The present invention relates to a device that predicts the physical properties of a polymer (hereinafter “polymer physical property prediction device”, a recording medium, and a polymer physical property prediction method.
In recent years, machine learning has been used to predict physical properties of organic compounds such as polymers by using a computer.
Conventional techniques for predicting physical properties of polymers use various structure descriptors configured by humans to predict physical properties. Techniques for mechanically identifying substructure patterns of molecules and calculating structure descriptors based on algorithms have also been proposed.
Conventionally, it is necessary for a human to determine a structural pattern, such as the number of carbon atoms, that serves as a structure descriptor of a polymer in advance. With respect to this, there is a method for automatically extracting substructures of low-molecular weight organic molecules, but there is a problem that the accuracy of predicting the physical properties of a polymer is low. Thus, the method has not been applied to polymer structures.
[Patent Document 1] Japanese National Publication of International Patent Application No. 2004-514902
[Non-Patent Document 1] David Rogers et al., “Extended-Connectivity Fingerprints”, American Chemical Society, J. Chem. Info. Model., Vol. 50, No. 5, 2010, pp. 742-754.
According to one aspect, a polymer physical property prediction device includes a processor, and a memory storing program instructions that cause the processor to read a structural unit from a storage unit and use the structural unit to calculate numbers each indicating how many substructures are in a polymer, the polymer being formed of repetition of the structural unit, calculate a number indicating how many atoms are in the structural unit, calculate number densities of the substructures from the numbers of substructures and the number of atoms in the structural unit, construct a regression model that predicts a physical property value by using an experimental value of a physical property of the polymer and the number densities of the substructures, the experimental value being obtained from the storage unit, input a polymer structure of which the physical property value is to be predicted, and predict the physical property value corresponding to the input polymer structure by using the regression model.
A means to solve the above-described problem can be a program or a method for predicting the physical properties of a polymer.
According to at least one embodiment of the present invention, the physical properties of a polymer can be accurately predicted.
In the following, an embodiment of the present invention will be described based on the drawings. First, an example of a system configuration according to the present embodiment will be described.
The terminal 3 is an information processing terminal used by a user, is connected to the physical property prediction device 100, and utilizes processing performed by a prediction processing unit 40.
The physical property prediction device 100 is an information processing device including the prediction processing unit 40 that predicts a physical property of a polymer. In the physical property prediction device 100, the prediction processing unit 40 performs machine learning using a structure of the polymer and data indicating the physical property of the polymer that are provided in advance to generate a regression model. In response to receiving a polymer structure 6a from the terminal 3, a physical property value is predicted using the generated regression model with respect to the received polymer structure 6a, and a predicted physical property value 6b is sent to the terminal 3.
A configuration of the system 1000 is not limited to the example of
The physical property prediction device 100 according to the present embodiment has a hardware configuration as illustrated in
The CPU 11 corresponds to a processor that controls the physical property prediction device 100 according to a program stored in the main storage device 12. As the main storage device 12, a random access memory (RAM) and a read only memory (ROM) are used to store or temporarily store a program executed by the CPU 11, data necessary for processing by the CPU 11, and data obtained by processing by the CPU 11, for example.
A hard disk drive (HDD) is used for the auxiliary storage device 13, for example, to store data such as a program for executing various processing. A portion of the program stored in the auxiliary storage device 13 is loaded into the main storage device 12 and is executed by the CPU 11 to achieve various processing. Hereinafter, the main storage device 12, the auxiliary storage device 13, and an external storage device accessible by the physical property prediction device 100 will be collectively referred to as a storage unit 130.
The input device 14 includes a mouse and a keyboard and is used by a user to input various information required for processing by the physical property prediction device 100. The display device 15 displays various necessary information under control of the CPU 11. The input device 14 and the display device 15 may be a user interface, such as an integrated touch panel. The communication I/F 17 performs communication through a network, such as a wired or wireless network. The communication by the communication I/F 17 is not limited to the wired or wireless communication. The drive device 18 interfaces a recording medium 19 set in the drive device 18 (e.g., a compact disc read-only memory (CD-ROM)) with the physical property prediction device 100.
A program for implementing the processing performed by the physical property prediction device 100 is provided to the physical property prediction device 100 through the recording medium 19, such as a CD-ROM. A program for implementing various processing according to the present embodiment, which will be described later, is stored in the recording medium 19, and the program stored in the recording medium 19 is installed in the physical property prediction device 100 through the drive device 18. The installed program can be executed by the physical property prediction device 100.
The recording medium 19 for storing the program is not limited to a CD-ROM, but may be one or more non-transitory and tangible media having a computer readable data structure. As a computer readable recording medium in addition to a CD-ROM, a portable storage medium, such as a digital versatile disk (DVD) and a USB memory, or a semiconductor memory, such as a flash memory, may be used.
[First Functional Configuration Example]
The storage unit 130 stores a polymer structure and physical property DB 31, a model structure 33a, the number of substructures 33b, the number of atoms 33c, a substructure number density 33d, an important substructure 33e, a regression model 33f, a polymer structure 6a, a physical property value 6b, for example.
The prediction processing unit 40 obtains the regression model 33f for predicting the physical properties of the polymer structure 6a specified by a user by performing machine learning, predicts the physical properties of the polymer structure 6a by using the obtained regression model 33f, and outputs the obtained physical property value 6b. The prediction processing unit 40 includes a model generator 41 and a physical property prediction unit 45 as processing units.
The model generator 41 learns the physical property of the polymer structure in which a structural unit is repeatedly replicated and linked using the polymer structure and physical property DB31 and determines the regression model 33f. A structural unit forming a polymer by repetition is called a “repeating unit”. In the polymer structure and physical property DB 31, a repeating unit and an experimental value of a physical property experimentally obtained in advance are stored in association with each polymer.
The model generator 41 includes a model structure generator 43a, a substructure number calculating unit 43b, an atom calculating unit 43c, a substructure number density calculating unit 43d, a dimension reduction unit 43e, and a regression model construction unit 43f as processing units. Either or both of the model structure generator 43a and the dimension reduction unit 43e can be removed.
The model structure generator 43a obtains the repeating unit from the polymer structure and physical property DB 31 and repeats the process of replicating and linking the obtained repeating unit a predetermined number of times to generate the model structure 33a. The repeating unit includes a substructure. The repeating unit may also be an entire of a substructure. The repeating unit are linked multiple times to represent a polymer.
The generated model structure 33a is stored in the storage unit 130. The repeating unit and the model structure 33a may be represented in a predetermined form. The first functional configuration example describes the repeating unit and the model structure 33a in the simplified molecular input line entry syntax (SMILES) notation, but the notation is not limited to this.
The substructure number calculating unit 43b calculates the number of substructures 33b based on the model structure 33a. The numbers of substructures 33b are represented by an n-dimensional vector and stored in the storage 130. The atom calculating unit 43c calculates the number of atoms 33c based on the model structure 33a. The obtained number of atoms 33c is stored in the storage unit 130.
The substructure number density calculating unit 43d calculates the substructure number density 33d by using the numbers of substructures 33b and the number of atoms 33c. The substructure number density 33d can be obtained by the following equation:
substructure number density=number of substructures÷number of atoms
The obtained substructure number densities 33d are represented by a vector of the same n-dimensional vector as the vector of the substructure number 33b and are stored in the storage unit 130.
The dimension reduction unit 43e constructs a temporal regression model by using the substructure number density 33d and the experimental value, and reduces the dimensions of the temporal regression model based on a predetermined dimension reduction method to obtain the important substructure 33e. The important substructure 33e is stored in the storage unit 130. The important substructure 33e is data specifying an element (e.g., a vector) that will contribute to the prediction accuracy of the regression model 33f to be constructed in the substructure number density 33d.
For the dimension reduction method, a procedure corresponding to a regression analysis method to be used is determined in advance. For example, when the lasso regression is used, the dimensions can be reduced by removing a coefficient term of 0. When the random forest regression is used, the dimensions can be reduced by calculating the importance of explanatory variables and excluding variables that have the importance lower than or equal to a threshold. In the stepwise method, the dimensions can be reduced by searching for combinations of explanatory variables having highest prediction accuracy by adding or reducing an explanatory variable one by one when a temporal regression model is constructed.
The regression model construction unit 43f constructs the regression model 33f by performing a regression analysis based on the important substructure 33e obtained by the dimension reduction unit 43e by using the substructure number density 33d and the experimental value. The regression model 33f is stored in the storage unit 130.
In the dimension reduction unit 43e and the regression model construction unit 43f, the experimental value can be obtained from the polymer structure and physical property DB 31. The regression model 33f obtained by the regression model construction unit 43f is expressed in the following equation.
y=f(x)
By substituting the substructure number density 33d for a variable x, a predicted value y of the physical property is obtained.
To the regression analysis for obtaining the temporal regression model and the regression model 33f, any one of Lasso regression, random forest regression, a stepwise method, partial linear regression, ridge regression, kernel ridge regression, support vector regression, decision tree regression, Gaussian process regression, and so on can be applied. As an example, a temporal regression model can be obtained by the Lasso regression, and the regression model 33f can be obtained by the Gaussian process regression.
Next, the physical property prediction unit 45 predicts the physical properties of the polymer based on the polymer structure 6a by using the regression model 33f in response to an input of the polymer structure 6a specified by a user. The polymer structure 6a may specify the repeating unit by the SMILES notation or the like. The physical property prediction unit 45 includes a polymer structure input unit 47a and a polymer physical property prediction unit 47b as processing units.
The polymer structure input unit 47a inputs the polymer structure 6a specified by a user and the polymer structure 6a is stored in the storage unit 130. The polymer structure input unit 47a may input the polymer structure 6a by the communication I/F 17 receiving the polymer structure 6a through the network 2 or may input the polymer structure 6a in accordance with a user's specification by the input device 14 of the property prediction device 100.
The polymer physical property prediction unit 47b obtains the model structure, the numbers of substructures, and the number of atoms, from the polymer structure 6a, to calculate the substructure number density, and predicts the physical property value by using the regression model 33f stored in the storage unit 130. The method of obtaining the model structure, the numbers of substructures, the number of atoms, and the substructure number density based on the polymer structure 6a is similar to the method of the model generator 41.
The predicted physical property value 6b is output to the storage unit 130. When the polymer structure 6a is specified through the network 2, the obtained physical property value 6b is sent to the terminal 3 of the user and displayed. When the polymer structure 6a is specified by a user operation at the physical property prediction device 100, the obtained physical property value 6b is displayed on the display device 15.
The polymer name indicates specific information specifying the polymer structure. An example in which the repeating unit is represented by the SMILES notation is used for the following description, but the notation of the repeating unit is not limited to the SMILES notation. The refractive index, the glass transition point, and the like are examples of various physical properties of the polymer experimentally obtained in advance, and the experimental values are shown for each name of the physical property.
In this example, a repeating unit “*CC*” is associated with a polymer name “poly(ethylene)” and the experimental values, such as the refractive index “1.472”, are shown. Similarly, an experimental value of each physical property is shown for another polymer.
In the model generator 41, referenced data, generated data, and the like may be managed in a work table 32. The work table 32 is a table in which calculated values are stored for each repeating unit of the polymer of which the substructure number density 33d is obtained, and includes items such as the polymer name, the repeating unit, the number of atoms, and the substructure number density.
The polymer name indicates a polymer name registered in the polymer structure and physical property DB 31. The number of substructures indicates the number of substructures 33b obtained by the substructure number calculating unit 43b. The number of atoms indicates the number of atoms 33c obtained by the atom calculating unit 43c. The substructure number density indicates the substructure number density 33d obtained by the substructure number density calculating unit 43d.
The substructure number density of the work table 32 and the experimental values of the physical property of the polymer structure and physical property DB 31 are used for the machine learning by the regression analysis. Thus, the work table 32 may be associated with the polymer structure and physical property DB 31 by the polymer name. Here, the data configuration example of the polymer structure and physical property DB 31 and the work table 32 illustrated in
An outline of an entire prediction process performed by the prediction processing unit 40 will be described using an example of the repeating unit.
The model structure generator 43a uses the obtained substructure as a repeating unit, and replicates the repeating unit to generate the model structure 33a (as described in (b) of
The substructure number calculating unit 43b generates a substructure number vector x0 (i.e., the numbers of substructures 33b) of the structure model 33a (as described in (c) in
In the structure model “CCOCCCOCCCOCCCOCCCOCCCOCCO”, an n-dimensional substructure number vector x0, which consists of the number of C atoms “20”, the number of O atoms “10”, . . . , and the number of COCs “9”, is generated. A structure assigned to each vector, such as “C”, “O”, “COC”, indicates the type of the substructure of the polymer. Here, n is an arbitrary natural number, and is usually about 256 to 2048.
The atom calculating unit 43c calculates the number of atoms included in the model structure 33a (as described in (d) of
The substructure number density calculating unit 43d divides the substructure number vector x0 (i.e., the numbers of substructures 33b) obtained by the substructure number calculating unit 43b in (c) of
Specifically, in the structure model “CCOCCCOCCOCCOCCCOCCCOCCCOCCCOCCO”, each value of the substructure number vector x0 is divided by the number of atoms “30” to obtain the substructure number density vector x representing the C atom number density “⅔ (=20/30)”, the O atom number density “⅓ (=10/30)”, . . . , and the COC density “ 9/30.” The number of dimensions of the substructure number density vector x is n, which is the same number as the number of dimensions of the substructure number vector x0.
For each record of the polymer structure and physical property DB 31, (a) of
Before constructing the regression model 33f, a temporal regression model is constructed by the dimension reduction unit 43e and the dimension reduction is performed (in (f) of
The regression model construction unit 43f constructs the regression model 33f used in predicting the physical property value based on the important substructure 33e (in (g) of
y=f(x) (1)
When dimensions are not reduced, the number of substructure number density vector x is n, which is the number of dimensions. But after dimensions are reduced, the dimensions of the substructure number density vector x are n′. Because the predicted values are calculated using only the dimensions contributing to the prediction accuracy by using the important substructure 33e, the physical property prediction process can be efficiently performed.
The above-described process from (a) to (e) in
In response to the input of the polymer structure A of which the physical property is to be obtained, the physical property prediction unit 45 generates the substructure number density vector xA, and predicts the physical property value yA (in (h) of
The physical property value yA with respect to the polymer structure A desired to be processed can be obtained by substituting the substructure number density xA in the above equation (1).
yA=f(xA) (2)
If the regression model 33f is for only one physical property, the value of a predetermined physical property is predicted. If the regression model 33f is obtained with respect to each of the various physical properties, the user may specify the polymer structure A and all physical properties or a specific physical property. In this case, the polymer physical property prediction unit 47b predicts the physical property value 6b by using the regression model 33f corresponding to each physical property and the important substructure 33e.
The process of calculating the numbers of substructures 33b in (c) of
In the first functional configuration example, the substructure number density calculating unit 43d of the prediction processing unit 40 can recognize whether polymer structures are identical.
Referring to
In an existing technique in which the number of substructures is used as a structure descriptor, the number of carbons of the structure A is “2,” the number of carbons of the structure B is “4”. Since the numbers of carbons of the structure A and the structure B are different, the polymers are mistakenly recognized as being different. This example indicates that when polymers having different lengths of the repeating unit are compared, the number of substructures cannot appropriately capture structural features of the polymer.
In the first functional configuration example, the substructure number density calculating unit 43d obtains the same substructure number density (carbon number density) “⅔” with respect to the structure A and the structure B. Thus, the dimension reduction unit 43e and the regression model construction unit 43f can correctly recognize that the structure A and the structure B represent the same polymer. Based on these examples, the inventors have found that by using the substructure number density 33d, polymers having different lengths of the repeating unit can be treated equivalently.
The inventors have also found that replicating and linking the repeating unit can improve the existing technique having low prediction accuracy. A difference between when replication is performed and when no replication is performed is described in
When the repeating unit is not replicated, there is no substructure “COC”, which is expected to exist, at both ends of the repeating unit. Thus, COC number density is “0”. With respect to this, in the first functional configuration example, the repeating unit is replicated and the right side of the repeating unit is linked to an oxygen atom on the left side of the next repeating unit. Two repeating units causes the substructure “COC” to appear and “⅙” is obtained with respect to the number density of “COC”, which is expected to exist. In the first functional configuration example, the regression model 33f is obtained using the substructure number density 33d obtained in such a manner, thereby improving the prediction accuracy of the existing technique.
As described above, the prediction process is performed by the prediction processing unit 40 as illustrated in
In step S511, in the model generator 41, the model structure generator 43a selects and reads one record from the polymer structure and physical property DB 31, and obtains the repeating unit and the experimental value. In step S512, the model structure generator 43a repeats an operation of replicating and linking the obtained repeating unit a predetermined number of times to generate the model structure 33a.
In step S513, the substructure number calculating unit 43b calculates the number of substructures 33b of the model structure 33a by using a predetermined structure descriptor (e.g., ECFP). In step S514, the atom calculating unit 43c calculates the number of atoms 33c of the model structure 33a. Step S513 may be performed after step S514 has been performed. Alternatively, steps S513 and S514 may be performed in parallel.
In step S515, the substructure number density calculating unit 43d calculates the substructure number density 33d by dividing the number of substructures 33b by the number of atoms 33c. As described above, the numbers of substructures 33b and the substructure number densities 33d are represented by an n-dimensional vector.
In step S516, the model generator 41 determines whether all records of the polymer structure and the physical property DB 31 have been completed. When all records have not been completed (NO in step S516), the model generator 41 returns to step S511 and performs a process similar to the process described above.
When all records have been completed (YES in step S516), the dimension reduction unit 43e performs a first regression analysis for obtaining a temporal regression model f′ by using the substructure number density 33d corresponding to the important substructure 33e as a variable x′ and an experimental value as y′. In step S517, the dimension reduction unit 43e reduces the dimensions of the temporal regression model f′ by a predetermined dimension reduction method and obtains the important substructure 33e.
Next, the regression model construction unit 43f performs a second regression analysis. In step S518, the regression model construction unit 43f obtains the regression model f by using the substructure number density 33d corresponding to the important substructure 33e as the variable x and the experimental value as y. The experimental value y is a value determined by the polymer name and the physical property in the polymer structure and physical property DB 31. The regression model f, that is, the regression model 33f, is stored in the storage unit 130.
When the regression model f is obtained for all or some of the physical properties registered in the polymer structure and physical property DB 31, an experimental value may be obtained for each physical property, and steps S517 to S518 may be repeated.
Subsequently, the physical property prediction process P55 is performed by the physical property prediction unit 45. When the polymer structure input unit 47a receives the polymer structure 6a in the prediction processing unit 40 (step S521), the model structure, the number of substructures, the number of atoms, and the substructure number density are obtained using the polymer structure 6a as the repeating unit (step S522). The model structure, the number of substructures, the number of atoms, and the substructure number density of the polymer structure 6a are obtained by performing a process similar to the process from step S512 to step S515 in the model generating process P51.
In step S523, the dimensions of the substructure number density of the polymer structure 6a are reduced based on the important substructure 33e obtained in step S517, and in step S524, the polymer physical property prediction unit 47b predicts the physical property value 6b by using the regression model f (i.e., the regression model 33f stored in the storage unit 130) obtained in step S518. The obtained physical property value 6b is sent to the terminal 3 or displayed on the display device 15.
When the regression model 33f corresponding to each of multiple physical properties is generated, it is desirable to manage the generated regression models 33f in a table as illustrated in
In
The important substructure specifies a valid vector of the vector of the substructure number density 33d, obtained after dimension reduction (i.e., a valid vector after dimension reduction) for using the regression model 33f. When the dimension reduction is omitted, the item of the important substructure is omitted.
In the physical property prediction unit 45, the polymer physical property prediction unit 47b obtains the regression model 33f and the important substructure 33e that are corresponding to the physical property to be predicted from the regression model management table 33k.
The inventors have verified the prediction accuracy of various functional configurations described below. According to verification results, the first functional configuration example described above can improve the prediction accuracy the most. Further, the inventors have verified that the prediction accuracy can be sufficiently improved even in a configuration in which either or both of the model structure generator 43a and the dimension reduction unit 43e are removed.
First, other examples of the functional configuration in which the prediction accuracy is verified will be described below. In the following description, a second functional configuration example is a functional configuration in which both of the model structure generator 43a and the dimension reduction unit 43e are removed, a third functional configuration example is a functional configuration in which the model structure generator 43a is removed, and a fourth functional configuration example is a functional configuration in which the dimension reduction unit 43e is removed. In the second functional configuration example to the fourth functional configuration example, processing units similar to the processing units of the first functional configuration example illustrated in
[Second Functional Configuration Example]
In the model generator 41, the substructure number calculating unit 43b and the atom calculating unit 43c obtains the number of substructures 33b and the number of atoms 33c by obtaining the repeating unit from the polymer structure and physical property DB 31.
Also in the second functional configuration example, the substructure number density calculating unit 43d calculates the substructure number density 33d. Then, the regression model construction unit 43f obtains the regression model 33f by using the calculated substructure number density 33d and the experimental value of the physical property.
In the physical property prediction unit 45, when the polymer structure input unit 47a inputs the polymer structure 6a, the polymer physical property prediction unit 47b calculates the number of substructures and the number of atoms by using the polymer structure 6a without creating the model structure 33a. The polymer physical property prediction unit 47b obtains the substructure number density by dividing the obtained number of substructures by the number of atoms, and uses the substructure number density 33d to obtain the property value 6b by the regression model 33f.
In the second functional configuration example, the regression analysis is performed only once. The number of dimensions of the regression model 33f is the same number as the number of dimensions of the substructure number densities 33d, and the important substructure 33e is not determined. However, if the values of the substructure number density 33d are identical, even polymers with different lengths of the repeating unit can be treated equivalently, and the prediction accuracy can be sufficiently improved.
[Third Function Configuration Example]
In a manner similar to the second functional configuration example, in the model generator 41, the substructure number calculating unit 43b and the atom calculating unit 43c obtain the repeating unit from the polymer structure and physical property DB 31 to obtain the number of substructures 33b and the number of atoms 33c. The substructure number density calculating unit 43d obtains the substructure number density 33d. Then, the dimension reduction unit 43e obtains the important substructure 33e and reduces the dimensions of the substructure number densities 33d, and the regression model construction unit 43f outputs the regression model 33f.
In the physical property prediction unit 45, when the polymer structure input unit 47a inputs the polymer structure 6a, the polymer physical property prediction unit 47b calculates the number of substructures and the number of atoms by using the polymer structure 6a without generating the model structure 33a. Then, the polymer physical, property prediction unit 47b obtains the substructure number density by dividing the obtained number of substructures by the number of atoms, reduces the number of dimensions of the substructure number densities based on the substructure number density 33d, and outputs the property value 6b by using the regression model 33f.
In the third functional configuration example, when the values of the substructure number density 33d are identical, even polymers with different lengths of the repeating unit can be equivalently treated. Although the model structure 33a is not generated, the important substructure 33e is determined by the dimension reduction unit 43e, thereby improving the prediction accuracy of the regression model 33f generated by the regression model construction unit 43f.
[Fourth Functional Configuration Example]
In the model generator 41, the model, structure generator 43a generates the model structure 33a, and the substructure number calculating unit 43b and the atom calculating unit 43c obtain the number of substructures 33b and the number of atoms 33c based on the model structure 33a.
In the physical property prediction unit 45, when the polymer structure input unit 47a inputs the polymer structure 6a, the polymer physical property prediction unit 47b generates the model structure 33a and calculates the number of substructures and the number of atoms by using the model structure 33a. Then, the polymer physical property prediction unit 47b obtains the substructure number density by dividing the obtained number of substructures by the number of atoms, and uses the substructure number density 33d to obtain the physical property value 6b by the regression model 33f. The dimensions of the substructure number densities obtained from polymer structure 6a are not reduced.
In the fourth functional configuration, when the values of the substructure number density 33d are identical, even polymers with different lengths of the repeating unit can be equivalently treated. Although the important substructure 33e is not generated, the model structure 33a and the substructure number density 33d can improve the prediction accuracy of the regression model 33f generated by the regression model construction unit 43f.
Next, a functional configuration example based on the existing technique will be described as a comparative example.
[Existing Functional Configuration Example]
The model generator 91 is a processing unit that generates a regression model 83f and includes a substructure number calculating unit 93b and a regression model construction unit 93f. The substructure number calculating unit 93b obtains the repeating unit from the polymer structure and physical property DB 31 and stores the number of substructures 83b in the storage unit 130. The regression model construction unit 93f constructs the regression model 83f by performing a regression analysis using the number of substructures 83b and an experimental value obtained from the polymer structure and physical property DB 31, and stores the regression model 83f in the storage unit 130.
The physical property prediction unit 95 is a processing unit that predicts the physical property value by applying the polymer structure 6a desired to be processed by a user to the regression model 83f, and includes a polymer structure input unit 97a and a polymer physical property prediction unit 97b. The polymer structure input unit 97a stores the polymer structure 6a in the storage unit 130 when receiving the polymer structure 6a. The polymer physical property prediction unit 97b obtains the number of substructures of the polymer structure 6a and applies the obtained number of substructures to the regression model 83f to obtain the predicted physical property value 6b. The physical property value 6b is presented to the user.
[Verification of the Prediction Accuracy]
Next, results of verifying the prediction accuracy of the functional configuration example as a comparative example and the first to fourth functional configuration examples will be described. In each functional configuration example, the inventors have verified the prediction accuracy when the refractive index is predicted.
In Example 1, the second functional configuration example (
In the above-described second functional configuration example, structures of 51 general infinite linear polymers, such as polyethylene and polypropylene, (i.e., repeated units) and experimental values of the refractive index were used as training data. ECFP4 was used as the structure descriptor. Here, ECFP4 indicates ECFP having a radius of 4 and 1024 dimensions. Hereinafter, ECPF4 will be referred to as an ECFP descriptor.
The ECFP descriptor is represented by a vector, each dimension represents a substructure classification, and a value of each dimension corresponds the number of substructures. Software such as RDKit was used to generate the ECFP descriptor. For convenience, the ECFP Descriptor is defined as a substructure number descriptor. Then, a substructure number density descriptor is obtained by dividing each element of the substructure number descriptor by the number of constituent atoms.
As a regression method, the Gaussian process regression was used. The regression model 33f was constructed using the substructure number density descriptor as an explanatory variable and the experimental value of the refractive index as an objective variable.
A data set was divided into a training data set and a verification data set by leave-one-out cross-verification, a regression model was constructed after hyperparameter tuning was performed using the training data set, and the refractive index of a polymer that was not learned was predicted using the verification data set. The coefficient of determination R2 and the root mean squared error (RMSE) were used as evaluation measures of the prediction accuracy. There are various definition equations of R2, but the following equation was used this time.
Here, yi is an experimental value of an ith polymer, y_bar is a measured average value, and fi is the predicted value of the ith polymer.
In the description above, the number of constituent atoms corresponds to the number of atoms of the repeating unit, the substructure number descriptor corresponds to the numbers of substructures 33b, and the substructure number density descriptor corresponds to the substructure number densities 33d.
In Example 2, the third functional configuration example (
Before constructing the regression model 33f, the dimension reduction unit 43e constructs a Lasso regression model (corresponding to the temporal regression model) from the substructure number density 33d and the experimental value of the physical property of the polymer obtained from the polymer structure and physical property DB 31, and performs the dimension reduction by excluding variables with coefficients of 0. In the regression model construction unit 43f, the regression model 33f was constructed by the Gaussian process regression in a manner similar to Example 1. Then, the prediction accuracy of the refractive index was verified by a method similar to the method of Example 1.
In Example 3, the fourth functional configuration example (
First, after 10 repeating units were generated as the model structure 33a, the substructure number descriptor and the number of atoms were calculated, and the substructure number density descriptor was calculated. After the substructure number density descriptor was calculated, a predicted value of the refractive index was obtained by a method similar to the method of Example 1, and the prediction accuracy was verified.
In Example 4, the first functional configuration example (
First, after 10 repeating units were generated as the model structure 33a, the substructure number descriptor and the number of atoms were calculated, and the substructure number density descriptor was calculated. In addition, the dimension reduction unit 43e constructed a Lasso regression model (corresponding to the temporal regression model) and constructed the regression model 33f by the Gaussian process regression after reducing the dimensions by excluding variables with coefficients of 0. Then, the prediction accuracy of the refractive index was verified by a method similar to the method of Example 1.
In Comparative example 1, the existing functional configuration example (
The substructure number calculating unit 93b obtained the regression model 83f from the number of substructures 83b (i.e., the substructure number descriptor) obtained using the repeating unit and the experimental value of the refractive index. The regression model 83f was constructed using the Gaussian process regression in a manner similar to the manner of Example 1. The predictive accuracy was verified in a manner similar to the manner of Example 1.
In the evaluation result of R2, compared with “−0.063” of Comparative Example 1, results of “0.890” in Example 1, “0.900” in Example 2, “0.932” in Example 3, and “0.950” in Example 4 are shown. The closer to “1” R2 is, the higher the prediction accuracy becomes. Thus, from the evaluation results, it is found that the prediction accuracy can be significantly improved in any of the functional configuration examples according to the present embodiment.
In RMSE, compared with “0.084” in Comparative example 1, results of “0.027” in Example 1, “0.026” in Example 2, “0.021” in Example 3, and “0.018” in Example 4 are shown. The closer to “0” RMSE is, the higher the prediction accuracy becomes. Thus, it is found that the prediction accuracy can be significantly improved in all the functional configuration examples according to the present embodiment in the evaluation results.
From such evaluation results, it can be said that the substructure number density 33d, which the inventors have focused on, greatly contributes to the improvement of the prediction accuracy in the present embodiment.
FIG. 15 illustrates an example of results of an evaluation performed by changing the physical property and the number of data in the data set in a manner similar to the manner of Example 4. FIG. 15 illustrates evaluation results of physical properties of Examples 5 to 9 performed by a respective number of data in a manner similar to the manner of Example 4. Results of R2 are shown as the evaluation results.
In the results of R2, results of a refractive index, a glass transition point [k], a band gap [eV], a relative permittivity, a coefficient of linear expansion [10−5/K], and a density [g/cm3] are greater than or equal to 0.6. Thus, it is found that the prediction accuracy can be significantly improved.
Since the physical property value can be predicted in advance using the physical property prediction device 100, the polymer structure 6a to be manufactured can be accurately selected. Thus, it is possible to reduce waste of costs, time, and so on related to polymer manufacturing.
As described above, according to the present embodiment, the physical properties of the polymer can be accurately predicted by generating the structure descriptor based on the polymer structure.
Next, a manufacturing method of a polymer using the desired polymer structure 6a and the predicted physical property will be described. FIG. is a drawing illustrating an example of a manufacturing method of the polymer.
From
In step S601, a polymer structure predicted to have a predetermined physical property value is appropriately selected from the input polymer structures. For example, a polymer structure whose refractive index is within a predetermined range may be selected from the input polymer structures.
In step S602, raw materials of monomers, oligomers, and the like are prepared as raw materials for forming the polymer structure selected in step S601. For example, if the selected polymer structure is polyethylene, ethylene is prepared.
In step S603, the raw materials prepared in S602 are caused to react to obtain a polymer represented by the polymer structure selected in S601. For example, ethylene is polymerized to form polyethylene.
The present invention is not limited to the specifically disclosed embodiments and various variations and modifications can be made without departing from the scope of the claims.
The present application is based on and claims priority to Japanese Patent Application No. 2018-043171, filed on Mar. 9, 2018, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2018-043171 | Mar 2018 | JP | national |
This application is a continuation-in-part application of International Application No. PCT/JP2019/008704 filed on Mar. 5, 2019, which is based upon and claims priority to Japanese Priority Application No. 2018-043171 filed on Mar. 9, 2018, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5260882 | Blanco | Nov 1993 | A |
6687621 | Schneiderman et al. | Feb 2004 | B2 |
20150310162 | Okuno et al. | Oct 2015 | A1 |
20180018408 | Matsumura et al. | Jan 2018 | A1 |
20190310207 | Guzman Cardozo | Oct 2019 | A1 |
20200051671 | Maxson et al. | Feb 2020 | A1 |
20200082913 | Mir et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
H06-271823 | Sep 1994 | JP |
2004-514902 | May 2004 | JP |
5946045 | Jul 2016 | JP |
2016-180660 | Oct 2016 | JP |
2018-010428 | Jan 2018 | JP |
02077772 | Oct 2002 | WO |
2008116495 | Oct 2008 | WO |
2015032505 | Mar 2015 | WO |
Entry |
---|
Takuya Minami et al., “Number Density Descriptor on Extended-Connectivity Fingerprints Combined with Machine Learning Approaches for Predicting Polymer Properties” ADMAT, (Undated). |
Takuya Minami et al., “Number Density Descriptor on Extended-Connectivity Fingerprints Combined with Machine Learning Approaches for Predicting Polymer Properties” MRS Advances © 2018 Materials Research Society DOI: 10.1557/adv.2018.454 Downloaded from https://www.cambridge.org/core. IP address: 103.9.96.234, on May 22, 2018 at 08:40:49. |
2018 MRS Spring Meeting & Exhibit Apr. 2-6, 2018 Phoenix, Arizona—Session Details. |
D. Rogers et al., “Extended-Connectivity Fingerprints” American Chemical Society, J. Chem. Info. Model., vol. 50, No. 5, 2010, pp. 742-754. |
International Search Report dated May 28, 2019 with respect to PCT/JP2019/008704. |
Journal of Computer Aided Chemistry [online], 2009, vol. 10, [retrieval date May 15, 2019], Internet: < URL:https://www.istage.jst.go.jp/article/jcac/10/0/10_0_30/_article/-char/ja> <DOI:10.2751/jcac.10.30>, pp. 30-37, (Goto, Shun et al., “Development of Predictive Models and Reverse Analysis Method for Polymer Design”), with Partial English Trans. |
Extended European Search Report dated Nov. 3, 2021 with respect to the corresponding European patent application No. 19763785.3. |
Office Action dated May 27, 2021 issued with respect to the related U.S. Appl. No. 16/666,643. |
Number | Date | Country | |
---|---|---|---|
20200395102 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2019/008704 | Mar 2019 | US |
Child | 17008999 | US |