The present application relates to novel polymers comprising a naphthalene group, the production of such polymers, their use in organic electronic devices as well as such organic electronic devices.
Organic semiconducting materials and their application in electronic devices have generated a lot of interest in research because of the tenability of their electronic properties and because of their suitability as alternatives for amorphous silicon technology. Advantages of organic semiconducting materials include the possibility of low-cost production as well as high throughput in combination with low temperature deposition, solution processability and ease of fabrication of large area electronic devices. Furthermore, the resulting electronic devices are characterized by flexibility and reduced weight, making them more suited for transportable devices.
The research efforts have led to a wide variety of organic compounds that can be used as semiconducting materials in electronic devices, such as for example in organic field effect organic transistor (OFETs). Promising results in respect to enhanced electron delocalization, conductivity, ability to form planar conjugated structures and thermal stability have been observed for example for polythiophenes and linearly fused aromatic compounds such as pentacene and its derivatives. However the electronic properties of organic π-conjugated polymers remain somewhat unpredictable and vary significantly depending on their main chain conformation.
Despite all the progress that has been made there is still interest in the industry to find alternatives to the already known organic semiconducting materials.
Thus there is still a need for organic semiconducting (OSC) materials that are easy to synthesize, especially by methods suitable for mass production, show good structural organization and film-forming properties, exhibit good electronic properties, especially a high charge carrier mobility, good processability, especially a high solubility in organic solvents, and high stability in air. Especially for use in organic photovoltaic cells, there is a need for OSC materials having a low band gap, which enable improved light harvesting by the photoactive layer and can lead to higher cell efficiencies, compared to the polymers from prior art.
It was an aim of the present invention to provide new polymers for use as organic semiconducting materials that do not have the drawbacks of prior art materials, are easy to synthesize, especially by methods suitable for mass production, and do especially show good processability, high stability, good solubility in organic solvents, high charge carrier mobility, and a low bandgap. Another aim of the invention was to extend the pool of OSC materials available to the expert. Other aims of the present invention are immediately evident to the expert from the following detailed description.
The present inventors have now surprisingly found that the above objects may be attained either individually or in any combination by the present polymers comprising a naphthalene group.
Naphthalene-based compounds are for example disclosed in GB-A-2472413, in EP-A-2 145 936, in JP-A-2010083785, in US2005202279(A1), in T. W. Bunnagel et al., J. Polym. Sci. A 2008, 46, 7342 and in J. Pina et al., J. Phys. Chem. B 2009, 113, 15928.
However, none of the cited documents discloses the present polymer comprising a naphthalene group as claimed herein.
Thus, the present application provides for a polymer comprising at least one divalent unit of formula I
wherein
The present application also provides for a process for preparing the polymer of any one or more or claims 1 to 10, said process comprising the step of coupling monomers, therein comprised a monomer comprising the divalent unit of formula I, said monomers comprising at least one functional monovalent group selected from the group consisting of Cl, Br, I, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe2F, —SiMeF2, —O—SO2Z1, —B(OZ2)2, —CZ3═C(Z3)2, —C≡CH, —C≡CSi(Z1)3, —ZnX0 and —Sn(Z4)3, wherein X0 is halogen, and Z0, Z1, Z2, Z3 and Z4 are independently of each other selected from the group consisting of alkyl and aryl, each being optionally substituted, and two groups Z2 may also together form a cyclic group.
The invention further relates to a formulation comprising one or more polymers comprising a unit of formula I and one or more solvents, preferably selected from organic solvents.
The invention further relates to the use of units of formula I as electron donor units in semiconducting polymers.
The invention further relates to conjugated polymers comprising one or more repeating units of formula I and/or one or more groups selected from aryl and heteroaryl groups that are optionally substituted, and wherein at least one repeating unit in the polymer is a unit of formula I.
The invention further relates to monomers containing a unit of formula I and further containing one or more reactive groups which can be reacted to form a conjugated polymer as described above and below.
The invention further relates to semiconducting polymers comprising one or more units of formula I as electron donor units, and preferably further comprising one or more units having electron acceptor properties.
The invention further relates to the use of the polymers according to the present invention as electron donor or p-type semiconductor.
The invention further relates to the use of the polymers according to the present invention as electron donor component in a semiconducting material, formulation, polymer blend, device or component of a device.
The invention further relates to a semiconducting material, formulation, polymer blend, device or component of a device comprising a polymer according to the present invention as electron donor component, and preferably further comprising one or more compounds or polymers having electron acceptor properties.
The invention further relates to a mixture or polymer blend comprising one or more polymers according to the present invention and one or more additional compounds which are preferably selected from compounds having one or more of semiconducting, charge transport, hole or electron transport, hole or electron blocking, electrically conducting, photoconducting or light emitting properties.
The invention further relates to a mixture or polymer blend as described above and below, which comprises one or more polymers of the present invention and one or more n-type organic semiconductor compounds, preferably selected from fullerenes or substituted fullerenes.
The invention further relates to a formulation comprising one or more polymers, formulations, mixtures or polymer blends according to the present invention and optionally one or more solvents, preferably selected from organic solvents.
The invention further relates to the use of a polymer, formulation, mixture or polymer blend of the present invention as charge transport, semiconducting, electrically conducting, photoconducting or light emitting material, or in an optical, electrooptical, electronic, electroluminescent or photoluminescent device, or in a component of such a device or in an assembly comprising such a device or component.
The invention further relates to a charge transport, semiconducting, electrically conducting, photoconducting or light emitting material comprising a polymer, formulation, mixture or polymer blend according to the present invention.
The invention further relates to an optical, electrooptical, electronic, electroluminescent or photoluminescent device, or a component thereof, or an assembly comprising it, which comprises a polymer, formulation, mixture or polymer blend, or comprises a charge transport, semiconducting, electrically conducting, photoconducting or light emitting material, according to the present invention.
The optical, electrooptical, electronic, electroluminescent and photoluminescent devices include, without limitation, organic field effect transistors (OFET), organic thin film transistors (OTFT), organic light emitting diodes (OLED), organic light emitting transistors (OLET), organic photovoltaic devices (OPV), organic photodetectors (OPD), organic solar cells, laser diodes, Schottky diodes, photoconductors and photodetectors.
The components of the above devices include, without limitation, charge injection layers, charge transport layers, interlayers, planarizing layers, antistatic films, polymer electrolyte membranes (PEM), conducting substrates and conducting patterns.
The assemblies comprising such devices or components include, without limitation, integrated circuits (IC), radio frequency identification (RFID) tags or security markings or security devices containing them, flat panel displays or backlights thereof, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, biosensors and biochips.
In addition the compounds, polymers, formulations, mixtures or polymer blends of the present invention can be used as electrode materials in batteries and in components or devices for detecting and discriminating DNA sequences.
For the purpose of the present application the terms “annealed” and “fused” are used synonymously.
The term “ortho-fused” is used to indicate two fused rings that have only two atoms and one bond in common (see G. P. Moss, Pure & Appl. Chem. Vol. 70, No. 1, page 147). This is for example the case in naphthalene.
For naphthalene, ring carbon atoms are numbered as follows and bonds are labeled as follows (see G. P. Moss, Pure & Appl. Chem. Vol. 70, No. 1, page 210):
For the purpose of the present application an asterisk (“*”) denotes a linkage to an adjacent unit or group, and in case of a polymer it may denote a link to an adjacent repeating unit or to a terminal group of the polymer chain. The asterisk is further used to denote the ring atoms at which aromatic or heteroaromatic rings are fused to other aromatic or heteroaromatic rings.
The polymers of the present invention are easy to synthesize and exhibit advantageous properties. They show good processability for the device manufacture process, high solubility in organic solvents, and are especially suitable for large scale production using solution processing methods. At the same time, the co-polymers derived from monomers of the present invention and electron donor monomers show low bandgaps, high charge carrier mobilities, high external quantum efficiencies in bulk heterojunction (BHJ) solar cells, good morphology when used in p/n-type blends e.g. with fullerenes, high oxidative stability, and a long lifetime in electronic devices, and are promising materials for organic electronic OE devices, especially for OFETs with high charge carrier mobility and good on/off ratio, and for OPV devices with high power conversion efficiency.
The units of formula I are especially suitable as (electron) donor unit in both n-type and p-type semiconducting compounds, polymers or copolymers, in particular copolymers containing both donor and acceptor units, and for the preparation of blends of p-type and n-type semiconductors which are suitable for use in BHJ OPV devices.
The synthesis of the unit of formula I, its functional derivatives, compounds, homopolymers, and co-polymers can be achieved based on methods that are known to the skilled person and described in the literature, as will be further illustrated herein.
As used herein, the term “polymer” will be understood to mean a molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass (Pure Appl. Chem., 1996, 68, 2291). The term “oligomer” will be understood to mean a molecule of intermediate relative molecular mass, the structure of which essentially comprises a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass (Pure Appl. Chem., 1996, 68, 2291). In a preferred meaning as used herein present invention a polymer will be understood to mean a compound having >1, i.e. at least 2 repeat units, preferably ≧5 repeat units, and an oligomer will be understood to mean a compound with >1 and <10, preferably <5, repeat units.
Further, as used herein, the term “polymer” will be understood to mean a molecule that encompasses a backbone (also referred to as “main chain”) of one or more distinct types of repeat units (the smallest constitutional unit of the molecule) and is inclusive of the commonly known terms “oligomer”, “copolymer”, “homopolymer” and the like. Further, it will be understood that the term polymer is inclusive of, in addition to the polymer itself, residues from initiators, catalysts and other elements attendant to the synthesis of such a polymer, where such residues are understood as not being covalently incorporated thereto. Further, such residues and other elements, while normally removed during post polymerization purification processes, are typically mixed or co-mingled with the polymer such that they generally remain with the polymer when it is transferred between vessels or between solvents or dispersion media.
As used herein, the terms “repeat unit”, “repeating unit” and “monomeric unit” are used interchangeably and will be understood to mean the constitutional repeating unit (CRU), which is the smallest constitutional unit the repetition of which constitutes a regular macromolecule, a regular oligomer molecule, a regular block or a regular chain (Pure Appl. Chem., 1996, 68, 2291). As further used herein, the term “unit” will be understood to mean a structural unit which can be a repeating unit on its own, or can together with other units form a constitutional repeating unit.
As used herein, a “terminal group” will be understood to mean a group that terminates a polymer backbone. The expression “in terminal position in the backbone” will be understood to mean a divalent unit or repeat unit that is linked at one side to such a terminal group and at the other side to another repeat unit. Such terminal groups include endcap groups or reactive groups that are attached to a monomer forming the polymer backbone which did not participate in the polymerisation reaction, like for example a group having the meaning of R5 or R6 as defined below.
As used herein, the term “endcap group” will be understood to mean a group that is attached to, or replacing, a terminal group of the polymer backbone. The endcap group can be introduced into the polymer by an endcapping process. Endcapping can be carried out for example by reacting the terminal groups of the polymer backbone with a monofunctional compound (“endcapper”) like for example an alkyl- or arylhalide, an alkyl- or arylstannane or an alkyl- or arylboronate. The endcapper can be added for example after the polymerisation reaction. Alternatively the endcapper can be added in situ to the reaction mixture before or during the polymerisation reaction. In situ addition of an endcapper can also be used to terminate the polymerisation reaction and thus control the molecular weight of the forming polymer. Typical endcap groups are for example H, phenyl and lower alkyl.
As used herein, the term “small molecule” will be understood to mean a monomeric compound which typically does not contain a reactive group by which it can be reacted to form a polymer, and which is designated to be used in monomeric form. In contrast thereto, the term “monomer” unless stated otherwise will be understood to mean a monomeric compound that carries one or more reactive functional groups by which it can be reacted to form a polymer.
As used herein, the terms “donor” or “donating” and “acceptor” or “accepting” will be understood to mean an electron donor or electron acceptor, respectively. “Electron donor” will be understood to mean a chemical entity that donates electrons to another compound or another group of atoms of a compound. “Electron acceptor” will be understood to mean a chemical entity that accepts electrons transferred to it from another compound or another group of atoms of a compound. See also International Union of Pure and Applied Chemistry, Compendium of Chemical Technology, Gold Book, Version 2.3.2, 19. August 2012, pages 477 and 480.
As used herein, the term “n-type” or “n-type semiconductor” will be understood to mean an extrinsic semiconductor in which the conduction electron density is in excess of the mobile hole density, and the term “p-type” or “p-type semiconductor” will be understood to mean an extrinsic semiconductor in which mobile hole density is in excess of the conduction electron density (see also, J. Thewlis, Concise Dictionary of Physics, Pergamon Press, Oxford, 1973).
As used herein, the term “leaving group” will be understood to mean an atom or group (which may be charged or uncharged) that becomes detached from an atom in what is considered to be the residual or main part of the molecule taking part in a specified reaction (see also Pure Appl. Chem., 1994, 66, 1134).
As used herein, the term “conjugated” will be understood to mean a compound (for example a polymer) that contains mainly C atoms with sp2-hybridisation (or optionally also sp-hybridization), and wherein these C atoms may also be replaced by hetero atoms. In the simplest case this is for example a compound with alternating C—C single and double (or triple) bonds, but is also inclusive of compounds with aromatic units like for example 1,4-phenylene. The term “mainly” in this connection will be understood to mean that a compound with naturally (spontaneously) occurring defects, or with defects included by design, which may lead to interruption of the conjugation, is still regarded as a conjugated compound. See also International Union of Pure and Applied Chemistry, Compendium of Chemical Technology, Gold Book, Version 2.3.2, 19. August 2012, pages 322-323.
As used herein, unless stated otherwise the molecular weight is given as the number average molecular weight Mn or weight average molecular weight MU, which is determined by gel permeation chromatography (GPC) against polystyrene standards in eluent solvents such as tetrahydrofuran, trichloromethane (TCM, chloroform), chlorobenzene or 1,2,4-trichloro-benzene. Unless stated otherwise, 1,2,4-trichlorobenzene is used as solvent. The degree of polymerization, also referred to as total number of repeat units, n, will be understood to mean the number average degree of polymerization given as n=Mn/MU, wherein Mn is the number average molecular weight and MU is the molecular weight of the single repeat unit, see J. M. G. Cowie, Polymers: Chemistry & Physics of Modern Materials, Blackie, Glasgow, 1991.
As used herein, the term “carbyl group” will be understood to mean any monovalent or multivalent organic radical moiety which comprises at least one carbon atom either without any non-carbon atoms (like for example —C≡C—), or optionally combined with at least one non-carbon atom such as N, O, S, P, Si, Se, As, Te or Ge (for example carbonyl etc.).
The term “hydrocarbyl group” will be understood to mean a carbyl group that does additionally contain one or more H atoms and optionally contains one or more hetero atoms like for example N, O, S, P, Si, Se, As, Te or Ge.
As used herein, the term “hetero atom” will be understood to mean an atom in an organic compound that is not a H- or C-atom, and preferably will be understood to mean N, O, S, P, Si, Se, As, Te or Ge.
A carbyl or hydrocarbyl group comprising a chain of 3 or more C atoms may be straight-chain, branched and/or cyclic, including spiro and/or fused rings.
Preferred carbyl and hydrocarbyl groups include alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy, each of which is optionally substituted and has 1 to 40, preferably 1 to 25, very preferably 1 to 18 C atoms, furthermore optionally substituted aryl or aryloxy having 6 to 40, preferably 6 to 25 C atoms, furthermore alkylaryloxy, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy and aryloxycarbonyloxy, each of which is optionally substituted and has 6 to 40, preferably 7 to 40 C atoms, wherein all these groups do optionally contain one or more hetero atoms, preferably selected from N, O, S, P, Si, Se, As, Te and Ge.
The carbyl or hydrocarbyl group may be a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group. Unsaturated acyclic or cyclic groups are preferred, especially aryl, alkenyl and alkynyl groups (especially ethynyl). Where the C1-C40 carbyl or hydrocarbyl group is acyclic, the group may be straight-chain or branched. The C1-C40 carbyl or hydrocarbyl group includes for example: a C1-C40 alkyl group, a C1-C40 fluoroalkyl group, a C1-C40 alkoxy or oxaalkyl group, a C2-C40 alkenyl group, a C2-C40 alkynyl group, a C3-C40 allyl group, a C4-C40 alkyldienyl group, a C4-C40 polyenyl group, a C2-C40 ketone group, a C2-C40 ester group, a C6-C18 aryl group, a C6-C40 alkylaryl group, a C6-C40 arylalkyl group, a C4-C40 cycloalkyl group, a C4-C40 cycloalkenyl group, and the like. Preferred among the foregoing groups are a C1-C20 alkyl group, a C1-C20 fluoroalkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C3-C20 allyl group, a C4-C20 alkyldienyl group, a C2-C20 ketone group, a C2-C20 ester group, a C6-C12 aryl group, and a C4-C20 polyenyl group, respectively. Also included are combinations of groups having carbon atoms and groups having hetero atoms, like e.g. an alkynyl group, preferably ethynyl, that is substituted with a silyl group, preferably a trialkylsilyl group.
The terms “aryl” and “heteroaryl” as used herein preferably mean a mono-, bi- or tricyclic aromatic or heteroaromatic group with 4 to 30 ring C atoms that may also comprise condensed rings and is optionally substituted with one or more groups L, wherein L is selected from halogen, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(═O)NR0R00, —C(═O)X0, —C(═O)R0, —NH2, —NR0R00, —SH, —SR0, —SO3H, —SO2R0, —OH, —NO2, —CF3, —SF5, P-Sp-, optionally substituted silyl, or carbyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, and is preferably alkyl, alkoxy, thiaalkyl, alkylcarbonyl, alkoxycarbonyl or alkoxycarbonyloxy with 1 to 20 C atoms that is optionally fluorinated, and R0, R00, X0, P and Sp have the meanings given above and below.
Very preferred substituents L are selected from halogen, most preferably F, or alkyl, alkoxy, oxaalkyl, thioalkyl, fluoroalkyl and fluoroalkoxy with 1 to 12 C atoms or alkenyl, alkynyl with 2 to 12 C atoms.
Especially preferred aryl and heteroaryl groups are phenyl in which, in addition, one or more CH groups may be replaced by N, naphthalene, thiophene, selenophene, thienothiophene, dithienothiophene, fluorene and oxazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above. Very preferred rings are selected from pyrrole, preferably N-pyrrole, furan, pyridine, preferably 2- or 3-pyridine, pyrimidine, pyridazine, pyrazine, triazole, tetrazole, pyrazole, imidazole, isothiazole, thiazole, thiadiazole, isoxazole, oxazole, oxadiazole, thiophene, preferably 2-thiophene, selenophene, preferably 2-selenophene, thieno[3,2-b]thiophene, thieno[2,3-b]thiophene, furo[3,2-b]furan, furo[2,3-b]furan, seleno[3,2-b]selenophene, seleno[2,3-b]selenophene, thieno[3,2-b]selenophene, thieno[3,2-b]furan, indole, isoindole, benzo[b]furan, benzo[b]thiophene, benzo[1,2-b;4,5-b′]dithiophene, benzo[2,1-b;3,4-b′]dithiophene, quinole, 2-methylquinole, isoquinole, quinoxaline, quinazoline, benzotriazole, benzimidazole, benzothiazole, benzisothiazole, benzisoxazole, benzoxadiazole, benzoxazole, benzothiadiazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above. Further examples of aryl and heteroaryl groups are those selected from the groups shown hereinafter.
An alkyl or alkoxy radical, i.e. where the terminal CH2 group is replaced by —O—, can be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6, 7 or 8 carbon atoms and accordingly is preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, or octoxy, furthermore methyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy, for example.
An alkenyl group, wherein one or more CH2 groups are replaced by —CH═CH— can be straight-chain or branched. It is preferably straight-chain, has 2 to 10 C atoms and accordingly is preferably vinyl, prop-1-, or prop-2-enyl, but-1-, 2- or but-3-enyl, pent-1-, 2-, 3- or pent-4-enyl, hex-1-, 2-, 3-, 4- or hex-5-enyl, hept-1-, 2-, 3-, 4-, 5- or hept-6-enyl, oct-1-, 2-, 3-, 4-, 5-, 6- or oct-7-enyl, non-1-, 2-, 3-, 4-, 5-, 6-, 7- or non-8-enyl, dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or dec-9-enyl.
Especially preferred alkenyl groups are C2-C2-1E-alkenyl, C4-C2-3E-alkenyl, C5-C2-4-alkenyl, C6-C7-5-alkenyl and C7-6-alkenyl, in particular C2-C2-1E-alkenyl, C4-C7-3E-alkenyl and C5-C2-4-alkenyl. Examples for particularly preferred alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 C atoms are generally preferred.
An oxaalkyl group, i.e. where one CH2 group is replaced by —O—, is preferably straight-chain 2-oxapropyl (=methoxymethyl), 2-(=ethoxymethyl) or 3-oxabutyl (=2-methoxyethyl), 2-, 3-, or 4-oxapentyl, 2-, 3-, 4-, or 5-oxahexyl, 2-, 3-, 4-, 5-, or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl, for example. Oxaalkyl, i.e. where one CH2 group is replaced by —O—, is preferably straight-chain 2-oxapropyl (=methoxymethyl), 2-(=ethoxymethyl) or 3-oxabutyl (=2-methoxyethyl), 2-, 3-, or 4-oxapentyl, 2-, 3-, 4-, or 5-oxahexyl, 2-, 3-, 4-, 5-, or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl, for example.
In an alkyl group wherein one CH2 group is replaced by —O— and one by —C(O)—, these radicals are preferably neighboured. Accordingly these radicals together form a carbonyloxy group —C(O)—O— or an oxycarbonyl group —O—C(O)—. Preferably this group is straight-chain and has 2 to 6 C atoms. It is accordingly preferably acetyloxy, propionyloxy, butyryloxy, pentanoyloxy, hexanoyloxy, acetyloxymethyl, propionyloxymethyl, butyryloxymethyl, pentanoyloxymethyl, 2-acetyloxyethyl, 2-propionyloxyethyl, 2-butyryloxyethyl, 3-acetyloxypropyl, 3-propionyloxypropyl, 4-acetyloxybutyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, methoxycarbonylmethyl, ethoxy-carbonylmethyl, propoxycarbonylmethyl, butoxycarbonylmethyl, 2-(methoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(propoxycarbonyl)ethyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl, 4-(methoxycarbonyl)-butyl.
An alkyl group wherein two or more CH2 groups are replaced by —O— and/or —C(O)O— can be straight-chain or branched. It is preferably straight-chain and has 3 to 12 C atoms. Accordingly it is preferably bis-carboxy-methyl, 2,2-bis-carboxy-ethyl, 3,3-bis-carboxy-propyl, 4,4-bis-carboxy-butyl, 5,5-bis-carboxy-pentyl, 6,6-bis-carboxy-hexyl, 7,7-bis-carboxy-heptyl, 8,8-bis-carboxy-octyl, 9,9-bis-carboxy-nonyl, 10,10-bis-carboxy-decyl, bis-(methoxycarbonyl)-methyl, 2,2-bis-(methoxycarbonyl)-ethyl, 3,3-bis-(methoxycarbonyl)-propyl, 4,4-bis-(methoxycarbonyl)-butyl, 5,5-bis-(methoxycarbonyl)-pentyl, 6,6-bis-(methoxycarbonyl)-hexyl, 7,7-bis-(methoxycarbonyl)-heptyl, 8,8-bis-(methoxycarbonyl)-octyl, bis-(ethoxycarbonyl)-methyl, 2,2-bis-(ethoxycarbonyl)-ethyl, 3,3-bis-(ethoxycarbonyl)-propyl, 4,4-bis-(ethoxycarbonyl)-butyl, 5,5-bis-(ethoxycarbonyl)-hexyl.
A thioalkyl group, i.e where one CH2 group is replaced by —S—, is preferably straight-chain thiomethyl (—SCH3), 1-thioethyl (—SCH2CH3), 1-thiopropyl (=—SCH2CH2CH3), 1-(thiobutyl), 1-(thiopentyl), 1-(thiohexyl), 1-(thioheptyl), 1-(thiooctyl), 1-(thiononyl), 1-(thiodecyl), 1-(thioundecyl) or 1-(thiododecyl), wherein preferably the CH2 group adjacent to the sp2 hybridised vinyl carbon atom is replaced.
A fluoroalkyl group is preferably perfluoroalkyl CiF2i+1, wherein i is an integer from 1 to 15, in particular CF3, C2F5, C3F7, C4F9, C5F11, C6F13, C7F15 or C8F12, very preferably C6F13, or partially fluorinated alkyl, in particular 1,1-difluoroalkyl, all of which are straight-chain or branched.
Alkyl, alkoxy, alkenyl, oxaalkyl, thioalkyl, carbonyl and carbonyloxy groups can be achiral or chiral groups. Particularly preferred chiral groups are 2-butyl (=1-methylpropyl), 2-methylbutyl, 2-methylpentyl, 3-methylpentyl, 2-ethylhexyl, 2-propylpentyl, in particular 2-methylbutyl, 2-methylbutoxy, 2-methylpentoxy, 3-methylpentoxy, 2-ethyl-hexoxy, 1-methylhexoxy, 2-octyloxy, 2-oxa-3-methylbutyl, 3-oxa-4-methyl-pentyl, 4-methylhexyl, 2-hexyl, 2-octyl, 2-nonyl, 2-decyl, 2-dodecyl, 6-meth-oxyoctoxy, 6-methyloctoxy, 6-methyloctanoyloxy, 5-methylheptyloxy-carbonyl, 2-methylbutyryloxy, 3-methylvaleroyloxy, 4-methylhexanoyloxy, 2-chloropropionyloxy, 2-chloro-3-methylbutyryloxy, 2-chloro-4-methyl-valeryl-oxy, 2-chloro-3-methylvaleryloxy, 2-methyl-3-oxapentyl, 2-methyl-3-oxa-hexyl, 1-methoxypropyl-2-oxy, 1-ethoxypropyl-2-oxy, 1-propoxypropyl-2-oxy, 1-butoxypropyl-2-oxy, 2-fluorooctyloxy, 2-fluorodecyloxy, 1,1,1-trifluoro-2-octyloxy, 1,1,1-trifluoro-2-octyl, 2-fluoromethyloctyloxy for example. Very preferred are 2-hexyl, 2-octyl, 2-octyloxy, 1,1,1-trifluoro-2-hexyl, 1,1,1-trifluoro-2-octyl and 1,1,1-trifluoro-2-octyloxy.
Preferred achiral branched groups are isopropyl, isobutyl (=methylpropyl), isopentyl (=3-methylbutyl), tert. butyl, isopropoxy, 2-methyl-propoxy and 3-methylbutoxy.
In a preferred embodiment, the hydrocarbyl groups are independently of each other selected from primary, secondary or tertiary alkyl or alkoxy with 1 to 30 C atoms, wherein one or more H atoms are optionally replaced by F, or aryl, aryloxy, heteroaryl or heteroaryloxy that is optionally alkylated or alkoxylated and has 4 to 30 ring atoms. Very preferred groups of this type are selected from the group consisting of the following formulae
wherein “ALK” denotes optionally fluorinated, preferably linear, alkyl or alkoxy with 1 to 20, preferably 1 to 12 C-atoms, in case of tertiary groups very preferably 1 to 9 C atoms, and the dashed line denotes the link to the ring to which these groups are attached. Especially preferred among these groups are those wherein all ALK subgroups are identical.
—CY1═CY2— is preferably —CH═CH—, —CF═CF— or —CH═C(CN)—.
As used herein, “halogen” includes F, Cl, Br or I, preferably F, Cl or Br.
As used herein, —CO—, —C(═O)— and —C(O)— will be understood to mean a carbonyl group, i.e. a group having the structure
The polymer of the present application comprises at least one divalent unit of formula (I)
wherein B is naphthalene, rings C and C′ are as defined herein, and ring systems A and A′ are as defined herein. A, A′ and B may be unsubstituted, or substituted with an unsubstituted hydrocarbyl group with 1 to 40 carbon atoms, or substituted with a substituted hydrocarbyl group with 1 to 40 carbon atoms.
Together, A, A′, B, C and C′ form a fused naphthalene ring system. It is noted that for the purpose of the present application the term “fused naphthalene ring system” is used to indicate such a ring system. Preferably said fused naphthalene ring system comprises at least six rings, with the naphthalene counting for two.
The naphthalene may be unsubstituted or substituted. If substituted the naphthalene may have up to four hydrogen atoms substituted by R1 as defined below.
Ring C or ring C′ or both, C and C′, are ortho-fused to the naphthalene.
Preferably, the naphthalene has rings C and C′ fused either to bonds a and f or to bonds b and g as indicated in the following formulae
with “*” indicating the ring atoms at which ring systems C and C′ are fused to the naphthalene.
Rings C and C′ are independently of each other five-membered rings annealed to B. Rings C and C′ may either be the same or be different. Preferably, C or C′ or both are five-membered rings of formula (I-B)
wherein X is selected from the group consisting of CR1R2, C═CR1R2, GeR1R2, SiR1R2, C═O and NR1, with R1 and R2 as defined herein.
R1 and R2 are—if both are present, independently of each other—selected from the group consisting of hydrogen, unsubstituted hydrocarbyl with 1 to 40 carbon atoms and substituted hydrocarbyl with 1 to 40 carbon atoms. Preferably, R1 and R2 are—if both are present, independently of each other—selected from the group consisting of hydrogen, alkyl with 1 to 12 carbon atoms, SiR3R4R5 with R3, R4 and R5 being independently of each other alkyl with 1 to 12 carbon atoms.
The five-membered rings of formula (I-B) can be fused to the naphthalene by either one of the two carbon-carbon double bonds, thus resulting in different isomers. Expressed differently, the naphthalene is fused to the five-membered ring of formula (I-B) in the 1- and 2-positions or in the 4- and 5-positions of the five-membered ring.
Ring systems A and A′ are independently of each other selected from mono- or polycyclic aromatic or heteroaromatic ring systems provided that A and A′ are not simultaneously benzene. A is a mono- or polycyclic aromatic or heteroaromatic ring system annealed to C. A′ is a mono- or polycyclic aromatic or heteroaromatic ring systems annealed to C′.
Preferably A and A′ are independently of each other selected from mono-, di- or tricyclic aromatic or heteroaromatic ring systems.
More preferably, A and A′ are independently of each other selected from one of the following formulae (I-C-1) to (I-C-19)
wherein V is CH or N, and W is independently selected from the group consisting of S, O and Se.
Preferably, the polymer of the present application comprises a divalent unit of formula (I-D)
wherein A, A′ and B are as defined herein and may be substituted or unsubstituted, and X and Y are independently of each other selected from the group consisting of CR1R2, C═CR1R2, GeR1R2, SiR1R2, C═O and NR1, with R1 and R2 as defined above.
More preferably, the polymer of the present application comprises a divalent unit of one of formulae (I-E-1), (I-E-2) and (I-E-3)
wherein
Even more preferably, the polymer of the present application comprises a divalent unit of one of formulae (I-F-1) to (I-F-14)
wherein X and Y are independently selected from the group consisting of CR1R2, C═CR1R2, GeR1R2, SiR1R2, C═O and NR1, with R1 and R2 as defined above.
Most preferably, the polymer of the present application comprises a divalent unit of formula (I-G-1) or of formula (I-G-2)
wherein X and Y are independently selected from the group consisting of CR1R2, C═CR1R2, GeR1R2, SiR1R2, C═O and NR1, with R1 and R2 as defined above.
Preferred polymers according to the present invention comprise one or more repeating units of formula IIa or IIb:
—[(Ar1)a—(U)b—(Ar2)c—(Ar3)d] IIa
—[(U)b—(Ar1)a—(U)b—(Ar2)c—(Ar3)d] IIb
wherein
U is a unit of formula I or its subformulae as described above, preferably a unit of formula I-D, more preferably one of formulae I-E-1 to I-E-3, even more preferably one of formulae I-F-1 to I-F-14, and most preferably of formula I-G-1 or of formula I-G-2,
Ar1, Ar2, Ar3 are, on each occurrence identically or differently, and independently of each other, aryl or heteroaryl that is different from U, preferably has 5 to 30 ring atoms, and is optionally substituted, preferably by one or more groups Rs,
Rs is on each occurrence identically or differently F, Br, Cl, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(O)NR0R00, —C(O)X0, —C(O)R0, —C(O)OR0, —NH2, —NR0R00, —SH, —SR0, —SO3H, —SO2R0, —OH, —NO2, —CF3, —SF5, optionally substituted silyl, carbyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms,
R0 and R00 are independently of each other H or optionally substituted C1-40 carbyl or hydrocarbyl, and preferably denote H or alkyl with 1 to 12 C-atoms,
X0 is halogen, preferably F, Cl or Br,
a, b, c are on each occurrence identically or differently 0, 1 or 2,
d is on each occurrence identically or differently 0 or an integer from 1 to 10,
wherein the polymer comprises at least one repeating unit of formula IIa or IIb wherein b is at least 1.
Further preferred polymers according to the present invention comprise, in addition to the units of formula I, IIa or IIb, one or more repeating units selected from monocyclic or polycyclic aryl or heteroaryl groups that are optionally substituted.
These additional repeating units are preferably selected of formula IIIa and IIIb
—[(Ar1)a-(Ac)b-(Ar2)c-(Ar3)d] IIIa
-[(Ac)b-(Ar1)a-(Ac)b-(Ar2)c—(Ar3)d]— IIIb
wherein Ar1, Ar2, Ar3, a, b, c and d are as defined in formula IIa, and Ac is an aryl or heteroaryl group that is different from U and Ar1-3, preferably has 5 to 30 ring atoms, is optionally substituted by one or more groups Rs as defined above and below, and is preferably selected from aryl or heteroaryl groups having electron acceptor properties, wherein the polymer comprises at least one repeating unit of formula IIIa or IIIb wherein b is at least 1.
Rs preferably denotes, on each occurrence identically or differently, H, straight-chain, branched or cyclic alkyl with 1 to 30 C atoms, in which one or more CH2 groups are optionally replaced by —O—, —S—, —C(O)—, —C(S)—, —C(O)—O—, —O—C(O)—, —NR0—, —SiR0R00—, —CF2—, —CR0═CR00—, —CY1═CY2— or —C≡C— in such a manner that O and/or S atoms are not linked directly to one another, and in which one or more H atoms are optionally replaced by F, Cl, Br, I or CN, or denotes aryl, heteroaryl, aryloxy or heteroaryloxy with 4 to 20 ring atoms which is optionally substituted, preferably by halogen or by one or more of the aforementioned alkyl or cyclic alkyl groups.
The conjugated polymers according to the present invention are preferably selected of formula IV:
wherein
A0, B0, C0 independently of each other denote a distinct unit of formula I, IIa, IIb, IIIa, IIIb, or their subformulae,
x is >0 and ≦1,
y is ≧0 and <1,
z is ≧0 and <1,
x+y+z is 1, and
n is an integer >1.
Preferred polymers of formula IV are selected of the following formulae
*—[(Ar1—U—Ar2)x—(Ar3)y]n—* IVa
*—[(Ar1—U—Ar2)x—(Ar3—Ar3)y]n—* IVb
*—[(Ar1—U—Ar2)x—(Ar3—Ar3—Ar3)y]n—* IVc
*—[(Ar1)a—(U)b—(Ar2)c—(Ar3)d]n—* IVd
*—([(Ar1)a—(U)b—(Ar2)c—(Ar3)d]x—[(Ar1)a-(Ac)b-(Ar2)c—(Ar3)d]y)n—* IVe
*—[(U—Ar1—U)x—(Ar2—Ar3)y]n—* IVf
*—[(U)b—(Ar1)a—(U)b—(Ar2)c]n—* IVh
*—([(U)b—(Ar1)a—(U)b—(Ar2)c]x-[(Ac)b-(Ar1)a-(Ac)b-(Ar2)d]y)n—* IVi
*—[(U—Ar1)x—(U—Ar2)y—(U—Ar3)z]n—* IVk
wherein U, Ar1, Ar2, Ar3, a, b, c and d have in each occurrence identically or differently one of the meanings given in formula IIa, Ac has on each occurrence identically or differently one of the meanings given in formula IIIa, and x, y, z and n are as defined in formula IV, wherein these polymers can be alternating or random copolymers, and wherein in formula IVd and IVe in at least one of the repeating units [(Ar1)a—(U)b—(Ar2)c—(Ar3)d] and in at least one of the repeating units [(Ar1)a-(Ac)b-(Ar2)c—(Ar3)d] b is at least 1 and wherein in formula IVh and IVi in at least one of the repeating units [(U)b—(Ar1)a—(U)b—(Ar2)d] and in at least one of the repeating units [(U)b—(Ar1)a—(U)b—(Ar2)d] b is at least 1.
In the polymers according to the present invention, the total number n of repeating units is preferably from 2 to 10,000. The total number n of repeating units is preferably ≧5, very preferably ≧10, most preferably ≧50, and preferably ≦500, very preferably ≦1,000, most preferably ≦2,000, including any combination of the aforementioned lower and upper limits of n.
The polymers of the present invention include homopolymers and copolymers, like statistical or random copolymers, alternating copolymers and block copolymers, as well as combinations thereof.
Especially preferred are polymers selected from the following groups:
Preferred polymers of formula IV and IVa to IVk are selected of formula V
R5-chain-R6 V
wherein “chain” denotes a polymer chain of formulae IV or IVa to IVk, and R5 and R6 have independently of each other one of the meanings of R5 as defined above, or denote, independently of each other, H, F, Br, Cl, I, —CH2Cl, —CHO, —CR′═CR″2, —SiR′R″R′″, —SiR′X′X″, —SiR′R″X′, —SnR′R″R′″, —BR′R″, —B(OR′)(OR″), —B(OH)2, —O—SO2—R′, —C≡CH, —C≡C—SiR′3, —ZnX′ or an endcap group, X′ and X″ denote halogen, R′, R″ and R′″ have independently of each other one of the meanings of R0 given in formula I, and two of R′, R″ and R′″ may also form a ring together with the hetero atom to which they are attached.
Preferred endcap groups R5 and R6 are H, C1-20 alkyl, or optionally substituted C6-12 aryl or C2-10 heteroaryl, very preferably H or phenyl.
In the polymers represented by formula IV, IVa to IVk and V, x, y and z denote the mole fraction of units A0, B0 and C0, respectively, and n denotes the degree of polymerisation or total number of units A0, B0 and C0. These formulae includes block copolymers, random or statistical copolymers and alternating copolymers of A0, B0 and C0, as well as homopolymers of A0 for the case when x>0 and y=z=0.
The invention further relates to monomers of formula VIa and VIb
R7—(Ar1)a—U—(Ar2)c—R8 VIa
R7—U—(Ar1)a—U—R8 VIb
wherein U, Ar1, Ar2, a and b have the meanings of formula IIa, or one of the preferred meanings as described above and below, and R7 and R8 are, preferably independently of each other, selected from the group consisting of Cl, Br, I, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe2F, —SiMeF2, —O—SO2Z1, —B(OZ2)2, —CZ3═C(Z3)2, —C≡CH, —C≡CSi(Z1)3, —ZnX0 and —Sn(Z4)3, wherein X0 is halogen, preferably Cl, Br or I, and Z1-4 are selected from the group consisting of alkyl and aryl, each being optionally substituted, and two groups Z2 may also together form a cyclic group.
Especially preferred are monomers of the following formulae
R2—Ar1—U—Ar2—R8 VI1
R2—U—R8 VI2
R2—Ar1—U—R8 VI3
R2—U—Ar2—R8 VI4
R2—U—Ar1—U—R8 VI5
wherein U, Ar1, Ar2, R7 and R8 are as defined in formulae VIa and VIb.
Especially preferred are repeating units, monomers and polymers of formulae I, IIa, IIb, IIIa, IIIb, IV, IVa-IVk, V, VIa, VIb and their subformulae wherein one or more of Ar1, Ar2 and Ar3 denote aryl or heteroaryl, preferably having electron donor properties, selected from the group consisting of the following formulae
wherein one of X11 and X12 is S and the other is Se, and R11, R12, R13, R14, R15, R16, R17 and R18 being independently of each other selected from the group consisting of hydrogen, F, Br, Cl, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(O)NR1R2, —C(O)X0, —C(O)R1, —NH2, —NR1R2, —SH, —SR1, —SO3H, —SO2R1, —OH, —NO2, —CF3, —SF5, optionally substituted silyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, or P-Sp- as defined herein.
Preferred examples of aryl and heteroaryl with electron acceptor properties are selected from the group consisting of the following formulae
wherein one of X11 and X12 is S and the other is Se, and R11, R12, R13, R14 and R15 being independently of each other selected from the group consisting of hydrogen, F, Br, Cl, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(O)NR1R2, —C(O)X0, —C(O)R1, —NH2, —NR1R2, —SH, —SR1, —SO3H, —SO2R1, —OH, —NO2, —CF3, —SF5, optionally substituted silyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, or P-Sp- as defined herein.
Further preferred homo- and copolymers are selected from the following formulae:
—(U)x— IVk
(U)x—(Ar1)y IVm
—(U—Ar1)n— IVn
wherein U and Ar1 are as defined in formula II, and n, x and y are as defined in formula IV.
Further preferred are polymers of formula IVk, IVm and IVn wherein U is as defined above, and Ar1 is selected from the group consisting formulae H1 to H5
wherein R11, R12, R13 and R14 are independently of each other selected from the group consisting of hydrogen, F, Br, Cl, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(O)NR1R2, —C(O)X0, —C(O)R1, —NH2, —NR1R2, —SH, —SR1, —SO3H, —SO2R1, —OH, —NO2, —CF3, —SF5, optionally substituted silyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, or P-Sp- as defined herein.
Further preferred are repeating units, monomers and polymers of formulae I-VII and their subformulae characterized by one or more of the following preferred or alternative aspects provided that such aspects are not mutually exclusive:
The compounds of the present invention can be synthesized according to or in analogy to methods that are known to the skilled person and are described in the literature. Other methods of preparation can be taken from the examples. For example, the polymers can be suitably prepared by aryl-aryl coupling reactions, such as Yamamoto coupling, Suzuki coupling, Stille coupling, Sonogashira coupling, Heck coupling or Buchwald coupling. Suzuki coupling, Stille coupling and Yamamoto coupling are especially preferred. The monomers which are polymerised to form the repeat units of the polymers can be prepared according to methods which are known to the person skilled in the art.
Thus, the process for preparing the present polymers comprises the step of coupling monomers, therein comprised a monomer comprising the divalent unit of formula I, said monomers comprising at least one functional monovalent group selected from the group consisting of Cl, Br, I, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe2F, —SiMeF2, —O—SO2Z1, —B(OZ2)2, —CZ3═C(Z3)2, —C≡CH, —C≡CSi(Z1)3, —ZnX0 and —Sn(Z4)3, wherein X0 is halogen, and Z0, Z1, Z2, Z3 and Z4 are independently of each other selected from the group consisting of alkyl and aryl, each being optionally substituted, and two groups Z2 may also together form a cyclic group.
Preferably the polymers are prepared from monomers of formula VIa or VIb or their preferred subformulae as described above and below.
Another aspect of the invention is a process for preparing a polymer by coupling one or more identical or different monomeric units of formula I or monomers of formula VIa or VIb with each other and/or with one or more co-monomers in a polymerisation reaction, preferably in an aryl-aryl coupling reaction.
Suitable and preferred comonomers are selected from the following formulae
R7—(Ar1)a-Ac-(Ar2)c—R8 VIII
R7—Ar1—R8 IX
R7—Ara—R8 X
wherein Ar1, Ar2, Ar3, a and c have one of the meanings of formula IIa or one of the preferred meanings given above and below, Ac has one of the meanings of formula IIIa or one of the preferred meanings given above and below, and R7 and R8 have one of meanings of formula VI or one of the preferred meanings given above and below.
Very preferred is a process for preparing a polymer by coupling one or more monomers selected from formula VIa or VIb with one or more monomers of formula VIII, and optionally with one or more monomers selected from formula IX and X, in an aryl-aryl coupling reaction, wherein preferably R7 and R8 are selected from Cl, Br, I, —B(OZ2)2 and —Sn(Z4)3.
For example, preferred embodiments of the present invention relate to
a) a process of preparing a polymer by coupling a monomer of formula VI1
R7—Ar1—U—Ar2—R8 VI1
R7—Ar1—R8 IX
R7—U—R8 VI2
R7—Ar1-Ac-Ar2—R8 VIII1
R7—U—R8 VI2
R7-Ac-R8 VIII2
R7—U—R8 VI2
R7-A-R8 VIII2
R7—Ar1—R8 IX
R7—U—Ar1—U—R8 VI5
R7—Ar1—R8 IX
R7—U—R8 VI2
R7—Ar1—R8 IX
R7—Ar3—R8 X
Preferred aryl-aryl coupling and polymerisation methods used in the processes described above and below are Yamamoto coupling, Kumada coupling, Negishi coupling, Suzuki coupling, Stille coupling, Sonogashira coupling, Heck coupling, C—H activation coupling, Ullmann coupling or Buchwald coupling. Especially preferred are Suzuki coupling, Negishi coupling, Stille coupling and Yamamoto coupling. Suzuki coupling is described for example in WO 00/53656 A1. Negishi coupling is described for example in J. Chem. Soc., Chem. Commun., 1977, 683-684. Yamamoto coupling is described for example in T. Yamamoto et al., Prog. Polym. Sci., 1993, 17, 1153-1205, or WO 2004/022626 A1, and Stille coupling is described for example in Z. Bao et al., J. Am. Chem. Soc., 1995, 117, 12426-12435. For example, when using Yamamoto coupling, monomers having two reactive halide groups are preferably used. When using Suzuki coupling, compounds of formula II having two reactive boronic acid or boronic acid ester groups or two reactive halide groups are preferably used. When using Stille coupling, monomers having two reactive stannane groups or two reactive halide groups are preferably used. When using Negishi coupling, monomers having two reactive organozinc groups or two reactive halide groups are preferably used.
Preferred catalysts, especially for Suzuki, Negishi or Stille coupling, are selected from Pd(0) complexes or Pd(II) salts. Preferred Pd(0) complexes are those bearing at least one phosphine ligand such as Pd(Ph3P)4. Another preferred phosphine ligand is tris(ortho-tolyl)phosphine, i.e. Pd(o-Tol3P)4. Preferred Pd(II) salts include palladium acetate, i.e. Pd(OAc)2. Alternatively the Pd(0) complex can be prepared by mixing a Pd(0)dibenzylideneacetone complex, for example tris(dibenzyl-ideneacetone)dipalladium(0), bis(dibenzylideneacetone)-palladium(0), or Pd(II) salts e.g. palladium acetate, with a phosphine ligand, for example triphenylphosphine, tris(ortho-tolyl)phosphine or tri(tert-butyl)phosphine. Suzuki polymerisation is performed in the presence of a base, for example sodium carbonate, potassium carbonate, lithium hydroxide, potassium phosphate or an organic base such as tetraethylammonium carbonate or tetraethylammonium hydroxide. Yamamoto polymerisation employs a Ni(0) complex, for example bis(1,5-cyclooctadienyl) nickel(0).
Suzuki and Stille polymerisation may be used to prepare homopolymers as well as statistical, alternating and block random copolymers. Statistical or block copolymers can be prepared for example from the above monomers of formula VI or its subformulae, wherein one of the reactive groups is halogen and the other reactive group is a boronic acid, boronic acid derivative group or and alkylstannane. The synthesis of statistical, alternating and block copolymers is described in detail for example in WO 03/048225 A2 or WO 2005/014688 A2.
As alternatives to halogens as described above, leaving groups of formula —O—SO2Z1 can be used wherein Z1 is as described above. Particular examples of such leaving groups are tosylate, mesylate and triflate.
Especially suitable and preferred synthesis methods of the repeating units, monomers and polymers of formulae I-VII and their subformulae are illustrated in the synthesis schemes shown hereinafter, wherein A is as defined above for A and A′, B is as defined above, n is as defined above, and Ar and Ar′ have one of the meanings of Ar1, Ar2, Ar3 and Ac as given above.
Exemplary syntheses schemes for the preparation of the unfunctionalised monomers are shown in Schemes 1, 2 and 3. Subsequent functionalisation is shown in Scheme 4 and the synthesis of homopolymers, copolymers and random copolymers is shown in Schemes 5, 6 and 7.
The novel methods of preparing monomers and polymers as described herein are another aspect of the invention.
The compounds and polymers according to the present invention can also be used in mixtures or polymer blends, for example together with monomeric compounds or together with other polymers having charge-transport, semiconducting, electrically conducting, photoconducting and/or light emitting semiconducting properties, or for example with polymers having hole blocking or electron blocking properties for use as interlayers or charge blocking layers in OLED devices. Thus, another aspect of the invention relates to a polymer blend comprising one or more polymers according to the present invention and one or more further polymers having one or more of the above-mentioned properties. These blends can be prepared by conventional methods that are described in prior art and known to the skilled person. Typically the polymers are mixed with each other or dissolved in suitable solvents and the solutions combined.
Another aspect of the invention relates to a formulation comprising one or more small molecules, polymers, mixtures or polymer blends as described above and below and one or more organic solvents.
Preferred solvents are aliphatic hydrocarbons, chlorinated hydrocarbons, aromatic hydrocarbons, ketones, ethers and mixtures thereof. Additional solvents which can be used include 1,2,4-trimethylbenzene, 1,2,3,4-tetra-methyl benzene, pentylbenzene, mesitylene, cumene, cymene, cyclohexylbenzene, diethylbenzene, tetralin, decalin, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzotrifluoride, N,N-dimethylformamide, 2-chloro-6-fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoro-methylanisole, 2-methylanisole, phenetol, 4-methylanisole, 3-methylanisole, 4-fluoro-3-methylanisole, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, 3-fluorobenzo-nitrile, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethyl-anisole, N,N-dimethylaniline, ethyl benzoate, 1-fluoro-3,5-dimethoxy-benzene, 1-methylnaphthalene, N-methylpyrrolidinone, 3-fluorobenzo-trifluoride, benzotrifluoride, dioxane, trifluoromethoxy-benzene, 4-fluorobenzotrifluoride, 3-fluoropyridine, toluene, 2-fluoro-toluene, 2-fluorobenzotrifluoride, 3-fluorotoluene, 4-isopropylbiphenyl, phenyl ether, pyridine, 4-fluorotoluene, 2,5-difluorotoluene, 1-chloro-2,4-difluorobenzene, 2-fluoropyridine, 3-chlorofluoro-benzene, 1-chloro-2,5-difluorobenzene, 4-chlorofluorobenzene, chloro-benzene, o-dichlorobenzene, 2-chlorofluorobenzene, p-xylene, m-xylene, o-xylene or mixture of o-, m-, and p-isomers. Solvents with relatively low polarity are generally preferred. For inkjet printing solvents and solvent mixtures with high boiling temperatures are preferred. For spin coating alkylated benzenes like xylene and toluene are preferred.
Examples of especially preferred solvents include, without limitation, dichloromethane, trichloromethane, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methylethylketone, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, N,N-dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetraline, decaline, indane, methyl benzoate, ethyl benzoate, mesitylene and/or mixtures thereof.
The concentration of the compounds or polymers in the solution is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight. Optionally, the solution also comprises one or more binders to adjust the rheological properties, as described for example in WO 2005/055248 A1.
After the appropriate mixing and ageing, solutions are evaluated as one of the following categories: complete solution, borderline solution or insoluble. The contour line is drawn to outline the solubility parameter-hydrogen bonding limits dividing solubility and insolubility. ‘Complete’ solvents falling within the solubility area can be chosen from literature values such as published in J. D. Crowley et al., Journal of Paint Technology, 1966, 38 (496), 296. Solvent blends may also be used and can be identified as described in Solvents, W.H. Ellis, Federation of Societies for Coatings Technology, p. 9-10, 1986. Such a procedure may lead to a blend of ‘non’ solvents that will dissolve both the polymers of the present invention, although it is desirable to have at least one true solvent in a blend.
The compounds and polymers according to the present invention can also be used in patterned OSC layers in the devices as described above and below. For applications in modern microelectronics it is generally desirable to generate small structures or patterns to reduce cost (more devices/unit area), and power consumption. Patterning of thin layers comprising a polymer according to the present invention can be carried out for example by photolithography, electron beam lithography or laser patterning.
For use as thin layers in electronic or electrooptical devices the compounds, polymers, polymer blends or formulations of the present invention may be deposited by any suitable method. Liquid coating of devices is more desirable than vacuum deposition techniques. Solution deposition methods are especially preferred. The formulations of the present invention enable the use of a number of liquid coating techniques. Preferred deposition techniques include, without limitation, dip coating, spin coating, ink jet printing, nozzle printing, letter-press printing, screen printing, gravure printing, doctor blade coating, roller printing, reverse-roller printing, offset lithography printing, dry offset lithography printing, flexographic printing, web printing, spray coating, curtain coating, brush coating, slot dye coating or pad printing.
Ink jet printing is particularly preferred when high resolution layers and devices need to be prepared. Selected formulations of the present invention may be applied to prefabricated device substrates by ink jet printing or microdispensing. Preferably industrial piezoelectric print heads such as but not limited to those supplied by Aprion, Hitachi-Koki, InkJet Technology, On Target Technology, Picojet, Spectra, Trident, Xaar may be used to apply the organic semiconductor layer to a substrate. Additionally semi-industrial heads such as those manufactured by Brother, Epson, Konica, Seiko Instruments Toshiba TEC or single nozzle microdispensers such as those produced by Microdrop and Microfab may be used.
In order to be applied by ink jet printing or microdispensing, the compounds or polymers should be first dissolved in a suitable solvent. Solvents must fulfil the requirements stated above and must not have any detrimental effect on the chosen print head. Additionally, solvents should have boiling points >100° C., preferably >140° C. and more preferably >150° C. in order to prevent operability problems caused by the solution drying out inside the print head. Apart from the solvents mentioned above, suitable solvents include substituted and non-substituted xylene derivatives, di-C1-2-alkyl formamide, substituted and non-substituted anisoles and other phenol-ether derivatives, substituted heterocycles such as substituted pyridines, pyrazines, pyrimidines, pyrrolidinones, substituted and non-substituted N,N-di-C1-2-alkylanilines and other fluorinated or chlorinated aromatics.
A preferred solvent for depositing a compound or polymer according to the present invention by ink jet printing comprises a benzene derivative which has a benzene ring substituted by one or more substituents wherein the total number of carbon atoms among the one or more substituents is at least three. For example, the benzene derivative may be substituted with a propyl group or three methyl groups, in either case there being at least three carbon atoms in total. Such a solvent enables an ink jet fluid to be formed comprising the solvent with the compound or polymer, which reduces or prevents clogging of the jets and separation of the components during spraying. The solvent(s) may include those selected from the following list of examples: dodecylbenzene, 1-methyl-4-tert-butylbenzene, terpineol, limonene, isodurene, terpinolene, cymene, diethylbenzene. The solvent may be a solvent mixture, that is a combination of two or more solvents, each solvent preferably having a boiling point >100° C., more preferably >140° C. Such solvent(s) also enhance film formation in the layer deposited and reduce defects in the layer.
The ink jet fluid (that is mixture of solvent, binder and semiconducting compound) preferably has a viscosity at 20° C. of 1-100 mPa·s, more preferably 1-50 mPa·s and most preferably 1-30 mPa·s.
The polymer blends and formulations according to the present invention can additionally comprise one or more further components or additives selected for example from surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents which may be reactive or non-reactive, auxiliaries, colourants, dyes or pigments, sensitizers, stabilizers, nanoparticles or inhibitors.
The compounds and polymers to the present invention are useful as charge transport, semiconducting, electrically conducting, photoconducting or light emitting materials in optical, electrooptical, electronic, electroluminescent or photoluminescent components or devices. In these devices, the polymers of the present invention are typically applied as thin layers or films.
Thus, the present invention also provides the use of the semiconducting compound, polymer, polymers blend, formulation or layer in an electronic device. The formulation may be used as a high mobility semiconducting material in various devices and apparatus. The formulation may be used, for example, in the form of a semiconducting layer or film. Accordingly, in another aspect, the present invention provides a semiconducting layer for use in an electronic device, the layer comprising a compound, polymer, polymer blend or formulation according to the invention. The layer or film may be less than about 30 microns. For various electronic device applications, the thickness may be less than about 1 micron thick. The layer may be deposited, for example on a part of an electronic device, by any of the aforementioned solution coating or printing techniques.
The invention additionally provides an electronic device comprising a compound, polymer, polymer blend, formulation or organic semiconducting layer according to the present invention. Especially preferred devices are OFETs, TFTs, ICs, logic circuits, capacitors, RFID tags, OLEDs, OLETs, OPEDs, OPVs, OPDs, solar cells, laser diodes, photoconductors, photodetectors, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates and conducting patterns.
Especially preferred electronic device are OFETs, OLEDs, OPV and OPD devices, in particular bulk heterojunction (BHJ) OPV devices. In an OFET, for example, the active semiconductor channel between the drain and source may comprise the layer of the invention. As another example, in an OLED device, the charge (hole or electron) injection or transport layer may comprise the layer of the invention.
For use in OPV or OPD devices the polymer according to the present invention is preferably used in a formulation that comprises or contains, more preferably consists essentially of, very preferably exclusively of, a p-type (electron donor) semiconductor and an n-type (electron acceptor) semiconductor. The p-type semiconductor is constituted by a polymer according to the present invention. The n-type semiconductor can be an inorganic material such as zinc oxide (ZnOx), zinc tin oxide (ZTO), titan oxide (TiOx), molybdenum oxide (MoOx), nickel oxide (NiOx), or cadmium selenide (CdSe), or an organic material such as graphene or a fullerene or substituted fullerene, for example an indene-C60-fullerene bisaduct like ICBA, or a (6,6)-phenyl-butyric acid methyl ester derivatized methano C60 fullerene, also known as “PCBM-C60” or “C60PCBM”, as disclosed for example in G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, Vol. 270, p. 1789 ff and having the structure shown below, or structural analogous compounds with e.g. a C61 fullerene group, a C70 fullerene group, or a C71 fullerene group, or an organic polymer (see for example Coakley, K. M. and McGehee, M. D. Chem. Mater. 2004, 16, 4533).
Preferably the polymer according to the present invention is blended with an n-type semiconductor such as a fullerene or substituted fullerene, like for example PCBM-C60, PCBM-C70, PCBM-C61, PCBM-C71, bis-PCBM-C61, bis-PCBM-C71, ICBA (1′,1″,4′,4″-tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′;56,60:2″,3″][5,6]fullerene-C60-Ih), graphene, or a metal oxide, like for example, ZnOx, TiOx, ZTO, MoOx, NiOx to form the active layer in an OPV or OPD device. The device preferably further comprises a first transparent or semi-transparent electrode on a transparent or semi-transparent substrate on one side of the active layer, and a second metallic or semi-transparent electrode on the other side of the active layer.
Further preferably the OPV or OPD device comprises, between the active layer and the first or second electrode, one or more additional buffer layers acting as hole transporting layer and/or electron blocking layer, which comprise a material such as metal oxide, like for example, ZTO, MoOx, NiOx, a conjugated polymer electrolyte, like for example PEDOT:PSS, a conjugated polymer, like for example polytriarylamine (PTAA), an organic compound, like for example N,N′-diphenyl-N,N′-bis(1-naphthyl)(1,1′-biphenyl)-4,4′diamine (NPB), N,N′-diphenyl-N,N′-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD), or alternatively as hole blocking layer and/or electron transporting layer, which comprise a material such as metal oxide, like for example, ZnOx, TiOx, a salt, like for example LiF, NaF, CsF, a conjugated polymer electrolyte, like for example poly[3-(6-trimethylammoniumhexyl)thiophene], poly(9,9-bis(2-ethylhexyl)-fluorene]-b-poly[3-(6-trimethylammoniumhexyl)thiophene], or poly [(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] or an organic compound, like for example tris(8-quinolinolato)-aluminium(III) (Alq3), 4,7-diphenyl-1,10-phenanthroline.
In a blend or mixture of a polymer according to the present invention with a fullerene or modified fullerene, the ratio polymer:fullerene is preferably from 5:1 to 1:5 by weight, more preferably from 1:1 to 1:3 by weight, most preferably 1:1 to 1:2 by weight. A polymeric binder may also be included, from 5 to 95% by weight. Examples of binder include polystyrene (PS), polypropylene (PP) and polymethylmethacrylate (PMMA).
To produce thin layers in BHJ OPV devices the compounds, polymers, polymer blends or formulations of the present invention may be deposited by any suitable method. Liquid coating of devices is more desirable than vacuum deposition techniques. Solution deposition methods are especially preferred. The formulations of the present invention enable the use of a number of liquid coating techniques. Preferred deposition techniques include, without limitation, dip coating, spin coating, ink jet printing, nozzle printing, letter-press printing, screen printing, gravure printing, doctor blade coating, roller printing, reverse-roller printing, offset lithography printing, dry offset lithography printing, flexographic printing, web printing, spray coating, curtain coating, brush coating, slot dye coating or pad printing. For the fabrication of OPV devices and modules area printing method compatible with flexible substrates are preferred, for example slot dye coating, spray coating and the like.
Suitable solutions or formulations containing the blend or mixture of a polymer according to the present invention with a C60 or C70 fullerene or modified fullerene like PCBM must be prepared. In the preparation of formulations, suitable solvent must be selected to ensure full dissolution of both component, p-type and n-type and take into account the boundary conditions (for example rheological properties) introduced by the chosen printing method.
Organic solvent are generally used for this purpose. Typical solvents can be aromatic solvents, halogenated solvents or chlorinated solvents, including chlorinated aromatic solvents. Examples include, but are not limited to chlorobenzene, 1,2-dichlorobenzene, chloroform, 1,2-dichloroethane, dichloromethane, carbon tetrachloride, toluene, cyclohexanone, ethylacetate, tetrahydrofuran, anisole, morpholine, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methylethylketone, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetraline, decaline, indane, methyl benzoate, ethyl benzoate, mesitylene and combinations thereof.
The OPV device can for example be of any type known from the literature (see e.g. Waldauf et al., Appl. Phys. Lett., 2006, 89, 233517).
A first preferred OPV device according to the invention comprises the following layers (in the sequence from bottom to top):
A second preferred OPV device according to the invention is an inverted OPV device and comprises the following layers (in the sequence from bottom to top):
In the OPV devices of the present invention the p-type and n-type semiconductor materials are preferably selected from the materials, like the polymer/fullerene systems, as described above
When the active layer is deposited on the substrate, it forms a BHJ that phase separates at nanoscale level. For discussion on nanoscale phase separation see Dennler et al, Proceedings of the IEEE, 2005, 93 (8), 1429 or Hoppe et al, Adv. Func. Mater, 2004, 14(10), 1005. An optional annealing step may be then necessary to optimize blend morpohology and consequently OPV device performance.
Another method to optimize device performance is to prepare formulations for the fabrication of OPV(BHJ) devices that may include high boiling point additives to promote phase separation in the right way. 1,8-Octanedithiol, 1,8-diiodooctane, nitrobenzene, chloronaphthalene, and other additives have been used to obtain high-efficiency solar cells. Examples are disclosed in J. Peet, et al, Nat, Mater., 2007, 6, 497 or Fréchet et al. J. Am. Chem. Soc., 2010, 132, 7595-7597.
The compounds, polymers, formulations and layers of the present invention are also suitable for use in an OFET as the semiconducting channel. Accordingly, the invention also provides an OFET comprising a gate electrode, an insulating (or gate insulator) layer, a source electrode, a drain electrode and an organic semiconducting channel connecting the source and drain electrodes, wherein the organic semiconducting channel comprises a compound, polymer, polymer blend, formulation or organic semiconducting layer according to the present invention. Other features of the OFET are well known to those skilled in the art.
OFETs where an OSC material is arranged as a thin film between a gate dielectric and a drain and a source electrode, are generally known, and are described for example in U.S. Pat. No. 5,892,244, U.S. Pat. No. 5,998,804, U.S. Pat. No. 6,723,394 and in the references cited in the background section. Due to the advantages, like low cost production using the solubility properties of the compounds according to the invention and thus the processibility of large surfaces, preferred applications of these FETs are such as integrated circuitry, TFT displays and security applications.
The gate, source and drain electrodes and the insulating and semiconducting layer in the OFET device may be arranged in any sequence, provided that the source and drain electrode are separated from the gate electrode by the insulating layer, the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconducting layer.
An OFET device according to the present invention preferably comprises:
The OFET device can be a top gate device or a bottom gate device. Suitable structures and manufacturing methods of an OFET device are known to the skilled in the art and are described in the literature, for example in US 2007/0102696 A1.
The gate insulator layer preferably comprises a fluoropolymer, like e.g. the commercially available Cytop 809M® or Cytop 107M® (from Asahi Glass). Preferably the gate insulator layer is deposited, e.g. by spin-coating, doctor blading, wire bar coating, spray or dip coating or other known methods, from a formulation comprising an insulator material and one or more solvents with one or more fluoro atoms (fluorosolvents), preferably a perfluorosolvent. A suitable perfluorosolvent is e.g. FC75® (available from Acros, catalogue number 12380). Other suitable fluoropolymers and fluorosolvents are known in prior art, like for example the perfluoropolymers Teflon AF® 1600 or 2400 (from DuPont) or Fluoropel® (from Cytonix) or the perfluorosolvent FC 43® (Acros, No. 12377). Especially preferred are organic dielectric materials having a low permittivity (or dielectric content) from 1.0 to 5.0, very preferably from 1.8 to 4.0 (“low k materials”), as disclosed for example in US 2007/0102696 A1 or U.S. Pat. No. 7,095,044.
In security applications, OFETs and other devices with semiconducting materials according to the present invention, like transistors or diodes, can be used for RFID tags or security markings to authenticate and prevent counterfeiting of documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with monetary value, like stamps, tickets, shares, cheques etc.
Alternatively, the materials according to the invention can be used in OLEDs, e.g. as the active display material in a flat panel display applications, or as backlight of a flat panel display like e.g. a liquid crystal display. Common OLEDs are realized using multilayer structures. An emission layer is generally sandwiched between one or more electron-transport and/or hole-transport layers. By applying an electric voltage electrons and holes as charge carriers move towards the emission layer where their recombination leads to the excitation and hence luminescence of the lumophor units contained in the emission layer. The inventive compounds, materials and films may be employed in one or more of the charge transport layers and/or in the emission layer, corresponding to their electrical and/or optical properties. Furthermore their use within the emission layer is especially advantageous, if the compounds, materials and films according to the invention show electroluminescent properties themselves or comprise electroluminescent groups or compounds. The selection, characterization as well as the processing of suitable monomeric, oligomeric and polymeric compounds or materials for the use in OLEDs is generally known by a person skilled in the art, see, e.g., Müller et al, Synth. Metals, 2000, 111-112, 31-34, Alcala, J. Appl. Phys., 2000, 88, 7124-7128 and the literature cited therein.
According to another use, the materials according to this invention, especially those showing photoluminescent properties, may be employed as materials of light sources, e.g. in display devices, as described in EP 0 889 350 A1 or by C. Weder et al., Science, 1998, 279, 835-837.
A further aspect of the invention relates to both the oxidised and reduced form of the compounds according to this invention. Either loss or gain of electrons results in formation of a highly delocalised ionic form, which is of high conductivity. This can occur on exposure to common dopants. Suitable dopants and methods of doping are known to those skilled in the art, e.g. from EP 0 528 662, U.S. Pat. No. 5,198,153 or WO 96/21659.
The doping process typically implies treatment of the semiconductor material with an oxidating or reducing agent in a redox reaction to form delocalised ionic centres in the material, with the corresponding counterions derived from the applied dopants. Suitable doping methods comprise for example exposure to a doping vapor in the atmospheric pressure or at a reduced pressure, electrochemical doping in a solution containing a dopant, bringing a dopant into contact with the semiconductor material to be thermally diffused, and ion-implantantion of the dopant into the semiconductor material.
When electrons are used as carriers, suitable dopants are for example halogens (e.g., I2, Cl2, Br2, ICl, ICl3, IBr and IF), Lewis acids (e.g., PF5, AsF5, SbF5, BF3, BCl3, SbCl5, BBr3 and SO3), protonic acids, organic acids, or amino acids (e.g., HF, HCl, HNO3, H2SO4, HClO4, FSO3H and ClSO3H), transition metal compounds (e.g., FeCl3, FeOCl, Fe(ClO4)3, Fe(4-CH3C6H4SO3)3, TiCl4, ZrCl4, HfCl4, NbF5, NbCl5, TaCl5, MoF5, MoCl5, WF5, WCl6, UF6 and LnCl3 (wherein Ln is a lanthanoid), anions (e.g., Cr, Br, I−, I3−, HSO4−, SO42−, NO3−, Cl4−, BF4−, PF6−, AsF6−, SbF6−, FeCl4−, Fe(CN)63−, and anions of various sulfonic acids, such as aryl-SO3−). When holes are used as carriers, examples of dopants are cations (e.g., H+, Li+, Na+, K+, Rb+ and Cs+), alkali metals (e.g., Li, Na, K, Rb, and Cs), alkaline-earth metals (e.g., Ca, Sr, and Ba), O2, XeOF4, (NO2+)(SbF6−), (NO2+)(SbCl6−), (NO2+)(BF4−), AgClO4, H2IrCl6, La(NO3)3.6H2O, FSO2OOSO2F, Eu, acetylcholine, R4N+, (R is an alkyl group), R4P+ (R is an alkyl group), R6As+ (R is an alkyl group), and R3S+ (R is an alkyl group).
The conducting form of the compounds of the present invention can be used as an organic “metal” in applications including, but not limited to, charge injection layers and ITO planarising layers in OLED applications, films for flat panel displays and touch screens, antistatic films, printed conductive substrates, patterns or tracts in electronic applications such as printed circuit boards and condensers.
The compounds and formulations according to the present invention may also be suitable for use in organic plasmon-emitting diodes (OPEDs), as described for example in Koller et al., Nat. Photonics, 2008, 2, 684.
According to another use, the materials according to the present invention can be used alone or together with other materials in or as alignment layers in LCD or OLED devices, as described for example in US 2003/0021913. The use of charge transport compounds according to the present invention can increase the electrical conductivity of the alignment layer. When used in an LCD, this increased electrical conductivity can reduce adverse residual dc effects in the switchable LCD cell and suppress image sticking or, for example in ferroelectric LCDs, reduce the residual charge produced by the switching of the spontaneous polarisation charge of the ferroelectric LCs. When used in an OLED device comprising a light emitting material provided onto the alignment layer, this increased electrical conductivity can enhance the electroluminescence of the light emitting material. The compounds or materials according to the present invention having mesogenic or liquid crystalline properties can form oriented anisotropic films as described above, which are especially useful as alignment layers to induce or enhance alignment in a liquid crystal medium provided onto said anisotropic film. The materials according to the present invention may also be combined with photoisomerisable compounds and/or chromophores for use in or as photoalignment layers, as described in US 2003/0021913 A1.
According to another use the materials according to the present invention, especially their water-soluble derivatives (for example with polar or ionic side groups) or ionically doped forms, can be employed as chemical sensors or materials for detecting and discriminating DNA sequences. Such uses are described for example in L. Chen, D. W. McBranch, H. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 12287; D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 49; N. DiCesare, M. R. Pinot, K. S. Schanze and J. R. Lakowicz, Langmuir, 2002, 18, 7785; D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev., 2000, 100, 2537.
Unless the context clearly indicates otherwise, as used herein plural forms of the terms herein are to be construed as including the singular form and vice versa.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example “comprising” and “comprises”, mean “including but not limited to”, and are not intended to (and do not) exclude other components.
It will be appreciated that variations to the foregoing embodiments of the invention can be made while still falling within the scope of the invention. Each feature disclosed in this specification, unless stated otherwise, may be replaced by alternative features serving the same, equivalent or similar purpose. Thus, unless stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
All of the features disclosed in this specification may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. In particular, the preferred features of the invention are applicable to all aspects of the invention and may be used in any combination. Likewise, features described in non-essential combinations may be used separately (not in combination).
Above and below, unless stated otherwise percentages are percent by weight and temperatures are given in degrees Celsius. The values of the dielectric constant £ (“permittivity”) refer to values taken at 20° C. and 1,000 Hz.
The advantages of the present invention are to be illustrated in the following examples, which are to illustrate the present invention in a non-limiting way.
1,4-Dioxane (150 cm3) is degassed by nitrogen for 45 minutes. To a mixture of 2,6-dibromo-naphthalene (12.0 g, 42.0 mmol), bis(pinacolato)diboron (24.7 g, 97.2 mmol), [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium (II) (6.2 g, 7.6 mmol) and potassium acetate (24.7 g, 251.4 mmol) under nitrogen atmosphere is added degassed 1,4-dioxane (150 cm3). The mixture is degassed by nitrogen for 45 minutes and then heated to 100° C. for 48 hours. The solution is allowed to cool, water (750 cm3) added and the product extracted with dichloromethane (4×250 cm3). The combined organic extract is dried over anhydrous magnesium sulfate, filtered and the solvent removed in vacuo. The crude is purified using silica gel column chromatography (40-60 petroleum 8:2 diethyl ether) to obtain an off white solid. The solid is further purified by re-crystallization from high boiling petroleum to give 2,6-bis(4,4,5,5-tetra methyl-1,3,2-dioxaborolan-2-yl)naphthalene (12.0 g, 75%) as a white crystalline solid. MS (m/e): 380 (M+, 100%). 1H NMR (300 MHz, CDCl3) 8.35 (2H, s, ArH), 7.84 (4H, d, ArH, J 3.6), 1.39 (24H, s, CH3).
Toluene (162 cm3) is degassed by nitrogen for 60 minutes. To a mixture of 2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalene (16.0 g, 42.1 mmol), 2-bromo-thiophene-3-carboxylic acid methyl ester (20.5 g, 92.6 mmol), tripotassium phosphate monohydrate (26.8 g, 126.3 mmol), tris(dibenzylideneacetone)dipalladium(0) (0.8 g, 0.8 mmol) and dicyclohexyl-(2′,6′-dimethoxy-biphenyl-2-yl)-phosphane (0.7 g, 1.7 mmol) under nitrogen atmosphere is added degassed toluene (162 cm3). The mixture is degassed by nitrogen for 30 minutes and then heated to 120° C. for 96 hours. The solution is allowed to cool and the solvent removed in vacuo. The crude is purified using silica gel column chromatography (40-60 petroleum 3:7 chloroform) to give dimethyl 2,2′-(naphthalene-2,6-diyl)dithiophene-3-carboxylate (8.0 g, 47%) as a cream solid. MS (m/e): 408 (M+, 100%). 1H NMR (300 MHz, CDCl3) 7.99 (2H, s, ArH), 7.89 (2H, d, ArH, J 8.5), 7.64 (2H, d, ArH, J 8.5), 7.57 (2H, d, ArH, J 5.4), 7.30 (2H, d, ArH, J 5.4), 3.74 (6H, s, CH3).
To a suspension of 1-bromo-4-dodecyl-benzene (27.6 g, 85.0 mmol) in anhydrous tetrahydrofuran (500 cm3) under a nitrogen atmosphere at −78° C. is added dropwise t-butyllithium (1.7 M in heptane, 100 cm3, 85.0 mmol) over 45 minutes followed by stirring for 60 minutes. Dimethyl 2,2′-(naphthalene-2,6-diyl)dithiophene-3-carboxylate (7.7 g, 19 mmol) is then added followed by stirring at 23° C. for 17 hours. The reaction mixture is concentrated in vacuo and the residue purified using silica gel column chromatography (40-60 petroleum 9:1 diethyl ether). The product from the column was triturated with methanol and the solid collected by filtration to give (2,2′-(naphthalene-2,6-diyl)bis(thiophene-3,2-diyl))bis(bis(4-dodecylphenyl)methanol) (11.0 g, 44%) as a pale yellow solid. 1H-NMR (300 MHz, CDCl3) 7.41 (2H, bs, ArH), 7.34 (2H, d, ArH, J 8.5), 7.22 (2H, d, ArH, J 8.5), 7.16 (8H, d, ArH, J 8.4), 7.15 (2H, d, ArH, J 5.3), 7.08 (8H, d, ArH, J 8.4), 6.52 (2H, d, ArH, J 5.3), 2.80 (2H, s, OH), 2.58 (8H, m, CH2), 1.58 (8H, m, CH2), 1.29 (72H, m, CH2), 0.87 (12H, m, CH3).
Toluene (500 cm3) is degassed by nitrogen for 60 minutes. To a mixture of (2,2′-(naphthalene-2,6-diyl)bis(thiophene-3,2-diyl))bis(bis(4-dodecylphenyl)methanol) (8.0 g, 6.0 mmol) and Amberlyst 15 strong acid (50 g) under nitrogen atmosphere is added degassed anhydrous toluene (500 cm3). The resulting suspension is degassed by nitrogen for 60 minutes and then heated at 60° C. for 4 hours. The reaction mixture is filtered and the filtrate is concentrated in vacuo. The crude product is purified using silica gel column chromatography (40-60 petroleum). The product from the column is triturated with methanol and the solid collected by filtration to give 4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene) (2.5 g, 32%) as a pale cream solid. 1H-NMR (300 MHz, CDCl3) 7.80 (2H, d, ArH, J 8.6), 7.48 (2H, d, ArH, J 8.6), 7.19 (2H, d, ArH, J 4.9), 7.16 (8H, d, ArH, J 8.3), 7.02 (8H, d, ArH, J 8.3), 6.99 (2H, d, ArH, J 4.9), 2.52 (8H, m, CH2), 1.55 (8H, m, CH2), 1.24 (72H, m, CH2), 0.87 (12H, m, CH3).
1-Bromo-pyrrolidine-2,5-dione (619 mg, 3.5 mmol) is added portion wise to a solution of 4,4,10,10-tetrakis(4-dodecyl phenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene) (2.3 g, 1.7 mmol) in anhydrous tetrahydrofuran (250 cm3) at 0° C. under a nitrogen atmosphere with absence of light. After addition, the reaction mixture is stirred at 23° C. for 17 hours. The reaction mixture is concentrated in vacuo and the crude purified using silica gel column chromatography (gradient of 40-60 petroleum to chloroform) to obtain an oily residue. The residue is recrystallised from methyl ethyl ketone to give ([2,8-dibromo]-4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene) (1.8 g, 84%) as a light orange solid. 1H-NMR (300 MHz, CDCl3) 7.76 (2H, d, ArH, J 8.6), 7.39 (2H, d, ArH, J 8.6), 7.13 (8H, d, ArH, J 8.3), 7.03 (8H, d, ArH, J 8.3), 6.99 (2H, s, ArH), 2.51 (8H, m, CH2), 1.61-1.52 (8H, m, CH2), 1.28-1.25 (72H, m, CH2), 0.87 (12H, m, CH3).
Nitrogen gas is bubbled through a mixture of 2,8-dibromo-[4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-b]naphthalene] (300.0 mg, 0.2 mmol) and 2,5-bis-trimethylstannanyl-thieno[3,2-b]thiophene (96.3 mg, 0.2 mmol) in anhydrous toluene (5 cm3) and anhydrous N,N-dimethylformamide (1 cm3) for one hour. Tris(dibenzylideneacetone)dipalladium(0) (2.9 mg, 0.004 mmol) and tri-o-tolyl-phosphine (5.0 mg, 0.02 mmol) are added to the reaction mixture followed by heating at 100° C. for 25 minutes. Anhydrous toluene (5 cm3) is added followed by bromobenzene (0.04 cm3, 0.4 mmol) and the mixture heated at 100° C. for 10 minutes. Phenyl tributyltin (0.2 cm3, 0.6 mmol) is added and the reaction mixture heated at 100° C. for 20 minutes. The reaction mixture is poured into methanol (100 cm3) and the polymer precipitate collected by filtration. The crude polymer is subjected to sequential Soxhlet extraction with methanol, acetone, 40-60 petroleum, 80-100 petroleum, cyclohexanes and chloroform. The chloroform extract is poured into methanol (100 cm3) and the polymer precipitate collected by filtration to give poly{[2,8-(4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene)]-alt-[2,5-thieno[3,2-b]thiophene]} (280 mg, 95%) as a dark red solid.
GPC (chlorobenzene, 50° C.) Mn=165,000 g/mol, Mw=575,000 g/mol.
Nitrogen gas is bubbled through a mixture of 2,8-Dibromo-[4,4,10,10-tetrakis(4-doclecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene] (300.0 mg, 0.2 mmol) and 5,5′-bis-trimethylstannanyl-[2,2]bithiophenyl (101.6 mg, 0.2 mmol) in anhydrous toluene (5 cm3) and anhydrous N,N-dimethylformamide (1 cm3) for one hour. Tris(dibenzylideneacetone)dipalladium(0) (2.9 mg, 0.004 mmol) and tri-o-tolyl-phosphine (5.0 mg, 0.02 mmol) are added to the reaction mixture followed by heating at 100° C. for 25 minutes. Anhydrous toluene (5 cm3) is added followed by bromobenzene (0.04 cm3, 0.4 mmol) and the mixture heated at 100° C. for 10 minutes. Phenyl tributyltin (0.2 cm3, 0.6 mmol) is added and the reaction mixture heated at 100° C. for 20 minutes. The reaction mixture is poured into methanol (100 cm3) and the polymer precipitate collected by filtration. The crude polymer is subjected to sequential Soxhlet extraction with methanol, acetone, 40-60 petroleum, 80-100 petroleum, cyclohexanes, chloroform and chlorobenzene. The chlorobenzene extract is poured into methanol (100 cm3) and the polymer precipitate collected by filtration to give poly{[2,8-(4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene)]-alt-[2,2′-bithiophene]} (180 mg, 60%) as a dark red solid. GPC (chlorobenzene, 50° C.) Mn=104,000 g/mol, Mw=300,000 g/mol.
Nitrogen gas is bubbled through a mixture of 2,8-dibromo-[4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene] (300.0 mg, 0.2 mmol), 4,7-bis-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzo[1,2,5]thiadiazole (80.2 mg, 0.2 mmol), tris(dibenzylideneacetone)dipalladium(0) (2.9 mg, 0.004 mmol) and tri-o-tolyl-phosphine (5.0 mg, 0.02 mmol) in anhydrous toluene (10 cm3) for one hour. A degassed (by bubbling nitrogen gas for 60 minutes through the solution) aqueous solution of sodium carbonate (2 M, 0.3 cm3) and Aliquat 336 (10 mg) is added to the reaction mixture followed by heating at 120° C. for 17 hours. Anhydrous toluene (5 cm3) is added followed by bromobenzene (0.04 cm3, 0.4 mmol) and after 60 minutes stirring at 120° C., phenylboronic acid (73 mg, 0.6 mmol) is added. After 120 minutes stirring at 120° C. the reaction mixture is poured into methanol (100 cm3) and the polymer precipitate collected by filtration. The crude polymer is subjected to sequential Soxhlet extraction; methanol, acetone, 40-60 petroleum, 80-100 petroleum, cyclohexanes and chloroform. The chloroform extract is poured into methanol (100 cm3) and the polymer precipitate collected by filtration to give poly{[2,8-(4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene)]-alt-[4,7-benzothiadiazole]} (150 mg, 58%) as a dark blue solid.
GPC (chlorobenzene, 50° C.) Mn=12,000 g/mol, Mw=17,000 g/mol.
Nitrogen gas is bubbled through a mixture of 2,8-dibromo-[4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene] (220.7 mg, 0.2 mmol), 9,10-dioctyl-2,7-phenanthrylene-bis(1,3,2-dioxaborolane) (32.4 mg, 0.2 mmol), tris(dibenzylideneacetone)dipalladium(0) (2.8 mg; 0.003 mmol), tri-o-tolyl-phosphine (3.7 mg, 0.012 mmol) and anhydrous toluene (10 cm3) for one hour. A degassed (by bubbling nitrogen gas through for 60 minutes) aqueous solution of sodium carbonate (2 M, 0.2 cm3) and Aliquat 336 (10 mg) is added to the reaction mixture followed by heating at 120° C. for 17 hours. Bromobenzene (0.03 cm3, 0.3 mmol) is added and the reaction mixture heated at 120° C. for 60 minutes. Phenylboronic acid (73 mg, 0.6 mmol) is then added and the reaction mixture heated at 120° C. for 120 minutes. The reaction mixture is poured into methanol (100 cm3) and the polymer precipitate collected by filtration. The crude polymer is subjected to sequential Soxhlet extraction; methanol, acetone, 40-60 petroleum, 80-100 petroleum, cyclohexanes and chloroform. The chloroform extract is poured into methanol (100 cm3) and the polymer precipitate collected by filtration to give poly{[2,8-(4,4,10,10-tetrakis(4-dodecylphenyl)-4,10-dihydrodicyclopenta[2,1-b;7,6-b′]dithiophene[2,1-a:2′,1′-f]naphthalene)]-alt-[2,7(9,10-dioctylphenanthrylene)]} (200 mg, 77%) as a light yellow solid.
GPC (chlorobenzene, 50° C.) Mn=40,000 g/mol, Mw=100,000 g/mol.
Top-gate thin-film organic field-effect transistors (OFETs) were fabricated on glass substrates with photolithographically defined Au source-drain electrodes. A 7 mg/cm3 solution of the organic semiconductor in dichlorobenzene was spin-coated on top (an optional annealing of the film is carried out at 100° C., 150° C. or 200° C. for between 1 and 5 minutes) followed by spin-coating of a fluoropolymer dielectric material (Lisicon® D139 from Merck, Germany). Finally a photolithographically defined Au gate electrode was deposited. The electrical characterization of the transistor devices was carried out in ambient air atmosphere using computer controlled Agilent 4155C Semiconductor Parameter Analyser. Charge carrier mobility in the saturation regime (μsat) was calculated for the compound. Field-effect mobility was calculated in the saturation regime (Vd>(Vg−V0)) using the following equation:
where W is the channel width, L the channel length, Ci the capacitance of insulating layer, Vg the gate voltage, V0 the turn-on voltage, and sat is the charge carrier mobility in the saturation regime. Turn-on voltage (V0) was determined as the onset of source-drain current.
The mobilities (μsat) for polymers 1 and 4 in top-gate OFETs are summarised in Table II.
Transfer characteristics and charge carrier mobility of top-gate organic field effect transistors prepared with Polymers 1 and 4 are shown in
Number | Date | Country | Kind |
---|---|---|---|
12008194.8 | Dec 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/003401 | 11/12/2013 | WO | 00 |