The present invention pertains to the field of polymer building products, such as, for example, siding, roofing, J-blocks, gable vents, siding joints, etc., and more particularly to an improved, polymer siding-joint for concealing the opposing lateral edges of horizontally adjacent pieces of polymer siding, improved means for ensuring the accurate and facile installation of siding and roofing panels, as well as a fastener centering-guide and a hammer stop for incorporation into polymer building products.
While the advent of polymer building products has greatly eased the installation of roofing, siding and trim components, drawbacks remain.
To facilitate their installation, polymer building products, such as, for example, siding, roofing, J-blocks, gable vents, etc., are usually characterized by a plurality of fastener apertures each comprising an elongate slot of constant width bounded by a peripheral wall defining the slot. In these regards, the disclosure of the applicant's own prior-published application, US Pub. No. 20080083186, the disclosure of which is incorporated herein by reference in its entirety, is exemplary. In installation, a fastener, such as a nail, for instance, is driven through each slot and into a substrate to thus secure the building product in place. The slots are elongate so that once a fastener is positioned therein and secured to the underlying substrate, the building products can slide relative to the fasteners as the polymer material expands and contracts due to changing ambient temperatures.
Necessarily, the fasteners must be positioned approximately in the middle of each slot in order to permit the unfettered relative movement of the building products in either direction so as to accommodate both contraction and expansion of the building products. Unfortunately, hasty installation can lead to the misplacement of fasteners too close to one or the other end of these slots. When this occurs, the slot end confronts the fastener prematurely during its relative movement, leading to unwanted buckling of the building product.
Another common occurrence during installation of polymer building products is for fasteners to be driven too deeply into the substrate, such that the building product is effectively fixed in position and unable to move relative to the fastener in response to changes in the ambient temperature. As with misplacement of the fastener within the slot, this installation error can lead to unwanted buckling of the building product.
Still a further problem in the installation of polymer siding and roofing panels is the need to ensure proper alignment of vertically adjacent rows of siding or roofing panels as they are “stacked” one on top of the other. With conventional polymer roofing and siding panels, it is possible to misalign vertically successive panels relative to the preceding, vertically lower one, unless due care is taken by the installer. However, such due care can slow the installation process.
A further drawback of polymer siding is that the necessity, in some installation methods, of leaving a slight gap between horizontally adjacent panels (to ensure sufficient room for the panels to expand and contract due to changes in ambient temperature) creates an unsightly aesthetic to the thus-finished building. While siding-joints are known as a satisfactory means for concealing such gaps, the conventional forms of these joints are difficult to install.
The present invention addresses the foregoing problems of the prior art in the provision of improvements to polymer building products, such as polymer siding, polymer roofing, j-blocks, gable vents, etc.
According to a first aspect of the invention, there is provided a fastener centering-guide comprising a layer of material extending into the elongate slot from the peripheral wall thereof, the layer of material having defined therein (a) an elongate opening that is generally parallel to, but of smaller transverse dimensions than, the elongate slot, and (b) a predetermined location, defined intermediate the length of the elongate opening, for receiving a fastener therethrough, and wherein further the layer of material is characterized by a thickness that is less than the height of the peripheral wall and sufficiently thin so as to permit relative movement between a fastener extending through the centering guide and the polymer building product.
According to one feature, the predetermined location for receiving a fastener through the layer of material comprises an opening of a first size, and the elongate opening comprises a pair of slots extending oppositely from the opening, each slot being characterized by smaller transverse dimensions than the opening.
The layer of material may be formed of polymer, for example, and may be formed integrally with the peripheral wall or as a separate element that is fixedly secured to the peripheral wall.
In another aspect thereof the invention comprises a siding joint for concealing the gap between opposing lateral edges of horizontally adjacent pieces of siding, the siding joint having a bottom portion adapted to be secured to a substrate beneath, and proximate the opposite lateral edges of, horizontally adjacent pieces of siding; and a top portion connectable to the bottom portion so as to capture therebetween horizontally adjacent pieces of siding, the top portion concealing the opposing lateral edges of horizontally adjacent pieces of siding.
Per one feature, the top portion comprises an outwardly-facing surface simulating the appearance of a natural siding material.
Per another feature, the top and bottom portions comprise interlocking elements by means of which the top portion is connectable to the bottom portion.
Per another feature, the bottom portion is a generally wedge-shaped element that tapers in thickness along a longitudinal axis thereof.
According to a still further feature, the bottom portion comprises a plurality of spaced openings therein. At least one locking tab extends into each said opening. Further according to this feature, the top portion comprises a plurality of rigid supports corresponding in number to the number of the plurality of openings in the bottom portion, each said rigid support terminating in a foot engageable by the at least one tab in the corresponding opening.
According to yet another feature, the bottom portion comprises a plurality of laterally spaced-apart deformable or frangible projections dimensioned to abut the opposing lateral edges of horizontally adjacent pieces of siding. The projections are adapted to be deformable or frangible in response to the force of a siding panel's lateral edge acting against the projections during expansion of the panel as occasioned by changes in ambient temperature.
Per still another feature, the bottom portion further comprises a plurality of laterally extending ribs dimensioned to be able to support overlying siding.
According to a further aspect thereof, the invention comprehends a hammer stop for limiting the depth to which a fastener may be driven into each elongate slot comprising the fastener apertures of a polymer building product. The hammer stop comprises vertically elevated, rigid stop surfaces, the stop surfaces positioned about each elongate slot so as to confront the face of a hammer having a head diameter greater than the distance between the stop surfaces, and the stop surfaces being vertically elevated above each elongate slot by a distance sufficient to prevent a fastener from being driven into the slot to a depth at which the building product is prevented from moving relative to the fastener during expansion and contraction of the building product.
Per one feature thereof, the hammer stop comprises a pair of elongate ribs disposed oppositely of the elongate slot and longitudinally extending in a direction generally parallel to the longitudinal axis of the elongate slot.
Per still another feature, the fastener apertures are disposed serially along a length of the building product, and wherein the improvement further comprises the pair of elongate ribs extending continuously and generally coextensively with the fastener apertures.
In another aspect thereof, the invention comprehends a polymer roofing or siding panel, comprising a front, outwardly-facing decorative surface and an opposite, rearwardly facing surface, a top edge and a vertically spaced-apart bottom edge; a first stand-off positioned proximate the top edge of the roofing or siding panel, the stand-off projecting rearwardly from the rearwardly facing surface, and the stand-off engageable with a substrate to define a gap between the siding or roofing panel and a substrate in the area immediately above the stand-off; and a hook positioned proximate the bottom edge of the roofing or siding panel and projecting from the rearwardly facing surface thereof, the hook opening toward the bottom edge of the roofing or siding panel so as to be slidingly receivable in the said gap defined in a like, vertically adjacent roofing or siding panel.
Per one feature of the invention, the first stand-off is a continuous element extending generally coextensively with the length of the roofing or siding panel.
Per another feature, the hook is defined by a rearwardly projecting element that terminates in a portion extending downwardly toward the bottom edge of the roofing or siding panel.
According to still another feature, the hook is a continuous element extending generally coextensively with the length of the roofing or siding panel.
According to yet another feature, the hook is a discrete element disposed along the length of the roofing or siding panel.
Per a still further feature, a plurality of discrete hooks are disposed along the length of the roofing or siding panel.
The present invention may be better understood with reference to the written description and drawings, of which:
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The accompanying drawings are not necessarily to scale, and some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to the drawings, wherein like numerals refer to like or corresponding parts, the present invention will be seen to most generally comprise improvements to polymer building products, such as polymer siding, polymer roofing, j-blocks, gable vents, etc. According to a first such improvement, shown in
Referring more particularly to
Further defined in the layer of material intermediate the length of the elongate opening 8 is a predetermined location 7 for receiving a fastener, such as, for instance, a nail (not shown), therethrough. In the illustrated embodiment, this predetermined location 7 is depicted as an opening the dimensions of which are sufficient to permit the shank of a fastener such as a nail to pass freely therethrough. According to this embodiment, the elongate opening 8 is a slot characterized by smaller transverse dimensions than the opening of location 7 so as to thereby distinguish the preferred approximate location for positioning a fastener.
It will be appreciated that the dimensions of the location 7 may be smaller or larger than as shown, subject only to the need for the location 7 to clearly identify for an installer the preferred approximate location for positioning a fastener within the slot defined by the wall 5. Thus, for instance, it is contemplated that the location 7 may simply comprise indicia, such as an “X,” positioned along the length of the elongate opening 8 for identifying the preferred position for the fastener to be driven into the layer of material.
Referring specifically to
Further to the illustrated embodiment, the layer of material 6 is a polymer which may be formed with the siding panel 1 or other building product so as to be integral therewith. Alternatively, the layer of material 6 may be formed separately and subsequently fixed in place, such as with adhesives, over the elongated slots. It will also be appreciated that the layer of material need not be formed of polymer, being formed instead, for example, from fabric, cellulose, etc.
According to a second improvement to building products encompassed by the present disclosure, also shown in
According to the illustrated embodiment of
Each stop surface 9, 10 is further defined in cross-section (
Referring next to
Referring more specifically to
From the rear, inwardly facing surface 32 there project a plurality of rigid supports 33 interconnected at their bases by a rib 34. The end of each support 33 terminates in a generally planar foot 35 oriented substantially normal to the support. As depicted best in
Referring next to
Extending laterally from the bottom portion 20 are a plurality of ribs 22 dimensioned to support the rear surface of siding lying thereover.
Openings 23 corresponding approximately in shape to each of the feet 35 are also provided through the bottom portion 20. Extending into each such opening 23 at the forward portion thereof are a pair of locking tabs 24 separated by an elongated opening 25. Two of the three openings 23 are further characterized by the presence of a stop surface 26 as best shown in
Referring specifically to
Turning now to
According to convention, rows of siding panels (e.g., 1, 1′) are installed on a substrate (not shown) in horizontally-adjacent fashion, with a sufficient distance left between the opposing edges of horizontally-adjacent panels so as to accommodate thermal expansion of these panels following securement thereof to the substrate. Following placement and installation of a first siding panel 1, the bottom portion 20 is positioned and installed on the substrate proximate the lateral edge of the siding panel 1. To facilitate such installation, the installer positions the bottom portion 20 against the substrate (not shown) and partially beneath the siding panel 1 so that the lateral edge of the siding panel abuts the nearest of the pairs of projections 27. To further facilitate precise placement of the bottom portion 20, there may, as shown in
Following placement, fasteners are driven through the off-set openings 21 to fix the bottom portion 20 to the substrate. Thereafter, the next horizontally adjacent siding panel 1′ is positioned and installed. Positioning relative to the bottom portion 20 is again facilitated using the projections 27, with the lateral edge of the siding panel 1′ being arranged so as to abut the nearest of the pairs of such projections 27.
After the siding panel 1′ is fixed in place on the substrate, the top portion 30 (not depicted in
Referring next to
Referring particularly to
In operation, which may be best understood with reference to
It will be appreciated from the foregoing disclosure that the present invention provides polymer building products which facilitate the accurate and rapid installment thereof.
Of course, the preceding specification is merely illustrative of the present invention, and those of ordinary skill in the art will appreciate that many additions and modifications to the present invention, as set out in this disclosure, are possible without departing from the spirit and broader aspects of this invention as defined in the appended claims.
This application claims the benefit of priority from U.S. provisional application Ser. No. 61/105,613, filed Oct. 15, 2008.
Number | Name | Date | Kind |
---|---|---|---|
1447561 | Overbury | Mar 1923 | A |
1467510 | Smith, Jr. | Sep 1923 | A |
1767374 | Kirschbraun | Jun 1930 | A |
1795913 | Weaver | Mar 1931 | A |
2096968 | Johnston | Oct 1937 | A |
2135811 | Goslin | Nov 1938 | A |
2648103 | Wahlfeld | Aug 1953 | A |
3504467 | Hatch | Apr 1970 | A |
3754366 | Jansson et al. | Aug 1973 | A |
3973369 | Smith | Aug 1976 | A |
3977145 | Dobby et al. | Aug 1976 | A |
4015391 | Epstein | Apr 1977 | A |
4033499 | Butler | Jul 1977 | A |
4034528 | Sanders et al. | Jul 1977 | A |
4070432 | Tamaddon | Jan 1978 | A |
4070843 | Leggiere et al. | Jan 1978 | A |
4096679 | Naz | Jun 1978 | A |
4104841 | Naz | Aug 1978 | A |
4219981 | Stewart et al. | Sep 1980 | A |
4251967 | Hoofe, III | Feb 1981 | A |
4288959 | Murdock | Sep 1981 | A |
4319439 | Gussow | Mar 1982 | A |
4343126 | Hoofe, III | Aug 1982 | A |
4382993 | McIntyre et al. | May 1983 | A |
4434200 | Fash et al. | Feb 1984 | A |
4437602 | Kaczmarek | Mar 1984 | A |
4445301 | Tanski | May 1984 | A |
4472913 | Hickman | Sep 1984 | A |
4476661 | Hoofe, III | Oct 1984 | A |
4498267 | Beck | Feb 1985 | A |
4499702 | Turner | Feb 1985 | A |
4522002 | Davis | Jun 1985 | A |
4544595 | Tomason | Oct 1985 | A |
4580383 | Pittman et al. | Apr 1986 | A |
4588634 | Pagen et al. | May 1986 | A |
4592185 | Lynch et al. | Jun 1986 | A |
4598522 | Hoofe, III | Jul 1986 | A |
4617770 | Hickman | Oct 1986 | A |
4617774 | Pittman et al. | Oct 1986 | A |
4618440 | Steinberg et al. | Oct 1986 | A |
4627207 | Young et al. | Dec 1986 | A |
4641472 | Young et al. | Feb 1987 | A |
4663373 | Ravichandran et al. | May 1987 | A |
4671753 | Payne | Jun 1987 | A |
4671991 | Payne | Jun 1987 | A |
4680911 | Davis et al. | Jul 1987 | A |
4712351 | Kasprzak | Dec 1987 | A |
4717614 | Bondoc et al. | Jan 1988 | A |
4729202 | Ferland | Mar 1988 | A |
4749533 | Payne | Jun 1988 | A |
4777776 | Morrell | Oct 1988 | A |
4782638 | Hovind | Nov 1988 | A |
4795661 | Bondoc et al. | Jan 1989 | A |
4798033 | Weide | Jan 1989 | A |
4803144 | Hosoi | Feb 1989 | A |
4825616 | Bondoc et al. | May 1989 | A |
4879333 | Frazee | Nov 1989 | A |
4890432 | Shepherd | Jan 1990 | A |
4936071 | Karrfalt | Jun 1990 | A |
4940844 | Blunt | Jul 1990 | A |
4946992 | Falk et al. | Aug 1990 | A |
5039740 | Anderson et al. | Aug 1991 | A |
5047556 | Kohler et al. | Sep 1991 | A |
5072562 | Crick et al. | Dec 1991 | A |
5076037 | Crick | Dec 1991 | A |
5084506 | Faler et al. | Jan 1992 | A |
5088910 | Goforth et al. | Feb 1992 | A |
5096046 | Goforth et al. | Mar 1992 | A |
5100274 | Hasan et al. | Mar 1992 | A |
5106609 | Bolich, Jr. et al. | Apr 1992 | A |
5124098 | Vischer | Jun 1992 | A |
5126392 | Nakashima | Jun 1992 | A |
5135971 | Steirt et al. | Aug 1992 | A |
5141983 | Hasegawa et al. | Aug 1992 | A |
5186980 | Koschitzky | Feb 1993 | A |
5188895 | Nishino | Feb 1993 | A |
5224318 | Kemerer | Jul 1993 | A |
5229207 | Paquette et al. | Jul 1993 | A |
D339875 | Schutz | Sep 1993 | S |
5249402 | Crick | Oct 1993 | A |
5277009 | Yamaguchi et al. | Jan 1994 | A |
5287669 | Hannab et al. | Feb 1994 | A |
5288787 | Sackmann et al. | Feb 1994 | A |
5295339 | Manner | Mar 1994 | A |
5305569 | Malmquist et al. | Apr 1994 | A |
5305570 | Rodriguez et al. | Apr 1994 | A |
5344007 | Nakamura et al. | Sep 1994 | A |
5347784 | Crick et al. | Sep 1994 | A |
5349802 | Kariniemi | Sep 1994 | A |
5363623 | King | Nov 1994 | A |
5375491 | Hannah et al. | Dec 1994 | A |
5400558 | Hannah et al. | Mar 1995 | A |
RE34951 | Slosberg et al. | May 1995 | E |
5416151 | Tanaka | May 1995 | A |
5421134 | Hannah et al. | Jun 1995 | A |
5437735 | Younan et al. | Aug 1995 | A |
5501056 | Hannah et al. | Mar 1996 | A |
5524412 | Corl | Jun 1996 | A |
5537792 | Moliere | Jul 1996 | A |
5575861 | Younan et al. | Nov 1996 | A |
5577361 | Grabek, Jr. et al. | Nov 1996 | A |
5586415 | Fisher et al. | Dec 1996 | A |
5592799 | Reinke | Jan 1997 | A |
5622020 | Wood | Apr 1997 | A |
5635125 | Ternes et al. | Jun 1997 | A |
5675955 | Champagne | Oct 1997 | A |
5687090 | Chen et al. | Nov 1997 | A |
5731033 | Hanisco | Mar 1998 | A |
5763083 | Berrigan | Jun 1998 | A |
5813184 | McKenna | Sep 1998 | A |
5821294 | Pertinski | Oct 1998 | A |
5853858 | Bondoc | Dec 1998 | A |
5878543 | Mowery | Mar 1999 | A |
5922379 | Wang | Jul 1999 | A |
5956914 | Williamson | Sep 1999 | A |
5960596 | Lyons, Sr. | Oct 1999 | A |
5992116 | Ternes et al. | Nov 1999 | A |
6038827 | Sieling | Mar 2000 | A |
6044609 | Kim | Apr 2000 | A |
6050041 | Mowery et al. | Apr 2000 | A |
6058670 | Sieling | May 2000 | A |
6092302 | Berrigan | Jul 2000 | A |
6105329 | Bondoc et al. | Aug 2000 | A |
6114007 | Brandon et al. | Sep 2000 | A |
6122878 | Pliley | Sep 2000 | A |
6153293 | Dahl et al. | Nov 2000 | A |
6180257 | Brandt et al. | Jan 2001 | B1 |
6248813 | Zehner | Jun 2001 | B1 |
6258876 | Medoff et al. | Jul 2001 | B1 |
6282858 | Swick | Sep 2001 | B1 |
6301856 | Nasi | Oct 2001 | B1 |
6336303 | Vandeman et al. | Jan 2002 | B1 |
6361851 | Sieling et al. | Mar 2002 | B1 |
6421975 | Bryant | Jul 2002 | B2 |
6436471 | Petersen | Aug 2002 | B1 |
6487828 | Phillips | Dec 2002 | B1 |
6550362 | Galient et al. | Apr 2003 | B1 |
6579605 | Zehner | Jun 2003 | B2 |
6715240 | Beck et al. | Apr 2004 | B2 |
6715250 | Bryant et al. | Apr 2004 | B2 |
6786804 | Watanabe | Sep 2004 | B2 |
6939036 | Beck et al. | Sep 2005 | B2 |
6955019 | Donlin | Oct 2005 | B2 |
6976342 | Kowalevich | Dec 2005 | B1 |
6983571 | Felton | Jan 2006 | B2 |
7089709 | Waggoner | Aug 2006 | B2 |
7207145 | Stucky et al. | Apr 2007 | B2 |
7918065 | Ito | Apr 2011 | B2 |
20010039778 | King | Nov 2001 | A1 |
20030182888 | Desbois et al. | Oct 2003 | A1 |
20050102946 | Stucky et al. | May 2005 | A1 |
20070107356 | Steffes et al. | May 2007 | A1 |
20070144096 | O'Neal | Jun 2007 | A1 |
20080296451 | Yoshida et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
10183935 | Jul 1998 | JP |
11107486 | Apr 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20100088988 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61105613 | Oct 2008 | US |