Polymer-conjugated METAP2 inhibitors, and therapeutic methods of use thereof

Information

  • Patent Grant
  • 10722532
  • Patent Number
    10,722,532
  • Date Filed
    Friday, November 16, 2018
    6 years ago
  • Date Issued
    Tuesday, July 28, 2020
    4 years ago
Abstract
One aspect of the invention provides polymer conjugated MetAP2 inhibitors. While not being bound by any particular theory, it is believed that coupling the MetAP2 inhibitory core via the linkers described herein provides compounds with superior efficacy to the parent small molecules and superior pharmacokinetic profiles. In one aspect of the invention, the polymer conjugated MetAP2 inhibitors are useful in methods of treating disease, comprising administering to a subject in need thereof a therapeutically effective amount of a polymer conjugated MetAP2 inhibitor.
Description
BACKGROUND

Helmut Ringsdorf provided a theoretical framework for the design of polymer conjugates of small molecule drugs over thirty years ago (See Ringsdorf, “Structure and Properties of Pharmacologically Active Polymers”, J. POLYMER SCI.: Symposium No. 51, 135-153 (1975)). While many conjugates have been synthesized and evaluated in animals, few have progressed to clinical trials and those trials have been largely disappointing. The identification of polymer drug conjugates that represent improvements over the parent small molecules remains an area of active research.


Fumagillin is a small molecule which has been used as an antimicrobial and antiprotozoal agent. Its physiochemical properties and method of production are well known (See U.S. Pat. No. 2,803,586 (Peterson, et al, incorporated herein by reference) and Turner, J. R. et al, The Stereochemistry of Fumagillin, Proc. Natl. Acad. Sci. 48, 733-735 (1962)). The fermentation product, fumagillin, may be hydrolyzed to yield the alcohol fumagillol which in turn may be converted into various derivatives including carbamoylfumagillol, MW 325. The synthesis and preparation of carbamoylfumagillol and some small molecule derivatives are described in U.S. Pat. No. 5,166,172.


Fumagillin and related compounds are believed to exert their biological effects through the inhibition of methionine aminopeptidase-2 (MetAP2), a metalloprotease. This enzyme removes N-terminal methionine from nascent cellular proteins. (See Tucker, L. A., et al “Ectopic Expression of Methionine Aminopeptidase-2 Causes Cell Transformation and Stimulates Proliferation”, Oncogene 27, 3967 (2008).)


Carbamoylfumagillol and derivatives as well as other inhibitors of MetAP2 have shown therapeutic benefits in preclinical and clinical studies. These compounds inhibit cell proliferation and angiogenesis as described in U.S. Pat. No. 5,166,172 (Kishimoto, et al, incorporated herein by reference). One of these derivatives, chloroacetylcarbamoylfumagillol (TNP-470) has been extensively studied. (See H. Mann-Steinberg, et al., “TNP-470: The Resurrection of the First Synthetic Angiogenesis Inhibitor”, Chapter 35 in Folkman and Figg, Angiogenesis: An Integrative Approach from Science to Medicine, Springer N.Y. (2008).) TNP-470 has shown activity against many cancers, including lung cancer, cervical cancer, ovarian cancer, breast cancer, and colon cancer. Because of dose-limiting neurotoxicity, TNP-470 has been tested using multiple dosing regimens, but these attempts to limit its toxicity have been unsuccessful. Thus, TNP-470 has been found to be too toxic for human use. With few exceptions, unacceptable weight loss or failure to gain weight was observed in animals receiving TNP-470. TNP-470 has a short half-life and requires extended intravenous administration for therapeutic use. A metabolite of TNP-470, carbamoylfumagillol has a half-life of 12 minutes in man. (See Herbst et al., “Safety and Pharmacokinetic Effects of TNP-470, an Angiogenesis Inhibitor, Combined with Paclitaxel in Patients with Solid Tumors: Evidence for Activity in Non-Small-Cell Lung Cancer”, Journal of Clinical Oncology 20(22) 4440-4447 (2002). In addition, fumagillin and its derivatives are hydrophobic and difficult to formulate.


Methionine aminopeptidase-2 (MetAP2), a metalloprotease, is an enzyme that processes N-terminal methionine from nascent cellular proteins. Inhibition of MetAP2 has been shown to block angiogenesis and suppress tumor growth in preclinical tumor models. Interestingly, fumagillin, chloroacetylcarbamoylfumagillol, carbamoylfumagillol and related compounds have been shown to be inhibitors of MetAP2. (See Tucker, L. A., et al. “Ectopic Expression of Methionine Aminopeptidase-2 Causes Cell Transformation and Stimulates Proliferation”, Oncogene 27, 3967 (2008).)


SUMMARY

One aspect of the present invention relates to a compound or pharmaceutically acceptable salt thereof, comprising:




embedded image


wherein, independently for each occurrence,

    • R4 is H or C1-C6 alkyl;
    • R5 is H or C1-C6 alkyl;
    • R6 is C2-C6 hydroxyalkyl;
    • Z is —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-L or —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-Q-X—Y—C(O)—W;
    • AA1 is glycine, alanine, or H2N(CH2)MCO2H, wherein m is 2, 3, 4 or 5;
    • AA2 is a bond, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine;
    • AA3 is a bond, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine;
    • AA4 is a bond, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine;
    • AA5 is a bond, or glycine, valine, tyrosine, tryptophan, phenylalanine, methionine, leucine, isoleucine, or asparagine;
    • AA6 is a bond, or alanine, asparagine, citrulline, glutamine, glycine, leucine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine, or H2N(CH2)mCO2H, wherein m is 2, 3, 4 or 5;
    • L is —OH, —O-succinimide, —O-sulfosuccinimide, alkoxy, aryloxy, acyloxy, aroyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, —NH2, —NH(C2-C6 hydroxyalkyl), halide or perfluoroalkyloxy;
    • Q is NR, O, or S;
    • X is M-(C(R)2)p-M-J-M-(C(R)2)p-M-V;
    • M is a bond, or C(O);
    • J is a bond, or ((CH2)qQ)r, C5-C8 cycloalkyl, aryl, heteroaryl, NR, O, or S;
    • Y is NR, O, or S;
    • R is H or alkyl;
    • V is a bond or




embedded image




    • R9 is alkyl, aryl, aralkyl, or a bond; or R9 taken together with Y forms a heterocyclic ring;

    • R10 is amido or a bond;

    • R11 is H or alkyl;

    • W is a MetAP2 inhibitor moiety or alkyl;

    • x is in the range of 1 to about 450;

    • y is in the range of 1 to about 30;

    • n is in the range of 1 to about 50;

    • p is 0 to 20;

    • q is 2 or 3;

    • r is 1, 2, 3, 4, 5, or 6; and

    • the compound has a molecular weight of less than about 60 kDa.





Another aspect of the present invention relates to a compound or pharmaceutically acceptable salt thereof, represented by Z-Q-X—Y—C(O)—W; wherein, independently for each occurrence,

    • Z is H2N-AA6-C(O)— or H;
    • AA6 is alanine, asparagine, citrulline, glutamine, glycine, leucine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine or H2N(CH2)mCO2H, wherein m is 2, 3, 4 or 5;
    • Q is NR, O, or S;
    • X is M-(C(R)2)p-M-J-M-(C(R)2)p-M-V;
    • M is a bond, or C(O);
    • J is a bond, or ((CH2)qQ)r, C5-C8 cycloalkyl, aryl, heteroaryl, NR, O, or S;
    • Y is NR, O, or S;
    • R is H or alkyl;
    • V is a bond or




embedded image




    • R9 is alkyl, aryl, aralkyl, or a bond; or R9 taken together with Y forms a heterocyclic ring;

    • R10 is amido or a bond;

    • R11 is H or alkyl;

    • W is a MetAP2 inhibitor moiety;

    • p is 0 to 20;

    • q is 2 or 3; and

    • r is 1, 2, 3, 4, 5, or 6.





Another aspect of the invention relates to the use of a compound of the invention to treat a disease (e.g., cancer) in a mammal in need thereof.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows percentage weight change as a function of time for C57B1/6 mice, injected initially with B16-F10 tumor cells (1×105), to which one of three polymer conjugates (dosed at 100 mg/kg, q4d) has been administered. Comparative data are included for TNP-470 (dosed at 30 mg/kg, qod) and saline control.



FIG. 2 shows percentage weight change as a function of time for C57B1/6 mice, injected initially with B16-F10 tumor cells (1×105), to which a polymer conjugate (dosed at 100, 50 and 25 mg/kg, q4d) has been administered. Comparative data are included for TNP-470 (dosed at 30 mg/kg, qod) and saline control.



FIG. 3 shows the change in tumor size as a function of time for nu/nu mice, injected initially with A549 tumor cells, to which one of three polymer conjugates (dosed at 20 mg/kg, q4d) has been administered. Comparative data are included for TNP-470 (30 mg/kg, qod), a polymer without drug (100 mg/kg, q4d) and saline control.



FIG. 4 shows the change in body weight change as a function of time for nu/nu mice, injected initially with A549 tumor cells, to which one of three polymer conjugates (dosed at 20 mg/kg, q4d) has been administered. Comparative data are included for TNP-470 (30 mg/kg, qod), a polymer without drug (100 mg/kg, q4d) and saline control.





DETAILED DESCRIPTION

One aspect of the present invention relates to a compound or pharmaceutically acceptable salt thereof, comprising:




embedded image


wherein, independently for each occurrence,

    • R4 is H or C1-C6 alkyl;
    • R5 is H or C1-C6 alkyl;
    • R5 is C2-C6 hydroxyalkyl;
    • Z is —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-L or —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-Q-X—Y—C(O)—W;
    • AA1 is glycine, alanine, or H2N(CH2)mCO2H, wherein m is 2, 3, 4 or 5;
    • AA2 is a bond, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine;
    • AA3 is a bond, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine;
    • AA4 is a bond, or alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, or tyrosine;
    • AA5 is a bond, or glycine, valine, tyrosine, tryptophan, phenylalanine, methionine, leucine, isoleucine, or asparagine;
    • AA6 is a bond, or alanine, asparagine, citrulline, glutamine, glycine, leucine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine, or H2N(CH2)mCO2H, wherein m is 2, 3, 4 or 5;
    • L is —OH, —O-succinimide, —O-.sulfosuccinimide, alkoxy, aryloxy, acyloxy, aroyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, —NH2, —NH(C2-C6 hydroxyalkyl), halide or perfluoroalkyloxy;
    • Q is NR, O, or S;
    • X is M-(C(R)2)p-M-J-M-(C(R)2)p-M-V;
    • M is a bond, or C(O);
    • J is a bond, or ((CH2)qQ)r, C5-C8 cycloalkyl, aryl, heteroaryl, NR, O, or S;
    • Y is NR, O, or S;
    • R is H or alkyl;
    • V is a bond or




embedded image




    • R9 is alkyl, aryl, aralkyl, or a bond; or R9 taken together with Y forms a heterocyclic ring;

    • R10 amido or a bond;

    • R11 is H or alkyl;

    • W is a MetAP2 inhibitor moiety or alkyl;

    • x is in the range of 1 to about 450;

    • y is in the range of 1 to about 30;

    • n is in the range of 1 to about 50;

    • p is 0 to 20;

    • q is 2 or 3;

    • r is 1, 2, 3, 4, 5, or 6; and

    • the compound has a molecular weight of less than about 60 kDa.





In certain embodiments, P is C1-C6 alkyl. In certain embodiments, R4 is methyl. In certain embodiments, R5 is C1-C6 alkyl. In certain embodiments, R5 is methyl. In certain embodiments, R6 is 2-hydroxyethyl, 2-hydroxypropyl or 3-hydroxypropyl. In certain embodiments, R6 is 2-hydroxypropyl.


In other embodiments, the molecular weight is less than about 45 kDa. In other embodiments, the molecular weight is less than about 35 kDa.


In certain embodiments, the ratio of x toy is in the range of about 30:1 to about 3:1. In other embodiments, the ratio of x toy is in the range of about 20:1 to about 4:1. In certain embodiments, the ratio of x toy is in the range of about 15:1 to about 6:1. In certain embodiments, the ratio of x toy is about 15:1. In certain embodiments, the ratio of x to y is about 11:1. In certain embodiments, the ratio of x to y is about 6:1.


In certain embodiments, Z is —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-L.


In certain embodiments, L is methoxy, ethoxy, pentafluorophenyloxy, phenyloxy, acetoxy, fluoride, chloride, methoxycarbonyloxy; ethoxycarbonyloxy, phenyloxycarbonyloxy, 4-nitrophenyloxy, trifluoromethoxy, pentafluoroethoxy, or trifluoroethoxy. In certain embodiments, L is 4-nitrophenyloxy.


In certain embodiments, Z is-NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-Q-X—Y—C(O)—W. In certain embodiments, AA1 is glycine. In certain embodiments, AA2 is glycine. In certain embodiments, AA3 is glycine. In certain embodiments, AA4 is glycine or phenylalanine. In certain embodiments, AA5 is leucine, phenylalanine, valine or tyrosine. In certain embodiments, AA6 is asparagine, citrulline, glutamine, glycine, leucine, methionine, threonine or tyrosine. In certain embodiments, AA5-AA6 is Leu-Cit, Leu-Gln, Leu-Gly, Leu-Leu, Leu-Met, Leu-Thr, Phe-Cit, Phe-Gln, Phe-Leu, Phe-Met, Phe-Thr, Val-Asn, Val-Cit, Val-Gln, Val-Leu, Val-Met, Val-Thr, Tyr-Cit, Tyr-Leu, or Tyr-Met. In certain embodiments, AA1, AA3 and AA5 are glycine, valine, tyrosine, tryptophan, phenylalanine, methionine, leucine, isoleucine, or asparagine. In certain embodiments, AA2, AA4 and AA6 are glycine, asparagine, citrulline, glutamine, glycine, leucine, methionine, phenylalanine, threonine or tyrosine. In certain embodiments, AA2 is a bond; and AA3 is a bond. In certain embodiments, AA1 is glycine; AA4 is phenylalanine; AA5 is leucine; and AA6 is glycine.


In certain embodiments, W is




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein R2 is —OH or methoxy; and R3 is H, —OH or methoxy.


In certain embodiments, W is




embedded image


embedded image




    • In certain embodiments, W is







embedded image




    • In certain embodiments, Q is NR. In other embodiments, Q is S.

    • In certain embodiments, J is NR. In other embodiments, J is ((CH2)qQ)r. In other embodiments, J is C5-C8 cycloalkyl. In certain embodiments, J is aryl.

    • In certain embodiments, Y is NR. In other embodiments, Y is S.





In certain embodiments, -Q-X—Y— is




embedded image


embedded image


embedded image


embedded image


V is:




embedded image



or a bond;

    • R12 is H or Me; or R taken together with R forms a piperidine ring;
    • R11 is H or Me; and
    • R13 taken together with R12 forms a piperidine ring.
    • In certain embodiments, -Q-X—Y— is




embedded image




    • In certain embodiments, -Q-X—Y— is







embedded image




    • In certain embodiments, -Q-X—Y— is







embedded image




    • In certain embodiments, -Q-X—Y— is







embedded image




    • In certain embodiments, R4 and R5 are methyl; is 2-hydroxypropyl; Z is —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-Q-X—Y—C(O)—W; AA1 is glycine; AA2 is a bond; AA3 is a bond; AA4 is phenylalanine; AA5 is leucine; AA6 is glycine; -Q-X—Y— is







embedded image



and W is




embedded image




    • In certain embodiments, R4 and R5 are methyl; is 2-hydroxypropyl; Z is —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-Q-X—Y—C(O)—W; AA1 is glycine; AA2 is a bond; AA3 is a bond; AA4 is phenylalanine; AA5 is leucine; AA6 is glycine; -Q-X—Y— is







embedded image



and W is




embedded image




    • In certain embodiments, R4 and R5 are methyl; R6 is 2-hydroxypropyl; Z is —NH-AA1-AA2-AA3-AA4-AA5-AA6-C(O)-Q-X—Y—C(O)—W; AA1 is glycine; AA2 is a bond; AA3 is a bond; AA4 is phenylalanine; AA5 is leucine, AA6 is glycine; -Q-X—Y— is







embedded image



and W is




embedded image




    • In certain embodiments, -Q-X—Y— is a self-immolating linker that releases the MetAP2 inhibitor in the form of a carbamate derivative, as shown in the scheme below:







embedded image


Another aspect of the present invention relates to a compound or pharmaceutically acceptable salt thereof, represented by

Z-Q-X—Y—C(O)—W

    • wherein, independently for each occurrence,
    • Z is H2N-AA6-C(O)— or H;
    • AA6 is alanine, asparagine, citrulline, glutamine, glycine, leucine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine or H2N(CH2)mCO2H, wherein m is 2, 3, 4 or 5;
    • Q is NR, O, or S;
    • X is M-(C(R)2)p-M-J-M-(C(R)2)p-M-V;
    • M is a bond, or C(O);
    • J is a bond, or ((CH2)qQ)r, C5-C8 cycloalkyl, aryl, heteroaryl, NR, O, or S;
    • Y is NR, O, or S;
    • R is H or alkyl;
    • V is a bond or
    • R9 is alkyl, aryl, aralkyl, or a bond; or R9 taken together with Y forms a heterocyclic ring;
    • R10 is amido or a bond;
    • R11 is H or alkyl;
    • W is a MetAP2 inhibitor moiety;
    • p is 0 to 20;
    • q is 2 or 3; and
    • r is 1, 2, 3, 4, 5, or 6.
    • In certain embodiments, Z is H. In other embodiments, Z is H2N-AA6-C(O)—
    • In certain embodiments, AA6 is glycine.
    • In certain embodiments, Q is NR.
    • In certain embodiments, M is a bond.
    • In certain embodiments, J is a bond.
    • In certain embodiments, Y is NR.
    • In certain embodiments, W is:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


wherein R2 is —OH or methoxy; and R3 is H, —OH or methoxy.

    • In certain embodiments, W is




embedded image


embedded image


In certain embodiments, W is




embedded image


In certain embodiments, -Q-X—Y— is




embedded image


embedded image


embedded image


embedded image


V is




embedded image



or a bond;


R12 is H or Me; or R12 taken together with R14 forms a piperidine ring;


R11 is H or Me; and


R13 taken together with R12 forms a piperidine ring.

    • In certain embodiments, Z is H2N-AA6-C(O)—; AA6 is glycine; Q-X—Y is




embedded image



and W is




embedded image




    • In certain embodiments, Z is H; Q-X—Y is and







embedded image


W is




embedded image




    • In certain embodiments, Z is H2N-AA6-C(O)—; AA6 is glycine; Q-X—Y is







embedded image



and W is




embedded image




    • In certain embodiments, Z is H; Q-X—Y is and W is







embedded image



and W is




embedded image




    • In certain embodiments, Z is H2N-AA6-C(O)—; AA6 is glycine; Q-X—Y is;







embedded image



and W is




embedded image




    • In certain embodiments, Z is H; Q-X—Y is







embedded image



and W is




embedded image


Exemplary polymers of the invention have been described in U.S. Pat. No. 4,997,878 to Bock et al, U.S. Pat. No. 5,037,883 to Kopecek et al. U.S. Pat. No. 5,258,453 to Kopecek et al, U.S. Pat. No. 6,464,850 to Zhang et al., U.S. Pat. No. 6,803,438 to Brocchini et al., each of which is incorporated by reference in its entirety. Additional exemplary polymers have been described in Subr et al., J Controlled Release, 18, 123-132 (1992). Exemplary peptides of the invention have been described in U.S. Pat. No. 6,835,807 to Susaki et al, U.S. Pat. No. 6,291,671 to Inoue et al, U.S. Pat. No. 6,811,996 to Inoue et al, U.S. Pat. No. 7,041,818 to Susaki et al, U.S. Pat. No. 7,091,186 to Senter et al, U.S. Pat. No. 7,553,816 to Senter et al. each of which is incorporated by reference in its entirety. Additional exemplary peptides and their cleavage have been described in Shiose et al. Biol. Pharm. Bull. 30(12) 2365-2370 (2007) and Shiose et al. Bioconjugate Chem. 20(1) 60-70 (2009).


In some embodiments, the method of synthesis of the polymer may lead to the coupling of two or more polymer chains and may increase the weight average molecular weight of the polymer conjugate. It is further recognized that if this coupling occurs, the linkages will be biodegradable.


Exemplary MetAP2 inhibitors have been described in U.S. Pat. No. 6,242,494 to Craig et al, U.S. Pat. No. 6,063,812 to Hong et al, U.S. Pat. No. 6,887,863 to Craig et al, U.S. Pat. No. 7,030,262 to BaMaung et al., U.S. Pat. No. 7,491,718 to Comess et al, each of which is incorporated by reference in its entirety. Additional exemplary MetAP2 inhibitors have been described in Wang et al. “Correlation of tumor growth suppression and methionine aminopeptidase-2 activity blockade using an orally active inhibitor,” PNAS 105(6) 1838-1843 (2008); Lee at al. “Design, Synthesis, and Antiangiogenic Effects of a Series of Potert Novel Fumagillin Analogues,” Chem. Pharm. Bull. 55(7) 1024-1029 (2007); Jeong et al. “Total synthesis and antiangiogenic activity of cyclopentane analogues of fumagillol,” Bioorganic and Medicinal Chemicistry Letters 15, 3580-3583 (2005); Arico-Muendel et al. “Carbamate Analogues of Fumagillin as Potert, Targeted Inhibitors of Methionine Aminopeptidase-2,” J. Med. Chem. 52, 8047-8056 (2009); and International Publication No. WO 2010/003475 to Heinrich et al.


Because the scientific literature has established a causal link between inhibition of MetAP2 and the resultant inhibition of endothelial cell proliferation and angiogenesis, it can be inferred that the MetAP2 inhibitors described herein possess antiangiogenic activity. As angiogenesis inhibitors, such compounds are useful in the treatment of both primary and metastatic solid tumors, including carcinomas of breast, colon, rectum, lung, oropharynx, hypopharynx, esophagus, stomach, pancreas, liver, gallbladder and bile ducts, small intestine, urinary tract (including kidney, bladder, and urothelium), female genital tract (including cervix, uterus, and ovaries as well as choriocarcinoma and gestational trophoblastic disease), male genital tract (including prostate, seminal vesicles, testes, and germ cell tumors), endocrine glands (including the thyroid, adrenal, and pituitary glands), and skin, as well as hemangiomas, melanomas, sarcomas (including those arising from bone and soft tissues as well as Kaposi's sarcoma) and tumors of the brain, nerves, eyes, and meninges (including astrocytomas, gliomas, glioblastomas, retinoblastomas, neuromas, neuroblastomas, Schwannomas, and meningiomas). Such compounds may also be useful in treating solid tumors arising from hematopoietic malignancies such as leukemias (i.e., chloromas, plasmacytomas and the plaques and tumors of mycosis fungosides and cutaneous T-cell lymphoma/leukemia) as well as in the treatment of lymphomas (both Hodgkin's and non-Hodgkin's lymphomas). In addition, these compounds may be useful in the prevention of metastases from the tumors described above either when used alone or in combination with radiotherapy and/or other chemotherapeutic agents. The compounds of the invention can also be useful in the treatment of the aforementioned conditions by mechanisms other than the inhibition of angiogenesis.


Further uses include the treatment and prophylaxis of diseases such as blood vessel diseases such as hemagiomas, and capillary proliferation within atherosclerotic plaques; Osier-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; and wound granulation. Other uses include the treatment of diseases characterized by excessive or abnormal proliferation of endothelial cells, including not limited to intestinal adhesions, Crohn's disease, atherosclerosis, scleroderma, and hypertrophic scars, i.e., keloids. Another use is as a birth control agent, by inhibiting ovulation and establishment of the placenta. The compounds of the invention are also useful in the treatment of diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (Rochele minutesalia quintosa) and ulcers (Helicobacter pylori). The compounds of the invention are also useful to reduce bleeding by administration prior to surgery, especially for the treatment of resectable tumors.


Another aspect of the present invention relates to a pharmaceutical composition, comprising any one of the compounds described herein, and a pharmaceutically acceptable carrier or excipient. In certain embodiments, the pharmaceutical composition comprises DMSO.


Yet another aspect of the present invention relates to a method of treating a disease or condition by administering to a subject in need thereof a therapeutically effective amount of a compound or composition described herein, wherein the disease is cancer, a disease characterized by irregular vasculature, a disease or condition characterized by hyperpermeable vasculature, cardiovascular, coronary vasculitis, pleural effusion, IL-2 associated edema, edema, or transplant rejection. In certain embodiments, the disease is a solid tumor. In certain embodiments, the solid tumor is a melanoma, metastases, adenocarcinoma, sarcoma, thymoma, lymphoma, lung tumor, liver tumor, colon tumor, kidney tumor, non-Hodgkin's lymphoma, Hodgkin's lymphoma, leukemia, uterine tumor, breast tumor, testicular tumor, bone tumor, muscle tumor, tumor of the head and neck, esophagus tumor, thyroid tumor, nasopharyngeal tumor, endocrine tumor, brain tumor, tumor of the skin, soft tissue tumor, tumor of the placenta or gastric tumor.


Another aspect of the present invention relates to a method of treating an angiogenic disease by administering to a subject in need thereof a therapeutically effective amount of a compound or composition described herein.


Another aspect of the present invention relates to a method of treating cancer by administering to a subject in need thereof a therapeutically effective amount of a compound or composition described herein. In certain embodiments, the cancer is adenocarcinoma, anal, astrocytoma, bladder, blood, bone, brain, breast, carcinoma, colon, cervical, endocrine, endometrial, esophageal, eye, gastric, genital, head and neck, hemangioma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, kidney, laryngeal, leukemia, liver, lung, lymphoma, melanoma, mesothelioma, metastatic, mouth, muscle, myeloma, nasal, nasopharyngeal, oral, ovarian, pancreatic, penile, placenta, prostate, rectal, renal, sarcoma, skin, soft tissue, testicular, throat, thymoma, thyroid, transitional cell, ureter, uterine or vaginal.


Another aspect of the present invention relates to a method of treatment or inhibition of an undesirable proliferation of cells by administering to a subject in need thereof a therapeutically effective amount of a compound or composition described herein.


The compounds of the present invention are useful in inhibiting the proliferation of endothelial cells, tumor cells, smooth muscle cells, metastatic cells and others both in vitro and in vivo. Of particular interest is the prevention or inhibition of endothelial cell differentiation into capillary structures. The endothelial cells amenable to inhibition by the compounds of the invention are present at several sites in a mammal and include but are not limited to dermis, epidermis, endometrium, retina, surgical sites, gastrointestinal tract, liver, kidney, reproductive system, skin, bone, muscle, endocrine system, brain, lymphoid system, central nervous system, respiratory system, umbilical cord, breast tissue, urinary tract and the like. The methods of treatment of the present invention using the compounds described herein are particularly useful in preventing or inhibiting endothelial cell proliferation at sites of irregular vasculature, hyperpermeable vasculature, inflammation and tumorigenesis.


The compounds of the invention are particularly useful in methods of inhibiting tumorigenesis in a mammal. Tumors which may be prevented or inhibited by preventing or inhibiting tumor cell proliferation with the compound include but are not limited to melanoma, metastases, adenocarcinoma, sarcomas, thymoma, lymphoma, lung tumors, liver tumors, colon tumors, kidney tumors, non-Hodgkins lymphoma, Hodgkins lymphoma, leukemias, multiple myeloma, uterine tumors, breast tumors, prostate tumors, renal tumors, ovarian tumors, pancreatic tumors, brain tumors, testicular tumors, bone tumors, muscle tumors, tumors of the placenta, gastric tumors and the like.


In certain embodiments, the subject is a vertebrate. In certain embodiments, the vertebrate is a mammal. In certain embodiments, the mammal is a human.


In providing a mammal with one or more of the compounds described herein, the dosage of administered compound(s) will vary depending upon such factors as the mammal's age, weight, height, sex, general medical condition, previous medical history, disease progression, tumor burden, route of administration, formulation and the like. For example, a suitable dose of a compound of the invention for a mammal in need of treatment as described herein is in the range of about 0.01 mg to about 2000 mg compound per kilogram of body weight. In addition, due to the effects of being bound to the polymer, agents may be administered at lower doses than typically used in the treatment of a particular disorder. Surprisingly, in some embodiments the polymer conjugates of the invention are more active on a weight/weight basis than the corresponding small molecules.


The present invention also encompasses combination therapy in which compounds described herein are used in combination with, for example, a chemotherapeutic agent, or an anti-hypertensive agent. The therapeutic agents may also be conjugated to a polymer.


The route of administration may be intravenous (I.V.), intramuscular (I.M.), subcutaneous (S.C.), intradermal (I.D.), intraperitoneal (LP.), intrathecal (I.T.), intrapleural, intrauterine, rectal, vaginal, topical, intratumor and the like.


Definitions


The term “alkyl” refers to a fully saturated branched or unbranched carbon chain radical having the number of carbon atoms specified, or up to 30 carbon atoms if no specification is made. For example, a “lower alkyl” refers to an alkyl having from 1 to 10 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, and octyl, and those which are positional isomers of these alkyls. Alkyl of 10 to 30 carbon atoms includes decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl and tetracosyl. In certain embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C1-C30 for straight chains, C3-C30 for branched chains), and more preferably 20 or fewer. Likewise, certain cycloalkyls have from 3-10 carbon atoms in their ring structure, and may have 5, 6, or 7 carbons in the ring structure.


Unless the number of carbons is otherwise specified, “lower alkyl”, as used herein, means an alkyl group, as defined above, but having from one to ten carbons, or from one to six carbon atoms in its backbone structure such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl. Likewise, “lower alkenyl” and “lower alkynyl” have similar chain lengths. Throughout the application, certain alkyl groups are lower alkyls. In certain embodiments, a substituent designated herein as alkyl is a lower alkyl.


The term “carbocycle”, as used herein, refers to an aromatic or non-aromatic ring in which each atom of the ring is carbon.


The term “aryl” as used herein includes 5-, 6- and 7-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. Those aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles” or “heteroaromatics”. The aromatic ring can be substituted at one or more ring positions with such substituents as described above, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, heterocyclyl, aromatic or heteroaromatic moieties, —CF3, —CN, or the like. The term “aryl” also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are “fused rings”) wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls.


“Alkenyl” refers to any branched or unbranched unsaturated carbon chain radical having the number of carbon atoms specified, or up to 26 carbon atoms if no limitation on the number of carbon atoms is specified; and having 1 or more double bonds in the radical. Alkenyl of 6 to 26 carbon atoms is exemplified by hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosoenyl, docosenyl, tricosenyl and tetracosenyl, in their various isomeric forms, where the unsaturated bond(s) can be located anywhere in the radical and can have either the (Z) or the (E) configuration about the double bond(s).


The term “alkynyl” refers to hydrocarbyl radicals of the scope of alkenyl, but having one or more triple bonds in the radical.


The terms “alkoxyl” or “alkoxy” as used herein refers to an alkyl group, as defined below, having an oxygen radical attached thereto. Representative alkoxy groups include methoxy, ethoxy, propoxy, tert-butoxy and the like. An “ether” is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as can be represented by one of —O-alkyl, —O-alkenyl, —O-alkynyl, —O—(CH2)m—R1, where m and R1 are described below.


The terms “heterocyclyl” or “heterocyclic group” refer to 3- to 10-membered ring structures, more preferably 3- to 7-membered rings, whose ring structures include one to four heteroatoms. Heterocycles can also be poly cycles. Heterocyclyl groups include, for example, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, pyrimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, pyrrolidine, oxolane, thiolane, oxazole, piperidine, piperazine, morpholine, lactones, lactams such as azetidinones and pyrrolidinones, sultams, sultones, and the like. The heterocyclic ring can be substituted at one or more positions with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, sulfamoyl, sulfmyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, —CF3, —CN, or the like.


The term “alkylthio” refers to an alkyl group, as defined above, having a sulfur radical attached thereto. In certain embodiments, the “alkylthio” moiety is represented by one of —(S)-alkyl, —(S)-alkenyl, —(S)-alkynyl, and —(S)—(CH2)m—R1, wherein m and R1 are defined below. Representative alkylthio groups include methylthio, ethylthio, and the like.


As used herein, the term “nitro” means —NO2; the term “halogen” designates F, Cl, Br or I; the term “sulfhydryl” means —SH; the term “hydroxyl” means —OH; and the term “sulfonyl” means —SO2—.


The terms “amine” and “amino” are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that can be represented by the general formulae:




embedded image


wherein R3, R5 and R6 each independently represent a hydrogen, an alkyl, an alkenyl, —(CH2)m—R1, or R3 and R5 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; R1 represents an alkenyl, aryl, cycloalkyl, a cycloalkenyl, a heterocyclyl or a polycyclyl; and m is zero or an integer in the range of 1 to 8. In certain embodiments, only one of R3 or R5 can be a carbonyl, e.g., R3, R5 and the nitrogen together do not form an imide. In certain embodiments, R3 and R5 (and optionally R6) each independently represent a hydrogen, an alkyl, an alkenyl, or —(CH2)m—R1. Thus, the term “alkylamine” as used herein means an amine group, as defined above, having a substituted or unsubstituted alkyl attached thereto, i.e., at least one of R3 and R5 is an alkyl group. In certain embodiments, an amino group or an alkylamine is basic, meaning it has a pKa≥7.00. The protonated forms of these functional groups have pKas relative to water above 7.00.


The term “carbonyl” (C(O)) is art-recognized and includes such moieties as can be represented by the general formula:




embedded image


wherein X is a bond or represents an oxygen or a sulfur, and R7 represents a hydrogen, an alkyl, an alkenyl, —(CH2)m—R1 or a pharmaceutically acceptable salt, R8 represents a hydrogen, an alkyl, an alkenyl or —(CH2)m—R1, where m and R1 are as defined above. Where X is an oxygen and R7 or R8 is not hydrogen, the formula represents an “ester”. Where X is an oxygen, and R7 is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R7 is a hydrogen, the formula represents a “carboxylic acid”. Where X is an oxygen, and R8 is hydrogen, the formula represents a “formate”. In general, where the oxygen atom of the above formula is replaced by sulfur, the formula represents a “thiocarbonyl” group. Where X is a sulfur and R7 or R8 is not hydrogen, the formula represents a “thioester” group. Where X is a sulfur and R7 is hydrogen, the formula represents a “thiocarboxylic acid” group. Where X is a sulfur and R8 is hydrogen, the formula represents a “thioformate” group. On the other hand, where X is a bond, and R7 is not hydrogen, the above formula represents a “ketone” group. Where X is a bond, and R7 is hydrogen, the above formula represents an “aldehyde” group.


As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described herein above. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This invention is not intended to be limited in any manner by the permissible substituents of organic compounds. It will be understood that “substitution” or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.


The term “sulfamoyl” is art-recognized and includes a moiety that can be represented by the general formula:




embedded image



in which R3 and R5 are as defined above.


The term “sulfate” is art recognized and includes a moiety that can be represented by the general formula:




embedded image



in which R7 is as defined above.


The term “sulfamido” is art recognized and includes a moiety that can be represented by the general formula:




embedded image



in which R2 and R4 are as defined above.


The term “sulfonate” is art-recognized and includes a moiety that can be represented by the general formula:




embedded image



in which R7 is an electron pair, hydrogen, alkyl, cycloalkyl, or aryl.


The terms “sulfoxido” or “sulfmyl”, as used herein, refers to a moiety that can be represented by the general formula:




embedded image



in which R12 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aralkyl, or aryl.


Analogous substitutions can be made to alkenyl and alkynyl groups to produce, for example, aminoalkenyls, aminoalkynyls, amidoalkenyls, amidoalkynyls, iminoalkenyls, iminoalkynyls, thioalkenyls, thioalkynyls, carbonyl-substituted alkenyls or alkynyls.


As used herein, the definition of each expression, e.g., alkyl, m, n, etc., when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.


For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 67th Ed., 1986-87, inside cover.


The phrase “pharmaceutically acceptable” is employed herein to refer to those ligands, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals, substantially non-pyrogenic, without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject chemical from one organ or portion of the body, to another organ or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation, not injurious to the patient, and substantially non-pyrogenic. Some examples of materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose, and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter, DMSO and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations. In certain embodiments, pharmaceutical compositions of the present invention are non-pyrogenic, i.e., do not induce significant temperature elevations when administered to a patient.


The term “pharmaceutically acceptable salts” refers to the relatively non-toxic, inorganic and organic acid addition salts of the inhibitor(s). These salts can be prepared in situ during the final isolation and purification of the inhibitor(s), or by separately reacting a purified inhibitor(s) in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts, and the like. (See, for example, Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66:1-19)


In other cases, the compounds useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases. The term “pharmaceutically acceptable salts” in these instances refers to the relatively non-toxic inorganic and organic base addition salts of an inhibitor(s). These salts can likewise be prepared in situ during the final isolation and purification of the inhibitor(s), or by separately reacting the purified inhibitor(s) in its free acid form with a suitable base, such as the hydroxide, carbonate, or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts, and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, and the like (see, for example, Berge et al., supra).


A “therapeutically effective amount” of a compound, with respect to use in treatment, refers to an amount of a compound in a preparation which, when administered as part of a desired dosage regimen (to a mammal, preferably a human) alleviates a symptom, ameliorates a condition, or slows or prevents the onset of disease conditions according to clinically acceptable standards for the disorder or condition to be treated or the cosmetic purpose, e.g., at a reasonable benefit/risk ratio applicable to any medical treatment. A “therapeutically effective amount” is synonymous with “efficacious dose”.


A “patient” or “subject” to be treated by the subject method can mean either a human or non-human subject.


The term “prophylactic or therapeutic” treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, (i.e., it protects the host against developing the unwanted condition), whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).


The term “amino acid” is intended to embrace all compounds, whether natural or synthetic, which include both an amino functionality and an acid functionality, including amino acid analogs and derivatives. In certain embodiments, the amino acids contemplated in the present invention are those naturally occurring amino acids found in proteins, or the naturally occurring anabolic or catabolic products of such amino acids, which contain amino and carboxyl groups. Naturally occurring amino acids are identified throughout by the conventional three-letter and/or one-letter abbreviations, corresponding to the trivial name of the amino acid, in accordance with the following list. The abbreviations are accepted in the peptide art and are recommended by the IUPAC-IUB commission in biochemical nomenclature.


By the term “amino acid residue” is meant an amino acid. In general the abbreviations used herein for designating the naturally occurring amino acids are based on recommendations of the IUPAC-IUB Commission on Biochemical Nomenclature (see Biochemistry (1972) 11:1726-1732). For instance Met, He, Leu, Ala and Gly represent “residues” of methionine, isoleucine, leucine, alanine and glycine, respectively. By the residue is meant a radical derived from the corresponding a-amino acid by eliminating the OH portion of the carboxyl group and the H portion of the a-amino group.


The term “amino acid side chain” is that part of an amino acid residue exclusive of the backbone, as defined by K. D. Kopple, “Peptides and Amino Acids”, W. A. Benjamin Inc., New York and Amsterdam, 1966, pages 2 and 33; examples of such side chains of the common amino acids are —CH2CH2SCH3 (the side chain of methionine), —CH2(CH3)—CH2CH3 (the side chain of isoleucine), —CH2CH(CH3)2 (the side chain of leucine) or H— (the side chain of glycine). These side chains are pendant from the backbone Cα carbon.


The term “peptide,” as used herein, refers to a sequence of amino acid residues linked together by peptide bonds or by modified peptide bonds. The term “peptide” is intended to encompass peptide analogs, peptide derivatives, peptidomimetics and peptide variants. The term “peptide” is understood to include peptides of any length. Peptide sequences set out herein are written according to the generally accepted convention whereby the N-terminal amino acid is on the left, and the C-terminal amino acid is on the right (e.g., H2N-AA1-AA2-AA3-AA4-AA5-AA6-CO2H).


Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.


If, for instance, a particular enantiomer of a compound of the present invention is desired, it may be prepared by asymmetric synthesis or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomer. Alternatively, where the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomer.


EXEMPLIFICATION

The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.


General Procedures


Tangential Flow Filtration (TFF) was used to purify the polymer products of the invention. TFF was performed with a Pall Minimate™ Capsule and Minimate™ TFF system according to the manufacturer's instructions. Either a Minimate TFF Capsule with 5 kDa Omega membrane (5K) or Minimate TFF Capsule with 10 kDa Omega membrane (10K) cartridge was used for purification. In all cases, the permeate was discarded and the retertate lyophilized to yield the polymer product. Structures of products were confirmed by lH NMR, small molecules were also characterized by MS. Polymer weights reported in the examples were not corrected for water contert.


Carbamoylfumagillol and chloroacetylcarbamoylfumagillol can be prepared according to the methods disclosed in U.S. Pat. No. 5,166,172 (Kishimoto, et al., incorporated herein by reference). p-Nitrophenyl fumagill-6-yl carbonate can be prepared according to published procedures. (See Han, C. et al. Biorg. Med. Chem. Lett. 2000, 10, 39-43). MA-GFLG-ONp can be prepared according to the methods disclosed in U.S. Pat. No. 5,258,453 (Kopecek et al. incorporated herein by reference.)


Example 1: Synthesis of poly(HPMA-co-MA-GFLG-ONp)



embedded image


A mixture of hydroxypropylmethacrylamide (HPMA, 22.16 g, 155 mmol), N-methyacryl-gly-phe-leu-gly p-nitrophenyl ester (MA-GFLG-ONp, 10.00 g, 17.19 mmol), AIBN (1.484 g, 9.037 mmol) and acetone (225 g) was degassed (freeze, pump, thaw, 4 cycles). The resulting reaction mixture was stirred at 50° C. for 48 hours, then cooled to room temperature. The desired product was purified by trituration with acetone, then dried under vacuum to yield 17.6 g of poly(HPMA-co-MA-GFLG-ONp) as a white solid. The structure was verified by 1H NMR and the product shown to be free from substantial impurities (e.g., p-nitrophenol). Based on UV absorbance, the copolymer contained 0.47 mmoles of p-nitrophenyl ester per gram of polymer. The copolymer of this example is used in most of the subsequent examples. A wide range of copolymers based on different monomers and/or monomer ratios may be made following this procedure by adjusting the stoichiometry and/or using different monomers.


Example 2: Synthesis of poly(HPMA-co-MA-GFLG-OH)

Poly(HPMA-co-MA-GFLG-ONp) (700 mg) was added portionwise to a solution of 0.1 M NaOH (11.3 mL) at 0° C. The yellow reaction mixture was stirred at 0° C. for 0.5 hours, then at room temperature for 4 hours. One-half of the solution was acidified with 0.1 M HCl to pH=6. The aqueous phase was extracted with ethyl acetate to remove excess p-nitrophenol. The aqueous phase was lyophilized to afford poly(HPMA-co-MA-GFLG-OH) as a colorless solid (360 mg).


Example 3: Synthesis of poly(HPMA-co-MA-GFLG-NHCH2CH2N(Me)BOC) and General Procedure A



embedded image


A solution of poly(HPMA-co-MA-GFLG-ONp) (1.0 g, 0.534 mmol) in DMF (6 mL) and H2O (10 mL) was added dropwise over a 15 minute interval to a solution of tert-butyl N-(2-aminoethyl)-N-methylcarbamate (0.20 g, 1.15 mmol) in water (20 mL) at 0° C. The reaction mixture was stirred at 0° C. for 15 minutes, then warmed to room temperature and stirred for 12 hours. The solvents were evaporated under reduced pressure. The resulting residue was dissolved in water (50 mL), the pH was adjusted to approximately 8.0 with 0.1 M NaOH. The solution was filtered through a VacuCap filter, then purified using TFF (10 K). The polymer-containing solution was washed (as part of the TFF process) with 25 mM NaCl solution (800 mL) to remove p-nitrophenol, the pH of the solution was adjusted to approximately 4 with 0.1 M HCl, and then washed (as part of the TFF process) with water (400 mL). The polymer solution was lyophilized to isolate the compound poly(HPMA-co-MA-GFLG-NHCH2CH2N(Me)BOC) as a pale yellow solid (720 mg, 71%).


Example 4: Synthesis of poly(HPMA-co-MA-GFL G-NHCH2CHAHMe)



embedded image


A solution of poly(HPMA-co-MA-GFLG-NHCH2CH2N(Me)BOC) (260 mg, 0.136 mmol) in D2O (5.2 mL) was irradiated with microwave radiation at 150° C. with stirring for 6 hours. The 1H NMR of this material indicated that deprotection of BOC group had occurred. The aqueous solution was lyophilized to isolate the poly(HPMA-co-MA-GFLG-NHCH2CH2NHMe) as a pale yellow solid (210 mg, 85%).


Example 5: Synthesis of N-({[2-(acetylamino)ethyl](methyl)amino}acetyl)carbamoylfumagillol and General Procedure B



embedded image


Diisopropylethylamine (DIEA) (130 mg) was added to a solution of N-[2-(methylamino)ethyl]acetamide hydrochloride (76 mg) and chloroacetylcarbamoylfumagillol (200 mg) in anhydrous DMF at 0° C. under N2. The reaction mixture was allowed to warm to room temperature, and stirred for 12 hours. The solvent was removed under reduced pressure and the resulting residue was suspended in water (30 mL) and extracted with EtOAc (aqueous and organic phases from the emulsion formed were separated using a centrifuge) to remove excess chloroacetylcarbamoylfumagillol. Nitrogen was passed through the aqueous solution to reduce the residual level of EtOAc. The product was purified by flash chromatography (methanol/methylene chloride) to yield N-({[2-(acetylamino)ethyl](methyl)amino}acetyl)carbamoylfumagillol (75 mg) as an off-white foam.


Example 6: BocNHCH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl (Alkylation of N-BOC, N′-methylethylenediamine with chloroacetylcarbamoylfumagillol)



embedded image


A solution of TNP-470 (0.2 g) and DIEA (0.105 g) in DMF (3 mL) was cooled to 0° C. A solution of tert-butyl N-[2-(methylamino)ethyl]carbamate (0.105 g) in DMF (3 mL) was added, and the mixture was stirred for 3 hours at 0° C. and then overnight. The reaction was diluted with ethyl acetate and extracted with water. The aqueous phase was back extracted with ethyl acetate, and the combined organic phases were extracted with brine, dried (MgSO4) and evaporated to afford an oil. Purification by silica gel chromatography (methanol/methylene chloride) and evaporation of the product fractions gave BocNHCH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl a white foam (0.16 g, 60%).


Example 7: Reaction of tert-butyl N-[2-aminoethyl] carbamate with chloroacetylcarbamoylfumagillol



embedded image


A 30 uL aliquot of a 1 M solution of Boc-ethylenediamine in DMF was added to DMF (270 uL). The solution was cooled to 0° C., and a solution of TNP-470 (48 mg) in DMF (600 uL) was added dropwise over 2 minutes. The reaction was monitored by LC/MS. The largest amount of the desired alkylation product observed was 34%. Carbamoylfumagillol was also produced. The ratio of desired product to carbamoylfumagillol was 1.0 to 0.4. Attempted isolation of the desired product resulted in the isolation of hydantoin and fumagillol.


Example 8: Synthesis poly(HPMA-co-MA-GFLG-NHCH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl)



embedded image


General Procedure B was followed using poly(HPMA-co-MA-GFLG-NHCH2CH2NHMe) (105 mg, 0.058 mmol) and chloroacetylcarbamoylfumagillol (46 mg, 0.114 mmol) in DMF (5 mL) to which DIEA (29.5 mg, 0.228 mmol) was added N2. The product was purified using TFF (5 K) by washing with water (150 mL) to remove DIEA hydrochloride. The polymer solution was lyophilized to obtain the polymer conjugate (60 mg, 48%) as a pale yellow solid.


Example 9: Synthesis of pol(HPMA-co-MA-GFLG-NHCH2CH2NH2HCl) and General Procedure C for the Reaction of Diamines with poly(HPMA-co-MA-GFLG-ONp)



embedded image


A solution of ethylenediamine (0.33 g, 5.49 mmole) in water (20 mL), pH 11.7, was adjusted to pH 9.1 by the addition of 37% aq HCl (17-18 drops). The solution was cooled in an ice bath and poly(HPMA-co-MA-GFLG-ONp) (1.03 g) in DMF (6 mL) was added dropwise over 20 minutes while maintaining the temperature below 4° C. The solution was stirred 20 minutes at 4° C., 50 minutes at room temperature to give a lemon yellow solution, pH 8.1. The solution was evaporated at 40° C. H2O (3×10 mL) was added and evaporated. The product was diluted with water (60 mL), the solution adjusted with NaOH to pH 8.0. The solution was filtered through a VacuCap filter and purified by TFF as follows. The polymer solution was first washed with 25 mM NaCl solution (800 mL) to remove p-nitrophenol. The solution was washed with water (400 mL) then adjusted to pH 4 with 0.1 M HCl. The TFF retertate was collected and the filter was washed with 2×10 mL of water. The combined retertate and washes gave a polymer solution which was lyophilized to isolate the compound poly(HPMA-co-MA-GFLG-NHCH2CH2NH2HCl) as a pale yellow solid (0.71 g, 72%).


Example 10: Synthesis of poly(HPMA-co-MA-GFLG-N(Me)CH2CH2NHMe-HCl)



embedded image


General Procedure C was followed using N,N′-dimethylethylenediamine (0.47 g, 5.36 mmol) and poly(HPMA-co-MA-GFLG-ONp) (1.0 g) to yield poly(HPMA-co-MA-GFLG-N(Me)CH2CH2NHMe HCl) as an off-white solid (0.78 g).


Example 11: Synthesis of poly(HPMA-co-MA-GFLG-N(Me)CH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl)



embedded image


General procedure B was followed using poly(HPMA-co-MA-GFLG-N(Me)CH2CH2NHMe) (200 mg, 0.108 mmol) and chloroacetylcarbamoylfumagillol (86 mg, 0.213 mmol) to yield poly(HPMA-co-MA-GFLG-N(Me)CH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl) as a pale yellow solid (180 mg).


Example 12: Synthesis of N-f (2R) 1-hydroxy-2-methylbutan-2-yl] carbamoylfumagillol and General Procedure D



embedded image


A solution of p-nitrophenyl fumagill-6-yl carbonate (400 mg, 0.89 mmol) and (R)-2-amino-3-methyl-1-butanol (280 mg, 2.71 mmol) were stirred in ethanol (10 mL) at room temperature for 12 hours. The yellow solution was concentrated and the residue purified by flash chromatography (methanol/methylene chloride) to yield N-[(2R)1-hydroxy-2-methylbutan-2-yl]carbamoylfumagillol (340 mg, 0.83 mmol) as a colorless oil.


Example 13: Synthesis of N-(6-hydroxyhexyl)carbamoylfumagillol



embedded image


General Procedure D was followed using p-nitrophenyl fumagill-6-yl carbonate (150 mg) in ethanol (10 mL) and 6-aminohexanol (48 mg). The product was isolated as a colorless oil (110 mg, 78%).


Example 14: Synthesis of N-[1-(hydroxymethyl)cyclopenty]carbamoylfumagillol



embedded image


General Procedure D was followed using p-nitrophenyl fumagill-6-yl carbonate (100 mg) in ethanol (3 mL) and THF (1 mL) and cycloleucinol (52 mg) to afford N-[1-(hydroxymethyl)cyclopentyl]carbamoylfumagillol as an oil (50 mg).


Example 15: Synthesis of N-(1-hydroxy-2-methylpropan-2-yl)carbamoylfumagillol



embedded image


General Procedure D was followed using p-nitrophenyl fumagill-6-yl carbonate (100 mg) in ethanol (3 mL) and THF (2 mL) and 2-amino-2-methylpropanol (40 mg) to afford N-(1-hydroxy-2-methylpropan-2-yl)carbamoylfumagillol as an oil (37 mg).


Example 16: Synthesis of fumagill-6-yl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate



embedded image


General procedure D was followed. The S-prolinol (68 mg, 0.67 mmol) was reacted with p-nitrophenyl fumagill-6-yl carbonate (150 mg, 0.335 mmol) in ethanol (4 mL) The product was purified by flash chromatography (methanol/methylene chloride) to yield fumagill-6-yl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate as a white foam (81 mg, 63%).


Example 17: Synthesis of fumagill-6-yl (2S)-2-({[(chloroacetyl)carbamoyl]oxy}methyppyrrolidine-1-carboxylate



embedded image


A solution of fumagill-6-yl (2S)-2-(hydroxymethyl)pyrrolidine-1-carboxylate (330 mg) in methylene chloride (2.1 mL) was cooled to 0° C. and chloroacetylisocyanate (115 mg) in methylene chloride (1.5 mL) was added dropwise. After 40 minutes, the mixture was diluted with methylene chloride (20 mL) and the organic phase washed with water (3×). The organic phase was dried (Na2SO4) and evaporated to yield fumagill-6-yl (2S)-2-({[(chloroacetyl)carbamoyl]oxy}methyl)pyrrolidine-1-carboxylate as a white foam (400 mg).


Example 18: Synthesis of poly[HPMA-co-MA-GFLG-NCH2CH2N(Me)-acetylcarbamoyl-[(2R)-1-hydroxy-3-methylbutan-2-yl]carbamoylfumagillol]



embedded image


General procedure B was followed using chloroacetylcarbamoyl[(2R)-1-hydroxy-3-methylbutan-2-yl]carbamoylfumagillol (120 mg) (and poly(HPMA-co-MA-GFLG-NHCH2CH2NHMe) (200 mg) with DIEA (57 mg) in DMF (5 mL) to yield 2-poly[HPMA-co-MA-GFLG-NCH2CH2N(Me)]-acetylcarbamoyl-[1-hydroxy-3-methylbutan-2-yl]carbamoylfumagillol (200 mg, 80%).


Example 19: Synthesis of fumagill-6-yl 2-(poly[HPMA-co-MA-GFLG-NCH2CH2N(Me)]-acetylcarbamoylhydroxymethy)pyrrolidine-1-carboxylate)



embedded image


General procedure B was followed using the fumagill-6-yl (2S)-2-(chloroacetylcarbamoylhydroxymethyl)pyrrolidine-1-carboxylate (90 mg) (and poly(HPMA-co-MA-GFLG-NHCH2CH2NHMe) (200 mg) with DIEA (57 mg) in DMF (5 mL) to yield fumagill-6-yl 2-poly [HPMA-co-MA-GFLG-NCH2CH2N(Me)]-acetylcarbamoylhydroxymethyl)pyrrolidine-1-carboxylate as a pale yellow solid (150 mg, 60%).


Example 20: Synthesis of N-(6-aminohexyl)carbamoylfumagillol



embedded image


A solution of 1,6-diaminohexane (0.13 g) in methanol (8 mL) was cooled to 0° C. and p-nitrophenyl fumagill-6-yl carbonate (0.13 g) in methanol (2 mL) was added dropwise. The solvent was reduced to about 2 mL by rotary evaporation. Ethyl acetate was added and the organic phase was washed with water, 0.1 N NaOH, water, brine and dried with sodium sulfate. The solvent was evaporated and the residue dissolved in ethanol (15 mL). DL-tartaric acid (16 mg) was added, the solution was stored overnight and then evaporated to about 0.5 mL. Ether was added and a white solid formed. The solid was collected by filtration, washed with ether and dried to yield the tartrate salt of N-(6-aminohexyl)carbamoylfumagillol (74 mg).


Example 21: Synthesis of poly [HPMA-co-MA-GFLG-NH(CH2)6NH2HCl]

General Procedure C was followed using 1,6-diaminohexane (621 mg, 5.36 mmol) and poly(HPMA-co-MA-GFLG-ONp) (1.0 g). The crude product was purified by TFF (5 K) using aqueous NaCl (25 mM) and then acidified to pH 4.0 with 0.1 M HCl and further purified by TFF with water to yield poly[HPMA-co-MA-GFLG-NH(CH2)6NH2HCl as an off-white solid (860 mg).


Example 22: Synthesis of p-nitrophenyl N-[(2R) 1-hydroxy-2-methylbutan-2-yl]carbamoylfumagill-6-yl carbonate and General Procedure E



embedded image


To a solution of the alcohol N-[(2R)1-hydroxy-2-methylbutan-2-yljcarbamoylfumagillol (1.11 g) in methylene chloride at 0° C. under N2 was added DMAP (660 mg, 5.40 mmol) followed by the portionwise addition of p-nitrophenyl chloro formate (810 mg). The reaction mixture was stirred at 0° C. for 1 hour. The solvent was evaporated and the resulting residue was dissolved in EtOAc and washed with water, brine and dried (Na2SO4). Evaporation of EtOAc provided the crude product, which was purified by flash chromatography (silica, eluting with 100% hexanes and then with 2-30% EtOAc). The fractions containing pure product were combined and evaporated to isolate N-[(2R)1-(p-nitrophenolcarbonylhydroxy-2-methylbutan-2-yl]carbamoylfumagillol (1.25 g, 80%) as a white solid.


Example 23: Synthesis of N-[1-(p-nitrophenoxycarbonylhydroxymethyl)-2-methylpropan-2-yl)carbamoylfumagillol



embedded image


Following General Procedure E, dimethylalcohol (60 mg), p-nitrophenyl fumagill-6-yl carbonate (46 mg), and DMAP (37 mg) were reacted in methylene chloride (8 mL). The reaction mixture was diluted with ethyl acetate and washed with water (3×) and then brine. The organic phase was dried (Na2SO4) and evaporated to a yellow foam (87 mg) which was used without further purification.


Example 24: Synthesis of N-[1-(p-nitrophenoxycarbonylhydroxymethyl)cyclopentyl]carbamoylfumagillol



embedded image


Following General Procedure E, N-[1-(hydroxymethyl)cyclopentyl]carbamoylfumagillol (product from Example 14, 74 mg), p-nitrophenyl chloroformate (53 mg), and DMAP (43 mg) were reacted in methylene chloride (5 mL). After the extractive workup, N-[1-(p-nitrophenoxycarbonylhydroxymethyl)cyclopentyl]carbamoylfumagillol (100 mg) was used without further purification.


Example 25: Synthesis of poly[HPMA-co-MA-GFLG-NH(CH2)6NHcarbamoyl-[1-hydroxy-3-methylbutan-2-yl]carbamoylfumagillol] and General Procedure F



embedded image


To a solution of polymer (400 mg) and p-nitrophenyl N-[(2R)1-hydroxy-3-methylbutan-2-yl]carbamoylfumagill-6-yl carbonate (240 mg) in DMF (8 mL) at 0° C. was added DIEA (0.11 g) dropwise. The solution was stirred at 0° C. for one hour and allowed to warm to room temperature. After 3 days, the solvent was evaporated and water (80 mL) was added. The aqueous phase was extracted with ethyl acetate (500 mL total) until none of the starting carbonate was detectable by MS. The aqueous phase was purified by TFF (10 K) and the retertate lyophilized to yield the conjugate as a white solid (380 mg, 77%).



1H NMR (DMSO-d6): δ 8.25 (bs, 2H, amide-NH), 8.0 (bs, 1H, amide-NH), 7.70 (bs, 2H, amide-NH), 7.10-7.30 (m, 15H, Phenylalanine and amide-NH), 7.10 (bt, 1H, NH-Fum), 6.92 (bd, 1H, NH-Fum), 5.26 (m, H-5-Fum), 5.18 (bt, alkene-Fum), 4.50-4.80 (m, 1H, phenylalanine alpha proton), 4.0-4.21 (m, 1H, leucine alpha proton), 3.50-3.84 (m, 19H), 3.29 (s, 3H, OMe-Fum), 2.80-3.10 (m, 28H), 2.51 (d, 1H, J=4.4 Hz, H-2-Fum), 2.19 (m, 2H, allylic-Fum), 0.82-1.92 [m, 131H {1.84 (m, 2H, Fum), 1.72 (s, 3H, Fum-Me), 1.60 (s, 3H, Fum-Me), 1.09 (s, 3H, Fum-Me), 0.84 (dd, 6H, Fum-isopropyl}].


Example 26: Synthesis of poly[HPMA-co-MA-GFLG-N-(2-aminoethyl)carbamoylfumagillol]



embedded image


General procedure F was followed using poly(HPMA-co-MA-GFLG-NHCH2CH2NH2HCl) (200 mg), p-nitrophenyl fumagill-6-yl carbonate (100 mg) and DIEA (57 mg) in DMF (10 mL). The product was purified by TFF (10 K) with water and lyophilized to yield the conjugate as a pale yellow solid (160 mg).


Example 27: Synthesis of poly[HPMA-co-MA-GFLG-N(Me)-(2-methylaminoethyl)carbamoylfumagillol]



embedded image


General procedure F was followed using poly(HPMA-co-MA-GFLG-N(Me)CH2CH2NHMe HCl) (200 mg), p-nitrophenyl fumagill-6-yl carbonate (100 mg) and DIEA (57 mg) in DMF (5 mL). The product was purified using TFF (10 K) with water and lyophilized to yield the conjugate as an off-white solid (180 mg).


Example 28: Synthesis of poly(HPMA-co-MA-GFLG-N-(2-aminoethyl)carbamoyldihydrofumagillol



embedded image


General procedure F was followed using poly(HPMA-co-MA-GFLG-NHCH2CH2NH2 HCl) (200 mg), p-nitrophenyl dihydrofumagill-6-yl carbonate (200 mg) and DIEA (57 mg) in DMF (10 mL). The product was purified by TFF (10 K) with water (150 mL) and lyophilized to yield poly(HPMA-co-MA-GFLG-N-(2-aminoethyl)carbamoyldihydrofumagillol as a pale yellow solid (160 mg).


Example 29: Synthesis of poly[HPMA-co-MA-GFLG-N-(3-aminopropyl)carbamoylfumagillol]



embedded image


General procedure F was followed using poly(HPMA-co-MA-GFLG-NHCH2CH2 CH2NH2HCl) (220 mg), p-nitrophenyl fumagill-6-yl carbonate (110 mg) and DIEA (63 mg) in DMF (6 mL). The solvent was evaporated and the resulting solution diluted with water. The aqueous phase was extracted with ethyl acetate and purified by TFF using 350 mL of water. The retertate was lyophilized to yield poly[HPMA-co-MA-GFLG-N-(3-aminopropyl)carbamoylfumagillol] as a light pink powder (200 mg).


Example 30: Synthesis of poly[HPMA-co-MA-GFLG-N-(6-aminohexyl)carbamoylfumagillol]



embedded image


General procedure F was followed using poly[HPMA-co-MA-GFLG-N-(6-aminohexylamine.HCl)] (1.0 g), p-nitrophenyl fumagill-6-yl carbonate (0.48 g) and DIEA (0.27 g) in DMF (25 mL). The solvent was evaporated and the solution diluted with water. The aqueous phase (300 mL) was extracted with ethyl acetate (700 mL total) and purified by TFF using an additional 350 mL of water. The retertate was lyophilized to yield poly[HPMA-co-MA-GFLG-N-(6-aminohexyl)carbamoylfumagillol] as a light pink solid (0.9 g).



1H NMR (DMSO-d6): δ 8.10-8.35 (m, 3H, amide-NH), 7.90-8.10 (m, amide-NH), 7.05-7.32 (m, 22H, amide-NH) 5.27 (m, H-5-Fum), 5.18 (bt, alkene-Fum), 4.60-4.90 (m, 14H), 4.50-4.60 (m, 1H, phenylalanine alpha proton), 4.10-4.30 (m, 1H, leucine alpha proton), 3.40-3.80 (m, 21H), 3.27 (s, 3H, OMe-Fum), 2.80-3.20 (m, 33H), 2.56 (d, 1H, H=3.90 Hz, H-2-Fum), 2.18 (m, 2H, allylic-Fum), 0.37-2.0 [m, 147H {1.70 (s, 3H, Fum-Me), 1.60 (s, 3H, Fum-Me), 1.07 (s, 3H, Fum-Me)}].


Example 31: Synthesis of poly[HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexyl)carbamoylfumagillol]



embedded image


General procedure F was followed using poly[HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexylamine.HCl)] (1.0 g), p-nitrophenyl fumagill-6-yl carbonate (0.48 g) and DIEA (0.27 g) in DMF 25 mL. The solvent was evaporated and the solution diluted with water. The aqueous phase (300 mL) was extracted with ethyl acetate (700 mL total) and purified by TFF using an additional 350 mL of water. The retertate was lyophilized to yield poly[HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexyl)carbamoylfumagillol] as a light pink solid (0.9 g).



1H NMR (DMSO-d6): δ 7.90-8.35 (m, 4H, amide-NH), 7.0-7.70 (m, 25H, Phenylalanine and amide-NH), 5.26 (m, H-5-Fum), 5.18 (bt, alkene-Fum), 4.60-4.90 (m, 14H), 4.50-4.60 (m, 1H, phenylalanine alpha proton), 4.10-4.30 (m, 1H, leucine alpha proton), 3.40-3.80 (m, 21H), 3.26 (s, 3H, OMe-Fum), 2.80-3.10 (m, 31H), 2.17 (m, 2H, allylic-Fum), 0.37-2.0 [m, 166H {1.69 (s, 3H, Fum-Me), 1.59 (s, 3H, Fum-Me), 1.07 (s, 3H, Fum-Me)}]


Example 32: Synthesis of poly[HPMA-co-MA-GFLG-N-12-(4-aminophenypethyl]carbamoylfumagillol]



embedded image


To a suspension of poly[HPMA-co-MA-GFLG-OH] (200 mg), N-[2-(4-aminophenyl)ethyl]carbamoylfumagillol] (100 mg) and DIEA (75 mg) in DMF (6 mL) at 0° C. was added EDCI (total 44 mg) in portions. The solution was allowed to warm to room temperature and stirred overnight. The solvent was evaporated, the residue was suspended in water and the suspension extracted with EtOAc (7 times, total 250 mL). The aqueous phase was purified by TFF (10 K) using water (350 mL). The retertate was lyophilized to afford the polymer as a white fluffy solid (170 mg).


Example 33: Synthesis of poly[HPMA-co-MA-GFLG-NH-2-[(2-(2-aminoethoxy)ethoxy)ethyl]carbamoylfumagillol]



embedded image


To a solution of 2,2′-(Ethylenedioxy)bis(ethylamine) (0.79 g, 5.34 mmol) in distilled water (20 mL) at 0° C. (pH=11.56) was added cone. HCl until pH of the solution was 9.01 (measured by pH meter). Poly(HPMA-co-MA-GFLG-ONp) (1.0 g, 0.534 mmol) in DMF (6 mL) and H2O (10 mL) was added to the amine-containing solution dropwise over a period of 15 minutes and the reaction mixture was stirred at 0° C. for 15 minutes. The reaction mixture was then allowed to warm to room temperature and stirred for 2 hours. The pH of the solution was measured to be 8.15. The reaction mixture was diluted with distilled water (300 mL) and filtered through a VacuCap filter, reaction flask was washed with water (100 mL). The polymer solution was concentrated to 40 mL by TFF (10 K) and was washed with 25 mM NaCl (800 mL) to remove p-nitrophenol, the pH was then adjusted to 4 with 0.1 M HCl and finally washed with water (400 mL). The pure polymer solution was lyophilized to isolate poly[HPMA-co-MA-GFLG-NH-2-[2-(2-aminoethoxy)ethoxy]ethylamine-HCl] as a pink solid (800 mg, 78%).


To a mixture of p-nitrophenyl fumagill-6-yl carbonate (93 mg, 0.208 mmol) and poly[HPMA-co-MA-GFLG-N-2-[(2-(2-aminoethoxy)]ethoxy)ethylamine-HCl] (200 mg, 0.104 mmol) in anhydrous DMF (5 mL) at 0° C. under N2 was added DIEA (57 mg, 0.416 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 12 hours. The solvent was removed under reduced pressure and the resulting residue was suspended in water (30 mL) and extracted with EtOAc (aqueous and organic phases from the emulsion formed were separated using centrifuge) to remove excess of p-nitrophenyl fumagill-6-yl carbonate and p-nitrophenol. Nitrogen was passed through the aqueous solution to remove traces of EtOAc and it was purified using TFF (5K) by washing it with water (150 mL) to remove DIEA hydrochloride. The polymer solution was lyophilized to obtain the desired polymer conjugate poly[HPMA-co-MA-GFLG-N-2-[2-(2-aminoethoxy)ethoxy ethyl] carbamoylfumagillol] (220 mg, 95%) as an off-white solid.


Example 34: Synthesis of poly[HPMA-co-MA-GFLG-NH-(6-aminodecyl)carbamoylfumagillolJ]



embedded image


To a mixture of p-nitrophenyl fumagill-6-yl carbonate (300 mg, 0.67 mmol) and poly[HPMA-co-MA-GFLG-N-10-[decylamine-HCl] (300 mg, 0.15 mmol; made in a similar manner to Example 33 except 1,10-diaminodecane was used as the amine) in anhydrous DMF (6 mL) at 0° C. under N2 was added DIEA (83 mg, 0.64 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 12 hours. The solvent was removed under reduced pressure and the resulting residue was suspended in water (30 mL) and extracted with EtOAc (aqueous and organic phases from the emulsion formed were separated using a centrifuge) to remove excess of p-nitrophenyl fumagill-6-yl carbonate and p-nitrophenol. Nitrogen was passed through the aqueous solution to remove traces of EtOAc. The crude aqueous solution was purified using TFF (10K) by washing with water (150 mL) to remove DIEA hydrochloride. The polymer solution was lyophilized to obtain the desired polymer conjugate poly[HPMA-co-MA-GFLG-NH-(10-aminodecyl)carbamoylfumagillol] (300 mg, 87%) as an off-white solid.


Example 35: Synthesis of N-(2-acetamidoethyl)carbamoylfumagillol



embedded image


To a solution of p-nitrophenyl fumagill-6-yl carbonate (200 mg) in ethanol (5 mL) at 0° C. was added N-(2-aminoethyl)acetamide (0.132 mL).The solution was stirred at 0° C. for one hour and overnight at room temperature. The reaction was diluted with ethyl acetate, washed with water. The aqueous phase was back extracted with ethyl acetate and the combined organic phases dried (MgS)4). The crude product was purified by flash chromatography. The product was a yellow solid (120 mg).


Example 36: Lysine Conjugate of Polymer and Met AP 2 Inhibitor Moiety



embedded image


To a solution of p-nitrophenyl fumagill-6-yl carbonate (400 mg) and N—ε-Cbz-O-methyl-L-lysine hydrochloride in DMF (10 mL) at 0° C. was added DIEA (350 mg). The reaction was warmed to room temperature and the stirred overnight. The solution was diluted with ethyl acetate, washed with 0.1 N NaOH (4×), water, and then brine. The organic phase was dried (Na2SO4), filtered and evaporated. The residue was purified by flash chromatography (silica; methanol/methylene chloride) to provide the N-ε-Cbz-O-methyl-lysine-carbonylfumagillol (550 mg).




embedded image


To a solution of N—ε-Cbz-O-methyl-lysine-carbonylfumagillol (200 mg) in ethyl acetate (10 mL) was added PtO2 monohydrate (20 mg) and the solution hydrogenated at STP for 20 minutes. Reduction of the double bond but not deprotection of the Cbz was verified by MS. The solution was filtered and evaporated. The residue was dissolved in methanol (10 mL) and 10% Pd/C (20 mg) was added. The solution was hydrogenated under STP for 5 minutes, and removal of the Cbz group confirmed by MS. The solution was filtered with celite, and evaporated to provide O-methyl-L-Lys-carbonyldihydrofumagillol as a colorless oil (0.15 g).




embedded image


To a stirred solution of O-methyl-L-Lys-carbonyldihydrofumagillol (150 mg, 0.32 mmol) in DMF (6 mL) was added poly(HPMA-co-MA-GFLG-ONp) (300 mg) at 0° C. The resulting yellow solution was allowed to warm to room temperature overnight. The solvent was evaporated and the residue suspended in water (30 mL). The suspension was extracted six times with ethyl acetate (total ethyl acetate volume=150 mL). The aqueous phase was lyophilized to provide the polymer conjugate as a white solid (180 mg, 63%).


Example 37: Aminothiophenol Cnjugate of Plymer and Met AP 2 Ihibitor Miety



embedded image


To a solution of chloroacetylcarbamoylfumagillol (500 mg) and 4-aminothiophenol (180 mg) in DMF (10 mL) at 0° C. was added DIEA (193 mg). The solution was stirred at 0° C. for 1.5 hours and then at room temperature overnight. The solution was diluted with water and extracted with ethyl acetate. Purification by flash chromatography (MeOH/CH2Cl2) followed by a second chromatography (EtOAc/hexanes) gave 4-aminophenylthioacetylcarbamoylfumagillol (460 mg).




embedded image


To a solution of poly(HPMA-co-MA-GFLG-ONp) (200 mg) and 4-aminophenylthioacetylcarbamoylfumagillol (100 mg) in DMF (5 mL) at 0° C. was added DIEA (106 mg). The solution was allowed to warm to room temperature and then heated to 50° C. and stirred overnight. The solvent was evaporated and the residue suspended in water. The suspension was extracted with ethyl acetate (150 mL). The aqueous phase was lyophilized to yield the polymer conjugate as a white solid (180 mg).


Example 38



embedded image


To a solution of poly(HPMA-co-MA-GFLG-NHCH2CH2NH2HCl) (200 mg) and N-(5-carboxypentyl)carbamoylfumagillol (96 mg) in DMF (6 mL) at 0° C. was added DIEA (104 mg) followed by N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (42 mg). The solution was allowed to warm to RT and stirred overnight. The solvent was evaporated and the residue dissolved in water (50 mL) and extracted with ethyl acetate (200 mL). The aqueous phase was purified by TFF with water (450 mL). The retertate was lyophilized to yield the polymer (200 mg) as a pale yellow solid.


Example 39



embedded image


To a solution of poly[HPMA-co-MA-GFLG-N(CH2)6NH2 HCl] (216 mg), 2-carboxyethylcarbamoylfumagillol (91 mg) in DMF (8 mL) at 0° C. was added DIEA (118 mg) followed by N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (88 mg). The solution was allowed to warm to room temperature and stirred overnight. The solvent was evaporated and the residue dissolved in water (50 mL) and extracted with ethyl acetate (200 mL). The aqueous phase was purified by TFF (10 K) with water (1 L). The retertate was lyophilized to yield the polymer (170 mg) as a pale yellow solid.


Example 40



embedded image


General Procedure F was followed using poly(HPMA-co-MA-GFLG-NHCH2CH2CH2NH2HCl) (220 mg) and carbonate (Example 24, 100 mg) in DMF (6 mL) with DIEA (63 mg). The reaction was extracted with ethyl acetate. Following TFF (10 K) purification with water, and lyophilization, the product was isolated as a light pink powder (140 mg).


Example 41

General Procedure F was followed using poly(HPMA-co-MA-GFLG-NHCH2CH2CH2NH2HCl) (200 mg) and carbonate (Example 23, 86 mg) in DMF (5 mL) with DIEA (57 mg). Extraction was performed with ethyl acetate. Following TFF purification with water, and lyophilization, the product was isolated as a light pink powder (200 mg).




embedded image


Example 42: Synthesis of poly[HPMA-co-MA-GFLG-N-(6-aminohexyl)acetamide]



embedded image


To a solution of aminohexylpolymer (600 mg) and p-nitrophenyl acetate (110 mg) in DMF (16 mL) at 0° C. was added DIEA dropwise. The solution was allowed to warm to room temperature and stirred overnight. The solvent was evaporated and the residue was dissolved in water (50 mL), filtered through a vacu-cap filter with an additional 25 mL of water. The pH was adjusted to 8.0 with 0.1 M NaOH and the solution concentrated to 50 mL (TFF). The retertate was washed with aqueous NaCl (25 mM, 450 mL) until the permeate was almost colorless and then washed with water (400 mL) to a conductivity of 0.00 μS. The retertate was lyophilized to yield 0.59 g of a pink solid.


Example 43: Aqueous Stability of Carbamoylfumagillol

A stock solution of carbamoylfumagillol in DMSO was diluted in a 15 mL polypropylene screw top tube with either 5 mL of 10 mM sodium acetate buffer at either pH 4.0 or 5.3, or potassium phosphate buffer at pH 6.7 or 8.0 at 37° C. The final concentration of carbamoylfumagillol in the buffer solution was 5 μM. At the appropriate time points, a 50 μL sample was withdrawn and diluted with three volumes of methanol containing propranolol as an internal standard (one solution was made for the entire study). The concentration of carbamoylfumagillol in the solution was analyzed by LC/MS/MS over seven days. From pH 5.3 to 8.0, less than 20% decomposition was observed over the seven day period. Estimated rate constants are presented in Table 1.









TABLE 1







Natural Rate Constant of Carbamoylfumagillol after


Incubation 37° C. in Aqueous Buffer at Various pHs











pH
Natural Rate Constant (hr−1)
T ½ (hr)







4.0
0.0054
129



5.3
0.0017
407



6.7
0.0010
728



8.0
0.0011
613







*the values in italics are approximate as the decompositions did not reach 50% in 168 hours



** The half life is calculated as 1n(2)/rate constant.






Example 44: Water in Polymer Conjugates

Selected polymers were analyzed by Karl Fisher (QTI Salem Industrial Park—Bldg. #5 Whitehouse, N.J. 08888) to determine the water contert of the polymer. The results are summarized below in Table 2.












TABLE 2







Sample
Water Constant %









O-7175
6.56



O-7320
9.65



O-7271
6.71



O-7376
5.13










Example 45: Reaction of Carbamoylfumagillol with 2-Mercaptopyrimidine



embedded image


A stock solution, 1 mg/mL, of 2-mercaptopyrimidine (2.2 mL) in methanol-D4 was added to carbamoylfumagillol (6.4 mg). One mL of the resulting solution was removed and a second portion of the stock solution was added (1 mL). Solid K2CO3 was added and the solution monitored by 1H NMR. A single product was identified, the 1:1 adduct of 2-mercaptopyrimidine and carbamoylfumagillol.


The following resonances were used to monitor the reaction by 1H NMR:


2-Mercaptopyrimidine showed resonances at 6.7 ppm (IH, H-4) and 8.1 ppm (2H, H-3, H-5).


The adduct of 2-mercaptopyrimidine showed resonances at 7.2 ppm (1H, H-4) and 8.5-8.6 ppm (2H, H-3, H-5).


Example 46: Reaction of Polymer Conjugates with 2-Mercaptopyrimidine

A stock solution, 1 mg/mL, of 2-mercaptopyrimidine (1.1 mL) in methanol-D4 was added to the polymer conjugate (10 mg). The solution was stirred at room temperature overnight, and analyzed by 1H NMR to determine the ratio of unreacted thiol (8.1 ppm) to reacted thiol (8.5-8.6 ppm). The amount of reacted thiol was expected to be equivalent to the quantity of fumagillol in the polymer conjugate. The acetamide capped polymer containing no epoxide showed no reaction product with 2-mercaptopyrimidine as indicated in Table 3.












TABLE 3







Sample
Reacted thiol/g polymer




















O-7175
0.37
mmols/g



O-7320
0.37
mmols/g



O-7376
<0.001
mmols/g










Example 47: Cathepsin B Release of Fumagillol Analogs

Cathepsin B (Sigma Cat # C6286 Lot #025K7672) was diluted to a 10× concentration in activation buffer consisting of approximately 400 nM enzyme, 30 mM DTT, 15 mM EDTA and acetate buffer, pH=5.5 for 15 minutes at room temperature.


The HPMA conjugates were made into a 10× stock solution in pH 5.5 buffer. The final reaction was performed by diluting the enzyme and substrate 10 fold into either buffer at pH=5.5 or pH=6.8. The final enzymatic reaction consisted of 40 nM Cathepsin B, approximately 2.5 mg/mL test agent, and buffer at 37° C. The reaction was stopped at 0, 2, 6, and 24 hour. To stop the reaction, 3 volumes of ice-cold methanol containing propranolol internal standard (at 1.0 μM) was added and left on ice. The samples were then analyzed by LC/MS/MS.


Poly[HPMA-co-MA-GFLG-N-(6-aminohexyl)carbamoylfumagillol] was shown to release N-(6-aminohexyl)carbamoylfumagillol and fumagil-6-yl {6-[(aminoacetyl)amino]hexyl}carbamate.


Poly(HPMA-co-MA-GFLG-NHCH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl) was shown to release fumagillol, carbamoylfumagillol, and fumagil-6-yl (2-aminoethyl)methylcarbamate.


Poly(HPMA-co-MA-GFLG-N(Me)CH2CH2N(Me)CH2C(O)NHC(O)2-fumagill-6-yl) was shown to release fumagillol, carbamoylfumagillol, fumagil-6-yl methyl[2-(methylamino)ethyl]carbamate, and ethyl {2-[(aminoacetyl)(methyl)amino]ethyl}methylcarbamate.


Example 48: General Materials and Methods for In Vitro Analysis

Test compounds, small molecules or polymer conjugates, were dissolved in dimethyl sulfoxide to a stock concentration of 5 mg/mL. The test agents were then diluted to an intermediate concentration at 200 μg/mL in 10% DMSO. Further dilutions were completed serially 3-fold in 10% DMSO to produce 12 decreasing concentrations for in-vitro analysis. To achieve the target concentrations of the in-vitro assays, 1 of the intermediate drug preparation was delivered to the cells (seeded in a volume of 50 μL). The final DMSO concentration for the tests was 0.2% for all doses of test agent.


Cells were exposed to twelve increasing concentrations of formulated test agent from 2×10−6 to 4.0 μg/mL for 72 hours. Following 72 hour exposure, 25 μL of CellTiter-Glo® Reagent was added to each well. The plates were incubated for 60 minutes at 37° C. in a humidified incubator. After incubation, luminescence was recorded using the Molecular Devices AnalystGT multi-mode reader.


IC50 Determination


Data are expressed as the percent cell growth of the untreated (vehicle) control calculated from the luminescence signals. The surviving fraction of cells is determined by dividing the mean luminescence values of the test agents by the mean luminescence values of untreated control. The inhibitory concentration value for the test agent(s) and control were estimated using Prism 5 software (GraphPad Software, Inc.) by curve-fitting the data using the non-linear regression analysis.


Example 49: A549 Human Non-Small Cell Lung Carcinoma Cell Viability Assay

The human tumor cell lines A549 and HCT-116 were obtained from American Type Culture Collection (Manassas, Va.). The Human umbilical vein epithelial cells (HUVEC) were obtained from Lonza (Basel, Switzerland). The A549 cells were maintained RPMI 1640 w/L-glut supplemented with 5% FBS. The HCT-116 cells were maintained in McCoy's 5a supplemented with 5% FBS. The HUVEC line was grown in Endothelial Growth Medium with supplements and growth factors (BBE, hydrocortisone, hEGF, FBS and gentamicin/amphotericin-B). All cells were house in an atmosphere of 5% CO2 at 37° C. Cells were dissociated with 0.05% Trypsin and 0.02% EDTA.


The human tumor cell line A549 was obtained from American Type Culture Collection (Manassas, Va.). The A549 cells were maintained RPMI 1640 w/L-glut supplemented with 5% FBS. A549 cells were seeded at 500 cells per well 24 hours prior to test agent exposure in a volume of 50 μL. The cells were housed in an atmosphere of 5% CO2 at 37° C. Cells were dissociated with 0.05% Trypsin and 0.02% EDTA.









TABLE 4







Table 4. A549 - Small Molecules












A549 IC50




Compound
Average ng/mL
Compound #
















0.508
O-7233




0.777
O-7299




1.50
O-7322




5.99
O-7319




23.2
O-7287




0.215
O-7177




1.06
O-7216



Carbamoylfumagillol
2.89
O-7127-1



TNP-470
8.97
O-7178



Fumagillol
30.1
O-7126-1

















TABLE 5







Table 5. 549 - Polymer Conjugates












A549 IC50




Compound
Average ng/mL
Compound #














0.86
O-7172



1.08
O-7173



0.40
O-7174



0.50
O-7175



2.57
O-7176



1.11
O-7192



0.28
O-7193



1.12
O-7195



0.67
O-7196



0.12
O-7215



0.52
O-7232



0.40
O-7234



1.16
O-7271



0.08
O-7272



0.17
O-7303



0.42
O-7304



4.00
O-7305



0.89
O-7306



0.32
O-7320



0.42
O-7321



0.98
O-7323



1.54
DRS-226-46E










Example 50: HCT-116 Human Colon Tumor Cell Viability Assay

The human tumor cell lines A549 and HCT-116 were obtained from American Type Culture Collection (Manassas, Va.). The HCT-116 cells were maintained in McCoy's 5a supplemented with 5% FBS. HCT-116 cells were seeded at 500 cells per well 24 hours prior to test agent exposure in a volume of 50 μL. The cells were housed in an atmosphere of 5% CO2 at 37° C. Cells were dissociated with 0.05% Trypsin and 0.02% EDTA.


Cells were exposed to twelve increasing concentrations of formulated test agent from 2.3×10−6 to 4.02 μg/mL for 72 hours. Following 72 hour exposure, 25 μL of CellTiter-Glo® Reagent was added to each well. The plates were incubated for 60 minutes at 37° C. in a humidified incubator. After incubation, luminescence was recorded using the Molecular Devices AnalystGT multi-mode reader.









TABLE 6







Table 6. HCT116 - Small Molecules












HCT116 IC50




Compound
Average ng/mL
Compound #
















0.236
O-7177




0.408
O-7194




0.918
O-7216



Carbamoylfumagillol
1.035
O-7127-1



TNP-470
2.64
O-7178



Fumagillol
45.8
O-7216-1

















TABLE 7







Table 7. HCT116 - Polymer Conjugates












HCT116 IC50




Compound
Average ng/mL
Compound #














0.157
O-7215



0.329
O-7193



0.392
O-7174



0.626
O-7175



0.818
O-7196



1.221
O-7172



1.051
O-7173



1.184
O-7192



1.203
O-7195



0.984
DRS-226-46E



5.954
O-7176










Example 51: Human Umbilical Vein Epithelial Cell Viability Assay

The Human umbilical vein epithelial cells (HUVEC) were obtained from Lonza (Basel, Switzerland). The HUVEC line was grown in Endothelial Growth Medium with supplements and growth factors (BBE, hydrocortisone, hEGF, FBS and gentamicin/amphotericin-B). All cells were housed in an atmosphere of 5% CO2 at 37° C. Cells were dissociated with 0.05% Trypsin and 0.02% EDTA.


HUVEC cells were seeded at 1000 cells per well 24 hours prior to test agent exposure in a volume of 50 μE. Cells were exposed to twelve increasing concentrations of formulated test agent from 2.3×10−6 to 4.02 μg/mL for 72 hours. Following 72 hour exposure, 25 of CellTiter-Glog® Reagent was added to each well. The plates were incubated for 60 minutes at 37° C. in a humidified incubator. After incubation, luminescence was recorded using the Molecular Devices AnalystGT multi-mode reader.









TABLE 8







Table 8. HUVEC - Small Molecules












HUVEC IC50




Compound
Average ng/mL
Compound #
















0.101
O-7177




0.120
O-7194




0.209
O-7216



Carbamoylfumagillol
0.086
O-7127-1



TNP-470
0.153
O-7178



Fumagillol
18.9
O-7126-1

















TABLE 9







Table 9. HUVEC - Polymer Conjugates












HUVEC IC50




Compound
Average ng/mL
Compound #














0.157
O-7215



0.329
O-7193



0.392
O-7174



0.626
O-7175



0.818
O-7196



1.221
O-7172



1.051
O-7173



1.184
O-7192



1.203
O-7195



0.984
DRS-226-46E



5.954
O-7176










Example 52: A549/HUVEC Selectivity

The ratio of the HUVEC IC50/A549 ICso is presented in Table 10 below. When compared to carbamoylfumagillol and TNP-470, the polymer conjugates are more active against the tumor cells, A549, than against the normal HUVEC cells.













TABLE 10







Compound
A549/HUVEC IC50
Compound #










IC50 ratio





2.14
O-7177




2.97
O-7194




5.06
O-7216



Carbamoylfumagillol
33.63
O-7127-1



TNP-470
58.53
O-7178



Fumagillol
1.59
O-7126-1




Polymer Conjugates




0.66
0-7215




3.13
0-7193




2.04
0-7174




2.64
0-7175




2.26
0-7196




1.52
0-7172




1.30
0-7173




1.81
0-7192




1.66
0-7195




4.33
DRS-226-46E




0.98
0-7176










Example 53: A549 Metabolites

Cells were treated as in Example 51 except that at the end of 72 hour exposure to test agent, the cells were frozen (−70° C.) and stored for subsequent evaluation by LC/MS. Metabolites identified from the cells treated with poly[HPMA-co-MA-GFLG-N-(6-aminohexyl)carbamoylfumagillol] include N-(6-aminohexyl)carbamoylfumagillol,fumagill-6-yl {6-[(aminoacetyl)amino]hexyl}carbamate, and the epoxide hydrolysis product, (35′,7aR)-7a-(hydroxymethyl)-4-methoxy-3-methyl-2-(3-methylbut-2-en-1-yl)octahydro-1-benzofuran-3-ol-5-yl 6-aminohexyl carbamate.


Example 54: In Vivo testing B16-F 10 Murine Melanoma

C57B16 female mice (N=8) were injected (tail vein) with 1×105 B16-F10 tumor cells. After one day, mice were treated with polymer conjugates as solutions in saline (IV administration, q4d, four doses except that in one group O-7175 was administered as a single dose on day 1). TNP-470 was used as a positive control, saline as a negative control. Mice were sacrificed after 15 days. Treatment outcomes were assessed by counting lung metastases.









TABLE 11







Table 11. Metastases Counts













Metastases



Group
Dose mg/kg*
Counts















Saline control
0
36.8



TNP-470
30
39.5



O-7175
50
17.0



O-7175
100
24.5



O-7175
200
20.9



O-7320
200
7.6



O-7271
200
20.0



O-7215
200
32.5



O-7175
1000
10.1







*All groups, N = 8. IV dosing q4d, days 1, 5, 9 and 13 except TNP-470 (qod) and 0-7175 at 1000 mg/kg (single dose on day 1).






Example 55: In Vivo testing C57B16 Mice—Weight Changes

C57B16 female mice (N=8) were injected (tail vein) with 1×105 B16-F10 tumor cells. After one day, mice were treated with polymer conjugates as solutions in saline (IV administration, q4d, four doses). The weight changes for three polymers relative to saline vehicle control and TNP-470 are shown in FIG. 1. Weight changes are referenced to the group weight at time zero. All polymers were dosed at 100 mg/kg. Polymer doses and the saline vehicle were administered on days 1, 5, and 9. The 100 mg/kg polymer doses and TNP-470 showed a reduction in metastases from 44-63% relative to the saline control.


Example 56: In Vivo Testing C57B16 Mice—Weight Changes

C57B16 female mice (N=8) were injected (tail vein) with 1×105 B16-F10 tumor cells. After one day, mice were treated with polymer conjugates as solutions in saline (IV administration, q4d, four doses). The weight changes for one polymer at three different doses relative to control are shown in FIG. 2. Weight changes are referenced to the group weight at time zero. The polymer doses were 50 mg/kg, or 100 mg/kg. Polymer doses were administered on days 1, 5, and 9. The 25, 50 and 100 mg/kg polymer doses and TNP-470 showed a reduction in metastases from 45-61% relative to the saline control.


Example 57: In Vivo Testing nu/nu Mice—A 549 Xenograft

Nu/nu female mice (N=8) were injected (subcutaneous right flank) with 5×106 A549 tumor cells (inoculation vehicle 50% media/matrigel, subcutaneous right flank). After the tumors reached a size of 116 mg, mice were treated with polymer conjugates as solutions in saline (20 mg/kg, IV administration, q4d, six doses) or with a control polymer without a MetAP2 inhibitory moiety (100 mg/kg, q4d) or with TNP-470 (30 mg/kg, qod, nine doses). Tumor growth was determined by measuring tumor size in two directions with calipers at intervals of a few days. The tumor size vs time is shown in FIG. 3. The doses used are summarized in the table below.














TABLE 12










Single
Total
Total





Dose
Dose
Dose



Schedule
# doses
mg/kg
mg
mmol active





TNP-470
qod
9
30
270
0.67


Polymer
Q4d
6
20
120
0.044






frequency
# doses
wt/wt
wt/wt
mol/mol





Polymer %
50%
67%
67%
44%
7%









The change in body weight vs time for the A549 Xenograft experiment is shown in FIG. 4. The mice in the active polymer treated groups show similar weight changes to the TNP-470 group and the control groups.


INCORPORATION BY REFERENCE

All of the U.S. patents and U.S. patent application publications cited herein are hereby incorporated by reference.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A method of preparing poly[HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexyl)carbamoylfumagillol]:
  • 2. The method of claim 1, wherein the p-nitrophenyl fumagill-6-yl carbonate is contacted with the poly[HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexylamine.HCl)] in the presence of a suitable base.
  • 3. The method of claim 1, wherein the p-nitrophenyl fumagill-6-yl carbonate is contacted with the poly [HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexylamine.HCl)] in the presence of a suitable solvent.
  • 4. The method of claim 3, wherein the solvent is N,N-dimethylformamide.
  • 5. The method of claim 1, wherein the p-nitrophenyl fumagill-6-yl carbonate is contacted with poly[HPMA-co-MA-GFLG-N-(trans-4-aminocyclohexylamine.HCl)] at a temperature of about 0° C. and allowed to warm to about room temperature.
  • 6. The method of claim 1, further comprising adding aqueous sodium hydroxide to give a mixture with a pH of about 8.0.
  • 7. The method of claim 6, wherein the mixture is washed with aqueous sodium chloride and treated with aqueous hydrochloric acid to give a second mixture with a pH of about 4.0.
  • 8. The method of claim 7, wherein the second mixture is washed with water.
  • 9. The method of claim 8, wherein the second mixture is lyophilized.
  • 10. The method of claim 2, wherein the suitable base is diisopropylethylamine.
  • 11. The method of claim 3, wherein the solvent is dimethyl sulfoxide.
RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 15/660,343, filed Jul. 26, 2017, now allowed, which is a continuation of U.S. patent application Ser. No. 15/065,513, filed Mar. 9, 2016, now U.S. Pat. No. 9,730,955, which is a continuation of Ser. No. 13/696,743, filed Nov. 7, 2012, now U.S. Pat. No. 9,320,805, which is a 35 U.S.C. 371 NATL phase entry of PCT/US2011/037857, filed May 25, 2011, which claims the benefit of, and priority to, United States Provisional Patent Application Ser. No. 61/347,924, filed May 25, 2010. The conterts of each of these applications are hereby incorporated by reference in their entireties.

US Referenced Citations (69)
Number Name Date Kind
4997878 Bock et al. Mar 1991 A
5037883 Kopecek et al. Aug 1991 A
5037957 Grubb et al. Aug 1991 A
5166172 Kishimoto et al. Nov 1992 A
5258453 Kopecek et al. Nov 1993 A
5773522 Angelucci et al. Jun 1998 A
6063812 Hong et al. May 2000 A
6291671 Inoue et al. Sep 2001 B1
6306819 Rubnick et al. Oct 2001 B1
6436912 Inoue et al. Aug 2002 B1
6464850 Zhang et al. Oct 2002 B1
6548477 Olson et al. Apr 2003 B1
6759509 King et al. Jul 2004 B1
6803438 Brocchini et al. Oct 2004 B1
6811788 Yu Nov 2004 B2
6811996 Inoue et al. Nov 2004 B1
6835807 Susaki et al. Dec 2004 B1
6949584 Folkman et al. Sep 2005 B2
7041818 Susaki et al. May 2006 B2
7091186 Senter et al. Aug 2006 B2
7223837 De Groot et al. May 2007 B2
7332523 Folkman et al. Feb 2008 B2
7553816 Senter et al. Jun 2009 B2
7700280 Al-Murrani Apr 2010 B2
7943569 Gemeinhart et al. May 2011 B2
8349891 Crawford et al. Jan 2013 B2
8367721 Hughes et al. Feb 2013 B2
8399512 Akullian et al. Mar 2013 B2
9173956 Petersen Nov 2015 B2
9320805 Petersen Apr 2016 B2
9433600 Petersen Sep 2016 B2
9585909 Petersen Mar 2017 B2
9730955 Petersen Aug 2017 B2
9750737 Petersen Sep 2017 B2
9757373 Petersen Sep 2017 B2
9895449 Petersen Feb 2018 B2
9969722 Petersen et al. May 2018 B2
10010544 Petersen et al. Jul 2018 B2
10159692 Petersen et al. Dec 2018 B2
20020076442 Burke et al. Jun 2002 A1
20040001801 Madison et al. Jan 2004 A1
20040116348 Chau et al. Jun 2004 A1
20040229945 Satchi-Fainaro et al. Nov 2004 A1
20050036948 Kasina et al. Feb 2005 A1
20060206948 Zhao Sep 2006 A1
20060276512 Han et al. Dec 2006 A1
20070142302 Mitra et al. Jun 2007 A1
20070287680 Cuchelkar et al. Dec 2007 A1
20080112919 Satchi-Fainaro et al. May 2008 A1
20080248030 Folkman et al. Oct 2008 A1
20090093014 Burnet et al. Apr 2009 A1
20100111894 Benny-Ratsaby et al. May 2010 A1
20110263561 Heinrich et al. Oct 2011 A1
20110294952 Petersen Dec 2011 A1
20130064832 Aikawa et al. Mar 2013 A1
20130137831 Petersen May 2013 A1
20130216494 Petersen Aug 2013 A1
20140308235 Petersen Oct 2014 A1
20150141580 Petersen et al. May 2015 A1
20150374657 Petersen Dec 2015 A1
20160184345 Petersen Jun 2016 A1
20160256483 Petersen Sep 2016 A1
20160346244 Petersen Dec 2016 A1
20170028014 Petersen Feb 2017 A1
20170196830 Shanahan et al. Jul 2017 A1
20170258925 Petersen Sep 2017 A1
20180008630 Petersen Jan 2018 A1
20180271856 Petersen et al. Sep 2018 A1
20180291010 Petersen et al. Oct 2018 A1
Foreign Referenced Citations (21)
Number Date Country
1305053 Jul 1992 CA
1431909 Jul 2003 CN
0673258 May 2003 EP
WO 2003086382 Oct 2003 WO
WO 2004110358 Dec 2004 WO
WO 2008011114 Jan 2008 WO
WO 2009036108 Mar 2009 WO
WO 2009051706 Apr 2009 WO
WO 2009073445 Jun 2009 WO
WO 2009141826 Nov 2009 WO
WO 2010003475 Jan 2010 WO
WO 2010065877 Jun 2010 WO
WO 2010096603 Aug 2010 WO
WO 2011127304 Oct 2011 WO
WO 2011150022 Dec 2011 WO
WO 2011150088 Dec 2011 WO
WO 2012122264 Sep 2012 WO
WO 2014169026 Oct 2014 WO
WO-2016103192 Jun 2016 WO
WO 2017100553 Jun 2017 WO
WO 2017123603 Jul 2017 WO
Non-Patent Literature Citations (36)
Entry
Arico-Muendel, C.C. et al., “Carbamate Analogues of Fumagillin as Potent, Targeted Inhibitors of Methionine Aminopeptidase-2”, J. Med. Chem., 52:8047-8056 (2009).
Bae, J. Diabetes and its Complications, (2016) v. 30, pp. 212-220.
Bernier, S.G. et al., “Fumagillin class inhibitors of methionine aminopeptidase-2”, Drugs of the Future, 30(5):497-508 (2005).
Blencowe, C.A. et al., “Self-immolative linkers in polymeric delivery systems”, Polym. Chem., 2:773-790 (2011).
Brakenhielm et al. “Angiogenesis Inhibitor, TNP-470, Prevents Diet-Induced and Genetic Obesity in Mice”, Circulation Research, 2004, vol. 94, p. 1579-1588.
Chau, Y. et al., “Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models”, Int. J. Cancer, 118:1519-1526 (2006).
D'Souza, A.J.M. et al., “Release from Polymeric Prodrugs: Linkages and Their Degradation”, J. Pharm. Sci., 93(8):1962-1979 (2004).
Ducry, L. and Stump, B., “Antibody-Drug Conjugates: Linking Cytotoxic Payloads to Monoclonal Antibodies”, Bioconj. Chem., 21:5-13 (2010).
Esposito et al. “The metabolic syndrome and inflammation: association or causation?” Nutr. Metab. Cardiovasc. Dis. 14(5):228-232 (2004).
Golub et al. “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring”, Science, vol. 286, (1999), pp. 531-537.
Han, C.K. et al., “Design and synthesis of highly potent fumagillin analogues from homology modeling for a human MetAP-2”, Biorg. Med. Chem. Lett., 10:39-43 (2000).
Herbst, R.S. et al., “Safety and Pharmacokinetic Effects of TNP-470, an Angiogenesis Inhibitor, Combined with Paclitaxel in Patients with Solid Tumors: Evidence for Activity in Non-Small-Cell Lung Cancer”, Journal of Clinical Oncology, 20(22):4440-4447 (2002).
Hughes, Thomas. ZGN-201 (ZGN), a Methionine Aminopeptidase 2 (MetAP2) Inhibitor, Durably Eliminates Excess Body Fat in Obese Mice Through Regulation of Fat Metabolism and Food Intake. American Diabetes Association. 2010. Abstract No. 1803-P.
Jeong, B-S. et al., “Total synthesis and antiangiogenic activity of cyclopentane analogues of fumagillol”, Bioorganic and Medicinal Chemistry Letters, 15:3580-3583 (2005).
Joharapurkar et al. “Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity.” Diabetes, Metaboloic Syndrome & Obesity: Targets and Therapy, 2014:7, pp. 73-84.
Kahn et al., “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, v. 444, 2006, pp. 840-846.
Kim et al., “5-Demethoxyfumagillol, a Potent Angiogenesis Inhibitor Isoloated from Aspergillus fumigatus”, Chem. Pharm. Bull., 52(4): 447-450 (2004).
Kim et al. “Assessment of the anti-obesity effects of the TNP-470 analog, CKD-732”, Journal of Molecular Endocrinology, 2007, vol. 38, p. 455-465.
Klok M. D. et al., “The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review”, Obesity Reviews (2007), vol. 8, pp. 21-34.
Law and Tung, “Proteolysis: A Biological Process Adapted in Drug Delivery, Therapy, and Imaging”, Bioconjugate Chem., 20:1683-1695 (2009).
Lee, H.W. et al., “Design, Synthesis, and Antiangiogenic Effects of a Series of Potent Novel Fumagillin Analogues”, Chem. Pharm. Bull., 55(7):1024-1029 (2007).
Lijnen et al. “Fumagillin Reduces Adipose Tissue Formation in Murine Models of Nutritionally Induced Obesity”, Obesity, 2010, vol. 18, No. 12, p. 2241-2246.
Mann-Steinberg and Satchi-Fainaro, “TNP-470: The Resurrection of the First Synthetic Angiogenesis Inhibitor”, Folkman and Figg, Angiogenesis: An Integrative Approach from Science to Medicine, 35:395-414 (2008).
Mason and Joyce. “Proteolytic Networks in Cancer.” Trends in Cell Biology. 21(4) pp. 228-237 (2011).
Satchi-Fainaro, R. et al., “Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470”, Nature Med., 10(3): 255-261 (2004).
Segal, E. et al., “Design and development of polymer conjugates as anti-angiogenic agents”, Adv. Drug. [deliv. Reviews, 61 (13): 1159-1176 (2009).
Shiose, Y. et al., “Relationship between Drug Release of DE-310, Macromolecular Prodrug of DX-8951f, and Cathepsins Activity in Several Tumors”, Biol. Pharm. Bull., 30(12):2365-2370 (2007).
Shiose, Y. et al., “Systematic Research of Peptide Spacers Controlling Drug Release from Macromolecular Prodrug System, Carboxymethyldextran Polyalcohol-Peptide-Drug Conjugates”, Bioconjugate Chem., 20(1):60-70 (2009).
Subr, V. et al., “Poly[M-)2-hydroxypropyl)methacrylamide] Conjugates of Methotrexate Synthesis and in vitro Drug Release”, J Controlled Release, 49:123-132 (1997).
Sutherland, J. et al. “The Metabolic Syndrome and Inflammation” Metabolic Syndrome and Related Disorders 2(2):82-104 (2004).
Anderson, “The Process of Structure-Based Drug Design”, Chemistry & Biology, 2003, vol. 10, p. 787-797.
Chang, “Common Therapeutic Target for Both Cancer and Obesity”, World Journal of Biological Chemistry, 2017, vol. 8, No. 2, p. 102-107.
Goktas et al., “Prostate Cancer and Adiponectin”, Urology, 2005, vol. 65, No. 6, p. 1168-1172.
Martyn et al. “Obesity-Induced Insulin Resistance and Hyperglycemia: Etiological Factors and Molecular Mechanisms”, Anesthesiology, 2008, vol. 109, No. 1, p. 137-148.
Thiel, “Structure-aided drug design's next generation”, Nature Biotechnology, 2004, vol. 22, No. 5, p. 513-519.
Xavier et al. “One-week intervention period led to improvements in glycemic control and reduction in DNA damage levels in patients with type 2 diabetes mellitus”, Diabetes Research and Clinical Practice, 2014, vol. 105, p. 356-363.
Related Publications (1)
Number Date Country
20190151353 A1 May 2019 US
Provisional Applications (1)
Number Date Country
61347924 May 2010 US
Continuations (3)
Number Date Country
Parent 15660343 Jul 2017 US
Child 16193253 US
Parent 15065513 Mar 2016 US
Child 15660343 US
Parent 13696743 US
Child 15065513 US