cloud point, where there is an optically detectable separation. It is also accepted practice to refer to the polymer as the solute and the material with which it is mixed to form the homogeneous solution as the solvent.


In the present case the inventors have sought to find a way to prepare membranes without the use of highly toxic solvents, and in particular, to prepare hollow fibre poly(ethylene chlorotrifluoroethylene) membranes. Poly(ethylene chlorotrifluoroethylene), is a 1:1 alternating copolymer of ethylene and chlorotrifluoroethylene, and having the following structure:

—(—CH2—CH2—CFCl—CF2—)n


While the embodiments of the invention are described herein with respect to HALAR® fluoropolymer, this term is used herein to encompass fluoropolymer equivalents, such as

—(—(CH2—CH2—)m—CX2—CX2—)—

wherein each X is independently selected from F or Cl, and where m is chosen so as to be between 0 and 1, so as to allow the ethylene portion of the polymer to range from 0 to 50%. An example of a HALAR® fluoropolymer equivalent is PCTFE.


It has been known for some time to produce flat sheet poly(ethylene chlorotrifluoroethylene) membranes, and the processes are disclosed in U.S. Pat. No. 4,702,836, for example. The previous methods were not amenable to producing hollow fibres and moreover, utilised solvents which are highly toxic with high environmental impact, such as 1,3,5-trichlorobenzene, dibutyl phthalate and dioctyl phthalate.


The properties of poly(ethylene chlorotrifluoroethylene) make it highly desirable in the field of ultrafiltration and microfiltration. In particular, poly(ethylene chlorotrifluoroethylene) has extremely good properties in relation to its resistance both to chlorine and to caustic solutions, but also to ozone and other strong oxidising agents. While these desiderata have been established for some time, it was hitherto unknown how to fulfill the long felt need to make hollow fibre membranes from such a desirable compound. Further, a disadvantage in relation to the existing prepararatory methods for HALAR® fluoropolymer flat sheet membranes is that they require the use of highly toxic solvents or solvents that are of dubious safety at the very least. For instance, the conventional state of the art is that the solvents needed are aromatic solvents such as dibutyl phthalate (DBP), dioctyl phthalate (DOP) and 1,3,5-trichlorobenzene (TCB). Such difficult solvents are required due to the chemical stability of poly(ethylene chlorotrifluoroethylene) and its resistance to most common solvents below 150° C.


It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative, particularly in terms of methods of production.


SUMMARY OF THE INVENTION

According to a first aspect, the invention provides a porous polymeric membrane including poly(ethylene chlorotrifluoroethylene) and formed without the use of toxic solvents, or solvents of dubious or unproven safety.


The membranes may be preferably flat sheet, or, more preferably hollow fibres.


Preferably, the porous polymeric membrane is formed by the TIPS (thermally induced phase separation) process and has an asymmetric pore size distribution. Most preferably, the fluoropolymer ultrafiltration or microfiltration membrane has an asymmetric cross section, a large-pore face and a small-pore face.


Preferably, the porous polymeric Halar membrane has pore size is in the range 0.01 μm to 20 μm. Pore size can be determined by the so called bubble point method.


According to a second aspect, the invention provides a porous polymeric membrane formed from poly(ethylene chlorotrifluoroethylene) and prepared from a solution containing one or more compounds according to formula I or formula II:




embedded image


wherein R1, R2 and R3 are independently methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl.


R4 is H, OH, COR5, OCOR5, methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy or other alkoxy,


R5 is methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl.


Preferably, R1, ═R2═R3=ethyl and R4═H.


Preferably, the pore controlling agent is citric acid ethyl ester (CITROFLEX®2) or glycerol triacetate.


The above compounds may be used as polymer solvents, coating agents or both, and may be used alone, in mixtures of the above compounds, or in conjunction with other appropriate agents.


The porous polymeric membranes of the present invention may include one or more materials compatible with poly(ethylene chlorotrifluoroethylene).


The porous polymeric membranes ultrafiltration or microfiltration of the present invention may be either hydrophobic or hydrophilic, and may include other polymeric materials compatible with poly(ethylene chlorotrifluoroethylene). Additional species adapted to modify the chemical behaviour of the membrane may also be added. In one highly preferred alternative, the porous polymeric membrane of the present invention further including modifying agent to modify the hydrophilicity/hydrophobicity balance of the membrane. This can result in a porous polymeric membrane which is hydrophilic or alternatively, a porous polymeric membrane which is hydrophobic.


According to a third aspect, the invention provides a porous polymeric membrane formed from poly(ethylene chlorotrifluoroethylene) and incorporating a leachable agent.


In one preferred embodiment, the leachable agent is silica.


Preferably, the silica is present in an amount of from 10 to 50 wt % of the final polymer, and more preferably around 30%. The silica may be hydrophobic silica or hydrophilic silica. Highly preferred are fumed silica's such as the hydrophilic AEROSIL® 200 silica and the hydrophobic AEROSIL® R 972 silica.


Preferably, the porous polymeric membranes of the present invention have one or more of the following properties: high permeability (for example, greater than 1000 LMH/hr@ 100 KPa), good macroscopic integrity, uniform wall thickness and high mechanical strength (for example, the breakforce extension is greater than 1.3N).


According to a fourth aspect, the present invention provides a method of making a porous polymeric material comprising the steps of: (a) heating a mixture comprising poly(ethylene chlorotrifluoroethylene) and a solvent system initially comprising a first component that is a latent solvent for poly(ethylene chlorotrifluoroethylene) and optionally a second component that is a non-solvent for poly(ethylene chlorotrifluoroethylene) wherein, at elevated temperature, poly(ethylene chlorotrifluoroethylene) dissolves in the solvent system to provide an optically clear solution, (b) rapidly cooling the solution so that non-equilibrium liquid-liquid phase separation takes place to form a continuous polymer rich phase and a continuous polymer lean phase with the two phases being intermingled in the form of bicontinuous matrix of large interfacial area, (c) continuing cooling until the polymer rich phase solidifies; and (d) removing the polymer lean phase from the solid polymeric material.


According to a fifth aspect, the invention provides a porous polymeric membrane formed from poly(ethylene chlorotrifluoroethylene) and containing silica and wherein said polymeric porous poly(ethylene chlorotrifluoroethylene) membrane has a coating of a coating agent including one or more compounds according to formula I or II:




embedded image



wherein R1, R2 and R3 are independently methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl.


R4 is H, OH, COR5, OCOR5, methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy or other alkoxy.


R5 is methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl.


Preferably, R1, ═R2═R3=ethyl and R4═H.


Preferably, the pore controlling agent is an environmentally friendly solvent.


Preferably, the pore controlling agent is citric acid ethyl ester or glycerol triacetate.


According to a sixth aspect, the invention provides a method of manufacturing a microfiltration or ultrafiltration membrane including the step of casting a membrane from a polymer composition including poly(ethylene chlorotrifluoroethylene).


According to a seventh aspect, the invention provides a method of forming a hollow fibre membrane comprising: forming a blend of poly(ethylene chlorotrifluoroethylene) with a compatible solvent; forming said blend into a shape to provide a hollow fibre; contacting an internal lumen surface of said blend with a lumen forming fluid; inducing thermally induced phase separation in said blend to form a hollow fibre membrane; and removing the solvent from the membrane.


Preferably, the poly(ethylene chlorotrifluoroethylene) is present in the blend in an amount ranging from 14-25%, and most preferably around 16-23%. Preferably, the pore controlling agent is an environmentally friendly solvent, such as GTA or citric acid ethyl ester. Preferably, the lumen forming fluid is digol. In highly preferred embodiments, the process is conducted at elevated temperatures, preferably above 200° C., and more preferably above 220° C.


According to an eighth aspect, the invention provides a method of forming a hollow fibre fluoropolymer membrane comprising: forming a blend of poly(ethylene chlorotrifluoroethylene) with a compatible solvent; forming said blend into a shape to provide a hollow fibre; contacting an external surface of said blend with a coating fluid; contacting an internal lumen surface of said blend with a lumen forming fluid; inducing thermally induced phase separation in said blend to form a hollow fibre membrane; and extracting the solvent from the membrane.


Preferably, the coating is selected from one or more of GTA, citric acid ethyl ester and digol.


According to an ninth aspect, the invention provides a method of forming a hollow fibre membrane comprising: forming a blend of poly(ethylene chlorotrifluoroethylene) with a compatible solvent; suspending a pore forming agent in said blend; forming said blend into a shape to provide a hollow fibre; contacting an internal lumen surface of said blend with a lumen forming fluid; inducing thermally induced phase separation in said blend to form a hollow fibre membrane; and extracting the solvent from the membrane.


Preferably, the pore forming agent is a leachable pore forming agent, such as silica.


According to a tenth aspect, the invention provides a method of forming a hollow fibre membrane comprising: forming a blend of poly(ethylene chlorotrifluoroethylene) with a compatible solvent; suspending a pore forming agent in said blend; forming said blend into a shape to provide a hollow fibre; contacting an external surface of said blend with a coating fluid; contacting an internal lumen surface of said blend with a lumen forming fluid; inducing thermally induced phase separation in said blend to form a hollow fibre membrane; and extracting the solvent from the membrane.


Preferably the pore forming agent is a leachable pore forming agent, more preferably silica. The method may further include the step of leaching said leachable pore forming agent from said membrane. Preferably, the pore forming agent is a leachable silica, which is leached from the dope by caustic solution.


In certain preferred embodiments, the digol is used as a non-solvent and independently water is used as a quench fluid.


According to an eleventh aspect, the invention provides a method of forming a hollow fibre membrane comprising: forming a blend of poly(ethylene chlorotrifluoroethylene) with a compatible solvent; suspending a leachable pore forming agent in said blend; forming said blend into a shape to provide a hollow fibre; contacting an internal lumen surface of said blend with a lumen forming fluid; inducing thermally induced phase separation in said blend to form a hollow fibre membrane; extracting the solvent from the membrane; and leaching said leachable pore forming agent from said membrane.


According to a twelfth aspect, the invention provides a method of forming a hollow fibre membrane comprising: forming a blend of poly(ethylene chlorotrifluoroethylene) with a compatible solvent; suspending a leachable pore forming agent in said blend; forming said blend into a shape to provide a hollow fibre; contacting an external surface of said blend with a coating fluid; contacting an internal lumen surface of said blend with a lumen forming fluid; inducing thermally induced phase separation in said blend to form a hollow fibre membrane; extracting the solvent from the membrane; and leaching said leachable pore forming agent from said membrane.


Preferably, the pore forming agent is a leachable pore forming agent, such as silica, which is leached from the dope by caustic solution, preferably 5 wt %.


Preferably, digol is used as a non-solvent and independently water is used as a quench fluid.


According to a thirteenth aspect, the present invention provides the use of Halar for forming a hollow fibre ultrafiltration or microfiltration membrane.


According to a fourteenth aspect, the present invention provides method of forming a polymeric ultrafiltration or microfiltration membrane including the steps of: preparing a leachant resistant poly(ethylene chlorotrifluoroethylene) membrane dope; incorporating a leachable pore forming agent into the dope; casting a membrane; and leaching said leachable pore forming agent from said membrane with said leachant.


Preferably, the leachable pore forming agent is an inorganic solid with an average particle size less than 1 micron, and most preferably is leachable silica. In highly preferred embodiments, the silica is present in around 3-9%.


Preferably, the leachant is a caustic solution.


The invention also provides a porous polymeric poly(ethylene chlorotrifluoroethylene) microfiltration or ultrafiltration membrane when prepared by any of the preceding aspects.


According to a fifteenth aspect, the invention provides a microporous poly(ethylene chlorotrifluoroethylene) membrane prepared from an environmentally friendly solvent or mixture of environmentally friendly solvents.


Preferably, the membrane is a flat sheet or hollow fibre membrane.


Preferably, the flat sheet membrane is prepared from an environmentally friendly solvent or mixture of solvents containing one or more compounds according to the following formula:




embedded image



wherein R1, R2 and R3 are independently methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl.


R4 is H, OH, COR5, OCOR5, methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl, methoxy, ethoxy, propoxy, butoxy, pentoxy, hexoxy or other alkoxy.


R5 is methyl, ethyl, propyl, butyl, pentyl, hexyl or other alkyl.


Preferably, R1═R2═R3=ethyl and R4═H.


Preferably, the pore controlling agent is citric acid ethyl ester or glycerol triacetate.


The term “environmentally friendly” as used herein refers to materials having a lesser or reduced effect on human health and the environment when compared with competing products or services that serve the same purpose. In particular, “environmentally friendly” refers to materials which have low toxicity to plants and animals, especially humans. Environmentally friendly also encompasses biodegradable materials.


Preferably, the environmentally friendly solvents used in the present invention are not recognised as hazardous to the health of humans or other organisms, either when subject exposure is acute (short term/high dose) or long term (typically at a lower dose).


It is preferable, that the acute toxicity below, ie it is preferable if the solvents have a high LD50. For example, the LD50 of glycerol triacetate in rodents is around 3000 mg/kg bodyweight, whereas in the case of 1,3,5-trichlorobenzene, the LD50 is as low as 300-800 mg/kg. Preferably in the present invention, the LD50 is above 1000 mg/kg, and more preferably above 2000 mg/kg.


However, as well as acute toxicity, it is also highly desirable that the solvents do not show long term, low level exposure effects, and are not carcinogenic, mutagenic or teratogenic. This will not so much be reflected by their LD50's (although these are a factor), but reflects factors such as the ability of the solvent to bioaccumulate as well as its inherent toxic and mutagenic properties. Preferably, the solvents of the present invention do not bioaccumulate. In this regard, the biodegradability of the solvent is important, and high biodegradability is preferred.


It is also necessary to consider other ecotoxicological effects such as the toxicity to non-humans/non-mammals, and factors such as whether the solvent is an ozone depleting compound.


In terms of structural considerations, the type of structural features which may be found in suitable environmentally friendly solvents include the presence of degradable groups, eg hydrolysable groups, such as esters, (especially when these result in much smaller molecules, such as C4 or less); absence of halogens (such as chlorine); and the absence of aromatic rings. The preferred solvents of the present invention exhibit these three favourable characteristics.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a and 1b are diagrams of alternative TIPS processes used to prepare HF membranes



FIGS. 2
a and 2b are Scanning Electron Micrographs of the membranes of the present invention.



FIGS. 3
a and 3b are Scanning Electron Micrographs of the membranes of the present invention.



FIG. 4 shows the results of IGG filtration using the membranes of the present invention.



FIG. 5 is a summary of membrane production.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The TIPS process is described in more detail in PCT AU94/00198 (WO 94/17204) AU 653528, the contents of which are incorporated herein by reference. The current method used to prepare the membranes of the present invention is described herein in simplified form.


In one preferred form of the invention, poly (ethylene chlorotrifluoroethylene) is formed as a hollow fibre. The poly (ethylene chlorotrifluoroethylene) is dissolved in a suitable solvent and then passed through an annular co-extrusion head.


There are two possible ways to conduct the methods of the present invention in relation to hollow fibres. One is via a coextrusion head having three concentric passageways, as shown in cross section FIG. 1b, the other is via a quadruple co-extrusion head having four concentric passageways is shown in cross section in FIG. 1a. The principle is broadly the same in both cases, except for the way the quench fluid is contacted with the fibre.


In both cases, the axial passageway 1 may contain a lumen forming fluid 11. The first outwardly concentric passageway 2 contains a homogenous mixture of the polymer and solvent system 12 to form the membrane, the next outwardly concentric passageway 3 has a coating fluid 13. In the case of the triple extrusion head, the quench is a bath either directly adjacent the extrusion head or slightly spaced below it with an intermediate air gap. In the quadruple extrusion head, the outermost passageway 4 applies a quench fluid 14 to the fibre.


Under carefully thermally controlled conditions, the lumen forming fluid, the membrane forming solution and the coating fluid are coating fluid are contacted with a quench fluid at a predetermined temperature (and flow rate, if the quench is applied by means of an outermost concentric passageway). The poly (ethylene chlorotrifluoroethylene) solution comes into contact with the lumen forming fluid on the inside of the hollow fibre and with the coating fluid and/or quench bath solution on the outside of the hollow fibre.


The lumen and coating fluids contain one or more components of the solvent system, alone or in combination with other solvents, in selected proportions (the first component may be absent). The composition of the coating and lumen fluids predetermine the pore size and frequency of pores on the membrane surfaces.


Each fluid is transported to the extrusion head by means of individual metering pumps. The three components are individually heated and are transported along thermally insulated and heat traced pipes. The extrusion head has a number of temperature zones. The lumen fluid, membrane forming solution (dope) and coating fluid are brought to substantially the same temperature in a closely monitored temperature zone where the dope is shaped. As mentioned above, the exact nature of the quench depends on whether the quadruple or triple extrusion head is used. In the quadruple, the quench fluid is introduced via an outer concentric passageway. The fibre may travel down the quench tube at a significantly different linear speed from the quench fluid. The fibre may then pass into a further quantity of quenching fluid if desired.


In the triple extruder system, the fibre passes out of the die; which may be optionally in the shape of a stem to assist in determining fibre structure. The fibre may pass through an optional air gap before passing into a quench bath. Most fibres disclosed herein were prepared by the triple extrusion head, as will be clear by the inclusion of an air gap distance in the production parameters.


When the quench fluid is contacted with the dope, the dope undergoes non-equilibrium liquid-liquid phase separation to form a bicontinuous matrix of large interfacial area of two liquids in which the polymer rich phase is solidified before aggregated separation into distinct phases of small interfacial area can take place.


Preferably, any air, gas or vapour (not being a gas or vapour that serves as the lumen fluid), is excluded during extrusion and the fibre is stressed axially to stretch it by a factor ranging from 1.5 to 5, thereby elongating the surface pores.


The hollow fibre membrane leaves the extrusion head completely formed and there is no need for any further formation treatment except for removing the solvent system from the membrane in a post-extrusion operation that is common to membrane manufacturing process. In a preferred method, an appropriate solvent that does not dissolve the polymer but is miscible with the dope solvents is used to remove the solvent system for the polymer from the finished membrane.


The lumen forming fluid may be selected from a wide variety of substances such as are disclosed herein. The same substance may be used as the coating and quenching liquids. Water or virtually any other liquid may be used as the quench liquid. Water is used if a highly asymmetric structure is desired.


Asymmetric membranes can on rare occasions result from the TIPS process. The rate and speed of de-mixing occurs faster at the outer surface of the membrane and slower further away from the interface. This results in a pore size gradient with smaller pores at the surface and larger pores further inwards. The pores at the interface which in a hollow fibre are the outer layer of the fibre and the wall of the lumen may, in some circumstances, be so small that a “skin” region occurs. This is about one micron thick and is the critical region for filtration. Thus, the outside of the fibre is small pored whereas the centre of the polymeric region has large pore size.


The initial poly (ethylene chlorotrifluoroethylene) membrane trials were conducted by extrusion from small scale apparatus into a water quench, using either glycerol triacetate (GTA) or citric acid ethyl ester as the solvent. The structure of the membranes as observed by SEM appeared to be excellent, although there was some degree of skinning. The membrane prepared from citric acid ethyl ester appeared the most promising and had a relatively open skin with a number of larger holes.


A poly(ethylene chlorotrifluoroethylene) membrane was prepared by extrusion in the manner described above for the TIPS process. The poly (ethylene chlorotrifluoroethylene) membranes were initially prepared without the use of a coating fluid, using GTA (Table 1) or citric acid ethyl ester (Table 2) as solvent.









TABLE 1







Uncoated Poly(Ethylene Chlorotrifluoroethylene) membrane -


GTA Solvent








Parameter
Value





Solvent
100% Glycerine Triacetate



(GTA)


Lumen
100% Digol


Poly (ethylene chlorotrifluoroethylene)
24%


Concentration


Barrel Temperature
230° C.


Solvent injectors
230° C.


Throughput
100 cc/min


Screw speed
250 rpm


Die Temperature
212° C.









The dope was completely clear and homogeneous, indicating complete solubility of the poly(ethylene chlorotrifluoroethylene) in the GTA at 230° C. The dope solidified under ambient conditions after approximately 5 seconds. The fibre was extruded through a die at a temperature of 212° C. into a water quench. The air gap was approximately 15 mm and the lumen forming liquid was diethylene glycol (digol).


Selecting a die temperature which is too low can lead to pulsing of the fibre and blockages in the die. HALAR® fluoropolymer melts at 240° C. and dissolves in GTA between 210° C. and 220° C. with a cloud point around 215° C. The solvent was varied to CITROFLEX® 2 citric acid ethyl ester as per Table 2.









TABLE 2







Uncoated Poly(Ethylene Chlorotrifluoroethylene) Membrane -


CITROFLEX ® 2 Solvent








Parameter
Value





Solvent
100% CITROFLEX ® 2


Lumen
100% Digol


Poly (ethylene chlorotrifluoroethylene)
24%


Concentration


Barrel Temperature
230° C.


Solvent injectors
230° C.


Throughput
100 cc/min


Screw speed
250 rpm


Die Temperature
212° C.









The dope was completely clear and homogeneous as with the GTA mixture, indicating complete solubility of the polymer in CITROFLEX® 2 citric acid ethyl ester at 230° C. The dope had a consistency slightly better than that of the GTA dope and also solidified under ambient conditions after approximately 5 seconds.


When CITROFLEX® 2 citric acid ethyl ester was used as the solvent, it was necessary to add extra heat to the die to raise the temperature to sufficient levels to prevent blockages. The fibre was eventually extruded through a die at a temperature of approximately 212° C. into a water quench. The air gap was approximately 15 mm and the lumen liquid was diethylene glycol (digol).


The SEMs showed the structure of the surface and of the cross-section of both hollow fibre poly(ethylene chlorotrifluoroethylene) membranes prepared using GTA and CITROFLEX® 2 citric acid ethyl ester to have adequate pore formation and structure. The fibres were also surprisingly strong and ductile, with a large degree of flexibility.


The procedure was further modified by the use of a coating on the outside of the fibre. The use of coating compositions in the preparation of the fluoropolymer membranes was found to enhance the permeability (2200 LMH) and improve the bubble point (490 kPa) of the resultant membranes. The process parameters are shown below in Table 3.









TABLE 3







Coated Poly(Ethylene Chlorotrifluoroethylene) Membrane -


Various Solvents








Parameter
Value





Solvent
GTA










Coating
GTA
CITROFLEX ® 2
Digol








Lumen
100% Digol


Polymer Concentration
21%


Barrel Temperature
230° C.


Solvent injectors
230° C.


Throughput
100 cc/min


Screw speed
250 rpm


Die Temperature
200° C.









As previously, the dope was clear and homogeneous, was of a good consistency and solidified under ambient conditions after approx. 5 seconds. The fibre was extruded through a die at a temperature of approximately 200° C. into a water quench. The air gap was approximately 15 mm and the lumen liquid was diethylene glycol (digol).


It was necessary to ensure that the die temperature and a regular coating flow were maintained. Irregular flow was minimised or eliminated by degassing the coating and lumen vessels prior to use. Heated lines were installed for the coating and lumen fluids to help maintain die temperature. Extra insulation was also used, as maintaining an adequate temperature is required in order to produce a hollow poly (ethylene chlorotrifluoroethylene) fibre of consistent quality.


Two different trials were performed: GTA coating and CITROFLEX® 2 citric acid ethyl ester coating. An uncoated sample was produced for comparison (Table 4).









TABLE 4







Coated Poly(Ethylene Chlorotrifluoroethylene) Hollow Fibre


Membrane Performance











No
GTA
CITROFLEX ® 2


Parameter
Coating
Coating
Coating













% poly(ethylene
21
21
21


chlorotrifluoroethylene)


Coating Flow (cc/min)
0
10
10


Lumen Flow (cc/min)
5
5
5


Permeability (LMH @ 100 kPa)

2294



Bubble Point (kPa)

490



Break Extension (%)

92.9



Break Force (N)

1.35



Force/unit area (MPa)

4.6



Fibre OD/ID (μm)
856/469
766/461










As was apparent from the SEMs of the sample, the sample with no coating had an impermeable skin, hence the absence of a result for permeability. The skin also has the effect of increasing break extension (BE) and break force (BF) artificially therefore these test were not performed either.


The results from the GTA coated samples showed that permeability was high, as was break extension and force. In some cases, the photograph of the cross section of the GTA coated sample showed some small “holes”, probably caused by bubbles in the dope.


The high bubble point for the GTA sample indicates that many smaller pores rather than a smaller number of larger pores provide the high flow. The CITROFLEX® 2 citric acid ethyl ester coated membrane can be seen in the SEM's to have a good pore structure.


In order to produce membranes with a controlled density surface skin and having a more hydrophilic nature, silica was added to the dope with the intention of subsequently leaching the silica out of the formed membrane matrix by the use of a caustic solution.


A hydrophilic silica, AEROSIL® R 972 was tested as an additives to the poly (ethylene chlorotrifluoroethylene) membrane mixture. The dope was cast into a hollow fibre membrane, and the resultant hollow fibre membranes were quenched in water.


Once the membranes had been cast, a portion thereof was leached in a 5% aqueous caustic solution at room temperature for 14 hours.


After the membranes were cast, and prior to leaching, the membranes were examined using scanning electron microscopy. The structures were generally extremely promising with the surface of the sheets completely open and totally free of any skin.


The addition of the silica produced a hydrophilic membrane with a highly porous structure.


Subsequently placing the sample in caustic soda to leach the silica provided a dramatic opening up in the membrane structure even further. The result of the leaching was a change in the cross-section from a conglomerate-like structure to the more traditional lace or sponge-like formation. The leaching with caustic soda provided a membrane of good open structure.


The optimal dope for forming a TIPS poly (ethylene chlorotrifluoroethylene) lymer appears to be require the incorporation of 10-50 wt % silica relative to the polymer.


A number of hollow fibre membranes were prepared from the above dope. The wetting characteristics were as desired and the membrane structure showed an extremely open surface. While 3-6% silica was used in the present invention, it will be appreciated that the quantity can vary significantly without departing from the present inventive concept.


Leaching the silica from the membranes had increased effect on the permeability and pore size of the hollow fibres without altering the desirable physical properties of the membrane.


A long leaching time is not necessarily required and can be incorporated in the production process as a post-treatment of the final modular product. The leaching process can be carried out at any time, however there is an advantage to postponing the leaching process as long as possible, since any damage to the surface of the fibres during handling can be overcome by leaching which physically increases the porosity of the membrane.


SEM analysis of the membranes showed a high degree of asymmetry. Asymmetry is defined as a gradual increase in pore size throughout the membrane cross-section, such that the pores at one surface of the hollow fibre are larger than the other. In this case, the pore size increase was seen from the outer surface where the pores were smallest (and a quite dense surface layer was present) to the inner surface where the pores were significantly larger than those on the outer surface.


As well as silica, the leaching process allows for the introduction of other functionalities into the membrane, such as introducing hydrolysable esters to produce groups for anchoring functional species to membranes.


The leaching process has the capacity to maintain the hydrophilic character of a membrane after leaching. Again, without wishing to be bound by theory, the silica particles have a size in the order of nanometres so consequently the silica disperses homogeneously throughout the polymer solution. When the polymer is precipitated in the spinning process, there is a degree of encapsulation of the SiO2 particles within the polymer matrix. Some of the particles (or the conglomerates formed by several silica particles) are wholly encapsulated by the precipitating polymer, some are completely free of any adhesion to the polymer (i.e. they lie in the pores of the polymer matrix) and some of the particles are partially encapsulated by the polymer so that a proportion of the particle is exposed to the ‘pore’ or to fluid transfer.


When contacted with caustic, it is believed that these particles will be destroyed from the accessible side, leaving that part of the particle in touch with the polymer matrix remaining. The remainder of the silica particle adheres to the polymer matrix by hydrophobic interaction and/or mechanical anchoring. The inside of the particle wall is hydrophilic because it consists of OH groups attached to silica. Because the silica is connected to hydrophobic groups on the other side, it cannot be further dissolved.


Thus when the membranes are treated with caustic solution, the free unencapsulated SiO2 reacts to form soluble sodium silicates, while the semi-exposed particles undergo a partial reaction to form a water-loving surface (bearing in mind that given the opportunity, such particles would have dissolved fully). It is believed that the pores in the polymer matrix formed during the phase inversion stage yet filled with SiO2 particles are cleaned out during leaching, giving a very open, hydrophilic membrane.


Poly (ethylene chlorotrifluoroethylene) Membranes incorporating 3% AEROSIL® R 972 fumed silica into the membrane were prepared by the TIPS process. The process parameters are given in Table 5. The poly (ethylene chlorotrifluoroethylene) fibre sample was then placed in an aqueous solution of 5 wt % caustic to leach the silica from the membrane. The best result in terms of permeability was the citric acid ethyl ester coated sample (11294 LMH) but had a low bubble point (110 kPa). The best result in terms of bubble point was the GTA coated sample (150 kPa).









TABLE 5







Coated Membranes With Silica








Parameter
Value





Solvent
GTA











Coating
None
GTA
Digol
CITROFLEX ® 2








Lumen
100% Digol


Polymer
21%


Concentration


Additives
3% (of dope) AEROSIL ® R 972 silica delivered



as a slurry in GTA


Barrel
230° C.


Temperature


Solvent
230° C.


injectors


Throughput
100 cc/min


Screw speed
1250 rpm


Die
200° C.


Temperature









The dope was similar to that produced in the earlier trials. The most obvious difference was in opacity—with the silica included the dope was a cloudy white colour.


The fibre was extruded through a die at a temperature of approx. 200° C. into a water quench. The air gap was approximately 15 mm and the lumen liquid was diethylene glycol (digol).


Several different samples were taken. Some had no coating, others had GTA, Digol and citric acid ethyl ester coatings applied at two different production rates (30 and 60 m/min). The production parameters are shown in Table 6.









TABLE 6







Coated Membranes With Silica












No





Parameter
Coating
GTA
Digol
CITROFLEX ® 2














% Polymer
21
21
21
21


% Aerosil ®
3
3
3
3


R 972


Coating Flow
0
10
10
10


(cc/min)


Lumen Flow
5
5
5
5


(cc/min)


Permeability
0
1354
>1564
3296


(LMH@100 kPa)


Bubble Point (kPa)
0
238
>50
155


Break Extension

118
52.3
71.1


(%)


Break Force (N)

1.81
1.30
0.86


Force/unit area

3.63
3.74
4.67


(MPa)


Fibre OD/ID (μm)
624/356
968/550
783/414
614/385









The SEMs show that even with silica in the membrane the use of no coating agent resulted in the formation of a surface similar to a hollow fibre cast without silica. The appearance of the surfaces of the GTA and citric acid ethyl ester hollow fibre membranes are similar, but the citric acid ethyl ester coating gives a more open surface. This openness is reflected in the permeability and bubble point—the fibres coated with citric acid ethyl ester have a much lower bubble point and a much higher permeability than the GTA coated samples. The GTA and citric acid ethyl ester coated membranes with silica had a permeability close to that of the corresponding hollow fibre membrane samples prepared without added silica.


The Digol coated samples have a very rough and inconsistent surface, as shown by the poor bubble point.


The samples described herein were are all prepared at a 30 m/min production rate. However, no significant difference was observed between 30, 60 and 100 m/min production rates in casting any of the samples.


The samples contain silica that can be leached from the fibres by the use of caustic soda (sodium hydroxide). Thus the effect upon the flow rate and bubble point was determined by leaching an uncoated sample, a GTA coated sample and a citric acid ethyl ester coated sample in 5 wt % aqueous caustic solution at room temperature (23° C.). The Digol sample was omitted from this process due to its poor properties. Table 7 below gives fibre results and the SEMs of the leached fibres follow.









TABLE 7







Results for Leached Silica Poly(Ethylene Chlorotrifluoroethylene)


Fibres










Parameter
No Coating
GTA
CITROFLEX ® 2













% Polymer
21
21
21


% AEROSIL ® R 972
3
3
3


Coating Flow (cc/min)
0
10
10


Lumen Flow (cc/min)
5
5
5


Permeability

5867
11294


(LMH@100 kPa)


Bubble Point (kPa)

150
107


Break Extension (%)

115
81.0


Break Force (N)

1.67
0.98


Force/unit area (MPa)

3.36
5.43


Fibre OD/ID (μm)
624/356
968/550
614/385









Post-leaching SEMs of the fibres show some very impressive structures. All of the fibre cross sections are very open and in the case of the sample without coating, some asymmetry. The uncoated sample did not generate surface pores even after 5 days of leaching in the case of 3% silica, although this may be overcome by incorporating a higher silica content in the dope mixture. The surfaces of any fibres are not dramatically altered after leaching, but there is a significant change in the porosity and bubble point of the fibres.


The citric acid ethyl ester coated samples post-leaching increased in flow by nearly 350% (3296 to 11294 LMH) but the bubble point of the fibres while already low dropped by 31% (154 down to 107 kPa). This is consistent with the SEMs. The GTA samples have been consistent with these results; the sample with silica (pre-leaching) has lost a portion of its high bubble point (490 down to 238 kPa) whereas permeability is relatively unchanged with the addition of silica—as would have been expected for the citric acid ethyl ester sample.


Post-leaching however gave a dramatic 320% increase in the flow (1354 up to 5687 LMH) but a slightly larger drop in the bubble point of 37% (238 down to 150 kPa).


The mean of the break extension (BE) and break force (BF) results for the GTA and for the citric acid ethyl ester coated samples were unchanged after 30-40 hrs leaching in 5% NaOH at room temperature. This shows the polymer and resulting membrane resist caustic attack well.


The use of 3% silica was not sufficient to produce a hydrophilic membrane. However it nevertheless opens up the membrane structure and improve flows.


With higher silica content, up to around 6%, the flow and bubble point do not change dramatically from the results achieved with 3% silica because the presence of the silica is most likely what induces the changes in the membrane structure, not these quantities. The surface of the fibre is also modified to get a better retention.


The use of post treatment agents in modifying the properties of ultrafiltration membranes is known. One such post treatment, involving soaking the fluoropolymer fibres in 50 wt % aqueous glycerol solution for 24 h was conducted. The results shown below in Table 8 compare poly(ethylene chlorotrifluoroethylene) fibres otherwise identical apart from the glycerol soak. Soaking was seen to dramatically increase the permeability of the membrane, from being impermeable before treatment to having a permeability of 138 Lm−2h−1 at 100 Kpa.









TABLE 8







Post Soaking in Glycerol










poly(ethylene




chlorotrifluoroethylene)
poly(ethylene chlorotrifluoroethylene


Parameter
No Post Treatment
50% Aqueous Glycerol 24 h





Solvent
100% GTA
100% GTA


Coating
100% GTA
100% GTA


% Polymer
21
21


Coating Flow Rate (cc/min)
2.5
2.5


Lumen Flow Rate (cc/min)
5
5


Haul Off (m/min)
80
80


Permeability (Lm−2h−1)@100 kpa
No flow
138


Water Bubble Point (kPa)
>660
>660


HFE Bubble Point (kPa)

200-250


Break Extension (%)
131
131


Break Force (N)
1.14
1.14


Force/Unit Area (Mpa)
6.82
6.82


Fibre OD/ID
539/278
539/278









The ability of membrane synthesis methods to be scaled up to production levels is important. The processes used to produce the large quantity of fibres must not only be operable on a small scale, they must also robust enough to be capable of being scaled up for use in a more typical production format, where solvent systems, die design and other production parameters need to be re optimised.


Trials were initially conducted on a system used for the commercial preparation of PVDF membranes by a TIPS process. The main differences were the use of polyethylene glycol (PEG200) as the quench fluid, rather than water.


The production parameters are as shown in the following Table 9.









TABLE 9







Production Parameters










Parameter
Value







Solvent
Citric acid ethyl ester



Coating
Citric acid ethyl ester



Lumen
100% Digol



Polymer concentration
21%



Barrel Temperature
230° C.



Solvent injectors
230° C.



Throughput
100 cc/min



Screw speed
250 rpm



Die Temperature
230° C.










As with the earlier trials, the extruder product was completely optically clear and homogeneous. The fibre was spun through a conventional TIPS die configurations at a temperature of 230° C., with a long (150 mm) stem in which citric acid ethyl ester coated the fibre. Finally the fibre emerged into a glass tube with polyethylene glycol as the quenching media. There was no air gap and the lumen liquid was diethylene glycol (digol).


The Trial produced fibers having the properties as shown in Table 10.









TABLE 10







CITROFLEX ® 2 Citric Acid Ethyl Ester Coated Fibers










Parameter
CITROFLEX ® 2 Coating














% Polymer
21



Coating Flow (cc/min)
10



Lumen Flow (cc/min)
5



Permeability (LMN@100 kPa)
2596



Bubble Point (kPa)
400



Break Extension (%)
145.8



Break Force (N)
1.3



Force/unit area (MPa)
8.38



Fibre OD/ID (um)
626/439










The SEMs show a fibre with a morphology exhibiting a uniform cross section with a slight degree of asymmetry. Also apparent is a very coarse pore structure on the surface, with skinned areas in between. These skinned areas probably account for the some of the high break extension (BE).


This trial demonstrates that different quench liquids can be used to produce a membrane with an acceptable structure. This is facilitated by the fact that the poly(ethylene chlorotrifluoroethylene) dope is very close to the cloud point, enabling the use of most types of non-solvent suitable to the process as a quench fluid giving slightly different structures. However as explained below, given the good structure with water—the cheapest non-solvent possible—it does not appear necessary to use another quench type.


A second trial was conducted with a similar dope using a triple head extruder as shown in FIG. 1b. It is particularly preferred if the die is of a stem configuration. In FIG. 1b, 13 is the coating fluid, 12 is the polymer solution (dope) and 11 is the lumen fluid. The stem can be of any length, but particularly is between 0.5 and 150 mm so that the coating covered the surface of the spun fibre evenly. The air gap, the distance between the die tip and the quench, can be any length but is most advantageously between 0 and 10 mm. The production parameters are shown in Table 11.









TABLE 11







Production Parameters










Parameter
Value







Solvent
GTA, Citric acid ethyl ester



Coating
GTA, Citric acid ethyl ester



Lumen
100% Digol



Polymer concentration
 21%



Barrel Temperature
230° C.



Solvent injectors
230° C.



Throughput
100 cc/min



Screw speed
250 rpm



Die Temperature
230° C.










A plate was selected in preference to a long stem, the aim being to reduce the contact time between the coating fluid and the spun fibre. This was changed from 150 mm down to .about.5 mm of plate plus a very small air gap (.about.5 mm) so that the coating contact time is a small as possible. Following this the fibre entered directly into a water quench. Both the temperature of the coating fluid and the total contact time have a significant effect upon the structure of the fibre surface.


The SEMs showed the fibres to exhibit a difference in the surface structure compared to the initial production trial. The temperature of the die and coating were far more accurately controlled in the present trials. The coating temperature in the second trial was 230° C.+/−5° C., roughly 100° C. above the coating temperature for the previous trials. This difference has a dramatic effect upon the membrane surface structure.


Several different samples were taken with GTA and citric acid ethyl ester coating at two different production rates (30 and 60 m/min). Samples with GTA as a solvent were only taken with a GTA coating and likewise for citric acid ethyl ester. The results are shown in Table 12 and in the figures, which show representative examples of the membranes.



FIG. 2
a is a SEM which shows a cross section of a membrane prepared at a production rate of 60 m/min and coated with citric acid ethyl ester at a rate of 7.5 cc/min. FIG. 2b shows a surface of the membrane.



FIG. 3
a is a SEM which shows a cross section of a membrane prepared at a production rate of 80 m/min and coated with GTA at a rate of 2.5 cc/min. FIG. 3b shows a surface of the membrane.









TABLE 12







Production Properties of Coated Membranes









Parameter
Citric Acid Ethyl Ester
GTA





% Polymer
21
21

















Coating
5
7.5
10
5
7.5.
1
2
5
2.5
2.5


Flow cc/min)


Lumen Flow
5
5
5
5
5
5
5
5
5
5


(cc/min)


Hauloff
60
60
60
80
80
60
60
60
80
100


(m/min)


Permeability
2633
3515
3161
2366
3090
38
19
64

57


(LM−2H−1


@100 kPa


Bubble Point
250
350
400
350
350
>660
>660
>660
>660
>660


(kPa)


Break
66
53
29
42
57
185
184
168
131
132


Extension


(%)


Break Force
0.96
0.84
0.71
0.74
0.69
1.36
1.26
1.45
1.14
1.26


(N)


Force/unit
6.78
3.63
4.35
2.49
2.07
4.87
7.50
5.20
6.82
7.56


area (MPa)


Fibre OD/ID
652/378
621/336
570/380
660/376
561/326
710/356
760/393
697/393
539/278
534/271


(um)









Unlike the results obtained in the initial trial, the surfaces here due to GTA and citric acid ethyl ester are no longer similar and the citric acid ethyl ester coating gives a less open surface, contrary to previous trials. This is most likely due to the increase in coating temperature, since at higher temperatures both the citric acid ethyl ester and GTA become more aggressive as a solvent. The citric acid ethyl ester is most likely starting to re-dissolve some of the surface of the fibre before final precipitation is forced thus solidifying the structure.


The internal membrane structure also appears to be affected—the pores internally with citric acid ethyl ester as a solvent appear far coarser than those in the structure with a GTA solvent, whose pores appear very small and tightly packed. This is reflected in the permeability and bubble point—the fibres with citric acid ethyl ester as the solvent have a water bubble point much lower (250-400 kPa) but a much higher permeability (2500-3500 LMH) than the GTA coated samples. Given a regular surface on the citric acid ethyl ester the bubble point could be increased and the permeability enhanced.


The GTA samples are permeable however, at all coating flow rates. The GTA samples all had water bubble points far higher than the porometer could measure—but estimated to be in the region 800-900 kPa. These samples appear more clearly asymmetric than the samples with the citric acid ethyl ester as the solvent/coating.


The samples were tested for their capability for ultrafiltration. Initial tests showed a HFE bubble point of between 200 and 300 kPa. This correlates to a membrane with pores approaching—if not already within—the UF range. Consequently one sample was tested for protein retention with Immuno Gamma Globulin (IGG, MW=120 kD). The sample tested was the first of the GTA coated samples with 1 cc/min of coating. The sample retained >95% of IGG, close to a known UF membrane possessing a retention of 98%.


These fibre samples were not treated with glycerol, as is standard practice for UF-style membranes. Glycerol prevents very small pores from collapsing upon drying the membrane. Some similar samples to those UF tested were soaked in Glycerol before drying to prevent any possible pore collapse. This enhanced the permeability of the membrane up to 138 LMH from 0, and explains the poor permeabilities in the UF tests.









TABLE 13







UF Results











(i) GTA solvent/Coating




1 cc/min Coating


Sample
Time
LMH












Ethanol
02:49:04
6.17


Clean water
 3:11:19.0
15.90


1
 1:20:00.0
10.34


2
 2:51:05.0
11.74


3
 3:41:04.0
12.36










FIG. 4 shows protein retention over time on a poly(ethylene chlorotrifluoroethylene) membrane coated with GTA at 1 cc/min.


Both citric acid ethyl ester and GTA samples at 80 m/min and the 100 m/min samples (GTA) production rate show very little difference from the corresponding 60 m/min samples in flow surface structure, and no difference is apparent in either % BE, BF or permeability.


Using GTA as a coating for the poly(ethylene chlorotrifluoroethylene) fibres provides a remarkable amount of control over both the structure and porosity of the fibre surface. A lower coating flow rate still seems to keep the fibre permeable and enhances the asymmetry, whereas a higher coating flow rate gives a far more open surface. It is interesting is that the permeability of the 1 cc/min samples is not vastly different from the 5 cc/min samples, yet the fibre surface appears far less porous. This suggests that the internal pore size is very small. Thus if the surface porosity is controlled accurately then either the polymer concentration can be decreased or citric acid ethyl ester used as a solvent to increase the permeability, all while maintaining excellent bubble point/retention characteristic of the fibre.


Flat Sheet Preparation


Approximately 160 g of solvent (GTA or citric acid ethyl ester) was placed into a glass reaction vessel with a thermocouple to control the temperature. Stirring continuously, the solvent was heated to 230° C. before approximately 40 g of HALAR® 901LC fluoropolymer was added to the vessel. The polymer dissolved rapidly and was allowed to mix for 10-15 minutes before a sample of polymer solution was poured from the flask and onto a glass plate preheated to 120° C. The dope was then rapidly spread across the plate with a glass bar also preheated to 120° C. The bar had adhesive tape wound around the ends to raise it a uniform height above the plate when drawing the dope down, thus a sheet of uniform thickness was obtained. The cast membrane rapidly cooled and solidified to form a flat membrane sheet, which was washed in ethanol and dried in air.


Virus Retention Results


A sample of fluoropolymer hollow fibre membranes were prepared in accordance with the methods disclosed herein. The sample was prepared from a dope containing HALAR® 901LC fluoropolymer at a concentration of 21%, with a coating flow of 0.3 ml/min. The coating, the solvent and the lumen were all GTA. The quench was in water at 15° C.


Three to four fibres approximately 10 cm long were made into a loop and the cut ends sealed in epoxy glue. 148 kd Molecular weight. Dextran was filtered through this potted fibre. The feed and filtrate concentration was measured using HPLC and the percentage dextran retained by the fibre was calculated. Approximately 25% of the dextran was retained.


Virus Retention


In a similar fashion, three to four fibres approximately 10 cm long were made into a loop and the cut ends sealed in epoxy glue. A solution of MS2 type virus, at a feed concentration of approximately 30000 units per ml was filtered through this potted fibre. The log retention of virus was calculated and determined to be 4.30. Typically, a membrane having a viral log reduction of value of greater than 4 is considered to be an ultrafiltration membrane.


Permeability Test


The permeability of the fibres from the same batch as used for the dextran and virus retention tests was also determined. Three to four looped and potted 10 cm fibres were tested for permeability on a “porometer”. The porometer allows water to be filtered at 100 kPa pressure from the outside of the fibres to the inside and out through the fibre ends. The time required to pass 10 ml of water is recorded and used to calculate the permeability in litres/meter2 hour, which in the present case was determined to be 300 litres/meter2 hour.


The dextran, virus and permeability test were reproduced on a second batch of poly(ethylene chlorotrifluoroethylene) hollow fiber membranes prepared under identical conditions and identical results were obtained, suggesting that there were no reproducibility problems in the use of poly(ethylene chlorotrifluoroethylene) to make ultrafiltration and microfiltration membranes.


Poly(ethylene chlorotrifluoroethylene) on its own forms a particularly good membrane with an excellent bubble point and clean water permeability combined. The addition of coatings and silica adds another dimension to the membrane properties.


While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that the inventive concept disclosed herein is not limited only to those specific embodiments disclosed.

Claims
  • 1. A method of forming a membrane comprising casting a membrane from a solution at a temperature greater than 200° C. consisting essentially of poly(ethylene chlorotrifluoroethylene) and at least one solvent selected from the group consisting of a compound according to formula I and formula II:
  • 2. The method of claim 1, wherein the solvent according to formula I is citric acid ethyl ether.
  • 3. The method of claim 1, wherein the solvent according to formula II is glycerol triacetate.
  • 4. The method of claim 1, further comprising inducing a phase separation of poly(ethylene chlorotrifluoroethylene) and the solvent.
  • 5. The method of claim 4, further comprising contacting a first surface with a lumen forming fluid.
  • 6. The method of claim 5, wherein the act of contacting a first surface with the lumen forming fluid comprises contacting the surface with diethylene glycol.
  • 7. The method of claim 5, further comprising contacting a second surface with a coating fluid.
  • 8. The method of claim 7, wherein the act of contacting the second surface with the coating fluid comprises contacting the surface with a fluid selected from the group consisting of glycerol triacetate, citric acid ethyl ester, diethylene glycol, and mixtures thereof.
  • 9. The method of claim 4, further comprising removing the solvent from the membrane.
  • 10. The method of claim 4 wherein R1, R2, and R3are selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, and hexyl.
  • 11. A method of forming a hollow fiber membrane comprising: forming a blend at a temperature greater than 200° C. consisting essentially of poly(ethylene chlorotrifluoroethylene) and at least one solvent selected from the group consisting of a compound according to formula I and formula II:
  • 12. The method of claim 11, wherein the solvent according to formula I is citric acid ethyl ether.
  • 13. The method of claim 11, wherein the solvent according to formula II is glycerol triacetate.
  • 14. The method of claim 11, wherein the blend comprises about 14-25% poly(ethylene chlorotrifluoroethylene).
  • 15. The method of claim 11, further comprising an act of contacting a second surface of the hollow fiber shape with a coating fluid.
  • 16. The method of claim 15, wherein the coating fluid is selected from the group consisting of glycerol triacetate, citric acid ethyl ester, diethylene glycol, and mixtures thereof.
  • 17. The method of claim 11, wherein the lumen forming fluid comprises diethylene glycol.
  • 18. The method of claim 11, wherein the blend further comprises a solid pore forming agent.
  • 19. The method of claim 18, further comprising an act of removing the pore forming agent from the hollow fiber with a leachant.
  • 20. The method of claim 19, wherein the leachant comprises a caustic solution.
  • 21. The method of claim 18, wherein the pore forming agent is an inorganic solid with a particle size of less than 1 micron.
  • 22. The method of claim 18, wherein the pore forming agent comprises silica.
  • 23. The method of claim 22, further comprising an act of preparing from the blend, a dope comprising from about 3 weight percent to about 9 weight percent silica.
  • 24. A method of preparing a porous polymeric material comprising: heating a mixture to a temperature greater than 200° C. to form a solution consisting essentially of poly(ethylene chlorotrifluoroethylene) and at least one solvent selected from the group consisting of a compound according to formula I and formula II:
  • 25. The method of claim 24, wherein R1, R2, and R3, are selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl and hexyl.
Priority Claims (1)
Number Date Country Kind
PS0466 Feb 2002 AU national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 10/914,640, filed on Aug. 9, 2004, now U.S. Pat. No. 7,247,238 which is a continuation application, under 35 U.S.C. §120, of International Patent Application No. PCT/AU03/00179, filed on Feb. 12, 2003 under the Patent Cooperation Treaty (PCT), which was published by the International Bureau in English on Aug. 21, 2003, which designates the United States, and which claims the benefit of Australian Provisional Patent Application No. PS 0466, filed Feb. 12, 2002, each of which is incorporated herein by reference.

US Referenced Citations (429)
Number Name Date Kind
256008 Leak Apr 1882 A
285321 Tams Sep 1883 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3492698 Geary et al. Feb 1970 A
3556305 Shorr Jan 1971 A
3591010 Pall Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3654147 Levin et al. Apr 1972 A
3693406 Tobin Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3804258 Okuniewski et al. Apr 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3955998 Clampitt et al. May 1976 A
3968192 Hoffman et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4138460 Tigner Feb 1979 A
4183890 Bollinger Jan 1980 A
4188817 Steigelmann et al. Feb 1980 A
4190411 Fujimoto Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4354443 Abrahamson Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4369605 Opersteny et al. Jan 1983 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4540490 Shibata et al. Sep 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hoffman Sep 1986 A
4623670 Mutoh et al. Nov 1986 A
4623690 Patzschke et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis Mar 1987 A
4650596 Schleuter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehrfeld et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4886601 Iwatsuka et al. Dec 1989 A
4888115 Marinaccio et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4919815 Copa et al. Apr 1990 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4963304 Im et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4969997 Klüver et al. Nov 1990 A
4988444 Applegate et al. Jan 1991 A
4999038 Lundberg Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Muller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5075065 Effenberger et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza et al. Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
5135663 Newberth et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5158680 Kawai et al. Oct 1992 A
5158721 Allegrezza et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5238613 Anderson Aug 1993 A
5248424 Cote et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5288324 Shaneyfelt Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachasch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5411663 Johnson May 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5451317 Ishida et al. Sep 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5491023 Tsai et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghaven et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5552047 Oshida et al. Sep 1996 A
5554283 Brinda et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5575963 Soffer et al. Nov 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
5647988 Kawanishi et al. Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
5783083 Henshaw et al. Jul 1998 A
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran et al. Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6024872 Mahendran Feb 2000 A
6036030 Stone et al. Mar 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6045698 Cöté et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6146747 Wang et al. Nov 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pedersen et al. Feb 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6290756 Macheras et al. Sep 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6387189 Gröschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6406629 Husain et al. Jun 2002 B1
6423214 Lindbo Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6524733 Nonobe Feb 2003 B1
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
6613222 Mikkelson et al. Sep 2003 B2
6627082 Del Vecchio Sep 2003 B2
6632358 Suga et al. Oct 2003 B1
6656356 Gungerich et al. Dec 2003 B2
6682652 Mahendran et al. Jan 2004 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863823 Côté Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6872305 Johnson et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6899812 Cote et al. May 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6964741 Mahendran et al. Nov 2005 B2
6969465 Zha et al. Nov 2005 B2
7005100 Lowel Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7018533 Johnson et al. Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7160464 Lee et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7264716 Johnson et al. Sep 2007 B2
7300022 Muller Nov 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7404896 Muller Jul 2008 B2
20010047962 Zha et al. Dec 2001 A1
20020070157 Yamada Jun 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20020189999 Espenan et al. Dec 2002 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030136746 Behmann et al. Jul 2003 A1
20030141248 Mahendran et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030150807 Bartels et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030164332 Mahendran et al. Sep 2003 A1
20030178365 Zha et al. Sep 2003 A1
20030205519 Zha et al. Nov 2003 A1
20030226797 Phelps Dec 2003 A1
20030234221 Johnson et al. Dec 2003 A1
20040000520 Gallagher et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040035782 Muller Feb 2004 A1
20040084369 Zha et al. May 2004 A1
20040145076 Zha et al. Jul 2004 A1
20040168979 Zha et al. Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040178154 Zha et al. Sep 2004 A1
20040191894 Muller et al. Sep 2004 A1
20040217053 Zha et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050029185 Muller Feb 2005 A1
20050029186 Muller Feb 2005 A1
20050032982 Muller et al. Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050139538 Lazaredes Jun 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060000775 Zha et al. Jan 2006 A1
20060081533 Khudenko Apr 2006 A1
20060131234 Zha et al. Jun 2006 A1
20060201876 Jordan Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060261007 Zha et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070007214 Zha et al. Jan 2007 A1
20070045183 Murphy Mar 2007 A1
20070056905 Beck et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070075021 Johnson Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070227973 Zha et al. Oct 2007 A1
Foreign Referenced Citations (228)
Number Date Country
3440084 Sep 1983 AU
5584786 Mar 1985 AU
7706687 Jul 1986 AU
762091 Nov 2000 AU
1050770 Jan 1995 CN
1249698 Apr 2000 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
194735 Sep 1876 EP
12557 Feb 1983 EP
126714 Nov 1984 EP
50447 Oct 1985 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
090383 May 1990 EP
407900 Jan 1991 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
395133 Feb 1995 EP
463627 May 1995 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
855214 Jul 1998 EP
627255 Jan 1999 EP
911073 Apr 1999 EP
492942 Feb 2000 EP
1034835 Sep 2000 EP
1052012 Nov 2000 EP
920904 Dec 2000 EP
1349644 Oct 2003 EP
1350555 Oct 2003 EP
1236503 Aug 2004 EP
1659171 May 2006 EP
2620712 Mar 1989 FR
2674448 Feb 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
2253572 Sep 1992 GB
54-162684 Dec 1979 JP
55129155 Jun 1980 JP
55-099703 Jul 1980 JP
55-129107 Oct 1980 JP
56-021604 Feb 1981 JP
56-118701 Sep 1981 JP
56-121685 Sep 1981 JP
58088007 May 1983 JP
60-019002 Jan 1985 JP
60-206412 Oct 1985 JP
60-260628 Dec 1985 JP
61-097005 May 1986 JP
61097006 May 1986 JP
61107905 May 1986 JP
61-167406 Jul 1986 JP
61-167407 Jul 1986 JP
S6338884 Jul 1986 JP
61-171504 Aug 1986 JP
61192309 Aug 1986 JP
61-222510 Oct 1986 JP
61-242607 Oct 1986 JP
61-249505 Nov 1986 JP
61257203 Nov 1986 JP
61263605 Nov 1986 JP
61-291007 Dec 1986 JP
61-293504 Dec 1986 JP
62004408 Jan 1987 JP
62-068828 Mar 1987 JP
62114609 May 1987 JP
62-144708 Jun 1987 JP
62140607 Jun 1987 JP
62-163708 Jul 1987 JP
62-179540 Aug 1987 JP
62250908 Oct 1987 JP
63097634 Apr 1988 JP
63143905 Jun 1988 JP
63-171607 Jul 1988 JP
63-180254 Jul 1988 JP
01-075542 Mar 1989 JP
06-027215 Mar 1989 JP
01-151906 Jun 1989 JP
01-307409 Dec 1989 JP
01307409 Dec 1989 JP
02-026625 Jan 1990 JP
02031200 Jan 1990 JP
02-040296 Feb 1990 JP
02-107318 Apr 1990 JP
02-126922 May 1990 JP
02144132 Jun 1990 JP
02164423 Jun 1990 JP
02-277528 Nov 1990 JP
02284035 Nov 1990 JP
03018373 Jan 1991 JP
03028797 Feb 1991 JP
03110445 May 1991 JP
04-110023 Apr 1992 JP
04187224 Jul 1992 JP
04-256424 Sep 1992 JP
04250898 Sep 1992 JP
04265128 Sep 1992 JP
04-293527 Oct 1992 JP
04-334530 Nov 1992 JP
04310223 Nov 1992 JP
04-348252 Dec 1992 JP
05023557 Feb 1993 JP
05096136 Apr 1993 JP
05-137977 Jun 1993 JP
05157654 Jun 1993 JP
05285348 Nov 1993 JP
06071120 Mar 1994 JP
06114240 Apr 1994 JP
06218237 Aug 1994 JP
06-277469 Oct 1994 JP
06285496 Oct 1994 JP
06343837 Dec 1994 JP
07000770 Jan 1995 JP
07024272 Jan 1995 JP
07-047247 Feb 1995 JP
07-068139 Mar 1995 JP
07-136470 May 1995 JP
07-136471 May 1995 JP
07155758 Jun 1995 JP
07-178323 Jul 1995 JP
07185268 Jul 1995 JP
07185271 Jul 1995 JP
07-236819 Sep 1995 JP
07-251043 Oct 1995 JP
07275665 Oct 1995 JP
07-289860 Nov 1995 JP
07-303895 Nov 1995 JP
08010585 Jan 1996 JP
09-072993 Mar 1997 JP
09-099227 Apr 1997 JP
09-155345 Jun 1997 JP
09141063 Jun 1997 JP
09-187628 Jul 1997 JP
09220569 Aug 1997 JP
09-271641 Oct 1997 JP
09324067 Dec 1997 JP
10-024222 Jan 1998 JP
10-033955 Feb 1998 JP
10-048466 Feb 1998 JP
10-085565 Apr 1998 JP
10156149 Jun 1998 JP
10-180048 Jul 1998 JP
11-028467 Feb 1999 JP
11-156166 Jun 1999 JP
11165200 Jun 1999 JP
11-333265 Jul 1999 JP
11-033365 Sep 1999 JP
11-302438 Nov 1999 JP
11-319501 Nov 1999 JP
11-319507 Nov 1999 JP
2000-000439 Jan 2000 JP
2000-070684 Mar 2000 JP
2000-185220 Apr 2000 JP
2000-157850 Jun 2000 JP
2000-317276 Nov 2000 JP
2000342932 Dec 2000 JP
2001-009246 Jan 2001 JP
2001-070967 Mar 2001 JP
2001-079366 Mar 2001 JP
2001-079367 Mar 2001 JP
2001-104760 Apr 2001 JP
2001-190937 Jul 2001 JP
2001-190938 Jul 2001 JP
2001-205055 Jul 2001 JP
2003-047830 Feb 2003 JP
2003-062436 Mar 2003 JP
2003-135935 May 2003 JP
2004-230280 Aug 2004 JP
05-279447 Oct 2005 JP
2005-279447 Oct 2005 JP
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
2005-063478 Jun 2005 KR
1020491 Oct 2003 NL
1021197 Oct 2003 NL
347343 Dec 1998 TW
8806200 Aug 1988 WO
WO 89-00880 Feb 1989 WO
9000434 Jan 1990 WO
WO 91-04783 Apr 1991 WO
WO 91-16124 Oct 1991 WO
9302779 Feb 1993 WO
9315827 Aug 1993 WO
WO 93-23152 Nov 1993 WO
WO 94-11094 May 1994 WO
WO 95-34424 Dec 1995 WO
9607470 Mar 1996 WO
WO 96-28236 Sep 1996 WO
9641676 Dec 1996 WO
WO 97-06880 Feb 1997 WO
9822204 May 1998 WO
WO 98-25694 Jun 1998 WO
9828066 Jul 1998 WO
WO 98-53902 Dec 1998 WO
9901207 Jan 1999 WO
9959707 Nov 1999 WO
WO 00-18498 Apr 2000 WO
WO 00-30742 Jun 2000 WO
WO 01-00307 Jan 2001 WO
WO 01-19414 Mar 2001 WO
0136075 May 2001 WO
WO 01-32299 May 2001 WO
WO 01-45829 Jun 2001 WO
WO 02-40140 May 2002 WO
WO 03-000389 Jan 2003 WO
WO 03-013706 Feb 2003 WO
WO 03-057632 Jul 2003 WO
WO 03-068374 Aug 2003 WO
WO 2004-101120 Nov 2004 WO
WO 2005-005028 Jan 2005 WO
WO 2005-021140 Mar 2005 WO
WO 2005-037414 Apr 2005 WO
WO 2005-077499 Aug 2005 WO
WO 2005-107929 Nov 2005 WO
WO 2006-029456 Mar 2006 WO
WO 2006-047814 May 2006 WO
Related Publications (1)
Number Date Country
20070216057 A1 Sep 2007 US
Divisions (1)
Number Date Country
Parent 10914640 Aug 2004 US
Child 11700625 US
Continuations (1)
Number Date Country
Parent PCT/AU03/00179 Feb 2003 US
Child 10914640 US