POLYHEDRA GOLF BALL WITH LOWER DRAG COEFFICIENT

Information

  • Patent Application
  • 20210197029
  • Publication Number
    20210197029
  • Date Filed
    January 10, 2019
    6 years ago
  • Date Published
    July 01, 2021
    3 years ago
Abstract
A golf ball having an outer surface with a pattern forming a polyhedron. The pattern can be flat faces forming sharp edges and sharp points therebetween. In one embodiment, the polyhedron is a Goldberg polyhedron.
Description
BACKGROUND
Technical Field

The present invention relates to golf balls having a polyhedra design that can yield lower drag coefficient than a dimpled sphere. The drag reduction is applicable to other sports equipment in general having a bluff body, such as the head of a golf club or a bike helmet.


Background of the Related Art

For the past 100 years the vast majority of commercial golf balls have used designs with dimples. For the purpose of this invention, a dimple generally refers to any curved or spherical depression in the face or outer surface of the ball. The traditional golf ball, as readily accepted by the consuming public, is spherical with a plurality of dimples, where the dimples are generally depressions on the outer surface of a sphere. The vast majority of commercial golf balls use dimples that have a substantially spherical shape. Some examples of such golf balls can be found in U.S. Pat. Nos. 6,290,615, 6,923,736, and U.S. Publ. No. 20110268833.


It is well established that such depressions can lower the drag coefficient of a ball compared to that of a smooth sphere at the same speed. The drag coefficient is a dimensionless parameter that is used to quantify the drag force of resistance of an object in a fluid. The drag force is always opposite to the direction in which the object travels. The drag coefficient for a golf ball is defined as CD=2*Fd/(ρ*U2*A), where Fd is the drag force, p is the density of the fluid in which the object is moving, U is the speed of the object and A is the cross sectional area. For a sphere the cross-sectional area is πD2/4, where D is the diameter of the ball.



FIG. 1 shows the variation of the drag coefficient, CD, as a function of Reynolds number, Re, for smooth and dimpled spheres. The data were obtained by performing wind tunnel experiments of non-spinning spheres. The Reynolds number is a dimensionless parameter used in fluid mechanics and is defined as Re=U*D/v, where v is the kinematic viscosity in which the object moves. For a smooth sphere the drag coefficient (shown by the solid black line) remains constant (CD˜0.5) until the Reynolds number approaches a critical value (Recr˜300,000). At this point, which is usually referred to as drag crisis, CD decreases rapidly and hits a minimum, which is an order of magnitude lower CD˜0.08. With further increase in the Reynolds number the flow enters the post-critical regime characterized by turbulent boundary layers on the surface of the sphere. In this regime the drag coefficient rises slowly with increasing Reynolds number.


In dimpled spheres (shown by dashed and dotted black lines) the drag crisis happens at a much lower critical Reynolds number (Re<100,000). In general, a dimpled sphere will have a 50% or more reduction in drag compared to a smooth sphere in the range of Reynolds number from 100,000 to 250,000. A golf ball in flight during a driver shot can experience a Reynolds number ranging from 220,000 at the beginning of the flight to 60,000 at the end of the flight. It is therefore very important that a golf ball design can achieve a very low drag coefficient in that range. The critical value of the Reynolds number, as well as the attained minimum drag coefficient in the post-critical regime depend on the dimple geometry and arrangement. In general, as the aggregate dimple volume, measured as the sum of a dimple volume of each dimple of the plurality of dimples, decreases the critical Reynolds is increased and the drag coefficient in the post-critical regime increases. As the aggregate dimple volume approaches zero the drag curve approaches that of a smooth sphere. Drag is one of the two forces (the other being lift) that influence the aerodynamic performance of a golf ball. To increase the carry distance on a driver shot, the distance a golf ball travels during the flight, the dimple design is a balance between achieving the lowest critical Reynolds number and the lowest drag coefficient in the post-critical regime.


However, dimples are the only configuration known to provide a golf ball having a reduced drag coefficient.


SUMMARY

Accordingly, it is an object of the invention to provide a golf ball having minimal drag coefficient. It is a further object of the invention to provide a golf ball having reduced drag coefficient compared to a golf ball having only dimples. It is another object to provide a golf ball with minimal drag coefficient that is non-dimpled. In one embodiment, the golf ball has a plurality of flat faces with sharp edges and points that collectively form a polyhedron. These and other objects of the invention, as well as many of the intended advantages thereof, will become more readily apparent when reference is made to the following description, taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a plot of the drag coefficient CD vs Reynolds number Re for smooth and dimpled spheres. The solid black line represents a smooth sphere (Achenbach, 1972); the double-dashed lines represent a dimpled sphere (J. Choi, 2006); and the dash-dot lines represent a dimpled sphere (Harvey, 1976). The shaded area represents the typical range of Reynolds experience by a golf ball in flight during a driver shot (50,000-200,000).



FIG. 2(a) shows a golf ball in accordance with one embodiment of the invention.



FIG. 2(b) shows an outline of a golf ball.



FIG. 2(c) shows an outline of a golf ball with non-sharp rounded edges.



FIG. 2(d) shows an icosahedron, a well-known Platonic solid used to derive the golf ball 100.



FIG. 2(e) shows an example of splitting a hexagonal face into 6 triangular faces.



FIG. 3 shows the Goldberg polyhedron with 192 faces.



FIG. 4 is a graph of the drag coefficient versus Reynolds for the Goldberg polyhedra with 162 faces and 192 faces.



FIG. 5 is a graph showing the CD versus Reynolds for a Goldberg polyhedron with 192 faces and a dimpled sphere.



FIG. 6 is a graph showing the CD versus Reynolds for a Goldberg polyhedron with 162 faces and a dimpled sphere.



FIG. 7 shows a geodesic polyhedron made from 320 triangles.



FIG. 8 shows a geodesic cube with 174 faces.



FIG. 9 shows a polyhedron with 162 faces and 162 dimples.



FIG. 10 is a graph showing the drag coefficient CD versus Reynolds number Re for a Goldberg polyhedron with 162 faces and a Goldberg polyhedron with 162 faces and 162 dimples.



FIG. 11 is a comparison of drag coefficient CD versus Reynolds number for one of the embodiments of the present invention shown in FIG. 9 against a commercial ball Callaway Superhot.



FIG. 12 is an alternative embodiment of a golf ball based on an icosahedron with 312 faces and 312 spherical dimples.



FIG. 13 is a comparison of drag coefficient CD versus Reynolds number Re for one of the embodiments of the present invention based on a polyhedron with 312 faces and 312 spherical dimples of FIG. 12 against a commercial golf ball Bridgestone Tour.





DETAILED DESCRIPTION

In describing certain illustrative, non-limiting embodiments of the invention illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes all technical equivalents that operate in similar manner to accomplish a similar purpose. Several embodiments of the invention are described for illustrative purposes, it being understood that the invention may be embodied in other forms not specifically shown in the drawings.


The present invention is directed to a golf ball design based on polyhedra that can have reduced drag coefficient compared to a dimpled sphere. In one embodiment, a family of golf ball designs are made up of convex polyhedra whose vertices lie on a sphere. A polyhedron is a solid in three dimensions with flat polygonal faces, straight sharp edges and sharp corners or vertices.



FIG. 2(a) shows a golf ball 100 in accordance with one embodiment of the present invention. The golf ball 100 has a body 110 with an inner core and an outer shell with an outer surface 112. A plurality of faces 120 are formed in the outer surface, creating a pattern 116. All the faces are formed in the outer surface and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 124. Here, the golf ball 100 is a polyhedron with 162 polygons.


The body 110 defines a circumscribed sphere 102, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 104 of the body 110. The sphere and the diameter provide a reference for the size of the golf ball. The Rules of Golf, jointly governed by the R&A and the USGA, state that the diameter of a “conforming” golf ball cannot be any smaller than 1.680 inches. For the purpose of a golf ball the diameter of the circumscribed sphere is at least 1.68 in. The vertices 122a, 122b of the polyhedron are the only points 104 on the polyhedron that lie on the sphere. Any point along the edges 124a, 124b or on the faces 120a, 120b of the polygons lies below the surface of the circumscribed sphere.


The golf ball body 110 is a polyhedron that is made from first faces 120a and second faces 120b. As shown, the first faces 120a have a first shape, namely pentagons, and the second faces 120b have a second shape different than the first shape, namely hexagons. All of the faces are flat and each such face forms a single plane. In one embodiment, there are 12 pentagons 120a and 150 hexagons 120b (a hexagon-to-pentagon ratio of 12.5:1), each having corners or points 122a, 122b connected by boundaries such as straight lines or edges 124a, 124b. In various other embodiments, other quantities and/or ratios of such pentagons 120a and hexagons 120b can be used. However, the number of polygons and the angle between them determine when the drag coefficient will start to drop and how low it will become. In general, as the number of faces is increased the drag crisis occurs at higher Reynolds number and the drag coefficient decreases. The first and second faces 120a, 120b form the pattern 116.


The edges 124 are sharp, in that the faces are at an angle with respect to one another. FIG. 2(b) shows a cross sectional cut through the body 110 of ball 100 of FIG. 2(a) along the line 150. In this embodiment the edges 124 are sharp, in that the radius of curvature 140 of an edge is less than 0.001 D, where D is the diameter of the circumscribed sphere. Ideally all edges should be the sharpest possible. A radius of curvature of 0 is the case with the sharpest possible edges, though golf ball edges might become a little rounded during manufacture or follow use. FIG. 2(c) shows a cross section cut of two faces with rounded edges, whose radius of curvature is more than 0.001 D. The resulting edge is not sharp and the reduction in drag is not maximized, which can be detrimental to the aerodynamic performance of the golf ball as the shape would approach that of a smooth sphere. Both a sharp edge and a non-sharp edge is shown in that embodiment for illustrative purposes. The angle θ formed between two adjacent flat/planar faces 120 is always smaller than 180 degrees. The geometric shape of the embodiment illustrated in FIG. 2(a) falls into the class of convex polyhedral where the angle between any pair of adjacent faces is always less than 180 degrees. In this embodiment, the angle between a pentagon face 120a and an adjacent hexagonal face 120b is 166.215 degrees. The angle between two adjacent hexagon faces 120b varies from 161.5 degrees to 162.0 degrees.


Each face 120 is immediately adjacent and touching a neighboring face 120, such that each edge 124 forms a border between two neighboring faces 120 and each point 122 is at the intersection of three neighboring faces 120. And, each point 122 is at an opposite end of each linear edge 124 and is at the intersection of three linear edges 124. Accordingly, there is no gap or space between adjacent neighboring faces 120, and the faces 120 are contiguous and form a single integral, continuous outer surface 112 of the ball 100.


A golf ball usually has a rubber core and at least one more layer surrounding the core. The pattern 116 is formed on the outermost layer. The pattern is based on an icosahedron shown in FIG. 2(d). The icosahedron 170 is a well-known convex polyhedron made up of 20 equilateral triangle faces 180, 12 vertices 182 and 30 edges 184. An icosahedron is one of the five regular Platonic solids, the other four being the cube, the tetrahedron, the octahedron and the dodecahedron (see https://en.wikipedia.org/wiki/Platonic solid).


In the icosahedron 170 five equilateral triangles 180 meet at each of its twelve vertices 182. The 12 pentagons 120a of the golf ball 100 shown in FIG. 2(a) are centered on the vertices of an icosahedron. Therefore, a pair of 3 pentagons 120a forms an equilateral triangular pattern 180. Along each of the edges of the triangles 180 there are 3 hexagons 120b. Finally, inside each triangular pattern 180 there are three hexagons 120b. The pentagons 120a are all equilateral, that is the 5 edges 124a all have the same length equal to 0.151 D, where D is the diameter of the circumscribed sphere. The hexagons 120b are not equilateral and the lengths of the edges 124b vary from 0.151 D to 0.1834 D.


Table 1 lists the coordinates of all the vertices and how each face is formed, which defines the geometry of the golf ball. Table 1 lists the coordinates x, y, and z of all of the vertices 122 of golf ball 100. Faces are constructed by connecting the vertices with straight lines. The coordinates x, y, z are normalized by the diameter D of the circumscribed sphere 104 and are with respect to the center of the sphere. The golf ball 100 contains 320 vertices 122, 480 straight edges 120 and 162 polygonal faces 120.


The particular polyhedron can be any suitable configuration, and in one embodiment is a class of solids called Goldberg polyhedra that comprises convex polyhedra that are made entirely from a combination of rectangles, pentagons and hexagons. Goldberg polyhedra are derived from either an icosahedron (a convex polyhedron made from 12 pentagons), or an octahedron (a convex polyhedron made from 8 triangles) or a tetrahedron (a convex polyhedron made from 4 triangles). An infinite number of Goldberg polyhedra exist, as shown in https://en.wikipedia.org/wiki/List_of_geodesic_polyhedra_and_Goldberg_polyhedra.


However, it will be recognized that the invention can utilize any convex polyhedron (that is, a polyhedron made up of polygons whose angle is less than 180 degrees), though in one embodiment on such polyhedron is a convex polyhedron with sharp edges, flat faces forming a single plane, and adjacent faces having an angle of less than 180 degrees between them.


The particular configuration (Goldberg polyhedral 162 faces and icosahedral symmetry) can only be achieved with a combination of hexagons and pentagons. However other geometries with around 162 faces may be possible to do using only pentagons or only hexagons. Other embodiments of the invention can include a pattern with various geometric configurations. For example, the pattern can be comprised of more or fewer of hexagons and pentagons than shown. Or it can comprise all hexagons, all pentagons, or no hexagons or pentagons but instead one or more other shapes or polyhedrals having flat faces and sharp edges. One other shape can be formed, for example, by splitting each hexagon into 6 triangles or each pentagon into 5 triangles, which provides a similar drag coefficient. One embodiment can include any of the Goldberg polyhedra with a combination of pentagons and hexagons or even a convex polyhedral made of triangles or squares.


It is further noted that flat faces give lower drag and have the uniqueness of not being dimples (curved indentations). The flat faces only provide points of the faces that lie on the circumscribed sphere. The sharp edges are defined by the angle between two adjacent faces. In addition, the edges forming the boundaries between the two adjacent faces are flat and not excessively rounded. An example of a non-sharp edge is shown in FIG. 2(c). The angle between the two edges is the same as is in FIG. 2(b) but it is rounded such that the edge is not sharp.


As the number of polygons increases (i.e. from 162 faces to 312 faces) the angle between the faces increases too and approaches 180 degrees. For the embodiments that are based purely on polyhedral shape such as those shown in FIGS. 2(a), 2(b) with 162 and 192 faces the range of angles is between 160 and 165 degrees. For the other embodiments in which dimples are added inside each face it is possible to go to as many as 312 faces and the angle between the faces can increase to 172 degrees. In one embodiment, the maximum angle could be close to 175 degrees and a range of angles between 160 and 175 degrees may be suitable for the purpose of a golf ball. Thus, a convex polyhedra is one having faces with angles substantially with the values and in the ranges noted herein.


In FIG. 2(a), the ratio of pentagons to hexagons is 12:150, though any suitable ratio can be provided. For example, out of the 150 hexagons one of the hexagons can be split into 6 triangles and a have a polyhedron with 12 pentagons, 149 hexagons and 6 triangles and obtain substantially the same drag coefficient. FIG. 2(e) illustrates how such a splitting can be performed on one of the hexagonal faces 120. A vertex 140 can be chose anywhere inside the hexagon 120. For illustrative purposes, the vertex 140 is near the center of the hexagon although any other location can be used. Six new edges 142 can be formed by connecting the each of the vertices 122 with the new vertex 140. A triangular face 144 is formed by one edge 124 of the hexagon and two adjacent edges 142. The exact shape of the faces making up the polyhedral can vary but one important feature of the polyhedral pattern is the angle between faces.



FIG. 3 shows an example of a golf ball in accordance with another embodiment of the invention. The golf ball 200 has a body 210 with an inner core and an outer shell with an outer surface 212. A plurality of faces 220 are formed in the outer surface, creating a pattern 216. All the faces are formed in the outer surface and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 224. Here, the golf ball 200 is a polyhedron with 192 polygons.


The body 210 defines a circumscribed sphere 202, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 204 of the body 210. The vertices 222a, 222b of the polyhedron are the only points 204 on the polyhedron that lie on the sphere. Any point along the edges 224a, 224b or on the face of the polygons lies below the surface of the circumscribed sphere.


The golf ball body 210 is a polyhedron that is made from first faces 220a and second faces 220b. As shown, the first faces 220a have a first shape, namely pentagons, and the second faces 220b have a second shape different than the first shape, namely hexagons. All of the faces are flat and each such face forms a single plane. In one embodiment, there are 12 pentagons 220a and 180 hexagons 220b (a hexagon-to-pentagon ratio of 15:1), each having corners or points 222a, 222b connected by boundaries such as straight lines or edges 224a, 224b. In various other embodiments, other quantities and/or ratios of such pentagons 220a and hexagons 220b can be used. The first and second faces 220a, 220b form the pattern 216. The edges 224 are sharp, in that the radius of curvature of an edge is less than 0.001 D, where D is the diameter of the circumscribed sphere. Ideally all edges should be the sharpest possible. A radius of curvature of 0 is the case with the sharpest possible edges, though golf ball edges might become a little rounded during manufacture or follow use.


The geometric shape of the embodiment illustrated in FIG. 3 falls into the class of convex polyhedral where the angle between any pair of adjacent faces is always less than 180 degrees. In this embodiment, the angle between a pentagon face 220a and an adjacent hexagonal face 220b is 167.6 degrees. The angle between two adjacent hexagon faces 120b varies from 163.4 degrees to 164.2 degrees. When comparing this embodiment with the golf ball 100 illustrated in FIG. 2 it is obvious that as the number of faces on a convex polyhedron increases the angle between faces increases too.


Each face 220 is immediately adjacent and touching a neighboring face 220, such that each edge 224 forms a border between two neighboring faces 220 and each point 222 is at the intersection of three neighboring faces 220. And, each point 222 is at an opposite end of each linear edge 224 and is at the intersection of three linear edges 224. Accordingly, there is no gap or space between adjacent neighboring faces 220, and the faces 220 are contiguous and form a single integral, continuous outer surface 212 of the ball 200.


The pattern is based on an icosahedron shown in FIG. 2(c). In the icosahedron 170 five equilateral triangles 180 meet at each of its twelve vertices 182. The 12 pentagons 220a of the golf ball 200 shown in FIG. 3 are centered on the vertices of an icosahedron. Therefore, any pair of 3 pentagons 220a form an equilateral triangle 280. The pentagons 220a are all equilateral, that is the 5 edges 224a all have the same length equal to 0.136 D, where D is the diameter of the circumscribed sphere. The hexagons 220b are not equilateral and the lengths of the edges 224b vary from 0.136 D to 0.168 D.


Table 2 lists the coordinates of all the vertices and how each face is formed, which defines the geometry of the golf ball. Table 1 lists the coordinates x, y, and z of all of the vertices 220 of polyhedron of golf ball 200. Faces are constructed by connecting the vertices with straight lines. The coordinates x, y, z are normalized by the diameter D of the circumscribed sphere 204 and are with respect to the center of the sphere. The golf ball 200 contains 380 vertices 222, 570 straight edges 220 and 192 polygonal faces 220.


From a visual perspective the above designs of FIGS. 2, 3 have the unique characteristics of not having any dimples. From a utility perspective the behavior of the drag coefficient is very interesting. FIG. 4 shows a graph of the drag coefficient, CD, versus the Reynolds number, Re, for the polyhedron with 162 and 192 faces. The drag coefficient was obtained by wind tunnel experiments of non-spinning models. Overall the drag curve is qualitatively very similar to that of a dimpled sphere. Namely there is a drag crisis that occurs around Re=60,000. For the polyhedron with 162 faces CD reaches a minimum value of 0.16 at Re=90,000 and remains almost constant as the Reynolds increases. For the polyhedron with 192 faces CD reaches a minimum value of 0.14 at Re=110,000 and remains almost constant as the Reynolds increases.


The graph reveals that as the number of faces increases the drag crisis shifts towards a higher Reynolds number and the CD in the post-critical regime decreases. This feature can be taken into advantage when designing a golf ball to tailor the needs of a golfer. For an amateur golfer a golf ball in flight during a driver shot can experience a Reynolds number ranging from 180,000 at the beginning of the flight to 60,000 at the end of the flight. For a professional golfer a golf ball in flight during a driver shot can experience a Reynolds number ranging from 220,000 at the beginning of the flight to 80,000 at the end of the flight.


In other words, the range of Reynolds number experienced by a golf ball for an amateur golfer is lower than that for a professional golfer. A golf ball with more polygon faces might suit the needs of a professional golfer while a golf ball with less polygon faces might suit the needs of an amateur golfer.


The advantage of a design based on a convex polyhedron such as golf ball 200 with respect to a dimpled golf ball is now discussed. A comparison of the drag curve of the polyhedron with 192 faces, namely golf ball 200, against a dimpled sphere is shown in FIG. 5. The dimpled sphere has 322 spherical dimples and is representative of a commercial golf ball. The drag crisis for the polyhedron with 192 faces, namely golf ball 200, occurs at approximately the same range of Reynolds numbers as the dimpled sphere. The minimum CD for both balls is reached at Re=110,000. For the dimpled sphere CD=0.16 while for the golf ball 200 CD=0.14, that is 12.5% drag reduction. At Re=140,000 CD=0.174 for the dimpled sphere while for the golf ball 200 CD=0.147, that is 15% drag reduction. Indeed, the drag coefficient for golf ball 200 illustrated in FIG. 3 is consistently lower than that of a dimpled golf ball in the range of Re=90,000-220,000. A lower drag coefficient is important because it plays an important role in achieving more carry distance during a driver shot.


A comparison of the drag curve of the golf ball 100 against the same dimpled sphere is shown in FIG. 6. While CD in the post-critical regime is almost identical for the two balls, the drag crisis for the golf ball 200 occurs at a lower Reynolds number. As a result, CD for Re<110,000 is consistently lower for the polyhedron with 192 faces than for the dimpled sphere. Thus, the embodiment of FIG. 2(a) has a lower drag coefficient than a dimpled sphere. A lower drag coefficient is important because it plays an important role in achieving more carry distance during a driver shot.



FIGS. 7, 8 are additional non-limiting embodiments of the invention. Those golf balls 300, 400 have similar structure as the embodiments of FIGS. 2, 3, and those structures have similar purpose. Those structures have been assigned a similar reference numeral and similar structure with the differences noted below. For example, FIG. 7 shows an example of a golf ball 300 with a body 310 with an inner core and an outer shell with an outer surface 312. A plurality of faces 320 are formed in the outer surface, creating a pattern 316. All the faces are formed in the outer surface 312 and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 324 and corners vertices 322. The body 310 defines a circumscribed sphere 302, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 304 of the body 310. And FIG. 8 shows an example of a golf ball 400 with a body 410 with an inner core and an outer shell with an outer surface 412. A plurality of faces 420 are formed in the outer surface, creating a pattern 416. All the faces are formed in the outer surface 412 and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 424 and corners or vertices 422. The body 410 defines a circumscribed sphere 402, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 404 of the body 410.


The embodiment shown in FIGS. 7, 8 are included for illustrative purposes as examples of convex polyhedral that are not made from pentagons or hexagons. Other convex polyhedra not made up of pentagons or hexagons can also be used for the design of a golf ball. In another embodiment of the present invention a convex polyhedron is shown in FIG. 7. The polyhedron belongs to a class of solids called Geodesic polyhedron which are derived from an icosahedron by subdividing each face into smaller faces using a triangular grid, and then applying a canonicalization algorithm to make the result more spherical. (see https://en.wikipedia.org/wiki/Geodesic_polyhedron). The vertices of the polyhedron are the only points on the polyhedron that lie on a sphere. Any point along the edges or on the face of the triangles lies below the surface of a circumscribed sphere. The polyhedron in FIG. 7 is made from 320 triangles but any geodesic polyhedron with an arbitrary number of triangles can be used as the design of a golf ball.


In another embodiment of the present invention a convex polyhedron is shown in FIG. 8. The polyhedron belongs to a class of solids called Geodesic cubes which are made from rectangular faces. A geodesic cube is a polyhedron derived from a cube by subdividing each face into smaller faces using a square grid, and then applying a canonicalization algorithm to make the result more spherical (see http://dmccooey.com/polyhedra/GeodesicCubes.html). The vertices of the polyhedron are the only points on the polyhedron that lie on a sphere. Any point along the edges or on the face of the rectangular faces lies below the surface of a circumscribed sphere. The polyhedron in FIG. 8 is made from 174 rectangular flat faces but any geodesic cube with an arbitrary number of faces can be used as the design of a golf ball.


It is important to note that the polyhedra described above and shown in FIGS. 2, 3, 7, 8 do not contain any dimples (i.e., curved or spherical depressions or indents), but instead have flat surfaces that lie in a plane. However, the polyhedra provide enhanced aerodynamic characteristics, drag coefficient being one of them, that can help increase the carry distance of the golf ball.


However, golf ball geometries that are based on any convex polyhedra and either include or omit dimples are contemplated. In particular, for any convex polyhedra at least one of the faces may include one or more dimples. For example, FIG. 9 shows an embodiment of a golf ball 500 that is based on a convex polyhedron with a plurality of polygonal faces 520. The convex polyhedron is identical to the one shown in FIG. 2, and includes a body 510 with an inner core and an outer shell with an outer surface 512. A plurality of faces 520 are formed in the outer surface, creating a pattern 516. All the faces are formed in the outer surface 512 and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 524 and corners or vertices 522. The body 510 defines a circumscribed sphere 502, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 504 of the body 510.


However, in this embodiment each face 520 of the polyhedron contains one dimple 560. The dimples 560 have a substantially spherical shape and are created by subtracting spheres 570 from each of the faces 510 of the polyhedron 500. Table 3 lists the coordinates x, y and z of the center of the spheres 570 along with the diameter d of the spheres 570. The coordinates x, y, z and the diameter of the spheres d are normalized by the diameter D of the circumscribed sphere 504. The coordinates x, y, and z are with respect to the center of the circumscribed sphere. The total dimple volume ratio, defined as the aggregate volume removed from the surface of the polyhedron divided by the volume of the polyhedron, is 0.317%.


As shown, the dimples 560 are each located at the center of each 510. However, the dimples 560 can be positioned at another location such as offset within each face 510, or overlapping two or more faces 510. In addition, while spherical dimples 560 are shown, the dimples 560 can have any suitable size and shape. For example, non-spherical depressions can be utilized, such as triangles, hexagons, pentagons. And the dimples need not all have the same size and shape, for example there can be dimples with more than one size and more than one shape.


The effect that the addition of dimples has on the drag coefficient is now discussed. A comparison of the drag curve of this embodiment against that of golf ball 100 is shown in FIG. 10. There are two important observations. First when dimples are added to the faces of a polyhedron, the drag crisis occurs at a lower Reynolds number range. That is, the drag coefficient starts to drop at a lower Reynolds number. Second, the drag coefficient in the post-critical regime increases. This effect may be desirable when designing a golf ball for players with lower swing speeds such as an amateur golf player where the range of Reynolds number that the golf ball experiences during a driver shot is reduced. As the total dimple volume approaches zero the drag curve of golf ball 500 would approach that of golf ball 100. Therefore, one can fine tune the exact behavior of the drag curve by adjusting the total dimple volume. Each dimple is formed by subtracting a sphere for the face of the polyhedron as explained above. The dimple volume is the amount of volume that each sphere subtracts from the volume of the polyhedron.



FIG. 11 compares the drag curve of the golf ball 500 shown in FIG. 9 against a commercial golf ball, namely the Callaway SuperHot, which is a dimpled ball marketed as having a low drag coefficient and shown in U.S. Pat. No. 6,290,615. The drag coefficient for both balls were obtained by performing wind tunnel experiments using the actual commercial golf ball and a 3D printed prototype of the golf ball 500. The drag crisis for the golf ball 500 happens earlier, that is the drag coefficient starts to drop at lower Reynolds number. Clearly CD for golf ball 500 is consistently lower than that of the commercial golf ball for the range of Reynolds numbers 60,000-160,000. A lower drag coefficient can help a golf ball achieve longer carry distances. The golf ball 500 is the exact same polyhedron of golf ball 100, however the golf ball 500 has a dimple on each face. The polyhedron which golf ball 500 is based on is identical to the polyhedron of golf ball 100 in FIG. 2.



FIG. 12 shows an example of a golf ball based on a convex polyhedron with dimples in accordance with another embodiment of the invention. The golf ball 600 has a body 610 with an inner core and an outer shell with an outer surface 612. A plurality of faces 620 are formed in the outer surface, creating a pattern 616. All the faces are formed in the outer surface and each of such faces is flat and lies in a plane. The faces are bound by straight or linear edges 624. Here, the golf ball 600 is based on a polyhedron with 312 polygons.


The body 610 defines a circumscribed sphere 602, which is the smallest sphere containing the polyhedron, and is shown with a dashed line about the outermost points 604 of the body 610. The vertices 622a, 622b of the polyhedron are the only points 604 on the polyhedron that lie on the sphere. Any point along the edges 624 or on the face of the polygons lies below the surface of the circumscribed sphere.


The golf ball body 610 is a polyhedron that is made from first faces 620a and second faces 620b. As shown, the first faces 620a have a first shape, namely pentagons, and the second faces 620b have a second shape different than the first shape, namely hexagons. All of the faces are flat and each such face forms a single plane. In one embodiment, there are 12 pentagons 620a and 300 hexagons 620b (a hexagon-to-pentagon ratio of 25:1), each having corners or points 622a, 622b connected by boundaries such as straight lines or edges 624a, 624b. The first and second faces 620a, 620b form the pattern 616. The edges 624 are sharp, in that the radius of curvature of an edge is less than 0.001 D, where D is the diameter of the circumscribed sphere. Ideally all edges should be the sharpest possible. A radius of curvature of 0 is the case with the sharpest possible edges, though golf ball edges might become a little rounded during manufacture or follow use.


The geometric shape of the embodiment illustrated in FIG. 12 falls into the class of convex polyhedral where the angle between any pair of adjacent faces is always less than 180 degrees. In this embodiment, the angle between a pentagon face 620a and an adjacent hexagonal face 620b is 170.2 degrees. The angle between two adjacent hexagon faces 620b varies from 167.1 degrees to 168.2 degrees.


Each face 620 is immediately adjacent and touching a neighboring face 620, such that each edge 624 forms a border between two neighboring faces 620 and each point 622 is at the intersection of three neighboring faces 620. And, each point 622 is at an opposite end of each linear edge 624 and is at the intersection of three linear edges 624. Accordingly, there is no gap or space between adjacent neighboring faces 620, and the faces 620 are contiguous and form a single integral, continuous outer surface 612 of the ball 600.


The pattern is based on an icosahedron shown in FIG. 2(c). In the icosahedron 170 five equilateral triangles 180 meet at each of its twelve vertices 182. The 12 pentagons 620a of the golf ball 600 shown in FIG. 12 are centered on the vertices of an icosahedron. Therefore, any pair of 3 pentagons 620a form an equilateral triangle 680 shown with dashed line in FIG. 12. The pentagons 620a are all equilateral, that is the 5 edges 624a all have the same length equal to 0.102 D, where D is the diameter of the circumscribed sphere. The hexagons 620b are not equilateral and the lengths of the edges 624b vary from 0.102 D to 0.132 D.


Table 4 lists the coordinates of all the vertices and how each face is formed, which defines the geometry of the polyhedron. Table 4 lists the coordinates x, y, and z of all of the vertices 622 of polyhedron of golf ball 600. Faces are constructed by connecting the group of vertices with straight lines. The coordinates x, y, z are normalized by the diameter D of the circumscribed sphere 604 and are with respect to the center of the sphere. The golf ball 600 contains 620 vertices 622, 930 straight edges 624 and 312 polygonal faces 620.


Each of the face 620 of the polyhedron contains one dimple 690. The dimples 690 have a substantially spherical shape and are created by subtracting spheres 670 from the face 620 of the polyhedron. Table 5 lists the coordinates x, y and z of the center of the spheres 670 along with the diameter d of the spheres 670. The coordinates x, y, z and the diameter of the spheres d are normalized by the diameter D of the circumscribed sphere 604. The coordinates x, y, and z are with respect to the center of the circumscribed sphere.


A comparison of the drag curve of this embodiment against that of a commercial golf ball, namely the Bridgestone Tour is shown in FIG. 13, which is a dimpled ball marketed as having a low drag so that the ball travels further, and described in U.S. Pat. No. 7,503,857. The graphs shows the invention having a lower drag coefficient. The drag coefficient for both balls were obtained by performing wind tunnel experiments using the actual commercial golf ball and a 3D printed prototype of the embodiment. The drag crisis for both golf balls occurs at approximately the same range of Reynolds number, namely from Re=50,000-80,000. At Reynolds number of 100,000 CD for the Bridgestone Tour ball is 0.195 while CD for the current embodiment is 0.162, a drag reduction of 17%. Overall CD for the current embodiment is consistently lower than that of the commercial golf ball for the range of Reynolds numbers 80,000-160,000. A lower drag coefficient can help a golf ball achieve longer carry distances.


Other sizes and shapes of dimples are contemplated by the present invention, and any suitable size and shape dimple can be utilized in the golf balls of FIGS. 2-3, 7-9, 12. While FIG. 2 employs a convex polyhedron that belongs to a class of Goldberg polyhedral, FIGS. 9, 12 are revisions to the Goldberg principle in that each face of the polyhedron contains a dimple.


The following documents are incorporated herein by reference. Achenbach, E. (1972). Experiments on the flow past spheres at high Reynolds numbers. Journal of Fluid Mechanics. Harvey, P. W. (1976). Golf ball aerodynamics. Aeronautical Quarterly. J. Choi, W. J. (2006). Mechanism of drag reduction by dimples on a sphere. Physics of Fluids, 149-167. Ogg, S. S. (2001).


It is further noted that the description and claims use several positional, geometric or relational terms, such as neighboring, circular, spherical, round, and flat. Those terms are merely for convenience to facilitate the description based on the embodiments shown in the figures. Those terms are not intended to limit the invention. Thus, it should be recognized that the invention can be described in other ways without those geometric, relational, directional or positioning terms. In addition, the geometric or relational terms may not be exact. For instance, edges may not be exactly linear, hexagonal, pentagonal or spherical, but still be considered to be substantially linear, hexagonal, pentagonal or spherical, and faces may not be exactly flat or planar but still be considered to be substantially flat or planar because of, for example, roughness of surfaces, tolerances allowed in manufacturing, etc. And, other suitable geometries and relationships can be provided without departing from the spirit and scope of the invention.


In addition, while the invention has been shown and described with boundaries formed by straight edges 124, 224, 324, 424, 524, 624 and points 122, 222, 322, 422, 522, other suitable boundaries can be provided such as curves with or without rounded points. And the boundaries need not be sharped, but can be curved. And other suitable shapes can be utilized for the faces. And, while the invention has been described with a certain number of faces and/or dimples, other suitable numbers of faces and/or dimples, more or fewer, can also be provided within the spirit and scope of the invention. Within this specification, the various sizes, shapes and dimensions are approximate and exemplary to illustrate the scope of the invention and are not limiting. The faces need not all be the same shape and/or size, and there can be multiple sizes and shapes of faces.


The sizes and the terms “substantially” and “about” mean plus or minus 15-20%, and in one embodiment plus or minus 10%, and in other embodiments plus or minus 5%, and plus or minus 1-2%. In addition, while specific dimensions, sizes and shapes may be provided in certain embodiments of the invention, those are simply to illustrate the scope of the invention and are not limiting. Thus, other dimensions, sizes and/or shapes can be utilized without departing from the spirit and scope of the invention.


Use of the term optional or alternative with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having may be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present disclosure.















TABLE 1





Vertex
x/D
y/D
z/D
Face
Group of vertices

























1
0.0000
0.0000
0.9778
1
301
300
69
296
295
20


2
0.6519
0.0000
0.7288
2
312
311
74
302
301
20


3
−0.3260
0.5646
0.7288
3
295
294
79
313
312
20


4
−0.3259
−0.5646
0.7288
4
299
300
301
302
303
304


5
0.7288
0.5646
0.3259
5
293
294
295
296
297
298


6
0.7288
−0.5645
0.3259
6
310
311
312
313
314
315


7
−0.8533
0.3489
0.3259
7
300
299
70
292
291
69


8
0.1245
0.9135
0.3259
8
303
302
74
308
307
73


9
0.1245
−0.9135
0.3259
9
297
296
69
291
290
68


10
−0.8533
−0.3489
0.3260
10
311
310
75
309
308
74


11
0.8533
0.3489
−0.3260
11
294
293
80
320
319
79


12
0.8533
−0.3489
−0.3259
12
314
313
79
319
318
78


13
−0.7288
0.5645
−0.3259
13
288
289
290
291
292


14
−0.1245
0.9135
−0.3259
14
305
306
307
308
309


15
−0.1245
−0.9135
−0.3259
15
316
317
318
319
320


16
−0.7288
−0.5646
−0.3259
16
244
243
70
299
304
17


17
0.3259
0.5646
−0.7288
17
304
303
73
251
250
17


18
0.3260
−0.5646
−0.7288
18
298
297
68
268
267
18


19
−0.6519
0.0000
−0.7288
19
261
260
80
293
298
18


20
0.0000
0.0000
−0.9778
20
278
277
75
310
315
19


21
0.1755
0.3040
0.9230
21
315
314
78
285
284
19


22
0.4845
0.3040
0.8050
22
288
292
70
243
242
66


23
0.5210
0.5716
0.6140
23
252
251
73
307
306
72


24
0.2345
0.7370
0.6140
24
269
268
68
290
289
67


25
0.0210
0.5716
0.8050
25
305
309
75
277
276
71


26
−0.3510
0.0000
0.9230
26
316
320
80
260
259
76


27
−0.5055
0.2676
0.8050
27
286
285
78
318
317
77


28
−0.7555
0.1654
0.6140
28
183
182
67
289
288
66


29
−0.7555
−0.1654
0.6140
29
206
205
72
306
305
71


30
−0.5055
−0.2676
0.8050
30
229
228
77
317
316
76


31
0.1755
−0.3040
0.9230
31
250
249
53
245
244
17


32
0.0210
−0.5716
0.8050
32
267
266
59
262
261
18


33
0.2345
−0.7370
0.6140
33
284
283
63
279
278
19


34
0.5210
−0.5716
0.6140
34
242
243
244
245
246
247


35
0.4845
−0.3040
0.8050
35
248
249
250
251
252
253


36
0.8770
0.0000
0.4540
36
265
266
267
268
269
270


37
0.9135
−0.2676
0.2630
37
276
277
278
279
280
281


38
0.9725
−0.1654
−0.0460
38
259
260
261
262
263
264


39
0.9725
0.1654
−0.0460
39
282
283
284
285
286
287


40
0.9135
0.2676
0.2630
40
184
183
66
242
247
11


41
−0.4385
0.7595
0.4540
41
253
252
72
205
204
14


42
−0.2250
0.9249
0.2630
42
270
269
67
182
181
12


43
−0.3430
0.9249
−0.0460
43
207
206
71
276
281
13


44
−0.6295
0.7595
−0.0460
44
230
229
76
259
264
15


45
−0.6885
0.6573
0.2630
45
287
286
77
228
227
16


46
−0.4385
−0.7595
0.4540
46
246
245
53
239
238
52


47
−0.6885
−0.6573
0.2630
47
249
248
54
240
239
53


48
−0.6295
−0.7595
−0.0460
48
266
265
60
258
257
59


49
−0.3430
−0.9249
−0.0460
49
263
262
59
257
256
58


50
−0.2250
−0.9249
0.2630
50
280
279
63
273
272
62


51
0.6295
0.7595
0.0460
51
283
282
64
274
273
63


52
0.6885
0.6573
−0.2630
52
179
180
181
182
183
184


53
0.4385
0.7595
−0.4540
53
202
203
204
205
206
207


54
0.2250
0.9249
−0.2630
54
225
226
227
228
229
230


55
0.3430
0.9249
0.0460
55
247
246
52
188
187
11


56
0.6295
−0.7595
0.0460
56
198
197
54
248
253
14


57
0.3430
−0.9249
0.0460
57
175
174
60
265
270
12


58
0.2250
−0.9249
−0.2630
58
281
280
62
211
210
13


59
0.4385
−0.7595
−0.4540
59
264
263
58
234
233
15


60
0.6885
−0.6573
−0.2630
60
221
220
64
282
287
16


61
−0.9725
0.1654
0.0460
61
237
238
239
240
241


62
−0.9135
0.2676
−0.2630
62
254
255
256
257
258


63
−0.8770
0.0000
−0.4540
63
271
272
273
274
275


64
−0.9135
−0.2676
−0.2630
64
187
186
39
179
184
11


65
−0.9725
−0.1654
0.0460
65
181
180
38
176
175
12


66
0.7555
0.1654
−0.6140
66
204
203
43
199
198
14


67
0.7555
−0.1654
−0.6140
67
210
209
44
202
207
13


68
0.5055
−0.2676
−0.8050
68
233
232
49
225
230
15


69
0.3510
0.0000
−0.9230
69
227
226
48
222
221
16


70
0.5055
0.2676
−0.8050
70
189
188
52
238
237
51


71
−0.5210
0.5716
−0.6140
71
197
196
55
241
240
54


72
−0.2345
0.7370
−0.6140
72
254
258
60
174
173
56


73
−0.0210
0.5716
−0.8050
73
235
234
58
256
255
57


74
−0.1755
0.3040
−0.9230
74
212
211
62
272
271
61


75
−0.4845
0.3040
−0.8050
75
220
219
65
275
274
64


76
−0.2345
−0.7370
−0.6140
76
180
179
39
171
170
38


77
−0.5210
−0.5716
−0.6140
77
203
202
44
194
193
43


78
−0.4845
−0.3040
−0.8050
78
226
225
49
217
216
48


79
−0.1755
−0.3040
−0.9230
79
185
186
187
188
189
190


80
−0.0210
−0.5716
−0.8050
80
196
197
198
199
200
201


81
0.2485
0.4305
0.8677
81
173
174
175
176
177
178


82
0.3932
0.4305
0.8124
82
208
209
210
211
212
213


83
0.4103
0.5558
0.7230
83
231
232
233
234
235
236


84
0.2762
0.6332
0.7230
84
219
220
221
222
223
224


85
0.1762
0.5558
0.8124
85
237
241
55
105
104
51


86
0.0023
0.3047
0.9342
86
160
159
57
255
254
56


87
−0.0798
0.4470
0.8714
87
271
275
65
134
133
61


88
−0.2538
0.4396
0.8361
88
186
185
40
172
171
39


89
−0.3472
0.2926
0.8714
89
177
176
38
170
169
37


90
−0.2650
0.1503
0.9342
90
200
199
43
193
192
42


91
−0.0895
0.1550
0.9616
91
209
208
45
195
194
44


92
0.2627
−0.1544
0.9342
92
232
231
50
218
217
49


93
0.4270
−0.1544
0.8714
93
223
222
48
216
215
47


94
0.5077
0.0000
0.8361
94
190
189
51
104
109
5


95
0.4270
0.1544
0.8714
95
106
105
55
196
201
8


96
0.2627
0.1544
0.9342
96
161
160
56
173
178
6


97
0.1790
0.0000
0.9616
97
236
235
57
159
158
9


98
0.8203
0.1503
0.5196
98
213
212
61
133
138
7


99
0.8397
0.2926
0.4181
99
135
134
65
219
224
10


100
0.7466
0.4396
0.4540
100
168
169
170
171
172


101
0.6405
0.4470
0.5963
101
191
192
193
194
195


102
0.6211
0.3047
0.6979
102
214
215
216
217
218


103
0.7078
0.1550
0.6571
103
100
99
40
185
190
5


104
0.5551
0.7856
0.2006
104
201
200
42
113
112
8


105
0.4028
0.8735
0.2006
105
178
177
37
165
164
6


106
0.2971
0.8664
0.3433
106
129
128
45
208
213
7


107
0.3477
0.7781
0.4890
107
152
151
50
231
236
9


108
0.5000
0.6902
0.4890
108
224
223
47
142
141
10


109
0.6018
0.6905
0.3433
109
104
105
106
107
108
109


110
−0.0467
0.6902
0.6979
110
156
157
158
159
160
161


111
0.0669
0.7781
0.5963
111
133
134
135
136
137
138


112
0.0075
0.8664
0.4540
112
168
172
40
99
98
36


113
−0.1664
0.8735
0.4181
113
166
165
37
169
168
36


114
−0.2800
0.7856
0.5196
114
114
113
42
192
191
41


115
−0.2196
0.6905
0.6571
115
191
195
45
128
127
41


116
−0.4971
0.0000
0.8677
116
214
218
50
151
150
46


117
−0.5694
0.1253
0.8124
117
143
142
47
215
214
46


118
−0.6865
0.0774
0.7230
118
109
108
23
101
100
5


119
−0.6865
−0.0774
0.7230
119
112
111
24
107
106
8


120
−0.5694
−0.1253
0.8124
120
164
163
34
156
161
6


121
−0.2650
−0.1503
0.9342
121
138
137
28
130
129
7


122
−0.3472
−0.2926
0.8714
122
158
157
33
153
152
9


123
−0.2538
−0.4396
0.8361
123
141
140
29
136
135
10


124
−0.0798
−0.4470
0.8714
124
98
99
100
101
102
103


125
0.0023
−0.3047
0.9342
125
110
111
112
113
114
115


126
−0.0895
−0.1550
0.9616
126
162
163
164
165
166
167


127
−0.5403
0.6353
0.5196
127
127
128
129
130
131
132


128
−0.6733
0.5809
0.4181
128
150
151
152
153
154
155


129
−0.7540
0.4267
0.4540
129
139
140
141
142
143
144


130
−0.7073
0.3312
0.5963
130
167
166
36
98
103
2


131
−0.5744
0.3855
0.6979
131
115
114
41
127
132
3


132
−0.4881
0.5354
0.6571
132
144
143
46
150
155
4


133
−0.9579
0.0879
0.2007
133
108
107
24
84
83
23


134
−0.9579
−0.0880
0.2007
134
157
156
34
148
147
33


135
−0.8988
−0.1759
0.3433
135
137
136
29
119
118
28


136
−0.8477
−0.0880
0.4890
136
102
101
23
83
82
22


137
−0.8477
0.0880
0.4890
137
111
110
25
85
84
24


138
−0.8988
0.1759
0.3433
138
163
162
35
149
148
34


139
−0.5744
−0.3855
0.6979
139
131
130
28
118
117
27


140
−0.7073
−0.3312
0.5963
140
154
153
33
147
146
32


141
−0.7540
−0.4267
0.4540
141
140
139
30
120
119
29


142
−0.6733
−0.5809
0.4181
142
103
102
22
95
94
2


143
−0.5403
−0.6353
0.5196
143
94
93
35
162
167
2


144
−0.4881
−0.5354
0.6571
144
88
87
25
110
115
3


145
0.2485
−0.4305
0.8677
145
132
131
27
89
88
3


146
0.1762
−0.5558
0.8124
146
155
154
32
124
123
4


147
0.2762
−0.6332
0.7230
147
123
122
30
139
144
4


148
0.4103
−0.5558
0.7230
148
81
82
83
84
85


149
0.3932
−0.4305
0.8124
149
145
146
147
148
149


150
−0.2800
−0.7856
0.5196
150
116
117
118
119
120


151
−0.1664
−0.8735
0.4181
151
96
95
22
82
81
21


152
0.0075
−0.8664
0.4540
152
81
85
25
87
86
21


153
0.0669
−0.7781
0.5963
153
145
149
35
93
92
31


154
−0.0467
−0.6902
0.6979
154
90
89
27
117
116
26


155
−0.2196
−0.6905
0.6571
155
125
124
32
146
145
31


156
0.5000
−0.6902
0.4890
156
116
120
30
122
121
26


157
0.3477
−0.7781
0.4890
157
92
93
94
95
96
97


158
0.2971
−0.8664
0.3433
158
86
87
88
89
90
91


159
0.4028
−0.8735
0.2007
159
121
122
123
124
125
126


160
0.5551
−0.7856
0.2007
160
97
96
21
86
91
1


161
0.6018
−0.6905
0.3433
161
126
125
31
92
97
1


162
0.6211
−0.3047
0.6979
162
91
90
26
121
126
1


163
0.6405
−0.4470
0.5963


164
0.7466
−0.4396
0.4540


165
0.8397
−0.2926
0.4181


166
0.8203
−0.1503
0.5196


167
0.7078
−0.1550
0.6571


168
0.9490
0.0000
0.3154


169
0.9660
−0.1253
0.2259


170
0.9937
−0.0774
0.0813


171
0.9937
0.0774
0.0813


172
0.9660
0.1253
0.2259


173
0.7492
−0.6353
0.0271


174
0.7806
−0.5809
−0.1372


175
0.8647
−0.4267
−0.1643


176
0.9247
−0.3312
−0.0271


177
0.8934
−0.3855
0.1372


178
0.8019
−0.5354
0.1643


179
0.9579
0.0880
−0.2007


180
0.9579
−0.0879
−0.2007


181
0.8988
−0.1759
−0.3433


182
0.8477
−0.0880
−0.4890


183
0.8477
0.0880
−0.4890


184
0.8988
0.1759
−0.3433


185
0.8934
0.3855
0.1372


186
0.9247
0.3312
−0.0271


187
0.8647
0.4267
−0.1643


188
0.7805
0.5809
−0.1372


189
0.7492
0.6353
0.0271


190
0.8019
0.5354
0.1643


191
−0.4745
0.8218
0.3154


192
−0.3745
0.8993
0.2259


193
−0.4298
0.8993
0.0813


194
−0.5639
0.8218
0.0813


195
−0.5915
0.7740
0.2259


196
0.1756
0.9664
0.0271


197
0.1128
0.9664
−0.1372


198
−0.0628
0.9622
−0.1643


199
−0.1756
0.9664
−0.0271


200
−0.1128
0.9664
0.1372


201
0.0628
0.9622
0.1643


202
−0.5551
0.7856
−0.2007


203
−0.4028
0.8735
−0.2007


204
−0.2971
0.8664
−0.3433


205
−0.3477
0.7781
−0.4890


206
−0.5000
0.6902
−0.4890


207
−0.6018
0.6905
−0.3433


208
−0.7806
0.5809
0.1372


209
−0.7492
0.6353
−0.0271


210
−0.8019
0.5354
−0.1643


211
−0.8934
0.3855
−0.1372


212
−0.9247
0.3312
0.0271


213
−0.8647
0.4267
0.1643


214
−0.4745
−0.8218
0.3154


215
−0.5915
−0.7740
0.2259


216
−0.5639
−0.8218
0.0813


217
−0.4298
−0.8993
0.0813


218
−0.3745
−0.8993
0.2259


219
−0.9247
−0.3312
0.0271


220
−0.8934
−0.3855
−0.1372


221
−0.8019
−0.5354
−0.1643


222
−0.7492
−0.6353
−0.0271


223
−0.7805
−0.5809
0.1372


224
−0.8647
−0.4267
0.1643


225
−0.4028
−0.8735
−0.2006


226
−0.5551
−0.7856
−0.2006


227
−0.6018
−0.6905
−0.3433


228
−0.5000
−0.6902
−0.4890


229
−0.3477
−0.7781
−0.4890


230
−0.2971
−0.8664
−0.3433


231
−0.1128
−0.9664
0.1372


232
−0.1756
−0.9664
−0.0271


233
−0.0628
−0.9622
−0.1643


234
0.1128
−0.9664
−0.1372


235
0.1756
−0.9664
0.0271


236
0.0628
−0.9622
0.1643


237
0.5639
0.8218
−0.0813


238
0.5915
0.7740
−0.2259


239
0.4745
0.8218
−0.3154


240
0.3745
0.8993
−0.2259


241
0.4298
0.8993
−0.0813


242
0.7073
0.3312
−0.5963


243
0.5744
0.3855
−0.6979


244
0.4881
0.5354
−0.6571


245
0.5403
0.6353
−0.5196


246
0.6733
0.5809
−0.4181


247
0.7540
0.4267
−0.4540


248
0.1664
0.8735
−0.4181


249
0.2800
0.7856
−0.5196


250
0.2196
0.6905
−0.6571


251
0.0467
0.6902
−0.6979


252
−0.0669
0.7781
−0.5963


253
−0.0075
0.8664
−0.4540


254
0.5639
−0.8218
−0.0813


255
0.4298
−0.8993
−0.0813


256
0.3745
−0.8993
−0.2259


257
0.4745
−0.8218
−0.3154


258
0.5915
−0.7740
−0.2259


259
−0.0669
−0.7781
−0.5963


260
0.0467
−0.6902
−0.6979


261
0.2196
−0.6905
−0.6571


262
0.2800
−0.7856
−0.5196


263
0.1664
−0.8735
−0.4181


264
−0.0075
−0.8664
−0.4540


265
0.6733
−0.5809
−0.4181


266
0.5403
−0.6353
−0.5196


267
0.4881
−0.5354
−0.6571


268
0.5744
−0.3855
−0.6979


269
0.7073
−0.3312
−0.5963


270
0.7540
−0.4267
−0.4540


271
−0.9937
0.0774
−0.0813


272
−0.9660
0.1253
−0.2259


273
−0.9490
0.0000
−0.3154


274
−0.9660
−0.1253
−0.2259


275
−0.9937
−0.0774
−0.0813


276
−0.6405
0.4470
−0.5963


277
−0.6211
0.3047
−0.6979


278
−0.7078
0.1550
−0.6571


279
−0.8203
0.1503
−0.5196


280
−0.8397
0.2926
−0.4181


281
−0.7466
0.4396
−0.4540


282
−0.8397
−0.2926
−0.4181


283
−0.8203
−0.1503
−0.5196


284
−0.7078
−0.1550
−0.6571


285
−0.6211
−0.3047
−0.6979


286
−0.6405
−0.4470
−0.5963


287
−0.7466
−0.4396
−0.4540


288
0.6865
0.0774
−0.7230


289
0.6865
−0.0774
−0.7230


290
0.5694
−0.1253
−0.8124


291
0.4971
0.0000
−0.8677


292
0.5694
0.1253
−0.8124


293
0.0798
−0.4470
−0.8714


294
−0.0023
−0.3047
−0.9342


295
0.0895
−0.1550
−0.9616


296
0.2650
−0.1503
−0.9342


297
0.3472
−0.2926
−0.8714


298
0.2538
−0.4396
−0.8361


299
0.3472
0.2926
−0.8714


300
0.2650
0.1503
−0.9342


301
0.0895
0.1550
−0.9616


302
−0.0023
0.3047
−0.9342


303
0.0798
0.4470
−0.8714


304
0.2538
0.4396
−0.8361


305
−0.4103
0.5558
−0.7230


306
−0.2762
0.6332
−0.7230


307
−0.1762
0.5558
−0.8124


308
−0.2485
0.4305
−0.8677


309
−0.3932
0.4305
−0.8124


310
−0.4270
0.1544
−0.8714


311
−0.2627
0.1544
−0.9342


312
−0.1790
0.0000
−0.9616


313
−0.2627
−0.1544
−0.9342


314
−0.4270
−0.1544
−0.8714


315
−0.5077
0.0000
−0.8361


316
−0.2762
−0.6332
−0.7230


317
−0.4103
−0.5558
−0.7230


318
−0.3932
−0.4305
−0.8124


319
−0.2485
−0.4305
−0.8677


320
−0.1762
−0.5558
−0.8124





















TABLE 2





Vertex
x/D
y/D
z/D
Face
Group of vertices

























1
0.0166
0.0382
0.4983
1
96
168
240
216
144



2
0.0166
−0.0382
−0.4983
2
97
169
241
217
145


3
−0.0166
−0.0382
0.4983
3
98
170
242
218
146


4
−0.0166
0.0382
−0.4983
4
99
171
243
219
147


5
0.4983
0.0166
0.0382
5
100
172
244
221
149


6
0.4983
−0.0166
−0.0382
6
101
173
245
220
148


7
−0.4983
−0.0166
0.0382
7
102
174
246
223
151


8
−0.4983
0.0166
−0.0382
8
103
175
247
222
150


9
0.0382
0.4983
0.0166
9
104
176
248
226
154


10
0.0382
−0.4983
−0.0166
10
105
177
249
227
155


11
−0.0382
−0.4983
0.0166
11
106
178
250
224
152


12
−0.0382
0.4983
−0.0166
12
107
179
251
225
153


13
0.0979
0.0465
0.4881
13
72
26
0
12
60
84


14
0.0979
−0.0465
−0.4881
14
72
84
192
264
230
134


15
−0.0979
−0.0465
0.4881
15
72
134
158
110
50
26


16
−0.0979
0.0465
−0.4881
16
73
25
3
15
63
87


17
0.4881
0.0979
0.0465
17
73
87
195
267
229
133


18
0.4881
−0.0979
−0.0465
18
73
133
157
109
49
25


19
−0.4881
−0.0979
0.0465
19
74
24
2
14
62
86


20
−0.4881
0.0979
−0.0465
20
74
86
194
266
228
132


21
0.0465
0.4881
0.0979
21
74
132
156
108
48
24


22
0.0465
−0.4881
−0.0979
22
75
27
1
13
61
85


23
−0.0465
−0.4881
0.0979
23
75
85
193
265
231
135


24
−0.0465
0.4881
−0.0979
24
75
135
159
111
51
27


25
0.0333
−0.1043
0.4879
25
76
28
4
16
64
88


26
0.0333
0.1043
−0.4879
26
76
88
196
268
232
136


27
−0.0333
0.1043
0.4879
27
76
136
160
112
52
28


28
−0.0333
−0.1043
−0.4879
28
77
29
5
17
65
89


29
0.4879
−0.0333
0.1043
29
77
89
197
269
233
137


30
0.4879
0.0333
−0.1043
30
77
137
161
113
53
29


31
−0.4879
0.0333
0.1043
31
78
30
6
18
66
90


32
−0.4879
−0.0333
−0.1043
32
78
90
198
270
234
138


33
0.1043
−0.4879
0.0333
33
78
138
162
114
54
30


34
0.1043
0.4879
−0.0333
34
79
31
7
19
67
91


35
−0.1043
0.4879
0.0333
35
79
91
199
271
235
139


36
−0.1043
−0.4879
−0.0333
36
79
139
163
115
55
31


37
0.1443
−0.0179
0.4784
37
80
33
8
20
68
92


38
0.1443
0.0179
−0.4784
38
80
92
200
272
237
141


39
−0.1443
0.0179
0.4784
39
80
141
165
117
57
33


40
−0.1443
−0.0179
−0.4784
40
81
32
9
21
69
93


41
0.4784
−0.1443
0.0179
41
81
93
201
273
236
140


42
0.4784
0.1443
−0.0179
42
81
140
164
116
56
32


43
−0.4784
0.1443
0.0179
43
82
34
11
23
71
95


44
−0.4784
−0.1443
−0.0179
44
82
95
203
275
238
142


45
0.0179
−0.4784
0.1443
45
82
142
166
118
58
34


46
0.0179
0.4784
−0.1443
46
83
35
10
22
70
94


47
−0.0179
0.4784
0.1443
47
83
94
202
274
239
143


48
−0.0179
−0.4784
−0.1443
48
83
143
167
119
59
35


49
0.1142
−0.0920
0.4780
49
372
360
252
204
312
364


50
0.1142
0.0920
−0.4780
50
372
364
256
208
316
368


51
−0.1142
0.0920
0.4780
51
372
368
260
212
320
360


52
−0.1142
−0.0920
−0.4780
52
373
325
277
349
297
333


53
0.4780
−0.1142
0.0920
53
373
333
285
357
293
329


54
0.4780
0.1142
−0.0920
54
373
329
281
353
289
325


55
−0.4780
0.1142
0.0920
55
374
324
276
348
296
332


56
−0.4780
−0.1142
−0.0920
56
374
332
284
356
292
328


57
0.0920
−0.4780
0.1142
57
374
328
280
352
288
324


58
0.0920
0.4780
−0.1142
58
375
361
253
205
313
365


59
−0.0920
0.4780
0.1142
59
375
365
257
209
317
369


60
−0.0920
−0.4780
−0.1142
60
375
369
261
213
321
361


61
0.1304
0.1181
0.4680
61
376
326
278
350
298
334


62
0.1304
−0.1181
−0.4680
62
376
334
286
358
294
330


63
−0.1304
−0.1181
0.4680
63
376
330
282
354
290
326


64
−0.1304
0.1181
−0.4680
64
377
363
255
207
315
367


65
0.4680
0.1304
0.1181
65
377
367
259
211
319
371


66
0.4680
−0.1304
−0.1181
66
377
371
263
215
323
363


67
−0.4680
−0.1304
0.1181
67
378
362
254
206
314
366


68
−0.4680
0.1304
−0.1181
68
378
366
258
210
318
370


69
0.1181
0.4680
0.1304
69
378
370
262
214
322
362


70
0.1181
−0.4680
−0.1304
70
379
327
279
351
299
335


71
−0.1181
−0.4680
0.1304
71
379
335
287
359
295
331


72
−0.1181
0.4680
−0.1304
72
379
331
283
355
291
327


73
0.0000
0.1784
0.4671
73
48
108
180
168
96
36


74
0.0000
0.1784
−0.4671
74
49
109
181
169
97
37


75
0.0000
−0.1784
0.4671
75
50
110
182
170
98
38


76
0.0000
−0.1784
−0.4671
76
51
111
183
171
99
39


77
0.4671
0.0000
0.1784
77
52
112
184
172
100
40


78
0.4671
0.0000
−0.1784
78
53
113
185
173
101
41


79
−0.4671
0.0000
0.1784
79
54
114
186
174
102
42


80
−0.4671
0.0000
−0.1784
80
55
115
187
175
103
43


81
0.1784
0.4671
0.0000
81
56
116
188
176
104
44


82
0.1784
−0.4671
0.0000
82
57
117
189
177
105
45


83
−0.1784
0.4671
0.0000
83
58
118
190
178
106
46


84
−0.1784
−0.4671
0.0000
84
59
119
191
179
107
47


85
0.0830
0.1847
0.4571
85
60
12
36
96
144
120


86
0.0830
−0.1847
−0.4571
86
61
13
37
97
145
121


87
−0.0830
−0.1847
0.4571
87
62
14
38
98
146
122


88
−0.0830
0.1847
−0.4571
88
63
15
39
99
147
123


89
0.4571
0.0830
0.1847
89
64
16
41
101
148
124


90
0.4571
−0.0830
−0.1847
90
65
17
40
100
149
125


91
−0.4571
−0.0830
0.1847
91
66
18
43
103
150
126


92
−0.4571
0.0830
−0.1847
92
67
19
42
102
151
127


93
0.1847
0.4571
0.0830
93
68
20
46
106
152
128


94
0.1847
−0.4571
−0.0830
94
69
21
47
107
153
129


95
−0.1847
−0.4571
0.0830
95
70
22
44
104
154
130


96
−0.1847
0.4571
−0.0830
96
71
23
45
105
155
131


97
0.2123
−0.0080
0.4526
97
228
266
310
226
248
336


98
0.2123
0.0080
−0.4526
98
229
267
311
227
249
337


99
−0.2123
0.0080
0.4526
99
230
264
308
224
250
338


100
−0.2123
−0.0080
−0.4526
100
231
265
309
225
251
339


101
0.4526
−0.2123
0.0080
101
232
268
300
216
240
340


102
0.4526
0.2123
−0.0080
102
233
269
301
217
241
341


103
−0.4526
0.2123
0.0080
103
234
270
302
218
242
342


104
−0.4526
−0.2123
−0.0080
104
235
271
303
219
243
343


105
0.0080
−0.4526
0.2123
105
236
273
305
221
244
344


106
0.0080
0.4526
−0.2123
106
237
272
304
220
245
345


107
−0.0080
0.4526
0.2123
107
238
275
307
223
246
346


108
−0.0080
−0.4526
−0.2123
108
239
274
306
222
247
347


109
0.1621
−0.1505
0.4484
109
288
352
340
240
168
180


110
0.1621
0.1505
−0.4484
110
289
353
341
241
169
181


111
−0.1621
0.1505
0.4484
111
290
354
342
242
170
182


112
−0.1621
−0.1505
−0.4484
112
291
355
343
243
171
183


113
0.4484
−0.1621
0.1505
113
292
356
344
244
172
184


114
0.4484
0.1621
−0.1505
114
293
357
345
245
173
185


115
−0.4484
0.1621
0.1505
115
294
358
346
246
174
186


116
−0.4484
−0.1621
−0.1505
116
295
359
347
247
175
187


117
0.1505
−0.4484
0.1621
117
296
348
336
248
176
188


118
0.1505
0.4484
−0.1621
118
297
349
337
249
177
189


119
−0.1505
0.4484
0.1621
119
298
350
338
250
178
190


120
−0.1505
−0.4484
−0.1621
120
299
351
339
251
179
191


121
0.2055
0.1169
0.4406
121
312
204
120
144
216
300


122
0.2055
−0.1169
−0.4406
122
313
205
121
145
217
301


123
−0.2055
−0.1169
0.4406
123
314
206
122
146
218
302


124
−0.2055
0.1169
−0.4406
124
315
207
123
147
219
303


125
0.4406
0.2055
0.1169
125
316
208
124
148
220
304


126
0.4406
−0.2055
−0.1169
126
317
209
125
149
221
305


127
−0.4406
−0.2055
0.1169
127
318
210
126
150
222
306


128
−0.4406
0.2055
−0.1169
128
319
211
127
151
223
307


129
0.1169
0.4406
0.2055
129
320
212
128
152
224
308


130
0.1169
−0.4406
−0.2055
130
321
213
129
153
225
309


131
−0.1169
−0.4406
0.2055
131
322
214
130
154
226
310


132
−0.1169
0.4406
−0.2055
132
323
215
131
155
227
311


133
0.0497
−0.2387
0.4365
133
48
36
12
0
2
24


134
0.0497
0.2387
−0.4365
134
49
37
13
1
3
25


135
−0.0497
0.2387
0.4365
135
50
38
14
2
0
26


136
−0.0497
−0.2387
−0.4365
136
51
39
15
3
1
27


137
0.4365
−0.0497
0.2387
137
52
40
17
5
4
28


138
0.4365
0.0497
−0.2387
138
53
41
16
4
5
29


139
−0.4365
0.0497
0.2387
139
54
42
19
7
6
30


140
−0.4365
−0.0497
−0.2387
140
55
43
18
6
7
31


141
0.2387
−0.4365
0.0497
141
56
44
22
10
9
32


142
0.2387
0.4365
−0.0497
142
57
45
23
11
8
33


143
−0.2387
0.4365
0.0497
143
58
46
20
8
11
34


144
−0.2387
−0.4365
−0.0497
144
59
47
21
9
10
35


145
0.2396
0.0521
0.4358
145
60
120
204
252
192
84


146
0.2396
−0.0521
−0.4358
146
61
121
205
253
193
85


147
−0.2396
−0.0521
0.4358
147
62
122
206
254
194
86


148
−0.2396
0.0521
−0.4358
148
63
123
207
255
195
87


149
0.4358
0.2396
0.0521
149
64
124
208
256
196
88


150
0.4358
−0.2396
−0.0521
150
65
125
209
257
197
89


151
−0.4358
−0.2396
0.0521
151
66
126
210
258
198
90


152
−0.4358
0.2396
−0.0521
152
67
127
211
259
199
91


153
0.0521
0.4358
0.2396
153
68
128
212
260
200
92


154
0.0521
−0.4358
−0.2396
154
69
129
213
261
201
93


155
−0.0521
−0.4358
0.2396
155
70
130
214
262
202
94


156
−0.0521
0.4358
−0.2396
156
71
131
215
263
203
95


157
0.1314
−0.2239
0.4274
157
132
228
336
348
276
156


158
0.1314
0.2239
−0.4274
158
133
229
337
349
277
157


159
−0.1314
0.2239
0.4274
159
134
230
338
350
278
158


160
−0.1314
−0.2239
−0.4274
160
135
231
339
351
279
159


161
0.4274
−0.1314
0.2239
161
136
232
340
352
280
160


162
0.4274
0.1314
−0.2239
162
137
233
341
353
281
161


163
−0.4274
0.1314
0.2239
163
138
234
342
354
282
162


164
−0.4274
−0.1314
−0.2239
164
139
235
343
355
283
163


165
0.2239
−0.4274
0.1314
165
140
236
344
356
284
164


166
0.2239
0.4274
−0.1314
166
141
237
345
357
285
165


167
−0.2239
0.4274
0.1314
167
142
238
346
358
286
166


168
−0.2239
−0.4274
−0.1314
168
143
239
347
359
287
167


169
0.2525
−0.0570
0.4278
169
288
180
108
156
276
324


170
0.2525
0.0570
−0.4278
170
289
181
109
157
277
325


171
−0.2525
0.0570
0.4278
171
290
182
110
158
278
326


172
−0.2525
−0.0570
−0.4278
172
291
183
111
159
279
327


173
0.4278
−0.2525
0.0570
173
292
184
112
160
280
328


174
0.4278
0.2525
−0.0570
174
293
185
113
161
281
329


175
−0.4278
0.2525
0.0570
175
294
186
114
162
282
330


176
−0.4278
−0.2525
−0.0570
176
295
187
115
163
283
331


177
0.0570
−0.4278
0.2525
177
296
188
116
164
284
332


178
0.0570
0.4278
−0.2525
178
297
189
117
165
285
333


179
−0.0570
0.4278
0.2525
179
298
190
118
166
286
334


180
−0.0570
−0.4278
−0.2525
180
299
191
119
167
287
335


181
0.2345
−0.1280
0.4227
181
308
264
192
252
360
320


182
0.2345
0.1280
−0.4227
182
309
265
193
253
361
321


183
−0.2345
0.1280
0.4227
183
310
266
194
254
362
322


184
−0.2345
−0.1280
−0.4227
184
311
267
195
255
363
323


185
0.4227
−0.2345
0.1280
185
300
268
196
256
364
312


186
0.4227
0.2345
−0.1280
186
301
269
197
257
365
313


187
−0.4227
0.2345
0.1280
187
302
270
198
258
366
314


188
−0.4227
−0.2345
−0.1280
188
303
271
199
259
367
315


189
0.1280
−0.4227
0.2345
189
304
272
200
260
368
316


190
0.1280
0.4227
−0.2345
190
305
273
201
261
369
317


191
−0.1280
0.4227
0.2345
191
306
274
202
262
370
318


192
−0.1280
−0.4227
−0.2345
192
307
275
203
263
371
319


193
0.1147
0.2508
0.4171


194
0.1147
−0.2508
−0.4171


195
−0.1147
−0.2508
0.4171


196
−0.1147
0.2508
−0.4171


197
0.4171
0.1147
0.2508


198
0.4171
−0.1147
−0.2508


199
−0.4171
−0.1147
0.2508


200
−0.4171
0.1147
−0.2508


201
0.2508
0.4171
0.1147


202
0.2508
−0.4171
−0.1147


203
−0.2508
−0.4171
0.1147


204
−0.2508
0.4171
−0.1147


205
0.2374
0.1793
0.4019


206
0.2374
−0.1793
−0.4019


207
−0.2374
−0.1793
0.4019


208
−0.2374
0.1793
−0.4019


209
0.4019
0.2374
0.1793


210
0.4019
−0.2374
−0.1793


211
−0.4019
−0.2374
0.1793


212
−0.4019
0.2374
−0.1793


213
0.1793
0.4019
0.2374


214
0.1793
−0.4019
−0.2374


215
−0.1793
−0.4019
0.2374


216
−0.1793
0.4019
−0.2374


217
0.2966
0.0401
0.4005


218
0.2966
−0.0401
−0.4005


219
−0.2966
−0.0401
0.4005


220
−0.2966
0.0401
−0.4005


221
0.4005
0.2966
0.0401


222
0.4005
−0.2966
−0.0401


223
−0.4005
−0.2966
0.0401


224
−0.4005
0.2966
−0.0401


225
0.0401
0.4005
0.2966


226
0.0401
−0.4005
−0.2966


227
−0.0401
−0.4005
0.2966


228
−0.0401
0.4005
−0.2966


229
0.0162
−0.3030
0.3974


230
0.0162
0.3030
−0.3974


231
−0.0162
0.3030
0.3974


232
−0.0162
−0.3030
−0.3974


233
0.3974
−0.0162
0.3030


234
0.3974
0.0162
−0.3030


235
−0.3974
0.0162
0.3030


236
−0.3974
−0.0162
−0.3030


237
0.3030
−0.3974
0.0162


238
0.3030
0.3974
−0.0162


239
−0.3030
0.3974
0.0162


240
−0.3030
−0.3974
−0.0162


241
0.3045
−0.0273
0.3956


242
0.3045
0.0273
−0.3956


243
−0.3045
0.0273
0.3956


244
−0.3045
−0.0273
−0.3956


245
0.3956
−0.3045
0.0273


246
0.3956
0.3045
−0.0273


247
−0.3956
0.3045
0.0273


248
−0.3956
−0.3045
−0.0273


249
0.0273
−0.3956
0.3045


250
0.0273
0.3956
−0.3045


251
−0.0273
0.3956
0.3045


252
−0.0273
−0.3956
−0.3045


253
0.1932
0.2475
0.3891


254
0.1932
−0.2475
−0.3891


255
−0.1932
−0.2475
0.3891


256
−0.1932
0.2475
−0.3891


257
0.3891
0.1932
0.2475


258
0.3891
−0.1932
−0.2475


259
−0.3891
−0.1932
0.2475


260
−0.3891
0.1932
−0.2475


261
0.2475
0.3891
0.1932


262
0.2475
−0.3891
−0.1932


263
−0.2475
−0.3891
0.1932


264
−0.2475
0.3891
−0.1932


265
0.0643
0.3089
0.3879


266
0.0643
−0.3089
−0.3879


267
−0.0643
−0.3089
0.3879


268
−0.0643
0.3089
−0.3879


269
0.3879
0.0643
0.3089


270
0.3879
−0.0643
−0.3089


271
−0.3879
−0.0643
0.3089


272
−0.3879
0.0643
−0.3089


273
0.3089
0.3879
0.0643


274
0.3089
−0.3879
−0.0643


275
−0.3089
−0.3879
0.0643


276
−0.3089
0.3879
−0.0643


277
0.1766
−0.2744
0.3788


278
0.1766
0.2744
−0.3788


279
−0.1766
0.2744
0.3788


280
−0.1766
−0.2744
−0.3788


281
0.3788
−0.1766
0.2744


282
0.3788
0.1766
−0.2744


283
−0.3788
0.1766
0.2744


284
−0.3788
−0.1766
−0.2744


285
0.2744
−0.3788
0.1766


286
0.2744
0.3788
−0.1766


287
−0.2744
0.3788
0.1766


288
−0.2744
−0.3788
−0.1766


289
0.2793
−0.1750
0.3760


290
0.2793
0.1750
−0.3760


291
−0.2793
0.1750
0.3760


292
−0.2793
−0.1750
−0.3760


293
0.3760
−0.2793
0.1750


294
0.3760
0.2793
−0.1750


295
−0.3760
0.2793
0.1750


296
−0.3760
−0.2793
−0.1750


297
0.1750
−0.3760
0.2793


298
0.1750
0.3760
−0.2793


299
−0.1750
0.3760
0.2793


300
−0.1750
−0.3760
−0.2793


301
0.3335
0.0901
0.3615


302
0.3335
−0.0901
−0.3615


303
−0.3335
−0.0901
0.3615


304
−0.3335
0.0901
−0.3615


305
0.3615
0.3335
0.0901


306
0.3615
−0.3335
−0.0901


307
−0.3615
−0.3335
0.0901


308
−0.3615
0.3335
−0.0901


309
0.0901
0.3615
0.3335


310
0.0901
−0.3615
−0.3335


311
−0.0901
−0.3615
0.3335


312
−0.0901
0.3615
−0.3335


313
0.3054
0.1650
0.3599


314
0.3054
−0.1650
−0.3599


315
−0.3054
−0.1650
0.3599


316
−0.3054
0.1650
−0.3599


317
0.3599
0.3054
0.1650


318
0.3599
−0.3054
−0.1650


319
−0.3599
−0.3054
0.1650


320
−0.3599
0.3054
−0.1650


321
0.1650
0.3599
0.3054


322
0.1650
−0.3599
−0.3054


323
−0.1650
−0.3599
0.3054


324
−0.1650
0.3599
−0.3054


325
0.2518
−0.2492
0.3528


326
0.2518
0.2492
−0.3528


327
−0.2518
0.2492
0.3528


328
−0.2518
−0.2492
−0.3528


329
0.3528
−0.2518
0.2492


330
0.3528
0.2518
−0.2492


331
−0.3528
0.2518
0.2492


332
−0.3528
−0.2518
−0.2492


333
0.2492
−0.3528
0.2518


334
0.2492
0.3528
−0.2518


335
−0.2492
0.3528
0.2518


336
−0.2492
−0.3528
−0.2518


337
0.0612
−0.3504
0.3514


338
0.0612
0.3504
−0.3514


339
−0.0612
0.3504
0.3514


340
−0.0612
−0.3504
−0.3514


341
0.3514
−0.0612
0.3504


342
0.3514
0.0612
−0.3504


343
−0.3514
0.0612
0.3504


344
−0.3514
−0.0612
−0.3504


345
0.3504
−0.3514
0.0612


346
0.3504
0.3514
−0.0612


347
−0.3504
0.3514
0.0612


348
−0.3504
−0.3514
−0.0612


349
0.1395
−0.3376
0.3414


350
0.1395
0.3376
−0.3414


351
−0.1395
0.3376
0.3414


352
−0.1395
−0.3376
−0.3414


353
0.3414
−0.1395
0.3376


354
0.3414
0.1395
−0.3376


355
−0.3414
0.1395
0.3376


356
−0.3414
−0.1395
−0.3376


357
0.3376
−0.3414
0.1395


358
0.3376
0.3414
−0.1395


359
−0.3376
0.3414
0.1395


360
−0.3376
−0.3414
−0.1395


361
0.2185
0.3031
0.3322


362
0.2185
−0.3031
−0.3322


363
−0.2185
−0.3031
0.3322


364
−0.2185
0.3031
−0.3322


365
0.3322
0.2185
0.3031


366
0.3322
−0.2185
−0.3031


367
−0.3322
−0.2185
0.3031


368
−0.3322
0.2185
−0.3031


369
0.3031
0.3322
0.2185


370
0.3031
−0.3322
−0.2185


371
−0.3031
−0.3322
0.2185


372
−0.3031
0.3322
−0.2185


373
0.2887
0.2887
0.2887


374
0.2887
0.2887
−0.2887


375
0.2887
−0.2887
0.2887


376
0.2887
−0.2887
−0.2887


377
−0.2887
0.2887
0.2887


378
−0.2887
0.2887
−0.2887


379
−0.2887
−0.2887
0.2887


380
−0.2887
−0.2887
−0.2887




















TABLE 3





Sphere
x/D
y/D
z/D
d/D



















1
0.1437
0.0000
−0.7810
0.6114


2
−0.0718
0.1244
−0.7811
0.6115


3
−0.0718
−0.1244
−0.7811
0.6115


4
0.1418
0.2456
−0.7424
0.6127


5
0.1418
−0.2456
−0.7424
0.6127


6
−0.2836
0.0000
−0.7424
0.6127


7
0.3189
0.1091
−0.6648
0.5125


8
−0.0649
0.3307
−0.6648
0.5125


9
0.3189
−0.1091
−0.6648
0.5125


10
−0.2539
0.2216
−0.6648
0.5125


11
−0.0649
−0.3307
−0.6648
0.5125


12
−0.2539
−0.2216
−0.6648
0.5125


13
0.3860
0.0000
−0.5053
0.2902


14
−0.1930
0.3343
−0.5053
0.2902


15
−0.1930
−0.3343
−0.5053
0.2902


16
0.3413
0.3423
−0.6301
0.6115


17
0.1258
0.4668
−0.6301
0.6115


18
0.3413
−0.3423
−0.6301
0.6115


19
0.1258
−0.4668
−0.6301
0.6115


20
−0.4672
0.1244
−0.6301
0.6115


21
−0.4672
−0.1244
−0.6301
0.6115


22
0.4838
0.1766
−0.5388
0.5125


23
−0.0890
0.5073
−0.5388
0.5125


24
0.4838
−0.1766
−0.5388
0.5125


25
−0.3948
0.3307
−0.5388
0.5125


26
−0.0890
−0.5073
−0.5388
0.5125


27
−0.3948
−0.3307
−0.5388
0.5125


28
0.5858
0.0000
−0.4610
0.5125


29
−0.2929
0.5073
−0.4610
0.5125


30
−0.2929
−0.5073
−0.4610
0.5125


31
0.3139
0.5437
−0.4864
0.6115


32
0.3139
−0.5437
−0.4864
0.6115


33
−0.6278
0.0000
−0.4864
0.6114


34
0.5130
0.3974
−0.4589
0.6127


35
0.0876
0.6430
−0.4589
0.6127


36
0.5130
−0.3974
−0.4589
0.6127


37
−0.6006
0.2456
−0.4589
0.6127


38
0.0876
−0.6430
−0.4589
0.6127


39
−0.6006
−0.2456
−0.4589
0.6127


40
0.6611
0.2116
−0.3857
0.6114


41
−0.1473
0.6784
−0.3858
0.6115


42
0.6612
−0.2116
−0.3857
0.6115


43
−0.5138
0.4668
−0.3857
0.6115


44
−0.1473
−0.6784
−0.3857
0.6115


45
−0.5138
−0.4668
−0.3857
0.6115


46
0.4350
0.5351
−0.2829
0.5125


47
0.2460
0.6442
−0.2829
0.5125


48
0.4350
−0.5351
−0.2829
0.5125


49
0.2460
−0.6442
−0.2829
0.5125


50
−0.6809
0.1091
−0.2829
0.5125


51
−0.6809
−0.1091
−0.2829
0.5125


52
0.7424
0.0000
−0.2836
0.6127


53
−0.3712
0.6430
−0.2836
0.6127


54
−0.3712
−0.6430
−0.2836
0.6127


55
0.6337
0.4129
−0.2421
0.6115


56
0.0407
0.7553
−0.2421
0.6115


57
0.6337
−0.4129
−0.2421
0.6115


58
−0.6745
0.3423
−0.2421
0.6115


59
0.0408
−0.7553
−0.2421
0.6115


60
−0.6745
−0.3423
−0.2421
0.6115


61
0.3123
0.5409
−0.1193
0.2902


62
0.3123
−0.5409
−0.1193
0.2902


63
−0.6246
0.0000
−0.1193
0.2902


64
0.7500
0.2116
−0.1533
0.6115


65
0.7500
−0.2116
−0.1533
0.6115


66
−0.1917
0.7553
−0.1533
0.6115


67
−0.5582
0.5437
−0.1533
0.6115


68
−0.1917
−0.7553
−0.1533
0.6115


69
−0.5582
−0.5437
−0.1533
0.6115


70
0.5128
0.5351
−0.0791
0.5125


71
0.2070
0.7117
−0.0791
0.5125


72
0.5128
−0.5351
−0.0791
0.5125


73
0.2070
−0.7117
−0.0791
0.5125


74
−0.7198
0.1766
−0.0791
0.5125


75
−0.7198
−0.1766
−0.0791
0.5125


76
0.7439
0.0000
−0.0469
0.5125


77
−0.3720
0.6442
−0.0469
0.5125


78
−0.3720
−0.6442
−0.0469
0.5125


79
0.6883
0.3974
0.0000
0.6127


80
0.0000
0.7948
0.0000
0.6127


81
0.6883
−0.3974
0.0000
0.6127


82
−0.6883
0.3974
0.0000
0.6127


83
0.0000
−0.7948
0.0000
0.6127


84
−0.6883
−0.3974
0.0000
0.6127


85
0.3720
0.6442
0.0469
0.5125


86
0.3720
−0.6442
0.0469
0.5125


87
−0.7439
0.0000
0.0469
0.5125


88
0.7198
0.1766
0.0791
0.5125


89
0.7198
−0.1766
0.0791
0.5125


90
−0.2070
0.7117
0.0791
0.5125


91
−0.5128
0.5351
0.0791
0.5125


92
−0.2070
−0.7117
0.0791
0.5125


93
−0.5128
−0.5351
0.0791
0.5125


94
0.5582
0.5437
0.1533
0.6115


95
0.1917
0.7553
0.1533
0.6115


96
0.5582
−0.5437
0.1533
0.6115


97
0.1917
−0.7553
0.1533
0.6115


98
−0.7500
0.2116
0.1533
0.6115


99
−0.7500
−0.2116
0.1533
0.6115


100
0.6246
0.0000
0.1193
0.2902


101
−0.3123
0.5409
0.1193
0.2902


102
−0.3123
−0.5409
0.1193
0.2902


103
0.6745
0.3423
0.2421
0.6115


104
−0.0408
0.7553
0.2421
0.6115


105
0.6745
−0.3423
0.2421
0.6115


106
−0.6337
0.4129
0.2421
0.6115


107
−0.0407
−0.7553
0.2421
0.6115


108
−0.6337
−0.4129
0.2421
0.6115


109
0.3712
0.6430
0.2836
0.6127


110
0.3712
−0.6430
0.2836
0.6127


111
−0.7424
0.0000
0.2836
0.6127


112
0.6809
0.1091
0.2829
0.5125


113
0.6809
−0.1091
0.2829
0.5125


114
−0.2460
0.6442
0.2829
0.5125


115
−0.4350
0.5351
0.2829
0.5125


116
−0.2460
−0.6442
0.2829
0.5125


117
−0.4350
−0.5351
0.2829
0.5125


118
0.5138
0.4668
0.3857
0.6115


119
0.1473
0.6784
0.3857
0.6115


120
0.5138
−0.4668
0.3857
0.6115


121
−0.6612
0.2116
0.3857
0.6115


122
0.1473
−0.6784
0.3858
0.6115


123
−0.6611
−0.2116
0.3857
0.6114


124
0.6006
0.2456
0.4589
0.6127


125
−0.0876
0.6430
0.4589
0.6127


126
0.6006
−0.2456
0.4589
0.6127


127
−0.5130
0.3974
0.4589
0.6127


128
−0.0876
−0.6430
0.4589
0.6127


129
−0.5130
−0.3974
0.4589
0.6127


130
0.6278
0.0000
0.4864
0.6114


131
−0.3139
0.5437
0.4864
0.6115


132
−0.3139
−0.5437
0.4864
0.6115


133
0.2929
0.5073
0.4610
0.5125


134
0.2929
−0.5073
0.4610
0.5125


135
−0.5858
0.0000
0.4610
0.5125


136
0.3948
0.3307
0.5388
0.5125


137
0.0890
0.5073
0.5388
0.5125


138
0.3948
−0.3307
0.5388
0.5125


139
−0.4838
0.1766
0.5388
0.5125


140
0.0890
−0.5073
0.5388
0.5125


141
−0.4838
−0.1766
0.5388
0.5125


142
0.4672
0.1244
0.6301
0.6115


143
0.4672
−0.1244
0.6301
0.6115


144
−0.1258
0.4668
0.6301
0.6115


145
−0.3413
0.3423
0.6301
0.6115


146
−0.1258
−0.4668
0.6301
0.6115


147
−0.3413
−0.3423
0.6301
0.6115


148
0.1930
0.3343
0.5053
0.2902


149
0.1930
−0.3343
0.5053
0.2902


150
−0.3860
0.0000
0.5053
0.2902


151
0.2539
0.2216
0.6648
0.5125


152
0.0649
0.3307
0.6648
0.5125


153
0.2539
−0.2216
0.6648
0.5125


154
−0.3189
0.1091
0.6648
0.5125


155
0.0649
−0.3307
0.6648
0.5125


156
−0.3189
−0.1091
0.6648
0.5125


157
0.2836
0.0000
0.7424
0.6127


158
−0.1418
0.2456
0.7424
0.6127


159
−0.1418
−0.2456
0.7424
0.6127


160
0.0718
0.1244
0.7811
0.6115


161
0.0718
−0.1244
0.7811
0.6115


162
−0.1437
0.0000
0.7810
0.6114





















TABLE 4





Vertex
x/D
y/D
z/D
Face
Group of vertices

























1
0.0304
0.0117
0.4989
1
204
276
384
312
216



2
0.0304
−0.0117
−0.4989
2
205
277
385
313
217


3
−0.0304
−0.0117
0.4989
3
206
278
386
314
218


4
−0.0304
0.0117
−0.4989
4
207
279
387
315
219


5
0.4989
0.0304
0.0117
5
208
280
388
317
221


6
0.4989
−0.0304
−0.0117
6
209
281
389
316
220


7
−0.4989
−0.0304
0.0117
7
210
282
390
319
223


8
−0.4989
0.0304
−0.0117
8
211
283
391
318
222


9
0.0117
0.4989
0.0304
9
212
284
392
322
226


10
0.0117
−0.4989
−0.0304
10
213
285
393
323
227


11
−0.0117
−0.4989
0.0304
11
214
286
394
320
224


12
−0.0117
0.4989
−0.0304
12
215
287
395
321
225


13
0.0804
−0.0287
0.4926
13
108
50
24
72
132
156


14
0.0804
0.0287
−0.4926
14
108
156
264
360
302
194


15
−0.0804
0.0287
0.4926
15
108
194
182
98
38
50


16
−0.0804
−0.0287
−0.4926
16
109
49
27
75
135
159


17
0.4926
−0.0804
0.0287
17
109
159
267
363
301
193


18
0.4926
0.0804
−0.0287
18
109
193
181
97
37
49


19
−0.4926
0.0804
0.0287
19
110
48
26
74
134
158


20
−0.4926
−0.0804
−0.0287
20
110
158
266
362
300
192


21
0.0287
−0.4926
0.0804
21
110
192
180
96
36
48


22
0.0287
0.4926
−0.0804
22
111
51
25
73
133
157


23
−0.0287
0.4926
0.0804
23
111
157
265
361
303
195


24
−0.0287
−0.4926
−0.0804
24
111
195
183
99
39
51


25
0.0406
0.0756
0.4926
25
112
52
28
76
136
160


26
0.0406
−0.0756
−0.4926
26
112
160
268
364
304
196


27
−0.0406
−0.0756
0.4926
27
112
196
184
100
40
52


28
−0.0406
0.0756
−0.4926
28
113
53
29
77
137
161


29
0.4926
0.0406
0.0756
29
113
161
269
365
305
197


30
0.4926
−0.0406
−0.0756
30
113
197
185
101
41
53


31
−0.4926
−0.0406
0.0756
31
114
54
30
78
138
162


32
−0.4926
0.0406
−0.0756
32
114
162
270
366
306
198


33
0.0756
0.4926
0.0406
33
114
198
186
102
42
54


34
0.0756
−0.4926
−0.0406
34
115
55
31
79
139
163


35
−0.0756
−0.4926
0.0406
35
115
163
271
367
307
199


36
−0.0756
0.4926
−0.0406
36
115
199
187
103
43
55


37
0.0708
−0.0922
0.4863
37
116
57
32
80
140
164


38
0.0708
0.0922
−0.4863
38
116
164
272
368
309
201


39
−0.0708
0.0922
0.4863
39
116
201
189
105
45
57


40
−0.0708
−0.0922
−0.4863
40
117
56
33
81
141
165


41
0.4863
−0.0708
0.0922
41
117
165
273
369
308
200


42
0.4863
0.0708
−0.0922
42
117
200
188
104
44
56


43
−0.4863
0.0708
0.0922
43
118
58
35
83
143
167


44
−0.4863
−0.0708
−0.0922
44
118
167
275
371
310
202


45
0.0922
−0.4863
0.0708
45
118
202
190
106
46
58


46
0.0922
0.4863
−0.0708
46
119
59
34
82
142
166


47
−0.0922
0.4863
0.0708
47
119
166
274
370
311
203


48
−0.0922
−0.4863
−0.0708
48
119
203
191
107
47
59


49
0.0102
−0.1163
0.4862
49
612
588
456
468
600
592


50
0.0102
0.1163
−0.4862
50
612
592
460
472
604
596


51
−0.0102
0.1163
0.4862
51
612
596
464
476
608
588


52
−0.0102
−0.1163
−0.4862
52
613
577
565
549
489
585


53
0.4862
−0.0102
0.1163
53
613
585
573
545
485
581


54
0.4862
0.0102
−0.1163
54
613
581
569
541
481
577


55
−0.4862
0.0102
0.1163
55
614
576
564
548
488
584


56
−0.4862
−0.0102
−0.1163
56
614
584
572
544
484
580


57
0.1163
−0.4862
0.0102
57
614
580
568
540
480
576


58
0.1163
0.4862
−0.0102
58
615
589
457
469
601
593


59
−0.1163
0.4862
0.0102
59
615
593
461
473
605
597


60
−0.1163
−0.4862
−0.0102
60
615
597
465
477
609
589


61
0.1376
−0.0055
0.4807
61
616
578
566
550
490
586


62
0.1376
0.0055
−0.4807
62
616
586
574
546
486
582


63
−0.1376
0.0055
0.4807
63
616
582
570
542
482
578


64
−0.1376
−0.0055
−0.4807
64
617
591
459
471
603
595


65
0.4807
−0.1376
0.0055
65
617
595
463
475
607
599


66
0.4807
0.1376
−0.0055
66
617
599
467
479
611
591


67
−0.4807
0.1376
0.0055
67
618
590
458
470
602
594


68
−0.4807
−0.1376
−0.0055
68
618
594
462
474
606
598


69
0.0055
−0.4807
0.1376
69
618
598
466
478
610
590


70
0.0055
0.4807
−0.1376
70
619
579
567
551
491
587


71
−0.0055
0.4807
0.1376
71
619
587
575
547
487
583


72
−0.0055
−0.4807
−0.1376
72
619
583
571
543
483
579


73
0.1006
0.0965
0.4802
73
12
0
2
26
48
36


74
0.1006
−0.0965
−0.4802
74
13
1
3
27
49
37


75
−0.1006
−0.0965
0.4802
75
14
2
0
24
50
38


76
−0.1006
0.0965
−0.4802
76
15
3
1
25
51
39


77
0.4802
0.1006
0.0965
77
16
5
4
28
52
40


78
0.4802
−0.1006
−0.0965
78
17
4
5
29
53
41


79
−0.4802
−0.1006
0.0965
79
18
7
6
30
54
42


80
−0.4802
0.1006
−0.0965
80
19
6
7
31
55
43


81
0.0965
0.4802
0.1006
81
20
10
9
33
56
44


82
0.0965
−0.4802
−0.1006
82
21
11
8
32
57
45


83
−0.0965
−0.4802
0.1006
83
22
8
11
35
58
46


84
−0.0965
0.4802
−0.1006
84
23
9
10
34
59
47


85
0.1473
0.0548
0.4747
85
132
228
348
396
264
156


86
0.1473
−0.0548
−0.4747
86
133
229
349
397
265
157


87
−0.1473
−0.0548
0.4747
87
134
230
350
398
266
158


88
−0.1473
0.0548
−0.4747
88
135
231
351
399
267
159


89
0.4747
0.1473
0.0548
89
136
232
352
400
268
160


90
0.4747
−0.1473
−0.0548
90
137
233
353
401
269
161


91
−0.4747
−0.1473
0.0548
91
138
234
354
402
270
162


92
−0.4747
0.1473
−0.0548
92
139
235
355
403
271
163


93
0.0548
0.4747
0.1473
93
140
236
356
404
272
164


94
0.0548
−0.4747
−0.1473
94
141
237
357
405
273
165


95
−0.0548
−0.4747
0.1473
95
142
238
358
406
274
166


96
−0.0548
0.4747
−0.1473
96
143
239
359
407
275
167


97
0.1206
−0.1289
0.4678
97
180
192
300
432
420
288


98
0.1206
0.1289
−0.4678
98
181
193
301
433
421
289


99
−0.1206
0.1289
0.4678
99
182
194
302
434
422
290


100
−0.1206
−0.1289
−0.4678
100
183
195
303
435
423
291


101
0.4678
−0.1206
0.1289
101
184
196
304
436
424
292


102
0.4678
0.1206
−0.1289
102
185
197
305
437
425
293


103
−0.4678
0.1206
0.1289
103
186
198
306
438
426
294


104
−0.4678
−0.1206
−0.1289
104
187
199
307
439
427
295


105
0.1289
−0.4678
0.1206
105
188
200
308
440
428
296


106
0.1289
0.4678
−0.1206
106
189
201
309
441
429
297


107
−0.1289
0.4678
0.1206
107
190
202
310
442
430
298


108
−0.1289
−0.4678
−0.1206
108
191
203
311
443
431
299


109
0.0000
0.1784
0.4671
109
336
288
420
564
576
480


110
0.0000
0.1784
−0.4671
110
337
289
421
565
577
481


111
0.0000
−0.1784
0.4671
111
338
290
422
566
578
482


112
0.0000
−0.1784
−0.4671
112
339
291
423
567
579
483


113
0.4671
0.0000
0.1784
113
340
292
424
568
580
484


114
0.4671
0.0000
−0.1784
114
341
293
425
569
581
485


115
−0.4671
0.0000
0.1784
115
342
294
426
570
582
486


116
−0.4671
0.0000
−0.1784
116
343
295
427
571
583
487


117
0.1784
0.4671
0.0000
117
344
296
428
572
584
488


118
0.1784
−0.4671
0.0000
118
345
297
429
573
585
489


119
−0.1784
0.4671
0.0000
119
346
298
430
574
586
490


120
−0.1784
−0.4671
0.0000
120
347
299
431
575
587
491


121
0.1827
−0.0417
0.4636
121
456
588
608
516
396
348


122
0.1827
0.0417
−0.4636
122
457
589
609
517
397
349


123
−0.1827
0.0417
0.4636
123
458
590
610
518
398
350


124
−0.1827
−0.0417
−0.4636
124
459
591
611
519
399
351


125
0.4636
−0.1827
0.0417
125
460
592
600
520
400
352


126
0.4636
0.1827
−0.0417
126
461
593
601
521
401
353


127
−0.4636
0.1827
0.0417
127
462
594
602
522
402
354


128
−0.4636
−0.1827
−0.0417
128
463
595
603
523
403
355


129
0.0417
−0.4636
0.1827
129
464
596
604
524
404
356


130
0.0417
0.4636
−0.1827
130
465
597
605
525
405
357


131
−0.0417
0.4636
0.1827
131
466
598
606
526
406
358


132
−0.0417
−0.4636
−0.1827
132
467
599
607
527
407
359


133
0.1111
0.1573
0.4614
133
12
60
84
72
24
0


134
0.1111
−0.1573
−0.4614
134
13
61
85
73
25
1


135
−0.1111
−0.1573
0.4614
135
14
62
86
74
26
2


136
−0.1111
0.1573
−0.4614
136
15
63
87
75
27
3


137
0.4614
0.1111
0.1573
137
16
64
89
77
29
5


138
0.4614
−0.1111
−0.1573
138
17
65
88
76
28
4


139
−0.4614
−0.1111
0.1573
139
18
66
91
79
31
7


140
−0.4614
0.1111
−0.1573
140
19
67
90
78
30
6


141
0.1573
0.4614
0.1111
141
20
68
94
82
34
10


142
0.1573
−0.4614
−0.1111
142
21
69
95
83
35
11


143
−0.1573
−0.4614
0.1111
143
22
70
92
80
32
8


144
−0.1573
0.4614
−0.1111
144
23
71
93
81
33
9


145
0.1760
−0.1012
0.4569
145
96
180
288
336
252
144


146
0.1760
0.1012
−0.4569
146
97
181
289
337
253
145


147
−0.1760
0.1012
0.4569
147
98
182
290
338
254
146


148
−0.1760
−0.1012
−0.4569
148
99
183
291
339
255
147


149
0.4569
−0.1760
0.1012
149
100
184
292
340
256
148


150
0.4569
0.1760
−0.1012
150
101
185
293
341
257
149


151
−0.4569
0.1760
0.1012
151
102
186
294
342
258
150


152
−0.4569
−0.1760
−0.1012
152
103
187
295
343
259
151


153
0.1012
−0.4569
0.1760
153
104
188
296
344
260
152


154
0.1012
0.4569
−0.1760
154
105
189
297
345
261
153


155
−0.1012
0.4569
0.1760
155
106
190
298
346
262
154


156
−0.1012
−0.4569
−0.1760
156
107
191
299
347
263
155


157
0.0612
0.1989
0.4546
157
228
240
372
468
456
348


158
0.0612
−0.1989
−0.4546
158
229
241
373
469
457
349


159
−0.0612
−0.1989
0.4546
159
230
242
374
470
458
350


160
−0.0612
0.1989
−0.4546
160
231
243
375
471
459
351


161
0.4546
0.0612
0.1989
161
232
244
376
472
460
352


162
0.4546
−0.0612
−0.1989
162
233
245
377
473
461
353


163
−0.4546
−0.0612
0.1989
163
234
246
378
474
462
354


164
−0.4546
0.0612
−0.1989
164
235
247
379
475
463
355


165
0.1989
0.4546
0.0612
165
236
248
380
476
464
356


166
0.1989
−0.4546
−0.0612
166
237
249
381
477
465
357


167
−0.1989
−0.4546
0.0612
167
238
250
382
478
466
358


168
−0.1989
0.4546
−0.0612
168
239
251
383
479
467
359


169
0.2009
0.0711
0.4523
169
264
396
516
536
504
360


170
0.2009
−0.0711
−0.4523
170
265
397
517
537
505
361


171
−0.2009
−0.0711
0.4523
171
266
398
518
538
506
362


172
−0.2009
0.0711
−0.4523
172
267
399
519
539
507
363


173
0.4523
0.2009
0.0711
173
268
400
520
528
508
364


174
0.4523
−0.2009
−0.0711
174
269
401
521
529
509
365


175
−0.4523
−0.2009
0.0711
175
270
402
522
530
510
366


176
−0.4523
0.2009
−0.0711
176
271
403
523
531
511
367


177
0.0711
0.4523
0.2009
177
272
404
524
532
512
368


178
0.0711
−0.4523
−0.2009
178
273
405
525
533
513
369


179
−0.0711
−0.4523
0.2009
179
274
406
526
534
514
370


180
−0.0711
0.4523
−0.2009
180
275
407
527
535
515
371


181
0.1113
−0.1901
0.4489
181
432
560
452
548
564
420


182
0.1113
0.1901
−0.4489
182
433
561
453
549
565
421


183
−0.1113
0.1901
0.4489
183
434
562
454
550
566
422


184
−0.1113
−0.1901
−0.4489
184
435
563
455
551
567
423


185
0.4489
−0.1113
0.1901
185
436
552
444
540
568
424


186
0.4489
0.1113
−0.1901
186
437
553
445
541
569
425


187
−0.4489
0.1113
0.1901
187
438
554
446
542
570
426


188
−0.4489
−0.1113
−0.1901
188
439
555
447
543
571
427


189
0.1901
−0.4489
0.1113
189
440
556
448
544
572
428


190
0.1901
0.4489
−0.1113
190
441
557
449
545
573
429


191
−0.1901
0.4489
0.1113
191
442
558
450
546
574
430


192
−0.1901
−0.4489
−0.1113
192
443
559
451
547
575
431


193
0.0510
−0.2154
0.4483
193
12
36
96
144
120
60


194
0.0510
0.2154
−0.4483
194
13
37
97
145
121
61


195
−0.0510
0.2154
0.4483
195
14
38
98
146
122
62


196
−0.0510
−0.2154
−0.4483
196
15
39
99
147
123
63


197
0.4483
−0.0510
0.2154
197
16
40
100
148
124
64


198
0.4483
0.0510
−0.2154
198
17
41
101
149
125
65


199
−0.4483
0.0510
0.2154
199
18
42
102
150
126
66


200
−0.4483
−0.0510
−0.2154
200
19
43
103
151
127
67


201
0.2154
−0.4483
0.0510
201
20
44
104
152
128
68


202
0.2154
0.4483
−0.0510
202
21
45
105
153
129
69


203
−0.2154
0.4483
0.0510
203
22
46
106
154
130
70


204
−0.2154
−0.4483
−0.0510
204
23
47
107
155
131
71


205
0.2287
−0.0184
0.4443
205
72
84
168
240
228
132


206
0.2287
0.0184
−0.4443
206
73
85
169
241
229
133


207
−0.2287
0.0184
0.4443
207
74
86
170
242
230
134


208
−0.2287
−0.0184
−0.4443
208
75
87
171
243
231
135


209
0.4443
−0.2287
0.0184
209
76
88
172
244
232
136


210
0.4443
0.2287
−0.0184
210
77
89
173
245
233
137


211
−0.4443
0.2287
0.0184
211
78
90
174
246
234
138


212
−0.4443
−0.2287
−0.0184
212
79
91
175
247
235
139


213
0.0184
−0.4443
0.2287
213
80
92
176
248
236
140


214
0.0184
0.4443
−0.2287
214
81
93
177
249
237
141


215
−0.0184
0.4443
0.2287
215
82
94
178
250
238
142


216
−0.0184
−0.4443
−0.2287
216
83
95
179
251
239
143


217
0.2367
0.0315
0.4393
217
252
336
480
540
444
324


218
0.2367
−0.0315
−0.4393
218
253
337
481
541
445
325


219
−0.2367
−0.0315
0.4393
219
254
338
482
542
446
326


220
−0.2367
0.0315
−0.4393
220
255
339
483
543
447
327


221
0.4393
0.2367
0.0315
221
256
340
484
544
448
328


222
0.4393
−0.2367
−0.0315
222
257
341
485
545
449
329


223
−0.4393
−0.2367
0.0315
223
258
342
486
546
450
330


224
−0.4393
0.2367
−0.0315
224
259
343
487
547
451
331


225
0.0315
0.4393
0.2367
225
260
344
488
548
452
332


226
0.0315
−0.4393
−0.2367
226
261
345
489
549
453
333


227
−0.0315
−0.4393
0.2367
227
262
346
490
550
454
334


228
−0.0315
0.4393
−0.2367
228
263
347
491
551
455
335


229
0.1692
0.1724
0.4378
229
300
362
506
500
560
432


230
0.1692
−0.1724
−0.4378
230
301
363
507
501
561
433


231
−0.1692
−0.1724
0.4378
231
302
360
504
502
562
434


232
−0.1692
0.1724
−0.4378
232
303
361
505
503
563
435


233
0.4378
0.1692
0.1724
233
304
364
508
492
552
436


234
0.4378
−0.1692
−0.1724
234
305
365
509
493
553
437


235
−0.4378
−0.1692
0.1724
235
306
366
510
494
554
438


236
−0.4378
0.1692
−0.1724
236
307
367
511
495
555
439


237
0.1724
0.4378
0.1692
237
308
369
513
496
556
440


238
0.1724
−0.4378
−0.1692
238
309
368
512
497
557
441


239
−0.1724
−0.4378
0.1692
239
310
371
515
498
558
442


240
−0.1724
0.4378
−0.1692
240
311
370
514
499
559
443


241
0.2129
0.1273
0.4341
241
372
408
528
520
600
468


242
0.2129
−0.1273
−0.4341
242
373
409
529
521
601
469


243
−0.2129
−0.1273
0.4341
243
374
410
530
522
602
470


244
−0.2129
0.1273
−0.4341
244
375
411
531
523
603
471


245
0.4341
0.2129
0.1273
245
376
412
532
524
604
472


246
0.4341
−0.2129
−0.1273
246
377
413
533
525
605
473


247
−0.4341
−0.2129
0.1273
247
378
414
534
526
606
474


248
−0.4341
0.2129
−0.1273
248
379
415
535
527
607
475


249
0.1273
0.4341
0.2129
249
380
416
536
516
608
476


250
0.1273
−0.4341
−0.2129
250
381
417
537
517
609
477


251
−0.1273
−0.4341
0.2129
251
382
418
538
518
610
478


252
−0.1273
0.4341
−0.2129
252
383
419
539
519
611
479


253
0.2218
−0.1307
0.4286
253
60
120
204
216
168
84


254
0.2218
0.1307
−0.4286
254
61
121
205
217
169
85


255
−0.2218
0.1307
0.4286
255
62
122
206
218
170
86


256
−0.2218
−0.1307
−0.4286
256
63
123
207
219
171
87


257
0.4286
−0.2218
0.1307
257
64
124
208
221
173
89


258
0.4286
0.2218
−0.1307
258
65
125
209
220
172
88


259
−0.4286
0.2218
0.1307
259
66
126
210
223
175
91


260
−0.4286
−0.2218
−0.1307
260
67
127
211
222
174
90


261
0.1307
−0.4286
0.2218
261
68
128
212
226
178
94


262
0.1307
0.4286
−0.2218
262
69
129
213
227
179
95


263
−0.1307
0.4286
0.2218
263
70
130
214
224
176
92


264
−0.1307
−0.4286
−0.2218
264
71
131
215
225
177
93


265
0.0707
0.2558
0.4238
265
144
252
324
276
204
120


266
0.0707
−0.2558
−0.4238
266
145
253
325
277
205
121


267
−0.0707
−0.2558
0.4238
267
146
254
326
278
206
122


268
−0.0707
0.2558
−0.4238
268
147
255
327
279
207
123


269
0.4238
0.0707
0.2558
269
148
256
328
280
208
124


270
0.4238
−0.0707
−0.2558
270
149
257
329
281
209
125


271
−0.4238
−0.0707
0.2558
271
150
258
330
282
210
126


272
−0.4238
0.0707
−0.2558
272
151
259
331
283
211
127


273
0.2558
0.4238
0.0707
273
152
260
332
284
212
128


274
0.2558
−0.4238
−0.0707
274
153
261
333
285
213
129


275
−0.2558
−0.4238
0.0707
275
154
262
334
286
214
130


276
−0.2558
0.4238
−0.0707
276
155
263
335
287
215
131


277
0.2665
−0.0428
0.4209
277
240
168
216
312
408
372


278
0.2665
0.0428
−0.4209
278
241
169
217
313
409
373


279
−0.2665
0.0428
0.4209
279
242
170
218
314
410
374


280
−0.2665
−0.0428
−0.4209
280
243
171
219
315
411
375


281
0.4209
−0.2665
0.0428
281
244
172
220
316
412
376


282
0.4209
0.2665
−0.0428
282
245
173
221
317
413
377


283
−0.4209
0.2665
0.0428
283
246
174
222
318
414
378


284
−0.4209
−0.2665
−0.0428
284
247
175
223
319
415
379


285
0.0428
−0.4209
0.2665
285
248
176
224
320
416
380


286
0.0428
0.4209
−0.2665
286
249
177
225
321
417
381


287
−0.0428
0.4209
0.2665
287
250
178
226
322
418
382


288
−0.0428
−0.4209
−0.2665
288
251
179
227
323
419
383


289
0.1599
−0.2213
0.4189
289
444
552
492
384
276
324


290
0.1599
0.2213
−0.4189
290
445
553
493
385
277
325


291
−0.1599
0.2213
0.4189
291
446
554
494
386
278
326


292
−0.1599
−0.2213
−0.4189
292
447
555
495
387
279
327


293
0.4189
−0.1599
0.2213
293
448
556
496
388
280
328


294
0.4189
0.1599
−0.2213
294
449
557
497
389
281
329


295
−0.4189
0.1599
0.2213
295
450
558
498
390
282
330


296
−0.4189
−0.1599
−0.2213
296
451
559
499
391
283
331


297
0.2213
−0.4189
0.1599
297
452
560
500
392
284
332


298
0.2213
0.4189
−0.1599
298
453
561
501
393
285
333


299
−0.2213
0.4189
0.1599
299
454
562
502
394
286
334


300
−0.2213
−0.4189
−0.1599
300
455
563
503
395
287
335


301
0.0403
−0.2720
0.4176
301
504
536
416
320
394
502


302
0.0403
0.2720
−0.4176
302
505
537
417
321
395
503


303
−0.0403
0.2720
0.4176
303
506
538
418
322
392
500


304
−0.0403
−0.2720
−0.4176
304
507
539
419
323
393
501


305
0.4176
−0.0403
0.2720
305
508
528
408
312
384
492


306
0.4176
0.0403
−0.2720
306
509
529
409
313
385
493


307
−0.4176
0.0403
0.2720
307
510
530
410
314
386
494


308
−0.4176
−0.0403
−0.2720
308
511
531
411
315
387
495


309
0.2720
−0.4176
0.0403
309
512
532
412
316
389
497


310
0.2720
0.4176
−0.0403
310
513
533
413
317
388
496


311
−0.2720
0.4176
0.0403
311
514
534
414
318
391
499


312
−0.2720
−0.4176
−0.0403
312
515
535
415
319
390
498


313
0.2795
0.0379
0.4128


314
0.2795
−0.0379
−0.4128


315
−0.2795
−0.0379
0.4128


316
−0.2795
0.0379
−0.4128


317
0.4128
0.2795
0.0379


318
0.4128
−0.2795
−0.0379


319
−0.4128
−0.2795
0.0379


320
−0.4128
0.2795
−0.0379


321
0.0379
0.4128
0.2795


322
0.0379
−0.4128
−0.2795


323
−0.0379
−0.4128
0.2795


324
−0.0379
0.4128
−0.2795


325
0.2683
−0.0968
0.4106


326
0.2683
0.0968
−0.4106


327
−0.2683
0.0968
0.4106


328
−0.2683
−0.0968
−0.4106


329
0.4106
−0.2683
0.0968


330
0.4106
0.2683
−0.0968


331
−0.4106
0.2683
0.0968


332
−0.4106
−0.2683
−0.0968


333
0.0968
−0.4106
0.2683


334
0.0968
0.4106
−0.2683


335
−0.0968
0.4106
0.2683


336
−0.0968
−0.4106
−0.2683


337
0.2157
−0.1901
0.4091


338
0.2157
0.1901
−0.4091


339
−0.2157
0.1901
0.4091


340
−0.2157
−0.1901
−0.4091


341
0.4091
−0.2157
0.1901


342
0.4091
0.2157
−0.1901


343
−0.4091
0.2157
0.1901


344
−0.4091
−0.2157
−0.1901


345
0.1901
−0.4091
0.2157


346
0.1901
0.4091
−0.2157


347
−0.1901
0.4091
0.2157


348
−0.1901
−0.4091
−0.2157


349
0.1788
0.2285
0.4072


350
0.1788
−0.2285
−0.4072


351
−0.1788
−0.2285
0.4072


352
−0.1788
0.2285
−0.4072


353
0.4072
0.1788
0.2285


354
0.4072
−0.1788
−0.2285


355
−0.4072
−0.1788
0.2285


356
−0.4072
0.1788
−0.2285


357
0.2285
0.4072
0.1788


358
0.2285
−0.4072
−0.1788


359
−0.2285
−0.4072
0.1788


360
−0.2285
0.4072
−0.1788


361
0.0200
0.2917
0.4056


362
0.0200
−0.2917
−0.4056


363
−0.0200
−0.2917
0.4056


364
−0.0200
0.2917
−0.4056


365
0.4056
0.0200
0.2917


366
0.4056
−0.0200
−0.2917


367
−0.4056
−0.0200
0.2917


368
−0.4056
0.0200
−0.2917


369
0.2917
0.4056
0.0200


370
0.2917
−0.4056
−0.0200


371
−0.2917
−0.4056
0.0200


372
−0.2917
0.4056
−0.0200


373
0.2647
0.1351
0.4021


374
0.2647
−0.1351
−0.4021


375
−0.2647
−0.1351
0.4021


376
−0.2647
0.1351
−0.4021


377
0.4021
0.2647
0.1351


378
0.4021
−0.2647
−0.1351


379
−0.4021
−0.2647
0.1351


380
−0.4021
0.2647
−0.1351


381
0.1351
0.4021
0.2647


382
0.1351
−0.4021
−0.2647


383
−0.1351
−0.4021
0.2647


384
−0.1351
0.4021
−0.2647


385
0.2980
−0.0080
0.4014


386
0.2980
0.0080
−0.4014


387
−0.2980
0.0080
0.4014


388
−0.2980
−0.0080
−0.4014


389
0.4014
−0.2980
0.0080


390
0.4014
0.2980
−0.0080


391
−0.4014
0.2980
0.0080


392
−0.4014
−0.2980
−0.0080


393
0.0080
−0.4014
0.2980


394
0.0080
0.4014
−0.2980


395
−0.0080
0.4014
0.2980


396
−0.0080
−0.4014
−0.2980


397
0.1296
0.2704
0.4001


398
0.1296
−0.2704
−0.4001


399
−0.1296
−0.2704
0.4001


400
−0.1296
0.2704
−0.4001


401
0.4001
0.1296
0.2704


402
0.4001
−0.1296
−0.2704


403
−0.4001
−0.1296
0.2704


404
−0.4001
0.1296
−0.2704


405
0.2704
0.4001
0.1296


406
0.2704
−0.4001
−0.1296


407
−0.2704
−0.4001
0.1296


408
−0.2704
0.4001
−0.1296


409
0.2977
0.0856
0.3925


410
0.2977
−0.0856
−0.3925


411
−0.2977
−0.0856
0.3925


412
−0.2977
0.0856
−0.3925


413
0.3925
0.2977
0.0856


414
0.3925
−0.2977
−0.0856


415
−0.3925
−0.2977
0.0856


416
−0.3925
0.2977
−0.0856


417
0.0856
0.3925
0.2977


418
0.0856
−0.3925
−0.2977


419
−0.0856
−0.3925
0.2977


420
−0.0856
0.3925
−0.2977


421
0.1484
−0.2776
0.3884


422
0.1484
0.2776
−0.3884


423
−0.1484
0.2776
0.3884


424
−0.1484
−0.2776
−0.3884


425
0.3884
−0.1484
0.2776


426
0.3884
0.1484
−0.2776


427
−0.3884
0.1484
0.2776


428
−0.3884
−0.1484
−0.2776


429
0.2776
−0.3884
0.1484


430
0.2776
0.3884
−0.1484


431
−0.2776
0.3884
0.1484


432
−0.2776
−0.3884
−0.1484


433
0.0888
−0.3025
0.3881


434
0.0888
0.3025
−0.3881


435
−0.0888
0.3025
0.3881


436
−0.0888
−0.3025
−0.3881


437
0.3881
−0.0888
0.3025


438
0.3881
0.0888
−0.3025


439
−0.3881
0.0888
0.3025


440
−0.3881
−0.0888
−0.3025


441
0.3025
−0.3881
0.0888


442
0.3025
0.3881
−0.0888


443
−0.3025
0.3881
0.0888


444
−0.3025
−0.3881
−0.0888


445
0.3111
−0.1174
0.3734


446
0.3111
0.1174
−0.3734


447
−0.3111
0.1174
0.3734


448
−0.3111
−0.1174
−0.3734


449
0.3734
−0.3111
0.1174


450
0.3734
0.3111
−0.1174


451
−0.3734
0.3111
0.1174


452
−0.3734
−0.3111
−0.1174


453
0.1174
−0.3734
0.3111


454
0.1174
0.3734
−0.3111


455
−0.1174
0.3734
0.3111


456
−0.1174
−0.3734
−0.3111


457
0.2337
0.2368
0.3732


458
0.2337
−0.2368
−0.3732


459
−0.2337
−0.2368
0.3732


460
−0.2337
0.2368
−0.3732


461
0.3732
0.2337
0.2368


462
0.3732
−0.2337
−0.2368


463
−0.3732
−0.2337
0.2368


464
−0.3732
0.2337
−0.2368


465
0.2368
0.3732
0.2337


466
0.2368
−0.3732
−0.2337


467
−0.2368
−0.3732
0.2337


468
−0.2368
0.3732
−0.2337


469
0.2768
0.1885
0.3713


470
0.2768
−0.1885
−0.3713


471
−0.2768
−0.1885
0.3713


472
−0.2768
0.1885
−0.3713


473
0.3713
0.2768
0.1885


474
0.3713
−0.2768
−0.1885


475
−0.3713
−0.2768
0.1885


476
−0.3713
0.2768
−0.1885


477
0.1885
0.3713
0.2768


478
0.1885
−0.3713
−0.2768


479
−0.1885
−0.3713
0.2768


480
−0.1885
0.3713
−0.2768


481
0.2603
−0.2143
0.3692


482
0.2603
0.2143
−0.3692


483
−0.2603
0.2143
0.3692


484
−0.2603
−0.2143
−0.3692


485
0.3692
−0.2603
0.2143


486
0.3692
0.2603
−0.2143


487
−0.3692
0.2603
0.2143


488
−0.3692
−0.2603
−0.2143


489
0.2143
−0.3692
0.2603


490
0.2143
0.3692
−0.2603


491
−0.2143
0.3692
0.2603


492
−0.2143
−0.3692
−0.2603


493
0.3394
−0.0182
0.3667


494
0.3394
0.0182
−0.3667


495
−0.3394
0.0182
0.3667


496
−0.3394
−0.0182
−0.3667


497
0.3667
−0.3394
0.0182


498
0.3667
0.3394
−0.0182


499
−0.3667
0.3394
0.0182


500
−0.3667
−0.3394
−0.0182


501
0.0182
−0.3667
0.3394


502
0.0182
0.3667
−0.3394


503
−0.0182
0.3667
0.3394


504
−0.0182
−0.3667
−0.3394


505
0.0287
0.3396
0.3659


506
0.0287
−0.3396
−0.3659


507
−0.0287
−0.3396
0.3659


508
−0.0287
0.3396
−0.3659


509
0.3659
0.0287
0.3396


510
0.3659
−0.0287
−0.3396


511
−0.3659
−0.0287
0.3396


512
−0.3659
0.0287
−0.3396


513
0.3396
0.3659
0.0287


514
0.3396
−0.3659
−0.0287


515
−0.3396
−0.3659
0.0287


516
−0.3396
0.3659
−0.0287


517
0.1352
0.3203
0.3593


518
0.1352
−0.3203
−0.3593


519
−0.1352
−0.3203
0.3593


520
−0.1352
0.3203
−0.3593


521
0.3593
0.1352
0.3203


522
0.3593
−0.1352
−0.3203


523
−0.3593
−0.1352
0.3203


524
−0.3593
0.1352
−0.3203


525
0.3203
0.3593
0.1352


526
0.3203
−0.3593
−0.1352


527
−0.3203
−0.3593
0.1352


528
−0.3203
0.3593
−0.1352


529
0.3436
0.0842
0.3533


530
0.3436
−0.0842
−0.3533


531
−0.3436
−0.0842
0.3533


532
−0.3436
0.0842
−0.3533


533
0.3533
0.3436
0.0842


534
0.3533
−0.3436
−0.0842


535
−0.3533
−0.3436
0.0842


536
−0.3533
0.3436
−0.0842


537
0.0842
0.3533
0.3436


538
0.0842
−0.3533
−0.3436


539
−0.0842
−0.3533
0.3436


540
−0.0842
0.3533
−0.3436


541
0.3091
−0.1762
0.3513


542
0.3091
0.1762
−0.3513


543
−0.3091
0.1762
0.3513


544
−0.3091
−0.1762
−0.3513


545
0.3513
−0.3091
0.1762


546
0.3513
0.3091
−0.1762


547
−0.3513
0.3091
0.1762


548
−0.3513
−0.3091
−0.1762


549
0.1762
−0.3513
0.3091


550
0.1762
0.3513
−0.3091


551
−0.1762
0.3513
0.3091


552
−0.1762
−0.3513
−0.3091


553
0.3491
−0.0753
0.3499


554
0.3491
0.0753
−0.3499


555
−0.3491
0.0753
0.3499


556
−0.3491
−0.0753
−0.3499


557
0.3499
−0.3491
0.0753


558
0.3499
0.3491
−0.0753


559
−0.3499
0.3491
0.0753


560
−0.3499
−0.3491
−0.0753


561
0.0753
−0.3499
0.3491


562
0.0753
0.3499
−0.3491


563
−0.0753
0.3499
0.3491


564
−0.0753
−0.3499
−0.3491


565
0.1931
−0.3025
0.3481


566
0.1931
0.3025
−0.3481


567
−0.1931
0.3025
0.3481


568
−0.1931
−0.3025
−0.3481


569
0.3481
−0.1931
0.3025


570
0.3481
0.1931
−0.3025


571
−0.3481
0.1931
0.3025


572
−0.3481
−0.1931
−0.3025


573
0.3025
−0.3481
0.1931


574
0.3025
0.3481
−0.1931


575
−0.3025
0.3481
0.1931


576
−0.3025
−0.3481
−0.1931


577
0.2495
−0.2708
0.3383


578
0.2495
0.2708
−0.3383


579
−0.2495
0.2708
0.3383


580
−0.2495
−0.2708
−0.3383


581
0.3383
−0.2495
0.2708


582
0.3383
0.2495
−0.2708


583
−0.3383
0.2495
0.2708


584
−0.3383
−0.2495
−0.2708


585
0.2708
−0.3383
0.2495


586
0.2708
0.3383
−0.2495


587
−0.2708
0.3383
0.2495


588
−0.2708
−0.3383
−0.2495


589
0.2392
0.2873
0.3320


590
0.2392
−0.2873
−0.3320


591
−0.2392
−0.2873
0.3320


592
−0.2392
0.2873
−0.3320


593
0.3320
0.2392
0.2873


594
0.3320
−0.2392
−0.2873


595
−0.3320
−0.2392
0.2873


596
−0.3320
0.2392
−0.2873


597
0.2873
0.3320
0.2392


598
0.2873
−0.3320
−0.2392


599
−0.2873
−0.3320
0.2392


600
−0.2873
0.3320
−0.2392


601
0.3254
0.1894
0.3289


602
0.3254
−0.1894
−0.3289


603
−0.3254
−0.1894
0.3289


604
−0.3254
0.1894
−0.3289


605
0.3289
0.3254
0.1894


606
0.3289
−0.3254
−0.1894


607
−0.3289
−0.3254
0.1894


608
−0.3289
0.3254
−0.1894


609
0.1894
0.3289
0.3254


610
0.1894
−0.3289
−0.3254


611
−0.1894
−0.3289
0.3254


612
−0.1894
0.3289
−0.3254


613
0.2887
0.2887
0.2887


614
0.2887
0.2887
−0.2887


615
0.2887
−0.2887
0.2887


616
0.2887
−0.2887
−0.2887


617
−0.2887
0.2887
0.2887


618
−0.2887
0.2887
−0.2887


619
−0.2887
−0.2887
0.2887


620
−0.2887
−0.2887
−0.2887




















TABLE 5





Sphere
x/D
y/D
z/D
d/D



















1
0.3189
0.0000
0.5160
0.2254


2
0.3189
0.0000
−0.5160
0.2254


3
−0.3189
0.0000
0.5160
0.2254


4
−0.3189
0.0000
−0.5160
0.2254


5
0.5160
−0.3189
0.0000
0.2254


6
0.5160
0.3189
0.0000
0.2254


7
−0.5160
0.3189
0.0000
0.2254


8
−0.5160
−0.3189
0.0000
0.2254


9
0.0000
−0.5160
0.3189
0.2254


10
0.0000
0.5160
−0.3189
0.2254


11
0.0000
0.5160
0.3189
0.2254


12
0.0000
−0.5160
−0.3189
0.2254


13
0.0794
0.2166
0.7473
0.5800


14
0.0159
0.3710
0.6884
0.5800


15
−0.0954
0.2425
0.7375
0.5800


16
−0.0794
0.2166
−0.7473
0.5800


17
−0.0159
0.3710
−0.6884
0.5800


18
0.0954
0.2425
−0.7375
0.5800


19
−0.0794
−0.2166
0.7473
0.5800


20
−0.0159
−0.3710
0.6884
0.5800


21
0.0954
−0.2425
0.7375
0.5800


22
0.0794
−0.2166
−0.7473
0.5800


23
0.0159
−0.3710
−0.6884
0.5800


24
−0.0954
−0.2425
−0.7375
0.5800


25
0.7473
0.0794
0.2166
0.5800


26
0.6884
0.0159
0.3710
0.5800


27
0.7375
−0.0954
0.2425
0.5800


28
0.7473
−0.0794
−0.2166
0.5800


29
0.6884
−0.0159
−0.3710
0.5800


30
0.7375
0.0954
−0.2425
0.5800


31
−0.7473
−0.0794
0.2166
0.5800


32
−0.6884
−0.0159
0.3710
0.5800


33
−0.7375
0.0954
0.2425
0.5800


34
−0.7473
0.0794
−0.2166
0.5800


35
−0.6884
0.0159
−0.3710
0.5800


36
−0.7375
−0.0954
−0.2425
0.5800


37
0.2166
0.7473
0.0794
0.5800


38
0.3710
0.6884
0.0159
0.5800


39
0.2425
0.7375
−0.0954
0.5800


40
0.2166
−0.7473
−0.0794
0.5800


41
0.3710
−0.6884
−0.0159
0.5800


42
0.2425
−0.7375
0.0954
0.5800


43
−0.2166
0.7473
−0.0794
0.5800


44
−0.3710
0.6884
−0.0159
0.5800


45
−0.2425
0.7375
0.0954
0.5800


46
−0.2166
−0.7473
0.0794
0.5800


47
−0.3710
−0.6884
0.0159
0.5800


48
−0.2425
−0.7375
−0.0954
0.5800


49
0.4459
0.3763
0.5208
0.5800


50
0.5208
0.4459
0.3763
0.5800


51
0.3763
0.5208
0.4459
0.5800


52
0.3665
0.5049
−0.4717
0.5800


53
0.5049
0.4717
−0.3665
0.5800


54
0.4717
0.3665
−0.5049
0.5800


55
0.3665
−0.5049
0.4717
0.5800


56
0.5049
−0.4717
0.3665
0.5800


57
0.4717
−0.3665
0.5049
0.5800


58
0.4459
−0.3763
−0.5208
0.5800


59
0.5208
−0.4459
−0.3763
0.5800


60
0.3763
−0.5208
−0.4459
0.5800


61
−0.3665
0.5049
0.4717
0.5800


62
−0.5049
0.4717
0.3665
0.5800


63
−0.4717
0.3665
0.5049
0.5800


64
−0.4459
0.3763
−0.5208
0.5800


65
−0.5208
0.4459
−0.3763
0.5800


66
−0.3763
0.5208
−0.4459
0.5800


67
−0.4459
−0.3763
0.5208
0.5800


68
−0.5208
−0.4459
0.3763
0.5800


69
−0.3763
−0.5208
0.4459
0.5800


70
−0.3665
−0.5049
−0.4717
0.5800


71
−0.5049
−0.4717
−0.3665
0.5800


72
−0.4717
−0.3665
−0.5049
0.5800


73
0.0315
−0.0822
0.7752
0.5761


74
0.0315
0.0822
−0.7752
0.5761


75
−0.0315
0.0822
0.7752
0.5761


76
−0.0315
−0.0822
−0.7752
0.5761


77
0.7752
−0.0315
0.0822
0.5761


78
0.7752
0.0315
−0.0822
0.5761


79
−0.7752
0.0315
0.0822
0.5761


80
−0.7752
−0.0315
−0.0822
0.5761


81
0.0822
−0.7752
0.0315
0.5761


82
0.0822
0.7752
−0.0315
0.5761


83
−0.0822
0.7752
0.0315
0.5761


84
−0.0822
−0.7752
−0.0315
0.5761


85
0.1888
0.3367
0.6780
0.5761


86
0.1888
−0.3367
−0.6780
0.5761


87
−0.1888
−0.3367
0.6780
0.5761


88
−0.1888
0.3367
−0.6780
0.5761


89
0.6780
0.1888
0.3367
0.5761


90
0.6780
−0.1888
−0.3367
0.5761


91
−0.6780
−0.1888
0.3367
0.5761


92
−0.6780
0.1888
−0.3367
0.5761


93
0.3367
0.6780
0.1888
0.5761


94
0.3367
−0.6780
−0.1888
0.5761


95
−0.3367
−0.6780
0.1888
0.5761


96
−0.3367
0.6780
−0.1888
0.5761


97
0.1573
−0.3877
0.6585
0.5761


98
0.1573
0.3877
−0.6585
0.5761


99
−0.1573
0.3877
0.6585
0.5761


100
−0.1573
−0.3877
−0.6585
0.5761


101
0.6585
−0.1573
0.3877
0.5761


102
0.6585
0.1573
−0.3877
0.5761


103
−0.6585
0.1573
0.3877
0.5761


104
−0.6585
−0.1573
−0.3877
0.5761


105
0.3877
−0.6585
0.1573
0.5761


106
0.3877
0.6585
−0.1573
0.5761


107
−0.3877
0.6585
0.1573
0.5761


108
−0.3877
−0.6585
−0.1573
0.5761


109
0.3218
−0.3875
0.5958
0.5761


110
0.3218
0.3875
−0.5958
0.5761


111
−0.3218
0.3875
0.5958
0.5761


112
−0.3218
−0.3875
−0.5958
0.5761


113
0.5958
−0.3218
0.3875
0.5761


114
0.5958
0.3218
−0.3875
0.5761


115
−0.5958
0.3218
0.3875
0.5761


116
−0.5958
−0.3218
−0.3875
0.5761


117
0.3875
−0.5958
0.3218
0.5761


118
0.3875
0.5958
−0.3218
0.5761


119
−0.3875
0.5958
0.3218
0.5761


120
−0.3875
−0.5958
−0.3218
0.5761


121
0.2903
0.4385
0.5763
0.5761


122
0.2903
−0.4385
−0.5763
0.5761


123
−0.2903
−0.4385
0.5763
0.5761


124
−0.2903
0.4385
−0.5763
0.5761


125
0.5763
0.2903
0.4385
0.5761


126
0.5763
−0.2903
−0.4385
0.5761


127
−0.5763
−0.2903
0.4385
0.5761


128
−0.5763
0.2903
−0.4385
0.5761


129
0.4385
0.5763
0.2903
0.5761


130
0.4385
−0.5763
−0.2903
0.5761


131
−0.4385
−0.5763
0.2903
0.5761


132
−0.4385
0.5763
−0.2903
0.5761


133
0.1373
0.0529
0.7524
0.5487


134
0.1373
−0.0529
−0.7524
0.5487


135
−0.1373
−0.0529
0.7524
0.5487


136
−0.1373
0.0529
−0.7524
0.5487


137
0.7524
−0.1373
−0.0529
0.5487


138
0.7524
0.1373
0.0529
0.5487


139
−0.7524
0.1373
−0.0529
0.5487


140
−0.7524
−0.1373
0.0529
0.5487


141
−0.0529
−0.7524
0.1373
0.5487


142
−0.0529
0.7524
−0.1373
0.5487


143
0.0529
0.7524
0.1373
0.5487


144
0.0529
−0.7524
−0.1373
0.5487


145
0.2584
−0.2488
0.6775
0.5487


146
0.2584
0.2488
−0.6775
0.5487


147
−0.2584
0.2488
0.6775
0.5487


148
−0.2584
−0.2488
−0.6775
0.5487


149
0.6775
−0.2584
0.2488
0.5487


150
0.6775
0.2584
−0.2488
0.5487


151
−0.6775
0.2584
0.2488
0.5487


152
−0.6775
−0.2584
−0.2488
0.5487


153
0.2488
−0.6775
0.2584
0.5487


154
0.2488
0.6775
−0.2584
0.5487


155
−0.2488
0.6775
0.2584
0.5487


156
−0.2488
−0.6775
−0.2584
0.5487


157
0.3439
0.2815
0.6247
0.5487


158
0.3439
−0.2815
−0.6247
0.5487


159
−0.3439
−0.2815
0.6247
0.5487


160
−0.3439
0.2815
−0.6247
0.5487


161
0.6247
0.3439
0.2815
0.5487


162
0.6247
−0.3439
−0.2815
0.5487


163
−0.6247
−0.3439
0.2815
0.5487


164
−0.6247
0.3439
−0.2815
0.5487


165
0.2815
0.6247
0.3439
0.5487


166
0.2815
−0.6247
−0.3439
0.5487


167
−0.2815
−0.6247
0.3439
0.5487


168
−0.2815
0.6247
−0.3439
0.5487


169
0.1211
0.4709
0.5927
0.5487


170
0.1211
−0.4709
−0.5927
0.5487


171
−0.1211
−0.4709
0.5927
0.5487


172
−0.1211
0.4709
−0.5927
0.5487


173
0.5927
0.1211
0.4709
0.5487


174
0.5927
−0.1211
−0.4709
0.5487


175
−0.5927
−0.1211
0.4709
0.5487


176
−0.5927
0.1211
−0.4709
0.5487


177
0.4709
0.5927
0.1211
0.5487


178
0.4709
−0.5927
−0.1211
0.5487


179
−0.4709
−0.5927
0.1211
0.5487


180
−0.4709
0.5927
−0.1211
0.5487


181
0.2066
−0.5036
0.5399
0.5487


182
0.2066
0.5036
−0.5399
0.5487


183
−0.2066
0.5036
0.5399
0.5487


184
−0.2066
−0.5036
−0.5399
0.5487


185
0.5399
−0.2066
0.5036
0.5487


186
0.5399
0.2066
−0.5036
0.5487


187
−0.5399
0.2066
0.5036
0.5487


188
−0.5399
−0.2066
−0.5036
0.5487


189
0.5036
−0.5399
0.2066
0.5487


190
0.5036
0.5399
−0.2066
0.5487


191
−0.5036
0.5399
0.2066
0.5487


192
−0.5036
−0.5399
−0.2066
0.5487


193
0.1942
−0.1019
0.7251
0.5304


194
0.1942
0.1019
−0.7251
0.5304


195
−0.1942
0.1019
0.7251
0.5304


196
−0.1942
−0.1019
−0.7251
0.5304


197
0.7251
−0.1942
0.1019
0.5304


198
0.7251
0.1942
−0.1019
0.5304


199
−0.7251
0.1942
0.1019
0.5304


200
−0.7251
−0.1942
−0.1019
0.5304


201
0.1019
−0.7251
0.1942
0.5304


202
0.1019
0.7251
−0.1942
0.5304


203
−0.1019
0.7251
0.1942
0.5304


204
−0.1019
−0.7251
−0.1942
0.5304


205
0.2387
0.1739
0.6976
0.5304


206
0.2387
−0.1739
−0.6976
0.5304


207
−0.2387
−0.1739
0.6976
0.5304


208
−0.2387
0.1739
−0.6976
0.5304


209
0.6976
0.2387
0.1739
0.5304


210
0.6976
−0.2387
−0.1739
0.5304


211
−0.6976
−0.2387
0.1739
0.5304


212
−0.6976
0.2387
−0.1739
0.5304


213
0.1739
0.6976
0.2387
0.5304


214
0.1739
−0.6976
−0.2387
0.5304


215
−0.1739
−0.6976
0.2387
0.5304


216
−0.1739
0.6976
−0.2387
0.5304


217
0.4037
−0.2369
0.5957
0.5304


218
0.4037
0.2369
−0.5957
0.5304


219
−0.4037
0.2369
0.5957
0.5304


220
−0.4037
−0.2369
−0.5957
0.5304


221
0.5957
−0.4037
0.2369
0.5304


222
0.5957
0.4037
−0.2369
0.5304


223
−0.5957
0.4037
0.2369
0.5304


224
−0.5957
−0.4037
−0.2369
0.5304


225
0.2369
−0.5957
0.4037
0.5304


226
0.2369
0.5957
−0.4037
0.5304


227
−0.2369
0.5957
0.4037
0.5304


228
−0.2369
−0.5957
−0.4037
0.5304


229
0.0445
−0.4882
0.5776
0.5304


230
0.0445
0.4882
−0.5776
0.5304


231
−0.0445
0.4882
0.5776
0.5304


232
−0.0445
−0.4882
−0.5776
0.5304


233
0.5776
−0.0445
0.4882
0.5304


234
0.5776
0.0445
−0.4882
0.5304


235
−0.5776
0.0445
0.4882
0.5304


236
−0.5776
−0.0445
−0.4882
0.5304


237
0.4882
−0.5776
0.0445
0.5304


238
0.4882
0.5776
−0.0445
0.5304


239
−0.4882
0.5776
0.0445
0.5304


240
−0.4882
−0.5776
−0.0445
0.5304


241
0.4757
0.2094
0.5512
0.5304


242
0.4757
−0.2094
−0.5512
0.5304


243
−0.4757
−0.2094
0.5512
0.5304


244
−0.4757
0.2094
−0.5512
0.5304


245
0.5512
0.4757
0.2094
0.5304


246
0.5512
−0.4757
−0.2094
0.5304


247
−0.5512
−0.4757
0.2094
0.5304


248
−0.5512
0.4757
−0.2094
0.5304


249
0.2094
0.5512
0.4757
0.5304


250
0.2094
−0.5512
−0.4757
0.5304


251
−0.2094
−0.5512
0.4757
0.5304


252
−0.2094
0.5512
−0.4757
0.5304


253
0.2679
0.0224
0.6585
0.4368


254
0.2679
−0.0224
−0.6585
0.4368


255
−0.2679
−0.0224
0.6585
0.4368


256
−0.2679
0.0224
−0.6585
0.4368


257
0.6585
−0.2679
−0.0224
0.4368


258
0.6585
0.2679
0.0224
0.4368


259
−0.6585
0.2679
−0.0224
0.4368


260
−0.6585
−0.2679
0.0224
0.4368


261
−0.0224
−0.6585
0.2679
0.4368


262
−0.0224
0.6585
−0.2679
0.4368


263
0.0224
0.6585
0.2679
0.4368


264
0.0224
−0.6585
−0.2679
0.4368


265
0.3193
−0.1056
0.6267
0.4368


266
0.3193
0.1056
−0.6267
0.4368


267
−0.3193
0.1056
0.6267
0.4368


268
−0.3193
−0.1056
−0.6267
0.4368


269
0.6267
−0.3193
0.1056
0.4368


270
0.6267
0.3193
−0.1056
0.4368


271
−0.6267
0.3193
0.1056
0.4368


272
−0.6267
−0.3193
−0.1056
0.4368


273
0.1056
−0.6267
0.3193
0.4368


274
0.1056
0.6267
−0.3193
0.4368


275
−0.1056
0.6267
0.3193
0.4368


276
−0.1056
−0.6267
−0.3193
0.4368


277
0.3556
0.1194
0.6043
0.4368


278
0.3556
−0.1194
−0.6043
0.4368


279
−0.3556
−0.1194
0.6043
0.4368


280
−0.3556
0.1194
−0.6043
0.4368


281
0.6043
0.3556
0.1194
0.4368


282
0.6043
−0.3556
−0.1194
0.4368


283
−0.6043
−0.3556
0.1194
0.4368


284
−0.6043
0.3556
−0.1194
0.4368


285
0.1194
0.6043
0.3556
0.4368


286
0.1194
−0.6043
−0.3556
0.4368


287
−0.1194
−0.6043
0.3556
0.4368


288
−0.1194
0.6043
−0.3556
0.4368


289
0.4387
−0.0877
0.5529
0.4368


290
0.4387
0.0877
−0.5529
0.4368


291
−0.4387
0.0877
0.5529
0.4368


292
−0.4387
−0.0877
−0.5529
0.4368


293
0.5529
−0.4387
0.0877
0.4368


294
0.5529
0.4387
−0.0877
0.4368


295
−0.5529
0.4387
0.0877
0.4368


296
−0.5529
−0.4387
−0.0877
0.4368


297
0.0877
−0.5529
0.4387
0.4368


298
0.0877
0.5529
−0.4387
0.4368


299
−0.0877
0.5529
0.4387
0.4368


300
−0.0877
−0.5529
−0.4387
0.4368


301
0.0514
0.5391
0.4611
0.4368


302
0.0514
−0.5391
−0.4611
0.4368


303
−0.0514
−0.5391
0.4611
0.4368


304
−0.0514
0.5391
−0.4611
0.4368


305
0.4611
0.0514
0.5391
0.4368


306
0.4611
−0.0514
−0.5391
0.4368


307
−0.4611
−0.0514
0.5391
0.4368


308
−0.4611
0.0514
−0.5391
0.4368


309
0.5391
0.4611
0.0514
0.4368


310
0.5391
−0.4611
−0.0514
0.4368


311
−0.5391
−0.4611
0.0514
0.4368


312
−0.5391
0.4611
−0.0514
0.4368









The foregoing description and drawings should be considered as illustrative only of the principles of the invention. The invention may be configured in a variety of shapes and sizes and is not intended to be limited by the embodiment shown. In addition, the statements made with respect to one embodiment apply to the other embodiments, unless otherwise specifically noted. For example, the statements regarding FIG. 2(a) with respect to size, shape and geometry apply equally to the embodiments of FIGS. 3, 7-9, 12. It is further understood that the description and scope of invention apply equally (though the descriptions have not been repeated) for each structure that is the same or similar between each of the various embodiment, and whether or not those structures have been assigned a similar reference numeral.


Numerous applications of the invention will readily occur to those skilled in the art. Therefore, it is not desired to limit the invention to the specific examples disclosed or the exact construction and operation shown and described. Rather, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Claims
  • 1. A golf ball comprising: a body having an outer shell with an outersurface; anda pattern formed in the outer surface of said body, the pattern comprising a polyhedron having a plurality of flat faces, each of said plurality of flat faces having one or more sharp edges.
  • 2. The golf ball of claim 1, wherein said plurality of faces are circumscribed in a sphere, wherein only the sharp corners forming vertices of the polyhedron lie on the sphere.
  • 3. The golf ball of claim 2, said sphere having a diameter of at least 1·68 in.
  • 4. The golf ball of claim 1, wherein at least one of the plurality of faces of the polyhedron contains one or more dimples.
  • 5. The golf ball of claim 1, wherein said plurality of faces are each in a plane.
  • 6. The golf ball of claim 1, wherein said plurality of faces are contiguous to touch one another and form a single continuous outer surface of said body.
  • 7. The golf ball of claim 1, wherein said plurality of faces are at an angle with respect to one another to define said one or more sharp edges and said one or more sharp corners.
  • 8. The golf ball of claim 1, wherein said pattern comprises a Goldberg polyhedron.
  • 9. The golf ball of claim 1, wherein said plurality of faces comprise a plurality of first faces having a first shape and a plurality of second faces having a second shape.
  • 10. The golf ball of claim 9, wherein said first shape comprises a pentagon and said second shape comprises a hexagon.
  • 11. The golf ball of claim 9, wherein said plurality of first faces comprise twelve and said plurality of second faces comprise 150.
  • 12. The golf ball of claim 9, wherein a ration of said plurality of first faces to said plurality of second faces comprises 12.5:1.
  • 13. The golf ball of claim 1, wherein said plurality of flat faces having one or more sharp corners.
  • 14. The golf ball of claim 1, wherein said edges are linear.
  • 15. The golf ball of claim 1, wherein two neighboring flat faces form an angle substantially less than 180 degrees.
  • 16. The golf ball of claim 1, wherein said sharp edges have a radius of curvature that is less than 0.001 D, where D is the diameter of a circumscribed sphere of said golf ball.
  • 17. A method of forming a golf ball, comprising: forming an outer surface; and,forming a pattern in the outer surface, the pattern having a plurality of flat surfaces defining sharp edges and points therebetween.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/616,861, filed Jan. 12, 2018, the entire contents of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/013052 1/10/2019 WO 00
Provisional Applications (1)
Number Date Country
62616861 Jan 2018 US