Polymer nano-particle with polar core and method for manufacturing same

Information

  • Patent Grant
  • 7659342
  • Patent Number
    7,659,342
  • Date Filed
    Thursday, February 3, 2005
    20 years ago
  • Date Issued
    Tuesday, February 9, 2010
    14 years ago
Abstract
The present invention provides a nano-particle comprising a shell and a polar core, their preparation, and their applications in ER fluids, polymeric product, rubber composition, tire product, hard disk drive gasket, matrix composition, and engine mount etc. The shell comprises a polymer formed from formula (I) monomers and the core comprises a polymer formed from formula (II) monomers, in which R1 and R2 are hydrogen; R3, R4, R5, R6, and up to three of R7, R8, R9, and R10 are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and isopropyl; and at least one of R7, R8, R9, and R10 is a polar group that is more polar than any one of R1, R2, R3, R4, R5, and R6 groups.
Description
BACKGROUND OF THE INVENTION

The present invention is related to nano-particles comprising a shell and a relatively polar core, their preparation, and their industrial applications. More particularly, the shell of the nano-particle comprises a polymer formed from conjugated diene monomers, while the core comprises a polymer formed from vinyl monomers substituted by at least a polar group.


Electrorheological (ER) fluids, alternatively known as electroviscous fluids, electroresponsive fluids, electrorestrictive fluids or jammy fluids, are colloidal dispersions of polymeric particles in a low conductivity continuous medium. When exposed to an external electric field, ER fluids show pronounced changes in flow properties, i.e., from liquid-like to solid-like, with typical response times in the order of milliseconds. This change is reversible as the liquid-like state returns upon removal of the electric field. This capability of ER fluids allows a variety of mechanical systems to use ER fluids to replace standard electromechanical elements which require a rapid response interface between electronic controls and mechanical devices. The technology greatly expands the number of repetitions a mechanical device can perform. Therefore, a continuous and strong interest in industry is to synthesize novel polymer nano-particles useful in ER fluids.


Polymer nano-particles, on the other hand, have attracted increased attention over the past several years in many other fields including tire, information technology, medicine and healthcare, catalysis, combinatorial chemistry, protein supports, magnets, and photonic crystals etc. Nano-particles can be discrete particles uniformly dispersed throughout a host composition. For example, polystyrene microparticles prepared by anionic dispersion polymerization and emulsion polymerization have been used as a reference standard in the calibration of various instruments, in medical research and in medical diagnostic tests.


However, preparation of some polymer nano-particles, e.g., those with a polarized core, is notoriously difficult. For example, even at −78° C., anionic polymerization of 4-vinyl pyridine goes so fast that some negative impacts emerge, such as poor nano-particle formation and difficulty in monitoring the reaction.


Advantageously, the present invention has developed novel nano-particles comprising a shell and a polar core, which are particularly useful in ER fluids, polymeric product, rubber composition, tire product, hard disk drive gasket, matrix composition, information technology, medicine and healthcare, and engine mount etc.


BRIEF DESCRIPTION OF THE INVENTION

As its one aspect, the present invention provides a nano-particle comprising a shell and a core. The shell comprises a polymer formed from at least a first monomer of formula (I):




embedded image



in which R1 and R2 are hydrogen, and each of R3, R4, R5, and R6 is independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and isopropyl. The core comprises a polymer formed from formula (II) monomer:




embedded image



in which up to three of R7, R8, R9, and R10 are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and isopropyl, and at least one of R7, R8, R9, and R10 is a polar group that is more polar than any one of R1, R2, R3, R4, R5, and R6 groups.


As its another aspect, the present invention provides a process for forming the above described nano-particles. The method comprises the steps of: (a) polymerizing the monomers of formula (I) and the monomers of formula (II) in a hydrocarbon solvent to form a diblock copolymer; (b) forming micelles from said diblock copolymer; and (c) adding at least one cross-linking agent to the polymerization mixture to form cross-linked nano-particles from said micelles. In one embodiment of the present invention, the core of said nano-particles is formed from the second monomers, while the shell of said nano-particles is formed from the first monomers.


As its other aspects, the present invention provides novel polymeric product, rubber composition, tire product, hard disk drive gasket, matrix composition, and engine mount etc., in each of which comprises the above described nano-particle generated from the monomers of formulas (I) and (II).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a transmission electron microscopy (TEM) image of the polymeric nanoparticles formed from a poly (butadiene-co-2-vinylpyridine) in one embodiment of the present invention.



FIG. 2 is a TEM image of the polymeric nanoparticles formed from a poly (butadiene-co-2-vinylpyridine) in one embodiment of the present invention.



FIG. 3 is a TEM image of the polymeric nanoparticles formed from a poly (butadiene-co-2-vinylpyridine) in one embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, the basic core-shell structure of the polymer nano-particles can be formed by assembling a sufficient number of block polymer chains, such as diblock polymer chains, into a micelle. In one embodiment of the invention, along the chain of the block polymer, polarity of the blocks decreases or increases in a monotonous manner. Taking diblock polymer nano-particles as an example, the nano-particles can be formed from a first monomer and a second monomer, and, relatively speaking, the first monomer is less polar than the second monomer. Depending on specific embodiment, one of the two polymer blocks can be used to construct the shell of the nano-particles, while the other can be used to construct the core. In a preferred embodiment of the present invention, the shell of the polymer nano-particles is formed from a first (less polar) monomer, and the core is formed from a second (more polar) monomer.


Examples suitable to be used as the first monomer include, but are not limited to, various conjugated 1,3-dienes of formula (I) as shown below:




embedded image



in which R1 and R2 are hydrogen, and each of R3, R4, R5, and R6 is independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and isopropyl. C4-C8 conjugated diene monomers of formula (I) are the most preferred.


Specific first monomer examples are 1,3-butadiene, Isoprene (2-methyl-1,3-butadiene), cis- and trans-piperylene (1,3-pentadiene), 2,3-dimethyl-1,3-butadiene, cis- and trans-1,3-hexadiene, cis- and trans-2-methyl-1,3-pentadiene, cis- and trans-3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, and the like.


Examples suitable to be used as the second monomer include, but are not limited to, various polar group substituted ethylene of formula (II) as shown below:




embedded image



in which up to three of R7, R8, R9, and R10 are each independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, and isopropyl, and at least one of R7, R8, R9, and R10 is a polar group that is more polar than any one of R1, R2, R3, R4, R5, and R6 groups.


Exemplary polar groups include, but are not limited to, heterocyclic groups. Specific heterocyclic group examples are pyridyl (such as 2-pyridyl, 3-pyridyl, and 4-pyridyl), piperidyl, pyridazinyl, pyrimidinyl, pyrrolyl, pyranyl, pyrrolinyl, thienyl, piperidino, indolyl, isoindolinyl, isoindolyl, benzimidazolyl, benzofuranyl, chromanyl, furfuryl, pyrazoyl, furyl, pyrrolidinyl, furylmethyl, thiazinyl, thiazolyl, imidazoyl, indazolyl, thenyl, triazinyl, isoquinolyl, isoxazolyl, morpholino, triazolidinyl, morpholinyl, oxazinyl, oxazolidinyl, thiazolidinyl, oxazolinyl, oxazolyl, pentazolyl, antipyrinyl, perimidinyl, phenazinyl, phthalazinyl, pseudoindolyl, pteridyl, pyrazinyl, benzopyranyl, pyrazolidinyl, xanthenyl, pyrazolinyl, quinazolinyl, imidazolidinyl, quinolyl, benzoxazolyl, quinoxalinyl, tetrazolyl, imidazolinyl, thianaphthenyl, indolinyl, thiazolinyl, triazolyl, carbazolyl, benzoxazinyl, acridinyl, acridanyl, and the like, as well as vinyl, alkyl, cycloalkyl, aryl, alkaryl, and aralkyl derivatives thereof.


Specific examples of the second monomer are 2-vinylpyridine, vinyl pyrrolidone, vinyl carbazole, 3-vinylpyridine, 4-vinylpyridine, 2-vinylpyrrole, 3-vinylpyrrole, and the like.


The second monomer may also include, but not limited to, acrylates, methacrylates, N,N-dialkyl acrylamides, and maleimides. Suitable examples of acrylates are methyl acrylate, ethyl acrylate, isopropyl acrylate, primary-butyl acrylate, secondary-butyl acrylate, tertiary-butyl acrylate, isobutyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, adamantly acrylate, dimethyladamantyl acrylate, lauryl acrylate, and the like. Suitable examples of methacrylates are methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, primary-butyl methacrylate, secondary-butyl methacrylate, tertiary-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, adamantly methacrylate, dimethyladamantyl methacrylate, lauryl methacrylate, and the like. Suitable examples of N,N-dialkyl acrylamides are N,N-dimethyl acrylamide, N,N-diethyl acrylamide, N,N-diisopropyl acrylamide, and the like. Suitable examples of maleimides are N-methyl maleimide, N-ethyl maleimide, N-phenyl maleimide, and the like.


In one embodiment of the present invention, a diblock copolymer may be formed from the first monomer and the second monomer via anionic mechanism by dispersion polymerization, although emulsion polymerization is also contemplated, in which the second monomer is added to a completely polymerized first monomer. Another method of forming substantially diblock polymers is the living anionic copolymerization of a mixture of the first and the second monomers in a hydrocarbon solvent, particularly, in the absence of certain polar additives, such as ethers, tertiary amines, or metal alkoxides which could otherwise effect the polymerization of the separately constituted polymer blocks. Under these conditions, the first monomer generally polymerizes first, followed by the polymerization of the second monomer.


The preparation of the desired nano-particles, for specific applications, through the formation of block polymer micelles according to the instant invention can be accomplished and optimized by predetermining the selection and quantity of the first monomer, the second monomer, polymerization initiator, 1,2-microstructure controlling agent, antioxidant, solvent, and crosslinking agent, as well as reaction temperature etc.


According to one embodiment of the invention, a diblock polymer is formed from a first monomer and a second monomer in a hydrocarbon solvent. The first end block is soluble in the dispersion solvent, and the second end block is less soluble in the dispersion solvent. Suitable hydrocarbon solvents include aliphatic hydrocarbons, such as pentane, hexane, heptane, octane, nonane, decane, and the like, as well as alicyclic hydrocarbons, such as cyclohexane, methyl cyclopentane, cyclooctane, cyclopentane, cycloheptane, cyclononane, cyclodecane and the like. These hydrocarbons may be used individually or in combination.


With respect to the first and second monomers as well as solvents identified herein, micelles and nano-particles are generated by maintaining a temperature that is favorable to polymerization and micelle formation, for example polymerization speed, of the selected monomers in the selected solvent(s). Preferred temperatures are in the range of about −130 to 150° C., with a temperature in the range of about −90 to 80° C. being particularly preferred. For example, when 2-vinyl pyridine is used as the second monomer to synthesize the diblock copolymer, the reaction can preferably be conducted at very low temperatures (e.g. at −78° C.). In some specific embodiments, if desired, a negative catalyst having the function of slowing the polymerization, such as alkyl aluminum, can also be added to the reaction media.


According to the present invention, a block polymer of the first and second monomers is believed to aggregate to form micelle-like structures, in which the second polymer block directed toward the centers of the micelles and the first polymer blocks extend outward therefrom as tails. It is noted that a further hydrocarbon solvent charge or a decrease in polymerization mixture temperature may also be used, and may sometimes be required, to obtain formation of the micelles. After the micelles have formed, additional first monomer and/or second monomer can be added to the polymerization mixture as desired.


The initiators of the present invention can be selected from any known organolithium compounds which are known in the art as being useful in the polymerization of the monomers having formula (I) and (II). Suitable organolithium compounds are represented by the formula as shown below:

R11(Li)x

wherein R11 is a hydrocarbyl group containing 1 to 20, preferably 2-8, carbon atoms per R11 group, and x is an integer of 1-4. Typical R11 groups include aliphatic radicals and cycloaliphatic radicals, such as alkyl, cycloalkyl, cycloalkylalkyl, alkylcycloalkyl, alkenyl, aryl and alkylaryl radicals.


Specific examples of R11 groups include, but are not limited to, alkyls such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-amyl, isoamyl, n-hexyl, n-octyl, n-decyl, and the like; cycloalkyls and alkylcycloalkyl such as cyclopentyl, cyclohexyl, 2,2,1-bicycloheptyl, methylcyclopentyl, dimethylcyclopentyl, ethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, ethylcyclohexyl, isopropylcyclohexyl, 4-butylcyclohexyl, and the like; cycloalkylalkyls such as cyclopentyl-methyl, cyclohexyl-ethyl, cyclopentyl-ethyl, methyl-cyclopentylethyl, 4-cyclohexylbutyl, and the like; alkenyls such as vinyl, propenyl, and the like; arylalkyls such as 4-phenylbutyl; aryls and alkylaryls such as phenyl, naphthyl, 4-butylphenyl, p-tolyl, and the like.


Other lithium initiators include, but are not limited to, 1,4-dilithiobutane, 1,5-dilithiopetane, 1,10-dilithiodecane, 1,20-dilithioeicosane, 1,4-dilithiobenzene, 1,4-dilithionaphthalene, 1,10-dilithioanthracene, 1,2-dilithio-1,2-diphenylethane, 1,3,5-trilithiopentane, 1,5,15-trilithioeicosane, 1,3,5-trilithiocyclohexane, 1,3,5,8-tetralithiodecane, 1,5,10,20-tetralithioeicosane, 1,2,4,6-tetralithiocyclohexane, 4,4′-dilithiobiphenyl, and the like.


Mixtures of different lithium initiators can also be employed, preferably containing one or more lithium compounds such as R11(Li)x.


Preferred lithium initiators include n-butyllithium, sec-butyllithium, tert-butyllithium, 1,4-dilithiobutane, and mixtures thereof.


Other lithium catalysts which can be employed are lithium dialkyl amines, lithium dialkyl phosphines, lithium alkyl aryl phosphines, lithium diaryl phosphines, and mixtures thereof.


Functionalized lithium initiators are also contemplated as useful in the present invention. Preferred functional groups include amines, formyl, carboxylic acids, alcohol, tin, silicon, silyl ether and mixtures thereof. A nano-particle including diblock polymers initiated with a functionalized initiator may include functional groups on the surface of the nano-particle.


The initiator of the present invention is employed in amounts designed to result in the desired molecular weight of the block polymer. The ratio of millimoles of initiator per hundred grams of monomer for use in the present invention ranges between 0.1 millimoles to 100 millimoles, preferably 0.2 millimoles to 20 millimoles.


For a specific 1,3-diene of formula (I), either 1,2-addition or 1,4-addition can occur when it is subject to the polymerization reaction. As such, a 1,2-microstructure controlling agent is optionally used to control the 1,2-addition mechanism, and also, as a result, to control the final 1,2-microstructure content of the conjugated diene polymer blocks in the nano-particle. The 1,2-microstructure controlling agents used in the present invention are linear oxolanyl oligomers represented by the structural formula (III) and cyclic oligomers represented by the structural formula (IV), as shown below:




embedded image



wherein R12 and R13 are independently hydrogen or a C1-C8 alkyl group; R14, R15, R16, and R17 are independently hydrogen or a C1-C6 alkyl group; y is an integer of 1 to 5 inclusive, and z is an integer of 3 to 5 inclusive.


The oxolanyl 1,2-microstructure controlling agents are prepared by methods known to those skilled in the art. Typically the agents are prepared by reacting furan, which is unsubstituted in either or both of the 2- or 5-positions, with either an aldehyde or a ketone, such as acetone, in the presence of an acid such as hydrochloric acid. Careful control of the reaction parameters allows for the production of a product containing up to 95 percent of dimers, trimers, and tetramers. Once the linear oligomers or cyclic structures are formed these reaction products are hydrogenated in the presence of suitable hydrogenation catalysts such as nickel based catalysts. Any suitable hydrogenation process known in the art may be employed to produce the 1,2-microstructure controlling agents of structural formulas (III) or (IV).


While unsubstituted furans are the preferred reactant, 2-alkyl-furans containing up to six carbon atoms in the alkyl group can be employed in the production of the oxolanyl oligomers of structural formula (III). When 2-alkyl-furans are employed, furfuryl dimers are the main reaction product. The 2-alkyl-furan also may end cap any oligomers formed if furan is used as a coreactant. The cyclic oxolanyl oligomer precursors are formed only from the reaction of a furan compound which is unsubstituted in the 2,5-position with either one or more aldehydes or one or more ketones or a mixture thereof.


Suitable 1,2-microstructure controlling agents include, but are not limited to, bis(2-oxolanyl) methane; 1,1-bis(2-oxolanyl) ethane; bistetrahydrofuryl propane; 2,2-bis(2-oxolanyl) propane; 2,2-bis(5-methyl-2-oxolanyl) propane; 2,2-bis-(3,4,5-trimethyl-2-oxolanyl) propane; 2,5-bis(2-oxolanyl-2-propyl) oxolane; octamethylperhydrocyclotetrafurfurylene (cyclic tetramer); 2,2-bis(2-oxolanyl) butane; and the like. A mixture of two or more 1,2-microstructure controlling agents also can be used. The preferred 1,2-microstructure controlling agents for use in the present invention are oligomeric oxolanyl propanes (OOPs).


In one embodiment of the present invention, as the charge of 1,2-microstructure controlling agent increases, the percentage of 1,2-microstructure (vinyl content) increases in the block of conjugated diene with formula (I) in the surface layer of the polymer nano-particle. The ratio of the 1,2-microstructure controlling agent to the monomers can vary from a minimum as low as 0 to a maximum as great as about 60 millimoles, preferably about 0.2 to 10 millimoles, of 1,2-microstructure controlling agent per hundred grams of monomer being charged into the reactor. The 1,2-microstructure content of the conjugated diene block is preferably between about 10% and 95%, and preferably between about 10% and 80%.


Optionally, antioxidant can be added to the reaction system during, for example, the polymerization of the first monomer. Suitable antioxidants include, but are not limited to, butylated hydroxyl toluene (BHT) such as 2,6-ditertbutyl-4-methyl phenol or other stereochemically-hindered phenols, thioethers, and phospites etc.


According to the present invention, the micelle formed by the polymerization of the first and second monomers is preferably crosslinked to enhance the uniformity and permanence of shape and size of the resultant nano-particle. In a specific embodiment of the invention, after formation of the micelles, a cross-linking agent is added to the polymerization mixture. The cross-linking agent has at least two reactive groups such as vinyl which can be polymerized and result in a crosslinked polymer network. Preferably, a selected crosslinking agent has an affinity to the second polymer block and can migrate to the center of the micelles due to its compatibility with the second monomers and initiator residues present in the center of the micelle and its relative incompatibility with the dispersion solvent and the first polymer block present in the outer layer of the micelle. The crosslinking agents can crosslink the central core of the micelle to form the desired nano-particle of the present invention. Consequently, nano-particles are formed from the micelles with a core including second monomers and a surface layer including first monomers. Preferred crosslinking agents are di-vinyl- or tri-vinyl-substituted aromatic hydrocarbons. A preferred crosslinking agent is divinylbenzene (DVB).


The block polymer, preferably has a Mw of about 1,000 to 2,000,000, more preferably between about 2,000 and 1,000,000. A typical diblock polymer will be comprised of 1 to 99% by weight first monomer block and 99 to 1% by weight second monomer block, more preferably 90 to 10% by weight, and most preferably 80 to 20% by weight of each contributed monomer type. Without being bound by theory, it is believed that an exemplary micelle will be comprised of ten to five hundred block copolymers yielding, after crosslinking, a nano-particle having a Mw of between about 10,000 and 200,000,000, preferably between about 20,000 and 100,000,000.


The nano-particles have diameters, expressed as a mean average diameter, that are preferably less than about 120 nm, more preferably less than about 90 nm, and most preferably less than about 80 nm. The nano-particles preferably are substantially monodisperse and uniform in shape. The dispersity is represented by the ratio of Mw to Mn, with a ratio of 1 being substantially monodisperse. The polymer nano-particles of the present invention preferably have a dispersity of about 1.7 or less, more preferably less than about 1.6, even more preferably less than about 1.4, and most preferably less than about 1.2. Moreover, the nano-particles are preferably spherical, though shape defects are acceptable, provided the nano-particles generally retain their discrete nature with little or no polymerization between particles.


The nano-particles of the present invention advantageously can be subject to several mechanisms for surface modifications, functionalization, and general characteristic tailoring to improve their performance in rubbers, thermoplastics, and other industrial applications.


The density of the nanoparticle may be controlled by including both diblock and monoblock polymer chains in the micelles. One method for forming such polymer chains includes forming a first polymer block in a hydrocarbon solvent. After formation of the first polymer block, a second monomer is added to the polymerization, along with additional initiator. A portion of the second monomer polymerizes onto the first polymer to form a diblock polymer as well as a second portion of the second monomer forms a separate second polymer which is a mono-block polymer.


After micelle formation, or alternatively, after crosslinking, the first polymer blocks may be hydrogenated to form a modified surface layer. A hydrogenation step may be carried out by methods known in the art for hydrogenating polymers, particularly polydienes. A preferred hydrogenation method includes placing the crosslinked nano-particles in a hydrogenation reactor in the presence of a catalyst. After the catalyst has been added to the reactor, hydrogen gas (H2) is charged to the reactor to begin the hydrogenation reaction. The pressure is adjusted to a desired range, preferably between about 10 and 3000 kPa, more preferably between about 50 and 2600 kPa. H2 may be charged continuously or in individual charges until the desired conversion is achieved. Preferably, the hydrogenation reaction will reach at least about 40% conversion, more preferably greater than about 85% conversion.


Preferred catalysts include known hydrogenation catalysts such as Pt, Pd, Rh, Ru, Ni, and mixtures thereof. The catalysts may be finely dispersed solids or absorbed on inert supports such as carbon, silica, or alumina. Especially preferred catalysts are prepared from nickel octolate, nickel ethylhexanoate, and mixtures thereof.


The surface layer formed by an optional hydrogenation step will vary depending on the identity of the monomer units utilized in the formation of the nano-particle surface layer. For example, if the first polymer block contains 1,3-butadiene monomer units, the resultant nano-particle layer after hydrogenation will be a crystalline poly(ethylene) layer. In another embodiment, a layer may include both ethylene and propylene units after hydrogenation if the non-hydrogenated first polymer block contains isoprene monomer units.


A variety of applications are contemplated for use in conjunction with the nano-particles of the present invention. Furthermore, modification of the nano-particles renders them suitable for many other different applications. All forms of the present inventive nano-particles are, of course, contemplated for use in each of the exemplary applications and all other applications envisioned by the skilled artisan.


After the polymer nano-particles have been formed, they may be blended with a rubber to improve the physical characteristics of the rubber composition. Nano-particles are useful modifying agents for rubbers because they are discrete particles which are capable of dispersing uniformly throughout the rubber composition, resulting in uniformity of physical characteristics. Furthermore, certain of the present polymer nano-particles are advantageous because the surface layer of poly(conjugated diene) is capable of bonding with the rubber matrix due to the accessibility of the double bonds in the poly(conjugated diene).


The present polymer nano-particles are suitable for modifying a variety of rubbers including, but not limited to, random styrene/butadiene copolymers, butadiene rubber, poly(isoprene), nitrile rubber, polyurethane, butyl rubber, EPDM, and the like. Advantageously, the inclusion of the present nano-particles have demonstrated rubbers having improved tensile and tear strength of at least about 30% over a rubber modified with non-spherical copolymers.


Furthermore, nano-particles with hydrogenated surface layers may demonstrate improved compatibility with specific rubbers. For example, nano-particles including a hydrogenated polyisoprene surface layer may demonstrate superior bonding with and improved dispersion in an EPDM rubber matrix due to the compatibility of hydrogenated isoprene with EPDM rubber.


Additionally, nano-particles with copolymer surfaces may demonstrate improved compatibility with rubbers. The copolymer tails with the surface layer of the nano-particles may form a brush-like surface. The host composition is then able to diffuse between the tails allowing improved interaction between the host and the nano-particles.


Hydrogenated nano-particles prepared in accordance with the present invention may also find application in hard disk technology. The hydrogenated nano-particles, when compounded with a polyalkylene and a rubber, demonstrate a tensile strength comparable to that necessary in hard disk drive compositions.


Nano-particles prepared in accord with the present invention, whether hydrogenated or non-hydrogenated may also be blended with a variety of thermoplastic elastomers, such as SEPS, SEBS, EEBS, EEPE, polypropylene, polyethylene, and polystyrene. For example, nano-particles with hydrogenated isoprene surface layers may be blended with a SEPS thermoplastic to improve tensile strength and thermostability.


Surface functionalized nano-particles prepared in accordance with the present invention, whether hydrogenated or non-hydrogenated, may also be compounded with silica containing rubber compositions. Including surface functionalized nano-particles in silica containing rubber compositions has been shown to decrease the shrinkage rates of such silica containing rubber compositions.


The nano-particle of the present invention can also be used to modify rubber in situations requiring superior damping properties, such as engine mounts and hoses (e.g. air conditioning hoses). Rubber compounds of high mechanical strength, super damping properties, strong resistance to creep are demanded in engine mount manufacturers. In engine mount, a rubber, because it sits in a packed and hot position, requires very good characteristics. Utilizing the nano-particles within selected rubber formulations can improve the characteristics of the rubber compounds.


Similarly, the nano-particles can be added into typical plastic materials, including polyethylene, polypropylene, polystyrene, to for example, enhance impact strength, tensile strength and damping properties.


Of course, the present inventive nano-particles are also suited to other presently existing applications for nano-particles, including the medical field, e.g. drug delivery and blood applications, ER fluids, information technology, e.g. quantum computers and dots, aeronautical and space research, environment and energy, e.g., oil refining, and lubricants.


EXAMPLES

A number of micellar particles containing poly(vinyl pyridine) were synthesized. Butadiene in hexane (21.8 weight percent butadiene), hexane, butyllithium (BuLi, 1.68M in hexane), and BHT solution in hexane were used as supplied. Technical grade divinylbenzene (DVB) (Aldrich product 41,456-5, 80% as a mixture of isomers) was passed through a column of inhibitor remover (activated alumina) under nitrogen before use. 2-vinyl pyridiene (2-VP) was also passed through a column of inhibitor remover (activated alumina) under nitrogen before use. Both DVB and 2-VP were stored at −15° C. over calcium hydride. Neat OOPS (oligomeric oxolanyl propanes, 1.6M) was similarly treated, and used as a 1.6 M solution in hexane, stored over calcium hydride.


Example 1

A 2-gallon reactor was used for preparation of polybutadiene. 5.30 lbs of hexane was charged into the reactor and the reactor was vented. 4.57 lbs butadiene/hexane blend (21.8 wt % butadiene) was charged into the reactor. The temperature of the mixture was set to 122 F. When the temperature stabilized (all of the thermal sensors in the reactor reached a constant value) at 122 F, 0.45 ml OOPS (1.6M) solution was charged into the reactor. Subsequently, 5.4 ml BuLi (1.64M) solution was charged into the reactor. The reaction then proceeded for 5 hours until 100% conversion.


The resultant product was anionic living. A portion of the living polymer was terminated by adding isopropanol to the reactor. After termination with isopropanol, the GPC analysis, using PS as the standard, showed the molecular weight of the polybutadiene: Mn=53800, Mw=58420, Mp=58380, and Mw/Mn=1.085.


Example 2

300 ml of the living polybutadiene (made in Example 1) was charged into a dry 1.5 L vessel. The vessel was then placed in a dry ice bath. After two hours of cooling, the temperature of the reaction mixture was −78° C. 20 ml of 2-VP was added to the content of the vessel. After one-hour reaction, 10 ml of DVB was added to the vessel. The vessel was then allowed to slowly warm up to room temperature of 23° C. After 1.5 hour reaction, the solution in the vessel turned into a red jelly-like material. The material in the vessel was then terminated with 0.5 ml isopropanol. The material was then taken out and dried under vacuum. GPC analysis showed that the resultant material contains about 50% of micellar particles. The impurity came from the unreacted polybutadiene. The material was dissolved in THF. The particles can be precipitated out using Hexane. H-NMR analysis showed that the particles contained 80% of 2-VP by weight.


Examples 3, 4 and 5

For examples 3, 4, and 5, the same procedure as described in Example 2 was used, and the amounts of reactants used are listed in the following table:


















Example 2
Example 3
Example 4
Example 5




















BD solution used
300 ml 
300 ml 
300 ml 
300 ml 


2-VP
20 ml
25 ml
30 ml
35 ml


DVB
10 ml
12 ml
15 ml
20 ml


Product


Mn
289200
287700
356990
409220


Mw
424840
404160
572590
695430


Mp
410470
429390
682450
739792


Mw/Mn
1.47
1.40
1.60
1.70










FIG. 1 presents an overall view of a particular sample of Example 2. FIGS. 2 and 3 show some details in the TEM pictures of the sample of Example 2. The distribution of size of the particles was broad, ranging from 120 to 5 nm.


The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims
  • 1. A tire comprising: core-shell nanoparticles including a shell comprising a polymer formed from a first monomer of at least formula (I):
  • 2. The tire of claim 1, in which the polymer of the first monomer and the polymer of the second monomer are two blocks of a copolymer.
  • 3. The tire of claim 1, in which the first monomer is a C4-C8 conjugated diene monomer.
  • 4. The tire of claim 1, in which the polar group in the second monomer is selected from the group consisting of pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, piperidyl, pyridazinyl, pyrimidinyl, pyrrolyl, pyranyl, pyrrolinyl, thienyl, piperidino, indolyl, isoindolinyl, isoindolyl, benzimidazolyl, benzofuranyl, chromanyl, furfuryl, pyrazoyl, furyl, pyrrolidinyl, furylmethyl, thiazinyl, thiazolyl, imidazoyl, indazolyl, thenyl, triazinyl, isoquinolyl, isoxazolyl, morpholino, triazolidinyl, morpholinyl, oxazinyl, oxazolidinyl, thiazolidinyl, oxazolinyl, oxazolyl, pentazolyl, antipyrinyl, perimidinyl, phenazinyl, phthalazinyl, pseudoindolyl, pteridyl, pyrazinyl, benzopyranyl, pyrazolidinyl, xanthenyl, pyrazolinyl, quinazolinyl, imidazolidinyl, quinolyl, benzoxazolyl, quinoxalinyl, tetrazolyl, imidazolinyl, thianaphthenyl, indolinyl, thiazolinyl, triazolyl, carbazolyl, benzoxazinyl, acridinyl, acridanyl, and the vinyl, alkyl, cycloalkyl, aryl, alkaryl, and aralkyl derivatives thereof.
  • 5. The tire of claim 1, in which the second monomer is selected from the group consisting of 2-vinylpyridine, vinyl pyrrolidone, vinyl carbazole, 3-vinylpyridine, 4-vinylpyridine, 2-vinylpyrrole, 3-vinylpyrrole, maleimides and mixture thereof.
  • 6. The tire of claim 1, wherein the shell comprises at least one functional group.
  • 7. The tire of claim 1, in which a 1,2-microstructure content of the polymer formed from the first monomer ranges between about 10% and 95%.
  • 8. The tire of claim 1, in which the core polymer formed from the second monomer is crosslinked.
  • 9. The tire of claim 1, wherein the nanoparticles have a mean average diameter of less than about 120 nm.
  • 10. The tire of claim 1, wherein the nanoparticles have a Mw of between about 10,000 and 200,000,000.
  • 11. The tire of claim 1, having a dispersity of about 1.7 or less.
  • 12. The tire of claim 1, wherein the nanoparticles have a spherical shape.
  • 13. The tire of claim 1, wherein the cross-linking agent is divinylbenzene.
  • 14. The tire of claim 1, wherein the rubber with nano-particles has improved tensile and tear strength of at least about 30% over a control rubber that differs in that it is modified with non-spherical copolymers.
  • 15. The tire of claim 1 wherein the nanoparticles are formed by living anionic polymerization of the first and the second monomer.
  • 16. The tire of claim 15, wherein the first and second monomers are polymerized in the presence of a negative catalyst to slow down the reaction speed.
  • 17. The tire of claim 1, wherein a 1,2-microstructure content of the first monomer is controlled by a linear oxolanyl oligomer represented by the structural formula (III) or a cyclic oligomer represented by the structural formula (IV), as shown below:
  • 18. A tire comprising: core-shell nanoparticles including:a shell comprising a first block of a block polymer formed from a first monomer of at least formula (I):
  • 19. The tire of claim 18, wherein the host is a rubber selected from the group consisting of: styrene/butadiene copolymers, butadiene rubber, poly(isoprene), nitrile rubber, polyurethane, butyl rubber, and EPDM.
  • 20. The tire of claim 18, wherein the host is styrene/butadiene copolymers.
  • 21. A tire including a core-shell nano-particle comprising: a shell comprising a conjugated diene; and a core comprising a polymer formed from at least a second monomer of formula (II):
US Referenced Citations (205)
Number Name Date Kind
3793402 Owens Feb 1974 A
3840620 Gallagher Oct 1974 A
3972963 Schwab et al. Aug 1976 A
4075186 Ambrose et al. Feb 1978 A
4233409 Bulkley Nov 1980 A
4247434 Vanderhoff et al. Jan 1981 A
4248986 Lal et al. Feb 1981 A
4326008 Rembaum Apr 1982 A
4386125 Shiraki et al. May 1983 A
4463129 Shinada et al. Jul 1984 A
4471093 Furukawa et al. Sep 1984 A
4543403 Isayama et al. Sep 1985 A
4598105 Weber et al. Jul 1986 A
4602052 Weber et al. Jul 1986 A
4659790 Shimozato et al. Apr 1987 A
4717655 Fluwyler Jan 1988 A
4764572 Bean, Jr. Aug 1988 A
4773521 Chen Sep 1988 A
4774189 Schwartz Sep 1988 A
4788254 Kawakubo et al. Nov 1988 A
4829130 Licchelli et al. May 1989 A
4829135 Gunesin et al. May 1989 A
4837274 Kawakubo et al. Jun 1989 A
4837401 Hirose et al. Jun 1989 A
4861131 Bois et al. Aug 1989 A
4870144 Noda et al. Sep 1989 A
4871814 Gunesin et al. Oct 1989 A
4904730 Moore et al. Feb 1990 A
4904732 Iwahara et al. Feb 1990 A
4906695 Blizzard et al. Mar 1990 A
4920160 Chip et al. Apr 1990 A
4942209 Gunesin Jul 1990 A
4987202 Zeigler Jan 1991 A
5036138 Stamhuis et al. Jul 1991 A
5066729 Stayer, Jr. et al. Nov 1991 A
5073498 Schwartz et al. Dec 1991 A
5075377 Kawabuchi et al. Dec 1991 A
5120379 Noda et al. Jun 1992 A
5130377 Trepka et al. Jul 1992 A
5169914 Kaszas et al. Dec 1992 A
5194300 Cheung Mar 1993 A
5219945 Dicker et al. Jun 1993 A
5227419 Moczygemba et al. Jul 1993 A
5237015 Urban Aug 1993 A
5241008 Hall Aug 1993 A
5247021 Fujisawa et al. Sep 1993 A
5256736 Trepka et al. Oct 1993 A
5262502 Fujisawa et al. Nov 1993 A
5290873 Noda et al. Mar 1994 A
5290875 Moczygemba et al. Mar 1994 A
5290878 Yamamoto et al. Mar 1994 A
5329005 Lawson et al. Jul 1994 A
5331035 Hall Jul 1994 A
5336712 Austgen, Jr. et al. Aug 1994 A
5362794 Inui et al. Nov 1994 A
5395902 Hall Mar 1995 A
5399628 Moczygemba et al. Mar 1995 A
5405903 Van Westrenen et al. Apr 1995 A
5421866 Stark-Kasley et al. Jun 1995 A
5436298 Moczygemba et al. Jul 1995 A
5438103 DePorter et al. Aug 1995 A
5447990 Noda et al. Sep 1995 A
5462994 Lo et al. Oct 1995 A
5514734 Maxfield et al. May 1996 A
5514753 Ozawa et al. May 1996 A
5521309 Antkowiak et al. May 1996 A
5525639 Keneko et al. Jun 1996 A
5527870 Maeda et al. Jun 1996 A
5530052 Takekoshi et al. Jun 1996 A
5580925 Iwahara et al. Dec 1996 A
5587423 Brandstetter et al. Dec 1996 A
5594072 Handlin, Jr. et al. Jan 1997 A
5614579 Roggeman et al. Mar 1997 A
5627252 De La Croi Habimana May 1997 A
5686528 Wills et al. Nov 1997 A
5688856 Austgen, Jr. et al. Nov 1997 A
5707439 Takekoshi et al. Jan 1998 A
5728791 Tamai et al. Mar 1998 A
5733975 Aoyama et al. Mar 1998 A
5739267 Fujisawa et al. Apr 1998 A
5742118 Endo et al. Apr 1998 A
5763551 Wunsch et al. Jun 1998 A
5773521 Hoxmeier et al. Jun 1998 A
5777037 Yamanaka et al. Jul 1998 A
5811501 Chiba et al. Sep 1998 A
5834563 Kimura et al. Nov 1998 A
5847054 McKee et al. Dec 1998 A
5849847 Quirk Dec 1998 A
5855972 Kaeding Jan 1999 A
5883173 Elspass et al. Mar 1999 A
5891947 Hall et al. Apr 1999 A
5905116 Wang et al. May 1999 A
5910530 Wang et al. Jun 1999 A
5955537 Steininger et al. Sep 1999 A
5986010 Clites et al. Nov 1999 A
5994468 Wang et al. Nov 1999 A
6011116 Aoyama et al. Jan 2000 A
6020446 Okamoto et al. Feb 2000 A
6025416 Proebster et al. Feb 2000 A
6025445 Chiba et al. Feb 2000 A
6060549 Li et al. May 2000 A
6060559 Feng et al. May 2000 A
6087016 Feeney et al. Jul 2000 A
6087456 Sakaguchi et al. Jul 2000 A
6106953 Zimmermann et al. Aug 2000 A
6117932 Hasegawa et al. Sep 2000 A
6121379 Yamanaka et al. Sep 2000 A
6147151 Fukumoto et al. Nov 2000 A
6180693 Tang et al. Jan 2001 B1
6191217 Wang et al. Feb 2001 B1
6197849 Zilg et al. Mar 2001 B1
6204354 Wang et al. Mar 2001 B1
6225394 Lan et al. May 2001 B1
6252014 Knauss Jun 2001 B1
6255372 Lin et al. Jul 2001 B1
6268451 Faust et al. Jul 2001 B1
6277304 Wei et al. Aug 2001 B1
6348546 Hiiro et al. Feb 2002 B2
6359075 Wollum et al. Mar 2002 B1
6379791 Cernohous et al. Apr 2002 B1
6383500 Wooley et al. May 2002 B1
6395829 Miyamoto et al. May 2002 B1
6420486 DePorter et al. Jul 2002 B1
6437050 Krom et al. Aug 2002 B1
6441090 Demirors et al. Aug 2002 B1
6448353 Nelson et al. Sep 2002 B1
6489378 Sosa et al. Dec 2002 B1
6573313 Li et al. Jun 2003 B2
6573330 Fujikake et al. Jun 2003 B1
6598645 Larson Jul 2003 B1
6649702 Rapoport et al. Nov 2003 B1
6663960 Murakami et al. Dec 2003 B1
6689469 Wang et al. Feb 2004 B2
6693746 Nakamura et al. Feb 2004 B1
6706813 Chiba et al. Mar 2004 B2
6727311 Ajbani et al. Apr 2004 B2
6737486 Wang May 2004 B2
6750297 Yeu et al. Jun 2004 B2
6759464 Ajbani et al. Jul 2004 B2
6774185 Lin et al. Aug 2004 B2
6777500 Lean et al. Aug 2004 B2
6780937 Castner Aug 2004 B2
6835781 Kondou et al. Dec 2004 B2
6858665 Larson Feb 2005 B2
6861462 Parker et al. Mar 2005 B2
6872785 Wang et al. Mar 2005 B2
6875818 Wang Apr 2005 B2
6908958 Maruyama et al. Jun 2005 B2
6956084 Wang et al. Oct 2005 B2
7056840 Miller et al. Jun 2006 B2
7071246 Xie et al. Jul 2006 B2
7112369 Wang et al. Sep 2006 B2
7193004 Weydert et al. Mar 2007 B2
7205370 Wang et al. Apr 2007 B2
7217775 Castner May 2007 B2
7238751 Wang et al. Jul 2007 B2
7244783 Lean et al. Jul 2007 B2
7291394 Winkler et al. Nov 2007 B2
7347237 Xie et al. Mar 2008 B2
7408005 Zheng et al. Aug 2008 B2
20020045714 Tomalia et al. Apr 2002 A1
20020095008 Heinrich et al. Jul 2002 A1
20020144401 Nogueroles Vines et al. Oct 2002 A1
20030004250 Ajbani et al. Jan 2003 A1
20030032710 Larson Feb 2003 A1
20030124353 Wang et al. Jul 2003 A1
20030130401 Lin et al. Jul 2003 A1
20030149185 Wang et al. Aug 2003 A1
20030198810 Wang et al. Oct 2003 A1
20030225190 Borbely et al. Dec 2003 A1
20040033345 Dubertret et al. Feb 2004 A1
20040059057 Swisher et al. Mar 2004 A1
20040091546 Johnson et al. May 2004 A1
20040127603 Lean et al. Jul 2004 A1
20040143064 Wang Jul 2004 A1
20040198917 Castner Oct 2004 A1
20050101743 Stacy et al. May 2005 A1
20050182158 Ziser et al. Aug 2005 A1
20050192408 Lin et al. Sep 2005 A1
20050197462 Wang et al. Sep 2005 A1
20050203248 Zheng et al. Sep 2005 A1
20050215693 Wang et al. Sep 2005 A1
20050228072 Winkler et al. Oct 2005 A1
20050228074 Wang et al. Oct 2005 A1
20050282956 Bohm et al. Dec 2005 A1
20060084722 Lin et al. Apr 2006 A1
20060173115 Wang et al. Aug 2006 A1
20060235128 Bohm et al. Oct 2006 A1
20070027264 Wang et al. Feb 2007 A1
20070135579 Obrecht et al. Jun 2007 A1
20070142550 Wang et al. Jun 2007 A1
20070142559 Wang et al. Jun 2007 A1
20070149649 Wang et al. Jun 2007 A1
20070161754 Bohm et al. Jul 2007 A1
20070185273 Hall et al. Aug 2007 A1
20070196653 Hall et al. Aug 2007 A1
20080145660 Wang et al. Jun 2008 A1
20080149238 Kleckner et al. Jun 2008 A1
20080160305 Wang et al. Jul 2008 A1
20080286374 Wang et al. Nov 2008 A1
20080305336 Wang et al. Dec 2008 A1
20090005491 Warren et al. Jan 2009 A1
20090048390 Wang et al. Feb 2009 A1
20090054554 Wang et al. Feb 2009 A1
20090270558 Gandon-pain et al. Oct 2009 A1
Foreign Referenced Citations (41)
Number Date Country
2127919 Mar 1995 CA
3434983 Apr 1986 DE
4241538 Jun 1994 DE
143500 Jun 1985 EP
265142 Apr 1988 EP
0322905 Jul 1989 EP
0352042 Jan 1990 EP
0472344 Feb 1992 EP
0 590 491 Apr 1994 EP
0742268 Nov 1996 EP
1 099 728 May 2001 EP
1 134 251 Sep 2001 EP
1783168 May 2007 EP
2099645 Mar 1972 FR
01279943 Jan 1989 JP
2191619 Jul 1990 JP
2196893 Aug 1990 JP
05132605 May 1993 JP
06248017 Sep 1994 JP
7011043 Jan 1995 JP
08-199062 Aug 1996 JP
2000-514791 Nov 2000 JP
2003-0095640 Apr 2003 JP
2006-072283 Mar 2006 JP
2006-106596 Apr 2006 JP
2007-304409 Nov 2007 JP
0 265 142 Apr 1988 WO
WO 9104992 Apr 1991 WO
9704029 Feb 1997 WO
WO 0187999 Nov 2000 WO
WO 0231002 Apr 2002 WO
WO 02081233 Oct 2002 WO
WO 02100936 Dec 2002 WO
0332061 Apr 2003 WO
WO 03085040 Oct 2003 WO
WO 200306557 Dec 2003 WO
WO2004058874 Jul 2004 WO
2006069793 Jul 2006 WO
2008079276 Jul 2008 WO
2008079807 Jul 2008 WO
2009006434 Jan 2009 WO
Related Publications (1)
Number Date Country
20060173130 A1 Aug 2006 US