The present invention relates generally to polymer blend compositions comprising a biodegradable or bio-based polymer, processes of making the same and applications of the same. Particularly, the present invention relates to thermoplastic foamable blends of an alkenyl aromatic polymer with a biodegradable or bio-based polymer and one or more blend compatibilizers, processes of making the same, and applications of the same.
In general, synthetic resin has been applied to a variety of industrial fields because it exhibits excellent mass productivity, moldability and durability. In particular, synthetic resin foam is light-weight and exhibits increased cushioning properties and is widely commercialized in various forms such as a protective casing for a fragile article such as a glass product, a cushioning material for packing, a tableware, consumer packaging products, food packaging products, a heat insulation material, a sound insulation material and the like.
Modern processing and packaging technology allows a wide range of liquid and solid goods to be stored, packaged, and shipped in synthetic polymeric packaging materials while being protected from harmful elements, such as gases, moisture, light, microorganisms, vermin, physical shock, crushing forces, vibration, leaking, or spilling. However, many of these materials have little, if any, functional degradability.
Due to widespread environmental concerns, there has been significant pressure on companies to develop more environmentally friendly materials. Some groups have favored the use of products such as paper or other products made from wood pulp. However, the production of paper products generally requires a tremendous amount of energy and can result in unnecessary or undesirable waste. A strong need to find new, more sustainable or renewable materials that meet necessary performance standards remains.
In view of the foregoing, much attention has been recently directed to biodegradable resins and a great effort has been made to develop biodegradable resins that can replace conventional synthetic resins. Biodegradable polymers are an alternative to petroleum-based polymers. Some biodegradable polymers degrade in only a few weeks, while the degradation of others takes several months. Biodegradable polymers are degraded by the action of naturally occurring microorganisms such as bacteria, fungi and algae. Biodegradable polymers can be made from natural polymers such as starch, sugar, or cellulose, or can be petroleum based synthetics.
Additionally, attention has been directed to making compostable polymer compositions as well as polymer compositions that are made of a renewable or sustainable material. Attention has been directed to production of polymers generated from renewable natural sources, which are often biodegradable and nontoxic. These renewable polymers can be produced from biological systems such as microorganisms, plants, and animals or can be chemically synthesized from biological materials such as sugars, starch, natural fats or oils, etc.
As a result, increased attention has been directed to processing natural polymers. However, these natural polymers are significantly more expensive to produce than their synthetic counterparts and do not exhibit the same physical properties, such as foamability, strength and heat resistance.
In particular, there have been many attempts to process starch, a natural polymer that is relatively inexpensive and is a renewable material, into a thermoplastic form to allow starch based polymers to be used in the place of non-degradable synthetic polymers. Starch has been incorporated into multi-component compositions in various forms, including as filler and binder.
Although many have attempted for years to perfect a starch composition that would yield an environmentally sound material while, at the same time, being economical to make, such a combination has not yet been achieved. Additionally, starch based polymeric compounds and products made therefrom have not met the physical properties of other non-biodegradable materials such as polystyrene.
Development of foamable blends comprising bio-based or biodegradable polymer has proven particularly difficult. Techniques of foaming synthetic resin which have been carried out in the art include a method of producing foamed beads including the steps of charging styrene beads in a forming mold and adding water vapor thereto, followed by a decrease in pressure, a method of foaming synthetic resin by charging an extruder with, for example, styrene resin together with a foaming agent such as an organic solvent or the like to foam the resin due to a pressure reducing action occurring when the resin is extruded, and the like.
Alternatively, polymer foams are commonly made using a continuous process where a blowing agent laden molten resin is extruded under pressure through an appropriate die into a lower pressure atmosphere. A batch or staged process can be used, where small polymer beads (also called particles or pellets) are impregnated with blowing agent and then expanded by heating rapidly to a temperature near or above the glass-transition or melting temperature of the polymer-blowing agent system, or subjected to an external compressive stress at a temperature up to the glass-transition or melting temperature of the polymer-blowing agent system.
However, such conventional chemical foaming techniques for foaming synthetic resin as described above fail to satisfactorily foam biodegradable resin due to a relationship between a softening point or melting point of the resin and a foaming temperature of a foaming agent and the like. Thus, there are known many problems which are encountered with techniques of foaming biodegradable resin to a high expansion and forming the foamed resin.
Therefore, a need exists for a bio-based or partially-biodegradable polymer product that is strong, not prone to mold or pests, and can be readily and inexpensively made, and preferably can be foamed to replace polystyrene foam which is not readily biodegradable.
According to one aspect of the present invention, a composition is prepared as a blend including at least one alkenyl aromatic polymer, at least one bio-based or biodegradable polymer, and at least one blend compatibilizer. In accordance with an aspect of the invention, the blend composition is a foamable composition. The composition can include 10 to 90 percent by weight of alkenyl aromatic polymer. The composition can include 10 to 90 percent by weight of biodegradable or bio-based polymer. The composition can include 0.1 to 15 percent by weight of blend compatibilizer. In one embodiment, the at least one alkenyl aromatic polymer is selected from: polystyrene, substituted polystyrene such as alpha-methyl styrene, and copolymers thereof, and high-impact polystyrene and copolymers thereof. The at least one biodegradable or bio-based polymer is selected from: aliphatic polyesters such as polylactic acid (PLA), polyglycolic acid (PGA), polybutylene succinate (PBS) and copolymers thereof, aliphatic-aromatic polyesters such as Ecoflex® from BASF and Biomax® from DuPont, polyhydroxyalkanoate (PHA) and copolymers thereof. The at least one blend compatibilizer is selected from styrene-based copolymers and can be selected from: maleated SEBS, styrene-maleic anhydride (SMA) copolymer, and styrene-methyl methacrylate (SMMA) copolymer. The composition can be foamed, preferably to have a density of 0.020 g/cm3 to 0.30 g/cm3. The composition can be foamed into a foam material having an open cell content of 1-60 percent. The composition can include two blend compatibilizers. The composition can include 46 percent polystyrene, 51 percent polylactic acid, 1 percent of a first blend compatibilizer, and two percent of a second blend compatibilizer.
According to another aspect of the present invention, a process for making a foam structure includes providing at least one alkenyl aromatic polymer, at least one biodegradable or bio-based polymer, and at least one blend compatibilizer. The process includes forming a blend by blending the alkenyl aromatic polymer, the biodegradable or bio-based polymer, and the at least one blend compatibilizer. The process further includes extruding the blend to form an extrudate and expanding the extrudate to produce a foam structure. The process can include thermoforming the foam structure to produce a foam article. The blend includes at least one alkenyl aromatic polymer selected from: polystyrene, substituted polystyrene such as alpha-methyl styrene, and copolymers thereof, and high-impact polystyrene and copolymers thereof. The blend includes at least one bio-based or biodegradable polymer selected from: aliphatic polyesters such as polylactic acid (PLA), polyglycolic acid (PGA), polybutylene succinate (PBS) and copolymers thereof, aliphatic-aromatic polyesters such as Ecoflex® from BASF and Biomax® from DuPont, polyhydroxyalkanoate (PHA) and copolymers thereof. The blend includes at least one blend compatibilizer selected styrene-based copolymers and can be selected from: maleated SEBS, styrene-maleic anhydride (SMA) copolymer, and styrene-methyl methacrylate (SMMA) copolymer. The blend can be blended by compounding the at least one alkenyl aromatic polymer, bio-based or biodegradable polymer, and blend compatibilizer in a twin extruder. The compounding of the blend can be dry blending. The process can include dissolving an effective amount of a blowing agent in the blend. The process can include mixing an effective amount of a nucleating agent such as talc in the blend.
According to an aspect of the present invention, a bio-based or partially biodegradable foam composition is prepared as a blend including at least one alkenyl aromatic polymer, at least one bio-based or biodegradable polymer, and at least one blend compatibilizer. The foam composition can include 10 to 90 percent by weight of alkenyl aromatic polymer. The foam composition can include 10 to 90 percent by weight of biodegradable or bio-based polymer. The foam composition can include 0.1 to 15 percent by weight of blend compatibilizer. In one embodiment, the at least one alkenyl aromatic polymer is selected from: polystyrene, substituted polystyrene such as alpha-methyl styrene, and copolymers thereof, and high-impact polystyrene and copolymers thereof. The at least one biodegradable or bio-based polymer is selected from: aliphatic polyesters such as polylactic acid (PLA), polyglycolic acid (PGA), polybutylene succinate (PBS) and copolymers thereof, aliphatic-aromatic polyesters such as Ecoflex® from BASF and Biomax® from DuPont, polyhydroxyalkanoate (PHA) and copolymers thereof. The at least one blend compatibilizer is selected from styrene-based copolymers and can be selected from: maleated SEBS, styrene-maleic anhydride (SMA) copolymer, and styrene-methyl methacrylate (SMMA) copolymer. The foam composition can have a density of 0.020 g/cm3 to 0.30 g/cm3. The foam composition can have an open cell content of 1-60 percent. The foam composition can include two blend compatibilizers. The foam composition can include 46 percent polystyrene, 51 percent polylactic acid, 1 percent of a first blend compatibilizer, and two percent of a second blend compatibilizer.
According to another aspect of the present invention, a bio-based or partially biodegradable thermoplastic foam article is prepared as a blend including at least one alkenyl aromatic polymer, at least one bio-based or biodegradable polymer, and at least one blend compatibilizer. The foam article can include 10 to 90 percent by weight of alkenyl aromatic polymer. The foam article can include 10 to 90 percent by weight of biodegradable or bio-based polymer. The foam article can include 0.1 to 15 percent by weight of blend compatibilizer. In one embodiment, the at least one alkenyl aromatic polymer is selected from: polystyrene, substituted polystyrene such as alpha-methyl styrene, and copolymers thereof, and high-impact polystyrene and copolymers thereof. The at least one biodegradable or bio-based polymer is selected from: aliphatic polyesters such as polylactic acid (PLA), polyglycolic acid (PGA), polybutylene succinate (PBS) and copolymers thereof, aliphatic-aromatic polyesters such as Ecoflex® from BASF and Biomax® from DuPont, polyhydroxyalkanoate (PHA) and copolymers thereof. The at least one blend compatibilizer is selected from styrene-based copolymers and can be selected from: maleated SEBS, styrene-maleic anhydride (SMA) copolymer, and styrene-methyl methacrylate (SMMA) copolymer. The foam article can have a density of 0.030 g/cm3 to 0.30 g/cm3. The foam article can have an open cell content of 1-60 percent. The foam article can include two blend compatibilizers. The foam article can include 46 percent polystyrene, 51 percent polylactic acid, 1 percent of a first blend compatibilizer, and two percent of a second blend compatibilizer. The foam article can be a plate, cup, hinged lid container, tray, bowl, egg carton, insulation, or protective packaging.
While the invention is capable of various modifications and alternative forms, specific embodiments thereof have been shown by way of the process diagrams and testing data shown in
Reference will now be made in detail to the various aspects of the present invention. The method and corresponding steps of the invention will be described in conjunction with the detailed description of the compositions.
The methods and compositions presented herein can be used for the manufacture of a composition including a bio-based or biodegradable component. The present invention is particularly suited manufacturing foam beads, sheets, boards or planks.
Bio-based polymers are sustainable or partially sustainable natural or synthetic polymers. Bio-based polymers are organic materials in which the carbon comes from non-fossil biological sources. Bio-based materials may contain 100 percent new carbon or may be mixed physically, chemically, or biologically, with fossil based carbon.
Biodegradable polymers are polymers that are degradable as a result of the action of naturally occurring microorganisms, such as bacteria, fungi, and algae. Biodegradable polymers can include compostable polymers.
As embodied herein, a bio-based or partially-biodegradable thermoplastic composition is achieved by blending at least one alkenyl aromatic polymer, at least one bio-based or biodegradable polymer, and at least one blend compatibilizer.
As embodied herein, the alkenyl aromatic polymer component of the blend composition is preferably a styrenic polymer such as polystyrene, substituted polystyrene, high-impact polystyrene, or copolymers thereof. Styrenic polymers are preferred due to their foamability and good physical properties which make them excellent materials for creating containers and packages. However, styrenic polymers are not generally regarded as renewable or sustainable materials. Thus, it is advantageous to blend an alkenyl aromatic polymer such as a styrenic polymer which has excellent physical properties, with a bio-based or biodegradable polymer to increase the overall sustainability or degradability of the composition.
If desired, more than one alkenyl aromatic polymer can be blended into the composition. For example, a combination of polystyrene and high-impact polystyrene or substituted polystyrene and a copolymer of polystyrene can be blended as the alkenyl aromatic polymer component of the blend composition.
A variety of suitable bio-based or biodegradable polymers can be blended with the alkenyl aromatic polymer to increase the sustainability or degradability of the overall composition. As embodied herein, the bio-based or biodegradable polymer can be an aliphatic polyester such as polylactic acid or copolymers thereof, polyglycolic acid or copolymers thereof, or polybutylene succinate or copolymers thereof, polycaprolactone, polyvinyl alcohol. Moreover, the bio-based or biodegradable polymer can be polyhydroxyalkanoates (PHA) synthesized by bacteria as intracellular carbon and energy storage granules. Examples of PHA families of biopolymers include poly-3-hydroxybutylate (PHB) or copolyesters of 3-hydroxybutylate and 3-hydroxyhexanoate. Alternatively, the bio-based or biodegradable polymer can be an aliphatic-aromatic copolyester such as EcoFlex®, sold by BASF or Biomax® from DuPont. Other bio-based or biodegradable polymers that can be used in the blend include polysaccharides, cellulosic polymers, and soy-based polymers.
The bio-based or biodegradable polymers used in the blend composition can be any suitable bio-based or biodegradable polymers. One exemplary type of polymers are bio-based or biodegradable polymers with narrow molecular weight distributions, having linear structure and a melt index of from about 0.1 to about 20 (210° C./2.16 kg). A linear, narrow molecular weight distribution bio-based or biodegradable polymer is described in detail in the Foam Extrusion and Thermoforming presentation given by Jim Nangeroni, Ph.D., the entirety of which is incorporated herein by reference. Nangeroni, J. (2007, October). Foam Extrusion and Thermoforming of NatureWorks® Bio-Polymer. Presented at Polymer Foams 2007, organized by Applied Market Information LLC, Newark, N.J.
As embodied herein, the bio-based or biodegradable polymer component can include more than one bio-based or biodegradable polymer blended into the composition.
In accordance with a preferred aspect of the invention, the bio-based or partially-biodegradable thermoplastic composition is foamable. This is achieved by the addition of an appropriate blend compatibilizer or compatibilizers to the blend of an alkenyl aromatic polymer and a bio-based or biodegradable polymer can render the otherwise un-expandable blend foamable.
The alkenyl aromatic polymer and bio-based or biodegradable polymer blend can be compatibilized with styrene-based copolymers having functional groups that present specific interactions or are miscible or compatible with the bio-based or biodegradable polymer. Such blend compatibilizers include styrene-based copolymers containing hydroxyl groups, carboxylic acid and/or carboxylate groups, tertiary amino groups and or salts thereof and/or quaternary ammonium groups, sulfonic acid and/or sulphonate groups, vinyl pyrrolidone. For example, the blend compatibilizer can be styrene-ethylene-butylene-styrene (SEBS) block copolymers, maleated SEBS, styrene-maleic anhydride (SMA) copolymers, or styrene acrylate copolymers such styrene-methyl methacrylate (SMMA) copolymers. The blend can be compatibilized with a mixture of two or more styrene-based copolymers such as SEBS and SMA.
The bio-based or degradable composition can also include additives such as, for example, fillers, nano-fillers, colorants, light and heat stabilizers, anti-oxidants, acid scavengers, stability control agents, processing aids, extrusion aids, nucleating agents, and foaming additives.
In accordance with an aspect of the present invention, the blend composition can be foamed by any suitable process known in the art. For example, polymer foams are commonly made using a continuous process where a blowing agent laden molten resin is extruded under pressure through an appropriate die into a lower pressure atmosphere. Alternatively, a batch or staged process can be used, where small polymer beads (also called particles or pellets) are impregnated with blowing agent and then expanded by heating rapidly to a temperature near or above the glass-transition or melting temperature of the polymer-blowing agent system, or subjected to an external compressive stress at a temperature up to the glass-transition or melting temperature of the polymer-blowing agent system.
As embodied herein, the blend can include between about 10 to 90 percent by weight of the alkenyl aromatic polymer component. Preferably, the blend can include between about 45 to 80 percent by weight of the alkenyl aromatic polymer component.
The blend can include between about 10 to 90 percent by weight of the biodegradable or bio-based polymer component. Preferably, the blend can include between about 20 to 55 percent by weight of the bio-based or biodegradable polymer component.
The blend can include between about 0.10 to 15 percent by weight of the blend compatibilizer component. Preferably, the blend can include between about 1 to 10 percent by weight of the blend compatibilizer component.
In accordance with another aspect of the invention, the bio-based or partially-biodegradable compositions can be extruded and drawn into boards, sheets, or formed into beads. Furthermore, if desired, extruded sheets can be thermoformed to produce very low density foam articles such as plates, hinged lid containers, trays, bowls, and egg cartons.
The bio-based or partially-biodegradable composition can achieve a density of from about 0.020 to about 0.30 g/cm3.
It is desirable that the resulting structure have suitable physical characteristics, which will depend upon the intended use. Particularly, it is preferred that the structure formed of the bio-based or partially-biodegradable polymer composition have characteristics at least comparable to conventional synthetic polymers.
In accordance with an aspect of the invention, the bio-based or partially biodegradable composition is extruded and foamed. The foamed composition preferably has an open cell content of from about 1 to about 60 percent, more preferably an open cell content of from about 1 to about 30 percent, most preferably an open cell content of from about 1 to about 10 percent
In order to process and compound the components to the blend, the biodegradable or bio-based polymer component can first be dried in a vacuum drier. The dried bio-based or biodegradable polymer component is then mixed with the alkenyl aromatic polymer component and the blend compatibilizer. The mixing of the alkenyl aromatic polymer component and the bio-based or biodegradable polymer component can be a dry blending in, for example, a batch mixer or a continuous feeding system prior to being introduced to an extruder.
As embodied herein, the blend composition can be compounded and extruded using a twin screw extruder to create blend pellets. The blend pellets are dried and mixed with a blowing agent in order to be foamed. The amount of blowing agent can be between about 1 to about 10 percent. An exemplary blowing agent suitable for foaming the compositions of the present invention, is iso-pentane. However, any suitable blowing agent as known in the art can be used.
Any of the variety of suitable extrusion system or other methods known in the art for dissolving blowing agent in polymers can be used in accordance with the present invention. One example of a suitable system and method includes, for example, a conventional two-extruder tandem system with each extruder having a single screw. Alternatively, a two-extruder tandem system in which the primary extruder is a twin screw and the secondary extruder is a single screw can be used for extruding the foam article of the present invention. A single extruder with proper cooling can also be employed in the present invention.
According to one embodiment as applied to alkenyl aromatic polymers such as polystyrene, a two-extruder tandem system 10 can be used for extruding a foam article (e.g. a sheet) of the present invention as depicted in
Following injection of the blowing agent, the components are continuously mixed in the primary extruder 13. The exit pressure of the primary extruder 13 of the exemplary embodiment is generally in the range of from about 1500 to about 4000 psi. The temperature of the primary extruder 13 of the exemplary embodiment is generally in the range of from about 390 to about 475° F. The mixture is subsequently passed, at a high enough pressure that the blowing agent remains in solution, through a hollow adapter section 17 into a cooled secondary tandem extruder 19. The molten mixture is passed along the length of the cooled secondary extruder at low shear where cooling and additional homogenization occur. The exit pressure of the secondary extruder 19 of the exemplary embodiment is generally in the range of from about 400 to about 2500 psi. The temperature of the extrudate from the secondary extruder 19 of the exemplary embodiment is generally in the range of from about 220 to about 320° F. In general, the temperature of the primary extruder should be sufficient to melt the polymer and any organic additives, and to promote efficient mixing and dissolution. The temperature and pressure in the secondary extruder should be sufficient to maintain a homogeneous solution of the components in the melt state. It is understood that the temperatures, pressures and other conditions described can vary depending on the properties of the thermoplastic polymer and blowing agent used in the process, and further that a third extruder in-tandem with the secondary extruder can be deployed to provide additional cooling. The specific conditions to be used are apparent to a person of skill in the art.
As seen in
Alternatively, as shown in
Various blend compositions were prepared and tested with the compositions prepared and results of the testing set forth in
The testing blend compositions included polystyrene (PS) as the alkenyl aromatic polymer component, and polylactic acid (PLA) as the biodegradable or bio-based polymer component.
The bio-based or biodegradable polymers used in the blend composition can be any suitable bio-based or biodegradable polymers. One exemplary type of polymers are bio-based or biodegradable polymers with narrow molecular weight distributions, having linear structure and a melt index of from about 0.1 to about 20 (210° C./2.16 kg). A linear, narrow molecular weight distribution bio-based or biodegradable polymer is described in detail in the Foam Extrusion and Thermoforming presentation given by Jim Nangeroni, Ph.D., referenced above and incorporated herein in its entirety.
For the purposes of testing, the bio-based or biodegradable polymer resin selected was the NatureWorks 2002D resin, which is a polylactic acid resin having a narrow molecular weight distribution, and a melt index of 5-7 g/10 min.
Eighteen blends were prepared according to the formulations illustrated in
The PS-PLA compounded blends were foamed on a lab scale Gloenco tandem-extruder. The compounded samples were typically dried in a Maguire low pressure dryer for 20 min at 120° F. before starting the runs. About 1% talc nucleating agent in a PS masterbatch (50% talc and 50% PS) was mixed with the sample prior to feeding to the extruder. The melt temperature was set at 145° C. and then adjusted accordingly to yield the best foaming for a given sample. The amount of blowing agent (iso-pentane) generally varied from 4% to 8%.
Sheet samples 1 to 18 were prepared having composition varying from about 43% to about 65% polystyrene, about 35% to about 50% polylactic acid, and from about 1% to about 10% blend compatibilizer. The exception to this is sample 4 which had no compatibilizer, and testing showed to have low tear resistance properties. It was desired to prepare a bio-based or partially degradable foamable blend composition that exhibited excellent physical properties such as an open cell content of 0 to 50 percent, density of less than about 0.16 g/cm3, a modulus in the machine direction and transverse direction of greater than 10,000 psi, and an expansion ratio of greater than about 10 times.
Samples of 19 and 20 were prepared by mixing the blend components in a batch mixer and were not compounded on the 34 mm Leistritz twin screw extruder. Sample 19 contained 50% PLA, 45% PS, 5% FG1901X compatibilizer and talc was added at 1% of the mixture. Sample 20 contained 50% PLA, 45% PS, 5% FG1901X compatibilizer and talc was added at 2% of the mixture. Both samples 19 and 20 yielded low density foam, 0.0992 and 0.1064 g/cm3, respectively, with good properties as shown in
An AccuPyc 1330 pyncometer was used to measure open cell percentages of the samples. Flexural modulus of the samples was measured according to ASTM D790.
A pilot scale tandem extrusion system was used to foam the formulations detailed in
As summarized in
A series of samples were prepared and tested in which the samples included two blend compatibilizers. The blend compatibilizers used in the samples were Dylark 232, a styrene-maleic anhydride (SMA) copolymer from Nova Chemicals, Kraton FG1901X, a maleated SEBS from Kraton Polymers, Kraton G1652M, another SEBS copolymer from Kraton Polymers and Plexiglas 684, a styrene-methyl methacrylate (SMMA) copolymer from Arkema.
As shown by the testing data in
While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes can be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/955,034, filed Dec. 12, 2007, now U.S. Pat. No. 7,846,987 which claims priority to U.S. Provisional Application 60/869,932, filed Dec. 14, 2006, each which is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
2816827 | Roth | Dec 1957 | A |
2861898 | Platzer | Nov 1958 | A |
2911382 | Barkhuff et al. | Nov 1959 | A |
2912279 | Lyon | Nov 1959 | A |
2983962 | Merz et al. | May 1961 | A |
3085073 | Lintner et al. | Apr 1963 | A |
3281259 | Lux et al. | Oct 1966 | A |
3290198 | Lux et al. | Dec 1966 | A |
3358060 | Ohsol | Dec 1967 | A |
3358073 | Ohsol | Dec 1967 | A |
3379799 | Goldman | Apr 1968 | A |
3407151 | Overcashier et al. | Oct 1968 | A |
3409199 | Lake | Nov 1968 | A |
3577360 | Immel | May 1971 | A |
3644230 | Cronin | Feb 1972 | A |
3670916 | Alpert | Jun 1972 | A |
3759641 | Immel | Sep 1973 | A |
3855377 | Uebelhart et al. | Dec 1974 | A |
3864444 | Johnson | Feb 1975 | A |
3900433 | Taub et al. | Aug 1975 | A |
3914191 | Scott | Oct 1975 | A |
3929686 | Stevenson | Dec 1975 | A |
3961000 | Ropiequet | Jun 1976 | A |
3962154 | Egli | Jun 1976 | A |
3976605 | Matsunaga et al. | Aug 1976 | A |
4009976 | Johnson | Mar 1977 | A |
4033010 | McCalla | Jul 1977 | A |
4042658 | Collins | Aug 1977 | A |
4098941 | Johnson | Jul 1978 | A |
4104440 | Collins | Aug 1978 | A |
4214054 | Watanabe et al. | Jul 1980 | A |
4272469 | Smith | Jun 1981 | A |
4323528 | Collins | Apr 1982 | A |
4557881 | Rabotski | Dec 1985 | A |
4695595 | Blount | Sep 1987 | A |
4769396 | Blount | Sep 1988 | A |
4894395 | Park | Jan 1990 | A |
4916166 | Suh et al. | Apr 1990 | A |
4943459 | Nedzu | Jul 1990 | A |
4960804 | Doerge | Oct 1990 | A |
4997858 | Jourquin et al. | Mar 1991 | A |
5026736 | Pontiff | Jun 1991 | A |
5059376 | Pontiff et al. | Oct 1991 | A |
5064872 | Monstrey et al. | Nov 1991 | A |
5106880 | Miller et al. | Apr 1992 | A |
5110838 | Tokiwa et al. | May 1992 | A |
5116880 | Tokiwa et al. | May 1992 | A |
5120481 | Brackman et al. | Jun 1992 | A |
5134171 | Hammel et al. | Jul 1992 | A |
5149473 | LeDuc | Sep 1992 | A |
5166182 | Blanpied | Nov 1992 | A |
5210108 | Spinu et al. | May 1993 | A |
5216050 | Sinclair | Jun 1993 | A |
5225490 | Tokiwa et al. | Jul 1993 | A |
5227408 | Hanna et al. | Jul 1993 | A |
5242494 | Callaghan et al. | Sep 1993 | A |
5252642 | Sinclair et al. | Oct 1993 | A |
5283003 | Chen | Feb 1994 | A |
5308528 | Desbiendras et al. | May 1994 | A |
5336696 | Ashida | Aug 1994 | A |
5348983 | Sterzel | Sep 1994 | A |
5378792 | Sterzel | Jan 1995 | A |
5391335 | Sakamoto et al. | Feb 1995 | A |
5422053 | Sterzel | Jun 1995 | A |
5437924 | Decker et al. | Aug 1995 | A |
5439947 | Bartlett et al. | Aug 1995 | A |
5447962 | Ajioka et al. | Sep 1995 | A |
5478494 | Lee et al. | Dec 1995 | A |
5532284 | Bartlett et al. | Jul 1996 | A |
5563180 | Skowronski et al. | Oct 1996 | A |
5565497 | Godbey et al. | Oct 1996 | A |
5736586 | Bastioli et al. | Apr 1998 | A |
5750584 | Knaus | May 1998 | A |
5759569 | Hird et al. | Jun 1998 | A |
5763518 | Gnatowski et al. | Jun 1998 | A |
5780521 | Shmidt et al. | Jul 1998 | A |
5786401 | Inagaki et al. | Jul 1998 | A |
5853848 | Fisk | Dec 1998 | A |
5912279 | Hammel et al. | Jun 1999 | A |
5922348 | Wegner | Jul 1999 | A |
5965231 | Rotermund et al. | Oct 1999 | A |
6080798 | Handa et al. | Jun 2000 | A |
6136875 | Wu et al. | Oct 2000 | A |
6184261 | Biby | Feb 2001 | B1 |
6310112 | Vo et al. | Oct 2001 | B1 |
6315932 | Fujiwara et al. | Nov 2001 | B1 |
6355341 | Chaudhary et al. | Mar 2002 | B1 |
6355701 | Soukup et al. | Mar 2002 | B1 |
6476080 | Duffy et al. | Nov 2002 | B2 |
6521675 | Wu et al. | Feb 2003 | B1 |
6526764 | Singh et al. | Mar 2003 | B1 |
6569912 | Oohara et al. | May 2003 | B1 |
6599946 | Duffy et al. | Jul 2003 | B2 |
6696504 | Hayashi et al. | Feb 2004 | B1 |
6710135 | Tan et al. | Mar 2004 | B2 |
6740731 | Bigg et al. | May 2004 | B2 |
6753357 | Kalinowski et al. | Jun 2004 | B2 |
6762212 | Oohara et al. | Jul 2004 | B2 |
6841581 | Hayashi et al. | Jan 2005 | B2 |
7045556 | Handa et al. | May 2006 | B2 |
7166248 | Francis et al. | Jan 2007 | B2 |
7358282 | Krueger et al. | Apr 2008 | B2 |
20020198273 | Nyberg et al. | Dec 2002 | A1 |
20030078312 | Hibino et al. | Apr 2003 | A1 |
20030114549 | Kalinowski et al. | Jun 2003 | A1 |
20040006149 | Handa et al. | Jan 2004 | A1 |
20040024077 | Braun et al. | Feb 2004 | A1 |
20040132844 | Francis et al. | Jul 2004 | A1 |
20050131094 | Kalinowski et al. | Jun 2005 | A1 |
20050154114 | Hale | Jul 2005 | A1 |
20060047009 | Handa et al. | Mar 2006 | A1 |
20060052464 | Handa et al. | Mar 2006 | A1 |
20060052465 | Handa et al. | Mar 2006 | A1 |
20060052466 | Handa et al. | Mar 2006 | A1 |
20060091576 | Takase et al. | May 2006 | A1 |
20060167122 | Haraguchi et al. | Jul 2006 | A1 |
20070004813 | Shelby et al. | Jan 2007 | A1 |
20080146686 | Handa | Jun 2008 | A1 |
20090012194 | Okuda et al. | Jan 2009 | A1 |
20090234035 | Cheung et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
4230097 | May 1994 | DE |
19824134 | Dec 1999 | DE |
0493110 | Jul 1992 | EP |
1975195 | Oct 2008 | EP |
2264840 | Oct 2005 | FR |
994074 | Jun 1995 | GB |
06041344 | Feb 1994 | JP |
2006-328318 | Dec 2006 | JP |
2006-348060 | Dec 2006 | JP |
185251 | May 1999 | KR |
WO9113966 | Sep 1991 | WO |
WO9502000 | Jan 1995 | WO |
WO2004005382 | Jan 2004 | WO |
WO2007083705 | Jul 2007 | WO |
WO2008098888 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090234035 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
60869932 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11955034 | Dec 2007 | US |
Child | 12048467 | US |