The invention relates to optical display systems, and more particularly to optical display films that contain optical elements that include birefringent polymeric fibers that are illuminated transversely.
Several different kinds of polarizing film are available for polarizing unpolarized light. Absorbing (dichroic) polarizers have, as an inclusion phase, polarization-dependent absorbing species, often an iodine-containing chain, that are aligned within a polymer matrix. Such a film absorbs light polarized with its electric field vector aligned parallel to absorbing species and transmits light polarized perpendicular to the absorbing species. Another type of polarizing film is a reflective polarizer, which separates light in different polarization states by transmitting light in one state and reflecting light in the other state. One type of reflective polarizer is a multilayer optical film (MOF), which is formed of a stack of many layers of alternating polymer materials. One of the materials is optically isotropic while the other is birefringent, with one of its refractive indices matched to that of the isotropic material. Light incident in one polarization state experiences the matched refractive indices and is substantially specularly transmitted through the polarizer. Light incident in the other polarization state, however, experiences multiple coherent or incoherent reflections at the interfaces between the different layers and is reflected by the polarizer.
Another type of reflective polarizing film is constructed from inclusions dispersed within a continuous phase matrix. The inclusions are small relative to the width and height of the film. The characteristics of these inclusions can be manipulated to provide a range of reflective and transmissive properties to the film. The inclusions constitute a disperse polymer phase within the continuous phase matrix. The inclusion size and alignment can be altered by stretching the film. Either the continuous phase or the disperse phase is birefringent, with one of the refractive indices of the birefringent material matching to the refractive index of the other phase, which is optically isotropic. Selection of the materials for the continuous and disperse phases, along with the degree of stretching, can affect the degree of birefringent refractive index mismatch between the disperse phase and the continuous phase. Other characteristics can be adjusted to improve the optical performance.
One embodiment of the invention is directed to an optical film having a polymer matrix layer at least a first multilayered fiber embedded within the matrix layer. The first multilayered fiber has layers of at least a first and a second polymer material, layers of the first polymer material being disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. The first multilayered fiber has a non-circularly symmetric cross-section having a longer dimension parallel to a first direction and a short dimension parallel to a second direction orthogonal to the first direction. The first direction is substantially parallel to the polymer matrix layer.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The present invention is applicable to optical systems and is more particularly applicable to polarized optical systems. A new type of reflective polarizing film is the fiber polarizing film, which is a matrix layer that contains multiple fibers having internal birefringent interfaces, i.e. interfaces between a birefringent material and another material. It is important that the parameters of the fibers in a fiber polarizer film are selected so as to give improved polarization characteristics.
As used herein, the terms “specular reflection” and “specular reflectance” refer to the reflectance of light rays from a body where the angle of reflection is substantially equal to the angle of incidence, where the angles are measured relative to a normal to the body's surface. In other words, when the light is incident on the body with a particular angular distribution, the reflected light has substantially the same angular distribution. The terms “diffuse reflection” or “diffuse reflectance” refer to the reflection of rays where the angle of some of the reflected light is not equal to the angle of incidence. Consequently, when light is incident on the body with a particular angular distribution, the angular distribution of the reflected light is different from that of the incident light. The terms “total reflectance” or “total reflection” refer to the combined reflectance of all light, specular and diffuse.
Similarly, the terms “specular transmission” and “specular transmittance” are used herein in refer to the transmission of light through a body where the angular distribution of the transmitted light, adjusted for any change due to Snell's law, is substantially the same as that of the incident light. The terms “diffuse transmission” and “diffuse transmittance” are used to describe the transmission of light through a body, where the transmitted light has an angular distribution that is different from the angular distribution of the incident light. The terms “total transmission” or “total transmittance” refer to the combined transmission of all light, specular and diffuse.
A reflective polarizer film 100 is schematically illustrated in
A cut-away view through a reflective polarizer body according to an exemplary embodiment of the present invention is schematically presented in
Polarizing fibers 204 are disposed within the matrix 202. The polarizing fibers 204 comprise at least two polymer materials, at least one of which is birefringent. In some exemplary embodiments, one of the materials is birefringent while the other material, or materials, is/are isotropic. In other embodiments, two or more of the materials forming the fiber are birefringent. In some embodiments, fibers formed of isotropic materials may also be present within the matrix 202.
The refractive indices in the x-, y-, and z-directions for the first fiber material may be referred to as n1x, n1y and n1z, and the refractive indices in the x-, y-, and z-directions for the second fiber material may be referred to as n2x, n2y and n2z. Where the material is isotropic, the x-, y-, and z-refractive indices are all substantially matched. Where the first fiber material is birefringent, at least one of the x-, y- and z-refractive indices is different from the others.
Within each fiber 204 there are multiple interfaces formed between the first fiber material and the second fiber material. For example, if the two materials present their x-and y-refractive indices at the interface, and n1x≠n1y, i.e. the first material is birefringent, then the interface is birefringent. Different exemplary embodiments of the polarizing fibers are discussed below.
The fibers 204 are disposed generally parallel to an axis, illustrated as the x-axis in the figure. The refractive index difference at the birefringent interfaces within the fibers 204 for light polarized parallel to the x-axis, n1x−n2x, may be different from the refractive index difference for light polarized parallel to the y-axis, n1y−n2y. The interface is said to be birefringent when the difference in refractive index at the interface is different for different directions. Thus, for a birefringent interface, Δnx≠Δny, where Δnx=|n1x−n2x| and Δny=|n1y−n2y|.
For one polarization state, the refractive index difference at the birefringent interfaces in the fibers 204 may be relatively small. In some exemplary cases, the refractive index difference may be less than 0.05. This condition is considered to be substantially index-matched. This refractive index difference may be less than 0.03, less than 0.02, or less than 0.01. If this polarization direction is parallel to the x-axis, then x-polarized light passes through the body 200 with little or no reflection. In other words, x-polarized light is highly transmitted through the body 200.
The refractive index difference at the birefringent interfaces in the fibers may be relatively high for light in the orthogonal polarization state. In some exemplary examples, the refractive index difference may be at least 0.05, and may be greater, for example 0.1, or 0.15 or may be 0.2. If this polarization direction is parallel to the y-axis, then y-polarized light is reflected at the birefringent interfaces. Thus, y-polarized light is reflected by the body 200. If the birefringent interfaces within the fibers 204 are substantially parallel to each other, then the reflection may be essentially specular. If, on the other hand, the birefringent interfaces within the fibers 204 are not substantially parallel to each other, then the reflection may be substantially diffuse. Some of the birefringent interfaces may be parallel, and other interfaces may be non-parallel, which may lead to the reflected light containing both specular and diffuse components. Also, a birefringent interface may be curved, or relatively small, in other words within an order of magnitude of the wavelength of the incident light, which may lead to diffuse scattering.
While the exemplary embodiment just described is directed to index matching in the x-direction, with a relatively large index difference in the y-direction, other exemplary embodiments include index matching in the y-direction, with a relatively large index difference in the x-direction.
The polymer matrix 202 may be substantially optically isotropic, for example having a birefringence, n3x−n3y, of less than about 0.05, and preferably less than 0.01, where the refractive indices in the matrix for the x- and y-directions are n3x and n3y respectively. In other embodiments, the polymer matrix 202 may be birefringent. Consequently, in some embodiments, the refractive index difference between the polymer matrix and the fiber materials may be different in different directions. For example, the x-refractive index difference, n1x−n3x, may be different from the y-refractive index difference, n1y−n3y. In some embodiments, one of these refractive index differences may be at least twice as large as the other refractive index difference.
In some embodiments, the refractive index difference, the extent and shape of the birefringent interfaces, and the relative positions of the birefringent interfaces may result in diffuse scattering of one of the incident polarizations more than the other polarization. Such scattering may be primarily back-scattering (diffuse reflection) forward-scattering (diffuse transmission) or a combination of both back- and forward-scattering.
Suitable materials for use in the polymer matrix and/or in the fibers include thermoplastic and thermosetting polymers that are transparent over the desired range of light wavelengths. In some embodiments, it may be particularly useful that the polymers be non-soluble in water. Further, suitable polymer materials may be amorphous or semi-crystalline, and may include homopolymer, copolymer or blends thereof. Example polymer materials include, but are not limited to, poly(carbonate) (PC); syndiotactic and isotactic poly(styrene) (PS); C1-C8 alkyl styrenes; alkyl, aromatic, and aliphatic ring-containing (meth)acrylates, including poly(methylmethacrylate) (PMMA) and PMMA copolymers; ethoxylated and propoxylated (meth)acrylates; multifunctional (meth)acrylates; acrylated epoxies; epoxies; and other ethylenically unsaturated materials; cyclic olefins and cyclic olefinic copolymers; acrylonitrile butadiene styrene (ABS); styrene acrylonitrile copolymers (SAN); epoxies; poly(vinylcyclohexane); PMMA/poly(vinylfluoride) blends; poly(phenylene oxide) alloys; styrenic block copolymers; polyimide; polysulfone; poly(vinyl chloride); poly(dimethyl siloxane) (PDMS); polyurethanes; unsaturated polyesters; poly(ethylene), including low birefringence polyethylene; poly(propylene) (PP); poly(alkane terephthalates), such as poly(ethylene terephthalate) (PET); poly(alkane napthalates), such as poly(ethylene naphthalate)(PEN); polyamide; ionomers; vinyl acetate/polyethylene copolymers; cellulose acetate; cellulose acetate butyrate; fluoropolymers; poly(styrene)-poly(ethylene) copolymers; PET and PEN copolymers, including polyolefinic PET and PEN; and poly(carbonate)/aliphatic PET blends. The term (meth)acrylate is defined as being either the corresponding methacrylate or acrylate compounds. With the exception of syndiotactic PS, these polymers may be used in an optically isotropic form.
Several of these polymers may become birefringent when oriented. In particular, PET, PEN, and copolymers thereof, and liquid crystal polymers, manifest relatively large values of birefringence when oriented. Polymers may be oriented using different methods, including extrusion and stretching. Stretching is a particularly useful method for orienting a polymer, because it permits a high degree of orientation and may be controlled by a number of easily controllable external parameters, such as temperature and stretch ratio. The refractive indices for a number of exemplary polymers, oriented and unoriented, are provided in Table 1 below.
PCTG and PETG (a glycol-modified polyethylene terephthalate) are types of copolyesters available from, for example, Eastman Chemical Co., Kingsport, Tenn., under the Eastar™ brand name. THV is a polymer of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, available from 3M Company, St. Paul, Minn., under the brand name Dyneon™. The PS/PMMA copolymer is an example of a copolymer whose refractive index may be “tuned” by changing the ratio of the constituent monomers in the copolymer to achieve a desired value of refractive index. The column labeled “S.R.” contains the stretch ratio. A stretch ratio of 1 means that the material is unstretched and unoriented. A stretch ratio of 6 means that sample was stretched to six times it original length. If stretched under the correct temperature conditions, the polymeric molecules are oriented and the material becomes birefringent. It is possible, however, to stretch the material without orienting the molecules. The column labeled “T” indicates the temperature at which the sample was stretched. The stretched samples were stretched as sheets. The columns labeled nx, ny and nz refer to the refractive indices of the material. Where no value is listed in the table for ny and nz, the values of ny and nz are the same as for nx.
The behavior of the refractive index under stretching a fiber is expected to give results similar to, but not necessarily the same as, those for stretching a sheet. Polymer fibers may be stretched to any desired value that produces desired values of refractive index. For example, some polymer fibers may be stretched to produce a stretch ratio of at least 3, and maybe at least 6. In some embodiments, polymer fibers may be stretched even more, for example to a stretch ratio of up to 20, or even more.
A suitable temperature for stretching to achieve birefringence is approximately 80% of the polymer melting point, expressed in Kelvins. Birefringence may also be induced by stresses induced by flow of the polymer melt experienced during extrusion and film formation processes. Birefringence may also be developed by alignment with adjacent surfaces such as fibers in the film article. Birefringence may either be positive or negative. Positive birefringence is defined as when the direction of the electric field axis for linearly polarized light experiences the highest refractive index when it is parallel to the polymer's orientation or aligning surface. Negative birefringence is defined as when the direction of the electric field axis for linearly polarized light experiences the lowest refractive index when it is parallel to the polymer's orientation or aligning surface. Examples of positively birefringent polymers include PEN and PET. An example of a negatively birefringent polymer includes syndiotactic polystyrene.
The matrix 202 and/or the polymer fibers 204 may be provided with various additives to provide desired properties to the body 200. For example, the additives may include one or more of the following: an anti-weathering agent, UV absorbers, a hindered amine light stabilizer, an antioxidant, a dispersant, a lubricant, an anti-static agent, a pigment or dye, a nucleating agent, a flame retardant and a blowing agent. Other additives may be provided for altering the refractive index of the polymer or increasing the strength of the material. Such additives may include, for example, organic additives such as polymeric beads or particles and polymeric nanoparticles, or inorganic additives, such as glass, ceramic or metal-oxide nanoparticles, or milled, powered, bead, flake or particulate glass, ceramic or glass-ceramic. The surface of these additives may be provided with a binding agent for binding to the polymer. For example, a silane coupling agent may be used with a glass additive to bind the glass additive to the polymer.
In some embodiments, it may be preferable that the matrix 202 or a component of the fibers 204 be non-soluble, or at least resistant to solvents. Examples of suitable materials that are solvent resistant include polypropylene, PET and PEN. In other embodiments it may be preferable that the matrix 202 or component of the polymer fibers 204 is soluble in an organic solvent. For example, a matrix 202 or fiber component formed of polystyrene is soluble in an organic solvent such as acetone. In other embodiments, it may be preferable that the matrix is water soluble. For example, a matrix 202 or fiber component formed of polyvinyl acetate is soluble in water.
The refractive index of the materials in some embodiments of optical element may vary along the length of the fiber, in the x-direction. For example, the element may not be subject to uniform stretching, but may be stretched to a greater degree in some regions than in others. Consequently, the degree of orientation of the orientable materials is not uniform along the element, and so the birefringence may vary spatially along the element.
Furthermore, the incorporation of fibers within the matrix may improve the mechanical properties of the optical element. In particular, some polymeric materials, such as polyester, are stronger in the form of a fiber than in the form of a film, and so an optical element containing fibers may be stronger than one of similar dimensions that contains no fibers. The fibers 204 may be straight, but need not be straight, for example the fibers 204 may be kinked, spiraled or crimped.
In some embodiments, some or all of the fibers present in the polarizer layer may be polymeric polarizing fibers. In other embodiments, the polarizer may also contain fibers may formed of an isotropic material, such as an isotropic polymer or an inorganic material, such as glass, ceramic or glass-ceramic. Thus use of inorganic fibers in a film is discussed more detail in U.S. patent application Ser. No. 11/125,580, filed on May 10, 2005 and incorporated herein by reference. Inorganic fibers provide additional stiffness to a polarizer layer, and resistance to curling and shape changes under differential conditions of humidity and/or temperature.
In some embodiments, the inorganic fiber material has a refractive index that matches the refractive index of the matrix, and in other embodiments the inorganic fiber has a refractive index that is different from the refractive index of the matrix. Any transparent type of glass may be used, including high quality glasses such as E-glass, S-glass, BK7, SK10 and the like. Some ceramics also have crystal sizes that are sufficiently small that they can appear transparent if they are embedded in a matrix polymer with an index of refraction appropriately matched. The Nextel™ Ceramic fibers, available from 3M Company, St. Paul, Minn., are examples of this type of material, and are already available as thread, yarn and woven mats. Glass-ceramics of interest have compositions including, but not limited to, Li2O—Al2O3—SiO2, CaO—Al2O3—SiO2, Li2O—MgO—ZnO—Al2O3SiO2, Al2O3—SiO2, and ZnO—Al2O3—ZrO2—SiO2, Li2O—Al2O3—SiO2, and MgO—Al2O3—SiO2.
The polarizer layer may include polarizing fibers that are arranged within the matrix in many different ways. For example, the fibers may be positioned randomly across the cross-sectional area of the matrix. Other, more regular, cross-sectional arrangements may be also used. For example, in the exemplary embodiment schematically illustrated in
In another exemplary embodiment, schematically illustrated in cross-section in
Additional layers of fibers may be used. For example, in the embodiment of polarizer film 320 schematically illustrated in
The polarizing fibers may be organized within the matrix as single fibers or in many other arrangements. In some exemplary arrangements, the fibers may be included in the polarizer in the form of a yarn, a tow (of fibers or yarns) arranged in one direction within the polymer matrix, a weave, a non-woven, chopped fiber, a chopped fiber mat (with random or ordered formats), or combinations of these formats. The chopped fiber mat or nonwoven may be stretched, stressed, or oriented to provide some alignment of the fibers within the nonwoven or chopped fiber mat, rather than having a random arrangement of fibers. The formation of a polarizer having an arrangement of polarizing fibers within a matrix is described more fully in U. S. patent application Ser. No. 11/068,157, filed on Feb. 28, 2005 and incorporated herein by reference.
The fibers may be included in the matrix in the form of one or more fiber weaves. A weave 400 is schematically illustrated in
In some embodiments, more than one weave may be included within a matrix. For example, a polarizer film may include one or more weaves that contain polarizing fibers and one or more weaves that contain only inorganic fibers. In other embodiments, different weaves may include both polarizing fibers and inorganic fibers. The polarizer 320 having three layers of fibers may be formed, for example, with three woven layers of fibers.
The polarizer may also be provided with structures on one or both surfaces, for example as discussed in greater detail in U.S. patent application Ser. No. 11/068,157. Such surfaces may include, for example, a brightness enhancing surface, a lensed surface, a diffusing surface and the like. Also, the density of polarizing fibers and/or other fibers need not be uniform throughout the volume of the polarizer, but may vary. In illustration, some fibers may be used to provide diffusion, either in reflection or transmission, for example to reduce the nonuniformity of the illuminance across the polarizer. This may be done to hide a light source positioned behind the polarizer, with the density of fibers being greater above the light source and being reduced away from the light source. In one exemplary embodiment the birefringent material used in a fiber is of a type that undergoes a change in refractive index upon orientation. Consequently, as the fiber is oriented, refractive index matches or mismatches may be produced along the direction of orientation and may also be produced along the non-oriented directions. By careful manipulation of orientation parameters and other processing conditions, the positive or negative birefringence of the birefringent material can be used to induce reflection or transmission of one or both polarizations of light along a given axis. The relative ratio between transmission and diffuse reflection is dependent on a number of factors such as, but not limited to, the concentration of the birefringent interfaces in the fiber, the dimension of the fiber, the square of the difference in the index of refraction at the birefringent interfaces, the size and geometry of the birefringent interfaces, and the wavelength or wavelength range of the incident radiation.
The magnitude of the index match or mismatch along a particular axis affects the degree of scattering of light polarized along that axis. In general, the scattering power varies as the square of the index mismatch. Thus, the larger the mismatch in refractive index along a particular axis, the stronger the scattering of light polarized along that axis. Conversely, when the mismatch along a particular axis is small, light polarized along that axis is scattered to a lesser extent and the transmission through the volume of the body becomes increasingly specular.
If the index of refraction of the non-birefringent material matches that of the birefringent material along some axis, then incident light polarized with electric fields parallel to this axis will pass through the fiber unscattered regardless of the size, shape, and density of the portions of birefringent material. In addition, if the refractive index along that axis is also substantially matched to that of the polymer matrix of the polarizer body, then the light passes through the body substantially unscattered. Substantial matching between two refractive indices occurs when the difference between the indices is less than at most 0.05, and preferably less than 0.03, 0.02 or 0.01.
The strength of the reflection and/or scattering is determined, at least in part, by the magnitude of the index mismatch for scatterers having a given cross-sectional area with dimensions larger than approximately λ/30, where λ is the wavelength of the incident light in the polarizer. The exact size, shape and alignment of a mismatched interface play a role in determining how much light is scattered or reflected into various directions from that interface.
Prior to use in the polarizer, the fibers may be processed by stretching and allowing some dimensional relaxation in the cross stretch in-plane direction, so that the index of refraction difference between the birefringent material and the non-birefringent materials are relatively large along a first axis and small along the other two orthogonal axes. This results in a large optical anisotropy for electromagnetic radiation of different polarizations.
The ratio of forward-scattering to back-scattering is dependent on the difference in refractive index between the birefringent and non-birefringent materials, the concentration of the birefringent interfaces, the size and shape of the birefringent interfaces, and the overall thickness of the fiber. In general, elliptical diffusers have a relatively small difference in index of refraction between the birefringent and non-birefringent materials.
The materials selected for use in the fibers in accordance with the present invention, and the degree of orientation of these materials, are preferably chosen so that the birefringent and non-birefringent materials in the finished fiber have at least one axis for which the associated indices of refraction are substantially equal. The match of refractive indices associated with that axis, which typically, but not necessarily, is an axis transverse to the direction of orientation, results in substantially no reflection of light in that plane of polarization.
One exemplary embodiment of a polarizing fiber that has internal birefringent interfaces and that is suitable for use in some embodiments of the present invention is a multilayer polarizing fiber. A multilayer fiber is a fiber that contains multiple layers of different polymer materials, at least one of which is birefringent. In some exemplary embodiments, the multilayer fiber contains a series of alternating layers of a first material and a second material, where at least one of the materials is birefringent. In some embodiments, the first material has a refractive index along one axis about the same as that of the second material and the refractive index along an orthogonal axis different from that of the second material. Layers of additional materials also be used in a multilayer fiber.
One type of multilayer fiber is referred to as a concentric multilayer fiber. In a concentric multilayer fiber, the layers may be formed completely surrounding the center core of the fiber. A cross-section through one exemplary embodiment of a concentric multilayer polarizing fiber 500 is schematically illustrated in cross-section in
The fiber 500 may be surrounded by a cladding layer 508. The cladding layer 508 may be made of the first material, the second material, the material of the polymer matrix in which the fibers are embedded, or some other material. The cladding may functionally contribute to the performance of the overall device, or the cladding may perform no function. The cladding may functionally improve the optics of the reflective polarizer, such as by minimizing the depolarization of light at the interface of the fiber and the matrix. Optionally, the cladding may mechanically enhance the polarizer, such as by providing the desired level of adhesion between the fiber and the continuous phase material. In some embodiments, the cladding 508 may be used to provide an antireflection function, for example by providing some refractive index matching between the fiber 500 and the surrounding polymer matrix.
The fiber 500 may be formed with different numbers of layers and with different sizes, depending on the desired optical characteristics of the fiber 500. For example, the fiber 500 may be formed with from about ten layers to hundreds of layers, with an associated range in thickness. Values of the fiber width may fall in a range from 5 μm to about 5000 μm, although the fiber width may also fall outside this range. In some embodiments, the layers 502, 504 may have a thickness that is a quarter-wave thickness for a particular wavelength, or wavelength range, although this is not a necessary condition for the invention. An arrangement of quarter-wavelength layers provides for coherent scattering and/or reflection, and so a large reflection/scattering effect can be obtained with fewer layers than the case where scattering/reflection is incoherent. This increases the efficiency of the polarizer and reduces the amount of materials needed to obtain a desired level of polarization. A layer is said to have a quarter-wavelength thickness when the thickness, t, is equal to one quarter of the wavelength divided by the refractive index, so t=λ/(4n), where n is the refractive index and λ is the wavelength.
A concentric multilayer fiber 500 may be fabricated by coextruding multiple layers of material into a multilayer fiber, followed by a subsequent step of stretching so as to orient the birefringent material and produce birefringent interfaces. Some examples of suitable polymer materials that may be used as the birefringent material include PET, PEN and various copolymers thereof, as discussed above. Some examples of suitable polymer materials that may be used as the non-birefringent material include the optically isotropic materials discussed above. Generally, it is found that multilayer fibers are fabricated more easily when the polymer materials used in the fiber wet to each other and have compatible processing temperatures.
Multilayer fibers having different types of cross-sections may also be used. For example, concentric fibers need not be circular in shape and may have some other shape, such as elliptical, rectangular or the like. For example, another exemplary embodiment of multilayer fiber 510, schematically illustrated in cross-section in
In some embodiments of concentric multilayer fiber, the multiple layers may be provided around a central fiber core. This is schematically illustrated in
Another exemplary embodiment of a multilayer polarizing fiber is a spiral wound fiber, described in greater detail in U.S. patent application Ser. No. 11/278,348, filed on Mar. 31, 2006 and incorporated herein by reference. An exemplary embodiment of a spiral wound fiber is schematically illustrated in
Another type of multilayer fiber is a stacked multilayer fiber, in which the layers are formed in a stack. A cross-section of one exemplary embodiment of a stacked multilayer fiber 540 is schematically illustrated in
In some embodiments, the layers in a multilayer fiber may all have the same thickness. In other embodiments, the layers in multilayer fiber are not all of the same thickness. For example, it may be desired that a polarizer is effective at polarizing light over the entire visible wavelength range, approximately 400 nm-700 nm. Therefore, a polarizer may be provided with different fibers, where each fiber has layers of a uniform thickness, but where some fibers have layers thicker than others, so that different fibers are more effective at polarizing some wavelengths rather than others. Another approach to providing wide bandwidth effectiveness is to provide a fiber having layers whose thicknesses vary over a range. For example, a multilayer fiber may be provided with many layers, where the layer thickness changes with position within the fiber. One exemplary embodiment of such a fiber 550 is schematically illustrated in cross-section in
Another exemplary embodiment of a fiber 560 having layers of different thicknesses is schematically illustrated in cross-section in
A cross-section of another embodiment of multilayer fiber 570 is schematically illustrated in
The layer thickness of a fiber may vary in different ways. For example, the layer thickness may increase or decrease gradually from the inside of the fiber to the outside, with a steady gradient. In other embodiments, the fiber may be provided with groups of layers, for example where layers in a first group have a first thickness, the layers in a second group have a second thickness different from the first thickness, and so on. A number of different layer thickness profiles are now described with reference to
In
In
In some embodiments, the layers may be formed in packets, where a number of layers of the same optical thickness are grouped together. Different packets may be associated with different optical thicknesses. An example of a fiber having a number of layer packets is shown in the profile of
The incidence of light at the edges of a multilayer polarizing fiber is now discussed with reference to
Various approaches may be used to reduce the effect of the blue shift. For example, in one approach, the multilayer fiber may be provided with layers that are quarter-wave layers for light having a longer wavelength than the range of light that is incident on the polarizer. Where the polarizer is being used in a display system, the wavelength range of light of interest is typically around 400 nm-700 nm. Thus, a multilayer fiber 704 may be provided with layers that are quarter-wavelength layers for a wavelength longer than 700 nm, at a wavelength in the near infrared range, for example up to 900 nm or beyond. If the light is incident at an angle that shifts the spectrum by, for example, less than 200 nm, then the fiber may still be effective at polarizing red light even at high angles of incidence.
Another approach to reducing the effect of the blue shift is to reduce the angle of incidence on the fiber. This may be achieved, for example, by reducing the refractive index, n1, of the matrix 722, to a value less than the refractive index of the materials of the different fiber layers 724, as schematically illustrated for polarizer 720 in
Another approach to reducing the effect of the blue shift is to provide the fiber with a low refractive index coating. This approach is schematically illustrated in
Another approach to reducing the blue shift effect is to set the appropriate direction for the gradient in layer thickness. This approach is described further with respect to
Curve 1012, in
The behavior of the fiber is different when the gradient in layer thickness is reversed, and the thinner layers are closer to the fiber core and the thicker layers are closer to the outside of the fiber. Curve 1102 in
The ratio of the forward scattered light polarized perpendicular to the fiber to the forward scattered light polarized parallel to the fiber is referred to as the Transmission Polarization Function (TPF). The ratio of the backward scattered light polarized parallel to the fiber to the backward scattered light polarized perpendicular to the fiber is referred to as the Reflection Polarization Function (RPF).
Another approach to reducing the effect of the blue shift on the characteristics of a polarizer is to use fibers that present less cross-sectional area to the incident light in which the fibers are at a high angle of incidence and present more cross-sectional area where the fibers are at a low angle of incidence. One way of achieving this is to use fibers whose cross-section is elongated in one direction relative to the other, for example as shown in
A multilayer concentric polarizing fiber was fabricated using the following process. A filament consisting of multiple, alternating concentric rings of an X polymer and a Y polymer was produced by using a die that consisted of 952 shims that were each 0.005″ (125 μm) thick. Two shims are used to produce a ring so this 952 shim die was designed to produce a filament consisting of 476 rings. Half of these rings were made from the X polymer and half from the Y polymer. This die had two inlet ports; one for the molten X polymer and one for the molten Y polymer.
The X polymer was LMPEN, a copolymer made from 90% PEN/10% PET, available from 3M Company. The Y polymer was one of the following substantially isotropic materials:
i) Eastar 6763 PETG from Eastman Chemical Company, Kingsport Tenn.;
ii) SA 115 PC/PCT-G blend from Eastman Chemical Company;
iii) Xylex 7200 PC/PCCT-G blend from G.E. Plastics Pittsfield, Mass.; and
iv) NAS 30 PS/PMMA blend from Nova Chemicals Corporation, Calgary, Alberta, Canada.
The number of layers formed can be controlled by varying the number of shims in the die and by varying process conditions such as flow rate and temperature. The design of shims in the stack can be varied to adjust the thickness profile of the fiber rings. The shims in the spinneret pack were formed using laser-cutting. The fiber die was specially designed to provide a layer thickness gradient and layer thickness ratios that would result in broadband visible Bragg interference reflection after a specific forming and stretching process.
Solidified pellets of the two polymers were separately fed to one of two twin screw extruders. These extruders operated at temperatures ranging from 260° C.-300° C. and at screw speeds ranging from 40-70 rpm. Typical extrusion pressures ranged from about 2.1×106 Pa to about 2.1×107 Pa. Each extruder was equipped with a metering gear pump which supplied a precise amount of molten polymer to the filament spinning die. The size of each metering gear pump was 0.16 cc/revolution and these gear pumps were generally operated at identical speeds ranging from 10-80 rpm. The molten polymer was transferred from the metering pumps to the die using heated, stainless steel neck tubes. The molten polymer streams entered the die and flowed through the shims. The first shim pair created the core of the filament, the second shim pair formed the first ring around the core, the third shim pair formed the second ring on the outside of the first ring, and so on and so forth until up to 476 rings had been formed. This molten, multiring filament then exited the die and was quenched in a tank of water. The filament was drawn into the water using a pull roll. The filament exited the pull roll and was wound onto a core using a level winder. The combination of the metering pump speeds and the winding speeds controls the diameter of the filament. Typical speeds for this process ranged from about 0.5 ms−1-4 ms−1.
After extrusion, the multilayer fibers were stretched and oriented to develop birefringence and reflective polarizing properties and to reduce the layer thicknesses to the appropriate size (approximately one quarter wavelength optical thickness for visible light).
In this step the filament was unwound and fed to a pull roll station, then onto a heated, cantilevered platen, and then to another pull roll station, and finally to a winder. The platen temperature generally ranged from 120° C.-182° C. The second pull roll station generally ran about 6-8 times the speed of the first pull roll station and caused the filament to be stretched as it was heated on the platen. The typical speed of the first pull roll station was about 0.2 ms−1 while the second pull roll station ranged from 1.2 ms−1-1.6 ms−1. The winder ran the same speed as the second pull roll station.
A partial cross-sectional view of a fiber manufactured using the technique just described is shown in
Arrays of naked fibers made using the above method were analyzed over a broad wavelength band to characterize the optical properties of drawn fibers. The fiber arrays, suspended in air, were analyzed for broadband polarized transmission and reflection in a PerkinElmer UV-Vis spectrometer, using an integrating sphere to capture substantially all of the transmitted or reflected light. Results from a series of fibers are shown in
Further, these results demonstrate that the fibers can be used even in an unencapsulated state to create a reflective polarizer. Thus, arrays or fabrics of the fibers may be made into reflective polarizing articles without using an encapsulating resin matrix. These fiber cloths or arrays could have some advantages in that they provide some diffusion for light in the pass state polarization, with high transmission for the pass state due to Brewster's angle effects at the fiber surfaces, in some cases. Regardless of whether the fibers are encapsulated or not, they can be combined with isotropic fiber woven in the cross-direction in a variety of weaves, such as basket, leno, twill, etc.
The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the present specification. The claims are intended to cover such modifications and devices.
Number | Name | Date | Kind |
---|---|---|---|
2403731 | MacNeile | Jul 1946 | A |
2604817 | Schupp, Jr. | Jul 1952 | A |
2687673 | Boone | Aug 1954 | A |
3164563 | Maxwell et al. | Jan 1965 | A |
3308508 | Schrenk | Mar 1967 | A |
3510447 | Bourgnignon | May 1970 | A |
3565985 | Schrenk et al. | Feb 1971 | A |
3576707 | Schrenk et al. | Apr 1971 | A |
3607509 | Schrenk | Sep 1971 | A |
3647612 | Schrenk et al. | Mar 1972 | A |
3746485 | Schrenk | Jul 1973 | A |
3759647 | Schrenk et al. | Sep 1973 | A |
3801429 | Schrenk et al. | Apr 1974 | A |
4019844 | Ogasawara et al. | Apr 1977 | A |
4344906 | Kitagawa et al. | Aug 1982 | A |
4357389 | Satoh et al. | Nov 1982 | A |
4477522 | Sheehan | Oct 1984 | A |
4560411 | Melchoir | Dec 1985 | A |
4963151 | Ducheyne et al. | Oct 1990 | A |
5039566 | Skubic et al. | Aug 1991 | A |
5047288 | Hoshiro et al. | Sep 1991 | A |
5059482 | Kawamoto et al. | Oct 1991 | A |
5175030 | Lu et al. | Dec 1992 | A |
5183597 | Lu | Feb 1993 | A |
5202574 | Fu et al. | Apr 1993 | A |
5217794 | Schrenk | Jun 1993 | A |
5251065 | Uetsuki | Oct 1993 | A |
5269995 | Ramanathan et al. | Dec 1993 | A |
5316703 | Schrenk | May 1994 | A |
5380479 | Schrenk et al. | Jan 1995 | A |
5389324 | Lewis et al. | Feb 1995 | A |
5428098 | Brekner et al. | Jun 1995 | A |
5444570 | Uetsuki | Aug 1995 | A |
5612820 | Schrenk et al. | Mar 1997 | A |
5629055 | Revol et al. | May 1997 | A |
5665450 | Day et al. | Sep 1997 | A |
5751388 | Larson | May 1998 | A |
5753277 | Kikutani et al. | May 1998 | A |
5783120 | Ouderkirk et al. | Jul 1998 | A |
5793456 | Broer et al. | Aug 1998 | A |
5807458 | Sanders et al. | Sep 1998 | A |
5825543 | Ouderkirk et al. | Oct 1998 | A |
5828488 | Ouderkirk et al. | Oct 1998 | A |
5867316 | Carlson et al. | Feb 1999 | A |
5877829 | Okamoto et al. | Mar 1999 | A |
5882774 | Jonza et al. | Mar 1999 | A |
5932626 | Fong et al. | Aug 1999 | A |
5999239 | Larson | Dec 1999 | A |
6075915 | Koops | Jun 2000 | A |
6111696 | Allen et al. | Aug 2000 | A |
6139626 | Norris et al. | Oct 2000 | A |
6141149 | Carlson et al. | Oct 2000 | A |
6239907 | Allen et al. | May 2001 | B1 |
6243521 | Owaki et al. | Jun 2001 | B1 |
6301421 | Wickham et al. | Oct 2001 | B1 |
6310671 | Larson | Oct 2001 | B1 |
6322236 | Campbell et al. | Nov 2001 | B1 |
6326094 | Asano et al. | Dec 2001 | B1 |
6335094 | Owaki et al. | Jan 2002 | B1 |
6387488 | Kumazawa et al. | May 2002 | B1 |
6430348 | Asano et al. | Aug 2002 | B1 |
6433919 | Chowdhury et al. | Aug 2002 | B1 |
6498869 | Yao | Dec 2002 | B1 |
6529676 | Eggleton et al. | Mar 2003 | B2 |
6542681 | Broeng et al. | Apr 2003 | B2 |
6542682 | Cotteverte et al. | Apr 2003 | B2 |
6577446 | Kumazawa et al. | Jun 2003 | B2 |
6583930 | Schrenk et al. | Jun 2003 | B1 |
6674949 | Allan et al. | Jan 2004 | B2 |
6813399 | Hamada | Nov 2004 | B2 |
6844950 | Ja Chisholm et al. | Jan 2005 | B2 |
6846089 | Stevenson et al. | Jan 2005 | B2 |
6876796 | Garita et al. | Apr 2005 | B2 |
6881288 | Davies et al. | Apr 2005 | B2 |
6930820 | Shooks, Jr. et al. | Aug 2005 | B1 |
7016576 | Cocchini et al. | Mar 2006 | B2 |
7052762 | Hebrink et al. | May 2006 | B2 |
7082147 | Spoonhower et al. | Jul 2006 | B2 |
7167622 | Temelkuran et al. | Jan 2007 | B2 |
7231122 | Weisberg et al. | Jun 2007 | B2 |
7272285 | Benoit et al. | Sep 2007 | B2 |
7295734 | Bayindir et al. | Nov 2007 | B2 |
7311962 | Fink et al. | Dec 2007 | B2 |
20010012149 | Lin et al. | Aug 2001 | A1 |
20010022982 | Neavin et al. | Sep 2001 | A1 |
20020090188 | Lazarev et al. | Jul 2002 | A1 |
20020130988 | Crawford et al. | Sep 2002 | A1 |
20020131737 | Broeng et al. | Sep 2002 | A1 |
20020135880 | Fink et al. | Sep 2002 | A1 |
20020154403 | Trotter, Jr. | Oct 2002 | A1 |
20020155592 | Kelleher et al. | Oct 2002 | A1 |
20020159019 | Pokorny et al. | Oct 2002 | A1 |
20020181911 | Wadsworth et al. | Dec 2002 | A1 |
20030031438 | Kambe et al. | Feb 2003 | A1 |
20030031846 | Kumazawa et al. | Feb 2003 | A1 |
20030031852 | Fink et al. | Feb 2003 | A1 |
20030035972 | Hanson et al. | Feb 2003 | A1 |
20030118805 | Kretman et al. | Jun 2003 | A1 |
20030218704 | Lee et al. | Nov 2003 | A1 |
20040012118 | Perez et al. | Jan 2004 | A1 |
20040012855 | Allen et al. | Jan 2004 | A1 |
20040031435 | Park | Feb 2004 | A1 |
20040052484 | Broeng et al. | Mar 2004 | A1 |
20040062934 | Miller et al. | Apr 2004 | A1 |
20040081412 | Cocchini et al. | Apr 2004 | A1 |
20040096172 | Bongrand et al. | May 2004 | A1 |
20040126592 | Shibahara et al. | Jul 2004 | A1 |
20040132867 | Shibahara et al. | Jul 2004 | A1 |
20040175084 | Broeng et al. | Sep 2004 | A1 |
20040179803 | Bourelle | Sep 2004 | A1 |
20040223715 | Benoit et al. | Nov 2004 | A1 |
20040228778 | Murari et al. | Nov 2004 | A1 |
20050053345 | Bayindir et al. | Mar 2005 | A1 |
20050129877 | Akada et al. | Jun 2005 | A1 |
20050147366 | Large et al. | Jul 2005 | A1 |
20050169339 | Cumbo | Aug 2005 | A1 |
20050201655 | Ellwood, Jr. | Sep 2005 | A1 |
20050201674 | Ellwood, Jr. | Sep 2005 | A1 |
20050201715 | Ellwood | Sep 2005 | A1 |
20050226579 | Fink et al. | Oct 2005 | A1 |
20050259933 | Temelkuran et al. | Nov 2005 | A1 |
20050259934 | Temelkuran et al. | Nov 2005 | A1 |
20050259942 | Temelkuran et al. | Nov 2005 | A1 |
20050271340 | Weisberg et al. | Dec 2005 | A1 |
20060001358 | Onishi | Jan 2006 | A1 |
20060007371 | Miyatake et al. | Jan 2006 | A1 |
20060029343 | Farroni et al. | Feb 2006 | A1 |
20060114563 | Allen et al. | Jun 2006 | A1 |
20060139948 | Huck et al. | Jun 2006 | A1 |
20060193577 | Ouderkirk et al. | Aug 2006 | A1 |
20060193578 | Ouderkirk et al. | Aug 2006 | A1 |
20060193582 | Ouderkirk et al. | Aug 2006 | A1 |
20060193589 | Ouderkirk et al. | Aug 2006 | A1 |
20060193593 | Ouderkirk et al. | Aug 2006 | A1 |
20060194046 | Ouderkirk et al. | Aug 2006 | A1 |
20060194487 | Ouderkirk et al. | Aug 2006 | A1 |
20060257678 | Benson, Jr. et al. | Nov 2006 | A1 |
20070031097 | Heikenfeld et al. | Feb 2007 | A1 |
20070042168 | Harada et al. | Feb 2007 | A1 |
20070122096 | Temelkuran et al. | May 2007 | A1 |
20070153162 | Wright et al. | Jul 2007 | A1 |
20070230883 | Hart et al. | Oct 2007 | A1 |
20070236938 | Ouderkirk et al. | Oct 2007 | A1 |
20070236939 | Ouderkirk et al. | Oct 2007 | A1 |
20070237938 | Ouderkirk et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
1 006 221 | Jun 2000 | EP |
1008440 | Jun 2000 | EP |
1072637 | Jan 2001 | EP |
1149942 | Oct 2001 | EP |
1162059 | Dec 2001 | EP |
1 258 749 | Nov 2002 | EP |
1477529 | Nov 2004 | EP |
0 942 301 | Feb 2008 | EP |
1126774 | Sep 1968 | GB |
54-078787 | Jun 1979 | JP |
05-070627 | Mar 1993 | JP |
5-113606 | May 1993 | JP |
09311205 | Feb 1997 | JP |
10-036655 | Feb 1998 | JP |
11124747 | May 1999 | JP |
200052399 | Feb 2000 | JP |
2000239541 | Sep 2000 | JP |
2001031774 | Feb 2001 | JP |
20020131737 | May 2002 | JP |
2004051960 | Feb 2004 | JP |
2004114617 | Apr 2004 | JP |
03-544264 | Jul 2004 | JP |
2004277657 | Oct 2004 | JP |
2004315544 | Nov 2004 | JP |
2005133028 | May 2005 | JP |
2005326492 | Nov 2005 | JP |
WO 9630203 | Oct 1996 | WO |
WO 9732224 | Sep 1997 | WO |
WO 9918268 | Apr 1999 | WO |
WO 9964904 | Dec 1999 | WO |
WO 02031053 | Apr 2002 | WO |
WO 02048757 | Jun 2002 | WO |
WO 02062877 | Aug 2002 | WO |
WO 03062909 | Jul 2003 | WO |
WO 2004046777 | Jun 2004 | WO |
WO 2004070464 | Aug 2004 | WO |
WO 2004077935 | Sep 2004 | WO |
WO 2006093660 | Sep 2006 | WO |
WO 2006093775 | Sep 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080057278 A1 | Mar 2008 | US |