American Chemical Society (1994), Stephen J. Martin & Gregory C. Frye, Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance, pp. 2201-2218. |
Analytical Chemistry (Mar. 15, 1995), Edward T. Zellers, Stuart A. Batterman, Mingwei Han and Samuel J. Patrash. Optimal Coating Selection for the Analysis of Organic Vapor Mixtures with Polymer-Coated Surface Acoustic Wave Sensor Arrays, pp. 1092-1106. |
Sensors and Actuators B, 3 (1991), Jay W. Grate,Review Paper, Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays, pp. 85-111. |
Silicones in Coatings II, Mar. 24, 1998, A Technology Forum Exploring the Versatility of Silicone, The Design of Aromatic Acid Silicone Polymers and Their Evaluation as Sorbent Coatings for Chemical Sensors Paper 3. |
Journal Of Applied Polymer Science (1991), vol. 43, A. W. Snow, L. G. Sprague, R. L. Soulen, J. W. Grate and H. Wohltjen, Synthesis and Evaluation of Hexafluorodimethylcarbinol Functionalized Polymers as Microsensor Coatings, pp. 1659-1671. |
Handbook of Biosensors and Electronic Noses, Medicine, Food and the Environment (1997), Jay W. Grate, Michael H. Abraham and R. Andrew McGill, Sorbent Polymer Materials for Chemical Sensors Arrays, pp. 593-612. |
American Chemical Society (1992), Jay W. Grate and Mark Klusty, The Predominant role of Swelling-Induced Modulus Changes of the Sorbent Phase in Determining the Responses of Polymer-Coated Surface Acoustic Wave Vapor Sensors, pp. 610-624. |