1. Field of Invention
The present invention belongs to a side slope excavating supporting technology field of infrastructures of civil engineering, water conservancy, mining, municipality, etc., and particularly relates to a polymer grouting method for constructing vertical supporting system of excavating of foundation pit, side slope, municipal pipeline, etc.
2. Description of Related Arts
Since the founding of People's Republic of China, remarkable achievements have been made in infrastructure constructions of civil engineering, water conservancy, municipality, etc. In the process of using the underground space and exploiting the mineral resources, when facing the complex geological conditions, the measure of side slope supporting is usually required to be taken. Very often, affect of groundwater should also be considered. With the development of geotechnical engineering technology, machine, civil engineering materials, etc., the side slope supporting technology develops effectively. Supporting structure systems, such as soil nailing wall, composite soil nailing wall, underground continuous wall, row pile supporting and anchor pile supporting, correspondingly emerged. Meanwhile, in order to control the influence that the groundwater has on the side slope supporting and underground construction, the water-stopping curtain or the auxiliary water-lowering measure is also considered to be installed in the supporting system. Especially under the conditions of high underground water level and limited slope space, some groundwater treatment measures, such as water lowering and water stopping, are required to be taken in the foundation pit supporting. In contrast, taking the measure of water stopping can guarantee the safety of the surrounding buildings, structures and the underground pipeline better. Nowadays, the water stopping method in the side slope supporting system is embodied as technologies, such as cement mixing piles, high-pressure jet grouting pile, and TRD method. The above supporting technologies played important roles in practical projects, but they also have some technical shortages. For example, it is difficult to use the soil nailing wall under the condition of soft soil, unbonded loose sandy soil and rich underground water. In addition, when the soil nailing wall is used as a permanent structure, the problem of durability, such as corrosion, should be considered. The design of the composite soil nailing wall is mostly borrowed from the design of soil nailing wall, and the role of advance supporting and water-stopping curtain are not considered in the design and calculation of the composite soil nailing wall. For the underground continuous wall, sandy soil and mud dug out requires for the settlement equipment and the mechanical equipment, so the cost is high. In addition, the drainage tends to pollute the underground water, and excavating the slot tends to cause the settlement of the buildings. For the row pile supporting structure, there is no mature design method at present, and there are few systematic and in-depth researches on the stress mechanism, the working properties and the applicable conditions of the row pile. In addition, in the aspect of water-stopping material, the conventional side slope supporting technology mostly uses cement materials, so the water stopper constructed is a rigid solid having an elastic modulus greatly different from the elastic modulus of the soil, and is poor in impervious anti-cracking property. In the aspect of water-stopping mechanism, in the conventional technology, the materials and the soil are disassembled, when stopping the water, and the material grouted in is difficult to form a complete continuum. In the aspect of the construction, in the several conventional technologies, the water stopper is formed by the construction methods, such as excavating slots, mixing, spraying and vibrating, so the side slope structure is greatly damaged by turbulent motions. Thus, it is clear that these supporting technologies frequently used in projects mostly have shortages of great turbulence damages to the side slope, long construction period, high cost, inconvenient construction, etc. In addition, in some complicated stratum conditions, even if the different combination of the above various side slope supporting methods and water-stopping construction methods are applied, it is still difficult to meet the requirement of safety, practicality, economy, rationality, reliable quality, protecting environment, etc., so safety accidents caused by improper design and improper handling of construction occurs frequently. For the powder sands, the fine sand layer and the soil layer, which are relatively loose, if adopting the design idea of excavation and supporting at a same time, landslides tend to occur before the supporting structures are constructed in the excavation process. If the method of improved soil slope is adopted in advance, the construction period will be extended to 2˜3 times, and the cost will increase by more than 1 time. The current situation is not suitable for the development requirement of the infrastructure building of civil engineering, water conservancy, mining, municipality, etc. of our country at present. Therefore, the research and development of the supporting system combining supporting structure and the water-blocking function is an important technological problem to be solved in the present in the side slope excavation process of civil engineering, water conservancy and municipality infrastructure constructions, such as foundation pit, side slope and municipal pipeline excavation.
Polymer grouting technology is a rapid foundation reinforcement technology developing in the 1970s. This technology takes advantage of characteristic that the polymer materials expand rapidly and solidify after the chemical reaction to reinforce the foundation, fill the void, and raise the floor by injecting the polymer materials into the foundation. At present, the polymer grouting technology is mainly applied in field of foundation reinforcement of industrial and civil building and road maintenance. The present invention provides a polymer grouting method for constructing a vertical supporting system combining water-blocking function and supporting reinforce function, and provides a new supporting technology to excavation of foundation pit, side slope and municipal pipeline. At present, there is no report related to the polymer grouting method for constructing vertical supporting system.
An object of the present invention is to provide a polymer grouting method for constructing a vertical supporting system combining a water-blocking function and a supporting reinforce function to meet developing requirements of excavation supporting of foundation pit, side slope and municipal pipeline, and to make up for the shortage of the conventional supporting technology. The present invention is developed based on giving full play to the small permeability coefficient, good durability, and excellent expansion characteristics of the polymer materials, the earth pressure theory and the geotechnical anchoring theory. The slots of foundation pits, side slopes, municipal pipelines, etc. can be excavated vertically fast by adopting the present invention, which realizes advance water blocking and retaining for the side slopes in the process of excavation in the real sense, and greatly increases supporting speed of the side slopes. The present invention provides a new method to the excavation and supporting of the foundation pits, the side slopes, the municipal pipelines, etc., which is advanced, efficient, economic and practical.
Accordingly, in order to accomplish the above objects, the present invention provides a polymer grouting method for constructing a vertical supporting system, comprising following steps of:
(1) structuring an integrated polymer water-blocking panel, comprising following steps of:
(2) constructing a polymer coping of a polymer vertical supporting system, comprising following steps of:
(3) constructing polymer anchors on the integrated polymer water-blocking panel, comprising following steps of:
(4) processing constructing connection of the polymer anchors, wherein all adjacent polymer anchors are connected by the surface structure reinforcements, polymer heel blocks and steel backing plates; and
(5) excavating vertically by layer in turn, wherein step 3 and step 4 is repeated until a construction of the polymer vertical supporting system reaches a projected depth, and then the construction of the polymer vertical supporting system is completed.
Compared to the conventional supporting technologies, the present invention has following advantages of:
(1) integrating blocking water function and supporting function, i.e. the slots of foundation pits, side slopes, municipal pipelines, etc. can be excavated vertically fast by adopting the present invention, which realizes advance water blocking and retaining for the side slopes in the process of excavation in a same time, and greatly increases constructing speed of the side slopes supporting;
(2) a great withdrawal resistance and a high strength of the polymer anchors in the polymer supporting system, i.e. polymer materials have excellent expansion characteristics in a reaction process, and have a great extrusion load on the soil of a side wall of the anchors, at a same time, the polymer materials bond fully with the surrounding soil, to form a root-shaped bonding structure having a strong cohesive force, in such a manner that the withdrawal resistance of the polymer anchor rod is obviously better that a withdrawal resistance of a cement paste anchor rod;
(3) construction without water, i.e. adopting construction method without water, wherein non-water reacted type polymer materials don't shrink in air, have good tractility, anti-vibrating property and anti-cracking property;
(4) fast and convenient construction and not requiring for leaving to firm, i.e. the polymer blocking water panel, the coping and anchor grouting can be constructed continuously without intervals, so the construction is fast and convenient, about 90% of the strength can be formed 15 minutes after the materials react, so leaving to firm is not required, compared to conventional supporting structure system, more than 80% of the construction period can be saved;
(5) competitive composite economic results, i.e. compared to the conventional supporting technologies, the polymer vertical supporting system is mainly characteristic in realizing blocking water function while keeping the side slope stable, and saving a large quantity of construction period.
(6) convenient construction, i.e. polymer grouting system equipments are suitable for various kinds of area, such as large-sized area, medium-sized area, and small sized area; and
(7) good durability, i.e. the polymer grouting material has a stable performance, no pollution, a good flexibility, the polymer supporting system constructed bonds with the soil tightly, has a compatible deformation with the soil, a low permeability coefficient, and a preservative effect on the reinforcement as a water-resisting layer.
Therefore, the polymer grouting method for constructing the vertical supporting system according to the present invention has obvious advantages in construction process of excavation project of foundation pit, side slope, municipal pipeline, etc. Compared to conventional supporting technologies, the polymer grouting method for constructing the vertical supporting system is a wholly new technology, which is embodied in following aspects.
(1) In an aspect of the supporting materials and supporting ideas, the water-blocking panel and the anchors in the polymer vertical supporting system is embodied as a new non-water reacted typed high-molecular polymer grouting material according to an idea of flexible supporting, which has characteristics, such as safety, environmental protection, lightness, durableness, high expansion rate, good permeability resistance and early strength. The polymer water-blocking panel constructed is a flexible anti-seepage element, which bonds with the soil tightly, has a compatible deformation with the soil, has good anti-cracking and anti-seepage properties, and realizes advance supporting.
(2) In an aspect of force mechanism, the polymer vertical supporting system makes full use of the high expansion characteristic of the polymer materials. The polymer anchors after expanding bond tightly with the surrounding soil, and are able to provide a larger withdrawal resistance, to help keeping the polymer water-blocking panel stable and to save slope-setting unload space. All of the anchor rods work, because of being constructing connected together. The anchor rods are stressed synergistically, and the withdrawal resistances generated by all of the anchor rods are able to balance out a lateral soil pressure, in order to ensure a stability of the supporting system.
(3) In an aspect of construction method, the polymer grouting method for constructing the vertical supporting system makes use of self-expansibility and rheological property of the polymer material to form the ultrathin polymer water-blocking panel, and to construct the coping and the anchors, which fully shows a technical advantage of fast and convenient construction.
In conclusion, the present invention is obviously different from the conventional supporting technologies in aspects of the supporting materials, the supporting ideas, the force mechanism, the construction method, etc. The present invention has the advantages of fastness and convenience, lightness, high tenacity, economy, durableness, etc., and is successfully applied in foundation pit supporting engineering, so the present invention has a good prospect in development and application.
These and other objectives, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
According to a design of a polymer vertical supporting system based on data, such as geological survey reports, foundation drawings and experiences in areas, a polymer grouting method for constructing a vertical supporting system comprises following steps of:
(1) structuring an integrated polymer water-blocking panel 3, comprising following steps of:
(2) constructing a polymer coping of a polymer vertical supporting system, comprising following steps of:
(3) constructing polymer anchors on the integrated polymer water-blocking panel 3, comprising following steps of:
(4) processing constructing connection of the polymer anchors, wherein all adjacent polymer anchors are connected by the surface structure reinforcements 7, polymer heel blocks 18 and steel backing plates 19, as referred to
(5) excavating vertically by layer in turn, wherein step 3 and step 4 is repeated until a construction of the polymer vertical supporting system reaches a projected depth 20, and then the construction of the polymer vertical supporting system is completed, as referred to
One skilled in the art will understand that the embodiment of the present invention as shown in the drawings and described above is exemplary only and not intended to be limiting.
It will thus be seen that the objects of the present invention have been fully and effectively accomplished. Its embodiments have been shown and described for the purposes of illustrating the functional and structural principles of the present invention and is subject to change without departure from such principles. Therefore, this invention includes all modifications encompassed within the spirit and scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0123667 | Apr 2013 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
1394718 | Emery | Oct 1921 | A |
3416322 | Bodine | Dec 1968 | A |
6299386 | Byrne et al. | Oct 2001 | B1 |
6799924 | Kight et al. | Oct 2004 | B1 |
20110103898 | Wang et al. | May 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20140314494 A1 | Oct 2014 | US |