Polymer safety glazing for vehicles

Information

  • Patent Grant
  • 12109788
  • Patent Number
    12,109,788
  • Date Filed
    Friday, March 10, 2023
    a year ago
  • Date Issued
    Tuesday, October 8, 2024
    3 months ago
Abstract
A laminate includes a polycarbonate substrate and an ultraviolet hard coat film disposed on the polycarbonate substrate. The ultraviolet hard coat film may include a polyethylene terephthalate (PET) layer, an adhesive interposed between the PET layer and the polycarbonate substrate, and an exterior hard coat disposed on the PET layer opposite the polycarbonate substrate. The exterior hard coat may include UV stabilizers. The laminate may include additional ultraviolet hard coat films stacked on the ultraviolet hard coat film. The laminate may be thermoformed into the shape of a curved vehicle windshield.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND
1. Technical Field

The present disclosure relates generally to safety glazing and, more particularly, to polymer safety glazing for vehicle windows including windshields.


2. Related Art

Safety glazing has historically been made of glass. Glass has a hardness that can withstand scratching from windshield wipers and some amount of abrasive debris. It is also very economical and lends itself to mass production techniques. However, glass breaks easily and can present dangerous sharp pieces that can lacerate passengers, causing personal injuries. This problem has been mitigated to a point by tempering, causing the glass to break into small pieces (½″), and by laminating two glass pieces together with a flexible polymer polyvinylbutyral (PVB) core between them in an attempt to hold the small fragments together.


Unfortunately, glass safety glazing is susceptible to pitting by small aggregates and dust in the air, causing obscured vision while traveling toward the sun. Over 15 million glass windshields are replaced each year for pitting and breaking in the USA alone. Moreover, laminated glass-PVB-glass windshields cannot be recycled because the PVB core contaminates the glass.


Considering the drawbacks of glass safety glazing, laceration of passengers remains a longstanding problem with no ideal solution. For example, 30 years of research has attempted to place a polymer coating or layer on the interior of a glass windshield without any commercial success.


Polycarbonate exhibits superior impact resistance and is used for vehicle glazing in auto racing and off-road vehicles. However, polycarbonate is so soft a material that it scratches and pits too easily for use in commercial or public vehicles. To date, there is no available direct hard coating to overcome these durability issues. Therefore, polycarbonate windshields are currently restricted to motorcycles on public roads. For example, Saudi Basic Industries Corporation (SABIC) is the producer of LEXAN branded polycarbonate. In their 2016 Department of Transportation (DOT) Guidebook regarding LEXAN sheet products, they state, “Except for motorcycle windshields, SABIC's thermoplastics materials generally cannot be used for forward facing exterior glazing . . . ”


BRIEF SUMMARY

The present disclosure contemplates various systems and methods for overcoming the above drawbacks accompanying the related art. One aspect of the embodiments of the present disclosure is a laminate including a polycarbonate substrate and an ultraviolet hard coat film disposed on the polycarbonate substrate. The ultraviolet hard coat film may include a polyethylene terephthalate (PET) layer, an adhesive interposed between the PET layer and the polycarbonate substrate, and an exterior hard coat disposed on the PET layer opposite the polycarbonate substrate. The exterior hard coat, the PET layer, and/or the adhesive may include UV stabilizers.


The polycarbonate substrate may be 3-8 mm thick. The PET layer may be 2-6 mil thick. The exterior hard coat may be 2-10 microns thick. The exterior hard coat may have a gouge pencil hardness of greater than 8H. The adhesive may be a pressure sensitive adhesive.


The laminate may include an interior hard coat disposed on the polycarbonate substrate opposite the PET layer. The interior hard coat may have a gouge pencil hardness of 6H to 8H.


The ultraviolet hard coat film may be a first of a plurality of ultraviolet hard coat films stacked on the polycarbonate substrate. The plurality of ultraviolet hard coat films may include a second ultraviolet hard coat film disposed on the first ultraviolet hard coat film, the second ultraviolet hard coat film including a second PET layer, a second adhesive interposed between the second PET layer and the first ultraviolet hard coat film, and a second exterior hard coat disposed on the second PET layer opposite the first ultraviolet hard coat film. The second exterior hard coat, the second PET layer, and/or the second adhesive may include UV stabilizers. The adhesive of the first ultraviolet hard coat film may be stronger than the second adhesive.


The laminate may be thermoformed into the shape of a curved vehicle windshield.


Another aspect of the embodiments of the present disclosure is a method. The method may include depositing a UV stabilized hard coat on a first side of a polyethylene terephthalate (PET) carrier, coating a second side of the PET carrier, opposite the first side, with an adhesive, and adhering the second side of the PET carrier to a polycarbonate substrate using the adhesive.


The PET carrier, the UV stabilized hard coat, and the adhesive may define an ultraviolet hard coat film. The method may include winding the ultraviolet hard coat film on a roll prior to adhering the second side of the PET carrier to the polycarbonate substrate. The method may include applying a removable liner to the second side of the PET carrier after the coating. The method may include removing the removable liner from the second side of the PET carrier prior to adhering the second side of the PET carrier to the polycarbonate substrate. The method may include thermoforming the polycarbonate substrate with the adhered ultraviolet hard coat film to the shape of a curved vehicle windshield.


The PET carrier, the UV stabilized hard coat, and the adhesive may define a first ultraviolet hard coat film. The method may include depositing a second UV stabilized hard coat on a first side of a second PET carrier, coating a second side of the second PET carrier, opposite the first side, with a second adhesive, and adhering the second side of the second PET carrier to the first ultraviolet hard coat film using the second adhesive. The adhesive of the first ultraviolet hard coat film may be stronger than the second adhesive. The second PET carrier, the second UV stabilized hard coat, and the second adhesive may define a second ultraviolet hard coat film.


The method may include thermoforming the polycarbonate substrate with adhered first and second ultraviolet hard coat films to the shape of a vehicle windshield. The method may include peeling off the second ultraviolet hard coat film to reveal the first ultraviolet hard coat film. The method may include depositing a new second UV stabilized hard coat on a first side of a new second PET carrier, coating a second side of the new second PET carrier, opposite the first side, with a new second adhesive, and adhering the second side of the new second PET carrier to the first ultraviolet hard coat film using the new second adhesive.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:



FIG. 1 shows a laminate that is thermoformed into the shape of a vehicle windshield and installed in a vehicle according to an embodiment of the present disclosure;



FIG. 2 is a cross-sectional view of the laminate taken along the line 2-2 in FIG. 1; and



FIG. 3 shows an example operational flow according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses various embodiments of a laminate for use as a vehicle windshield and a manufacturing method thereof. The detailed description set forth below in connection with the appended drawings is intended as a description of several currently contemplated embodiments and is not intended to represent the only form in which the disclosed invention may be developed or utilized. The description sets forth the functions and features in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions may be accomplished by different embodiments that are also intended to be encompassed within the scope of the present disclosure. It is further understood that relational terms such as first and second and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship in order between such entities.



FIG. 1 shows a laminate 100 that is thermoformed into the shape of a vehicle windshield and installed in a vehicle 10 according to an embodiment of the present disclosure. FIG. 2 is a cross-sectional view of the laminate 100 taken along the line 2-2 in FIG. 1. As shown in FIG. 2, the laminate 100 may including a polycarbonate substrate 110 and one or more ultraviolet hard coat films 120 (120a, 120b, etc.) disposed on the polycarbonate substrate 110. By disposing the one or more ultraviolet hard coat films 120 on the polycarbonate substrate 110, the polycarbonate substrate 110 can be protected from scratching and pitting by windshield wipers and debris during use. In this way, the laminate 100 may combine the impact resistance of polycarbonate with the durability needed for widespread vehicle use, all while avoiding the safety hazards associated with glass windshields.


Unlike prior attempts to apply hard coating to polycarbonate, the ultraviolet hard coat film 120a includes a polyethylene terephthalate (PET) layer 122a serving as a carrier, which may be adhered to the polycarbonate substrate 110 by an adhesive 124a interposed therebetween. A UV stabilized exterior hard coat 126a may be disposed on the PET layer 122a opposite the polycarbonate substrate 110, with the PET layer 122a, adhesive 124a, and exterior hard coat 126a defining the ultraviolet hard coat film 120a. The exterior hard coat 126a may have a gouge pencil hardness of greater than 8H, making the laminate 100 far more durable than the polycarbonate substrate 110 would be alone. By using the PET layer 122a as a carrier, the exterior hard coat 126a can be applied without the difficulties that would arise if one were to attempt to apply the exterior hard coat 126a to the polycarbonate substrate 110 directly. For example, the polycarbonate substrate 110 may be too soft to support the hard coat 126a, the difference in thermal expansion coefficient between the polycarbonate substrate 110 and the hard coat 126a may cause the hard coat 126a to fracture over time, and/or the hydrophilic quality of the polycarbonate substrate 110 may cause absorbed water to lift the hard coat 126a. These concerns may be avoided by applying the hard coat 126a to the PET layer 122a and allowing the PET layer 122a to “float” on the polycarbonate substrate 110 with the adhesive 124a interposed therebetween.


As shown in the example of FIG. 2, the ultraviolet hard coat film 120a may be a first of a plurality of ultraviolet hard coat films 120 (120a, 120b, etc.) stacked on the polycarbonate substrate 110. By way of example, a second ultraviolet hard coat film 120b may include and be defined by a PET layer 122b, an adhesive 124b, and an exterior hard coat 126b, which may be the same as the PET layer 122a, adhesive 124a, and exterior hard coat 126a, respectively, except that the adhesive 124b may be interposed between the PET layer 122b and the first ultraviolet hard coat film 120 (e.g. the exterior hard coat 126a thereof). Additional (e.g. third, fourth, etc.) ultraviolet hard coat films 120 may be applied in the same way. When a laminate 100 having more than one ultraviolet hard coat film 120 becomes unacceptably degraded over time during the life of the vehicle windshield or other window (e.g. due to chips, oxidation, etc.), the outermost ultraviolet hard coat film 120 may simply be peeled off and removed, revealing the fresh ultraviolet hard coat film 120 beneath. To this end, the adhesive 124a of the first ultraviolet hard coat film 120a may be stronger than the adhesive 124b etc. used for additional ultraviolet hard coat films 120 (and in some cases the adhesives 124b etc. may have further decreasing strength with each additional ultraviolet hard coat film 120). In this way, the first ultraviolet hard coat film 120a may remain adhered to the polycarbonate substrate 110 while another ultraviolet hard coat film 120 is peeled off. It is contemplated, for example, that the first ultraviolet hard coat film 120a may be intended to remain on the polycarbonate substrate 110 for the life of the laminate 100, with additional hard coat films 120 being removable (and possibly replenishable as described below) as needed. Along the same lines, each such additional ultraviolet hard coat film 120 beyond the first 120a may be provided with a tab or other means for easy peel-away during the life of the laminate 100.


The PET layer 122a of the ultraviolet hard coat film 120a may be 2-6 mil thick (1 mil=1 thousandth of an inch) and may be, for example, a biaxially-oriented polyethylene terephthalate (BoPET) sold under the registered trademark Mylar owned by the DuPont Company. The exterior hard coat 126a may be 2-10 microns (e.g. 5 microns) thick and may be, for example, a UV-curable polysiloxane-acrylic hybrid resin, such as a UV-curable resin marketed by DIC Corporation. In addition to having a gouge pencil hardness of greater than 8H, the exterior hard coat 126a may pass the abrasion test #18 specified in the American National Standards Institute (ANSI) Z26.1-1996 standard and the one-year weather test #16 specified in the ANSI Z26.1-1996 standard. As noted above, the exterior hard coat 126a may be UV-stabilized, for example, by the inclusion of UV stabilizers such as hydroxyphenyl-benzotriazole or hydroxyphenyl-triazine UV absorbers. By including UV stabilizers in the exterior hard coat 126a, degradation of the PET carrier 122a and adhesive 124a caused by ultraviolet radiation in sunlight (e.g. yellowing or becoming brittle) can be prevented or slowed during the life of the ultraviolet hard coat film 120a. It is contemplated that UV stabilizers may be additionally or alternatively included in the PET carrier 122a and/or the adhesive 124a. The adhesive 124a may be 10-25 microns (e.g. 25 microns) thick and may be, for example, a pressure sensitive adhesive (PSA) such as a low tack PSA having a peel strength determined as a constant load per unit width needed for peeling of about 30 grams per inch. The components of any additional ultraviolet hard films 120 beyond the first ultraviolet hard coat film 120a may have the same or similar specifications. The underlying polycarbonate substrate 110 may be 3-8 mm (e.g. 4 mm) thick.


As shown in FIG. 2, the laminate 100 may further include an interior hard coat 130 disposed on the polycarbonate substrate 110 opposite the PET layer 122a. Because the interior hard coat 130 will be the inward-facing surface of the windshield, it will not be subject to the same abrasions and impacts as the exterior hard coat 126a and need not be held to the same standards. As such, the interior hard coat 130 may be softer than the exterior hard coat 126a, thus mitigating the difficulties discussed above with respect to directly applying the exterior hard coat 126a to the polycarbonate substrate 110. The interior hard coat 130 may have a gouge pencil hardness of only 6H to 8H, for example. The interior hard coat 130 need not necessarily pass the abrasion test #13 specified in the ANSI Z26.1-1996 standard or the one-year weather test #16 specified in the ANSI Z26.1-1996 standard. Like the exterior hard coat 126a, the interior hard coat 130 may be 2-10 microns (e.g. 5 microns) thick and may be, for example, a UV-curable polysiloxane-acrylic hybrid resin, such as a UV-curable resin marketed by DIC Corporation. Because it will not be exposed directly to sunlight, the interior hard coat 130 may or may not have UV stabilizers.



FIG. 3 shows an example operational flow according to an embodiment of the present disclosure. The operational flow may begin with depositing a UV stabilized hard coat that will serve as an exterior hard coat 126a on a first side of a PET carrier 122a (step 310). The exterior hard coat 126a is preferably wet deposited onto the PET carrier 122a but may be applied according to any appropriate methods including spin coating, dip coating, or vacuum deposition. Before or after the exterior hard coat 126a is applied, the PET carrier 122a may be coated on the opposite side with the adhesive 124a (step 320). These three elements, the PET carrier 122a, adhesive 124a, and exterior hard coat 126a, may be permanently bonded to each other and can be collectively regarded as the ultraviolet hard coat film 120a. Once the adhesive 124a is coated on the PET carrier 122a, a removable liner may be applied to the same side of the PET carrier 122a to protect the adhesive 124a (step 330). The ultraviolet hard coat film 120a may then be wound on a roll to form a roll-to-roll processing web that may be about 2 meters wide (step 340). The operational flow of steps 310-340 may produce a roll of the ultraviolet hard coat film 120a at a rate of about 30 meters per minute.


As the ultraviolet hard coat film 120a is unwound from the roll, the removable liner may be removed to expose the adhesive 124a (step 350), and the PET carrier 122a may be adhered to the polycarbonate substrate 110 by the exposed adhesive 124a (step 360). For example, the ultraviolet hard coat film 120a may be dry nipped to the flat polycarbonate substrate 110 by rollers. With the ultraviolet hard coat film 120a having been adhered to the polycarbonate substrate 110, the laminate 100 may be ready for thermoforming to the desired final shape of the windshield or other window. However, as described above and shown in FIG. 2, the laminate 100 may include additional ultraviolet hard coat films 120b, etc., which may later be peeled off one at a time as they degrade with use. In this case, steps 310-360 may be repeated for each additional ultraviolet hard coat film 120, except that each subsequent ultraviolet hard coat film 120 is adhered to the preceding ultraviolet hard coat film 120 of the stack rather than to the polycarbonate substrate 110 in step 360. Once the desired number of ultraviolet hard coat films 120 is stacked on the polycarbonate substrate 110, the entire laminate 110 including the polycarbonate substrate 110 and one or more adhered ultraviolet hard coat films 120 may be 2D or 3D thermoformed to create the windshield or other window (step 370). The thermoforming temperature may be typically about 180 degrees Celsius and may utilize a windshield-shaped pattern or mold surface to form a properly sized 2D or 3D shaped vehicle windshield for installation in a vehicle 10 (see FIG. 1).


As explained above, it is contemplated that a laminate 100 having more than one ultraviolet hard coat film 120 may allow for the outermost ultraviolet hard coat film 120 to be peeled off and removed to reveal a fresh ultraviolet hard coat film 120 beneath. In this respect, the operational flow of FIG. 3 may continue during the life of the laminate 100 that has been installed in a vehicle 10. When the outermost ultraviolet hard coat film 120 becomes unacceptably degraded over time, it may be peeled off to reveal the next ultraviolet hard coat film 120 underneath (step 380).


Following removal of one or more ultraviolet hard coat films 120 in step 380, it is further contemplated that the set of ultraviolet hard coat films 120 may in some cases be replenished to avoid any degradation to the first, innermost ultraviolet hard coat film 120a and prolong the life of the laminate 100. It is envisioned that this first ultraviolet hard coat film 120a would generally not be removed, as doing so would expose the softer polycarbonate substrate 110 which may not conform to the same standards for use in the vehicle 10. As such, the operational flow of FIG. 3 may include a step of applying one or more new ultraviolet hard coat films 120 to the first ultraviolet hard coat film 120a or to the remaining stack of ultraviolet hard coat films 120 (step 390). For example, steps 310-360 may be performed for each additional new ultraviolet hard coat film 120, except that, in step 360, the new ultraviolet hard coat film(s) 120 may be added to the laminate 100 while the laminate 100 is already installed in the vehicle 10 and thus after it has been thermoformed. This may be done, for example, by wet laminating the new ultraviolet hard coat film(s) 120 to the stack and shrinking them with a heat gun or blow dryer to conform them to the existing shape of the laminate 100 while applying pressure using a card or squeegee. In some cases, such additional ultraviolet hard coat film(s) may be applied using a sacrificial layer serving as a female mold cavity as described in commonly owned U.S. application Ser. No. 16/778,928, filed Jan. 31, 2020 and entitled “THERMOFORM WINDSHIELD STACK WITH INTEGRATED FORMABLE MOLD,” the entire contents of which is expressly incorporated herein by reference.


At the end of the life of the laminate 100, there is no contamination as in the case of conventional laminated glass-PVB-glass windshields. Thus, the polycarbonate substrate 110 can easily be recycled, resulting in less waste and benefitting the environment.


In the above examples of the laminate 100, it is assumed that at least one ultraviolet hard coat film 120 is adhered to the polycarbonate substrate 110 prior to thermoforming into the desired shape of the windshield or other window. However, the disclosure is not intended to be so limited, and it is contemplated that the one or more ultraviolet hard coat films 120 may be applied after the polycarbonate substrate 110 is already thermoformed. For example, the same techniques described above in relation to replenishing the stack of ultraviolet hard coat films 120 in step 390 may be used to apply the original one or more ultraviolet hard coat films 120.


The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.

Claims
  • 1. A laminate comprising: a polycarbonate substrate;a film disposed on the polycarbonate substrate, the film including a first polyethylene terephthalate (PET) layer, a first adhesive interposed between the first PET layer and the polycarbonate substrate, and a first exterior hard coat disposed on the first PET layer opposite the polycarbonate substrate; andan interior hard coat disposed on the polycarbonate substrate opposite the first PET layer, the interior hard coat being softer than the first exterior hard coat.
  • 2. The laminate of claim 1, wherein the polycarbonate substrate is 3-8 mm thick.
  • 3. The laminate of claim 1, wherein the first PET layer is 2-6 mil thick.
  • 4. The laminate of claim 1, wherein the first exterior hard coat is 2-10 microns thick.
  • 5. The laminate of claim 1, wherein the first adhesive is a pressure sensitive adhesive.
  • 6. The laminate of claim 1, wherein the film is a first of a plurality of films stacked on the polycarbonate substrate, the plurality of films including a second film disposed on the first film, the second film including a second PET layer, a second adhesive interposed between the second PET layer and the first film, and a second exterior hard coat disposed on the second PET layer opposite the first film.
  • 7. The laminate of claim 6, wherein the first adhesive is stronger than the second adhesive.
  • 8. The laminate of claim 1, wherein the laminate is thermoformed into the shape of a curved vehicle windshield.
  • 9. A method comprising: depositing a first hard coat on a first side of a polyethylene terephthalate (PET) carrier;coating a second side of the PET carrier, opposite the first side, with an adhesive;adhering the second side of the PET carrier to a first side of a polycarbonate substrate using the adhesive; anddisposing an interior hard coat on a second side of the polycarbonate substrate opposite the first side, the interior hard coat being softer than the first hard coat.
  • 10. The method of claim 9, wherein the PET carrier, the first hard coat, and the adhesive define a film, the method further comprising winding the film on a roll prior to the adhering.
  • 11. The method of claim 10, further comprising: applying a removable liner to the second side of the PET carrier after the coating; andremoving the removable liner from the second side of the PET carrier prior to the adhering.
  • 12. The method of claim 10, wherein the PET carrier, the first hard coat, and the adhesive define a film, the method further comprising thermoforming the polycarbonate substrate with the adhered film to the shape of a curved vehicle windshield.
  • 13. The method of claim 10, wherein the PET carrier, the first hard coat, and the adhesive define a first film, the method further comprising: depositing a second hard coat on a first side of a second PET carrier;coating a second side of the second PET carrier, opposite the first side, with a second adhesive; andadhering the second side of the second PET carrier to the first film using the second adhesive.
  • 14. The method of claim 13, wherein the adhesive of the first film is stronger than the second adhesive.
  • 15. The method of claim 13, wherein the second PET carrier, the second hard coat, and the second adhesive define a second film, the method further comprising thermoforming the polycarbonate substrate with the adhered first and second films to the shape of a vehicle windshield.
  • 16. The method of claim 15, further comprising peeling off the second film to reveal the first film.
  • 17. The method of claim 16, further comprising: depositing a new second hard coat on a first side of a new second PET carrier;coating a second side of the new second PET carrier, opposite the first side, with a new second adhesive; andadhering the second side of the new second PET carrier to the first film using the new second adhesive.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/664,018, filed May 18, 2022, which is a continuation of U.S. application Ser. No. 16/819,526, filed Mar. 16, 2020, now U.S. Pat. No. 11,364,715, issued Jun. 21, 2022, which relates to and claims the benefit of U.S. Provisional Application No. 62/850,966, filed May 21, 2019, and entitled “POLYMER SAFETY GLAZING FOR VEHICLES,” the entire contents of which are expressly incorporated herein by reference.

US Referenced Citations (527)
Number Name Date Kind
1337036 Bergmann Apr 1920 A
1366907 Dunand Feb 1921 A
2138086 Blodjer Nov 1938 A
2248331 Blodjer Jul 1941 A
2328687 Serr Sep 1943 A
2339280 Harold Jan 1944 A
2354415 Woodard Jul 1944 A
2461604 Huntsman Feb 1949 A
2511329 Craig Jun 1950 A
2546117 Whelan Mar 1951 A
2563125 Malcom, Jr. Aug 1951 A
2569715 Green Oct 1951 A
2640068 Schaefer et al. May 1953 A
2736109 Scholl Feb 1956 A
2923944 Lindblom Feb 1960 A
2963708 Herbine et al. Dec 1960 A
3095575 Radov Jul 1963 A
3298031 Harold Jan 1967 A
3475766 Raschke Nov 1969 A
3577565 Feldmann et al. May 1971 A
3605115 Bohner Sep 1971 A
3685054 Raschke Aug 1972 A
3774239 Kotzar Nov 1973 A
3785102 Amos Jan 1974 A
3797042 Gager Mar 1974 A
3810815 Welhart et al. May 1974 A
3868293 Selph Feb 1975 A
3937863 Moore Feb 1976 A
3948662 Alston et al. Apr 1976 A
3950580 Boudet Apr 1976 A
3987569 Chase Oct 1976 A
4063740 Mader Dec 1977 A
4076373 Moretti Feb 1978 A
4090464 Bishopp et al. May 1978 A
D249597 Dillon Sep 1978 S
4138746 Bergmann Feb 1979 A
D254638 Bay, Jr. Apr 1980 S
4204231 Permenter May 1980 A
4248762 Hornibrook et al. Feb 1981 A
4248918 Hornibrook et al. Feb 1981 A
4268134 Gulati et al. May 1981 A
4273098 Silverstein Jun 1981 A
4301193 Zuk Nov 1981 A
4332861 Franz et al. Jun 1982 A
4333983 Allen Jun 1982 A
4380563 Ayotte Apr 1983 A
4528701 Smith Jul 1985 A
4557980 Hodnett, III Dec 1985 A
4582764 Allerd et al. Apr 1986 A
4625341 Broersma Dec 1986 A
4658515 Oatman Apr 1987 A
4696860 Epperson Sep 1987 A
4701965 Landis Oct 1987 A
4716601 Mcneal Jan 1988 A
4726074 Baclit et al. Feb 1988 A
4729179 Quist, Jr. Mar 1988 A
4769265 Coburn, Jr. Sep 1988 A
D299767 Hsin Feb 1989 S
4842919 David et al. Jun 1989 A
4850049 Landis et al. Jul 1989 A
4852185 Olson Aug 1989 A
4852186 Landis Aug 1989 A
4853974 Olim Aug 1989 A
4856535 Forbes Aug 1989 A
4864653 Landis Sep 1989 A
4867178 Smith Sep 1989 A
4884296 Nix, Jr. Dec 1989 A
4884302 Foehl Dec 1989 A
4889754 Vargas Dec 1989 A
D306363 Stackhouse et al. Feb 1990 S
4907090 Ananian Mar 1990 A
4911964 Corbo Mar 1990 A
D307065 Friedman Apr 1990 S
4920576 Landis May 1990 A
4934792 Tovi Jun 1990 A
4945573 Landis Aug 1990 A
4950445 Salce et al. Aug 1990 A
D311263 Russell Oct 1990 S
4964171 Landis Oct 1990 A
4965887 Paoluccio et al. Oct 1990 A
4973511 Farmer et al. Nov 1990 A
4975981 Ray Dec 1990 A
5000528 Kawakatsu Mar 1991 A
5002326 Spicer et al. Mar 1991 A
D318147 Russell Jul 1991 S
5035004 Koester Jul 1991 A
D319449 Millar Aug 1991 S
5046195 Koritan Sep 1991 A
D321268 Nix, Jr. Oct 1991 S
5052054 Birum Oct 1991 A
5054480 Bare et al. Oct 1991 A
5067475 Posnansky Nov 1991 A
5071206 Hood et al. Dec 1991 A
H1023 Wiseman Mar 1992 H
5104929 Bilkadi Apr 1992 A
5113528 Burke, Jr. et al. May 1992 A
D331820 Scanlon Dec 1992 S
D333366 Brown Feb 1993 S
5183700 Austin Feb 1993 A
5194293 Foster Mar 1993 A
5201077 Dondlinger Apr 1993 A
5206956 Olson May 1993 A
5208916 Kelman May 1993 A
5239406 Lynam Aug 1993 A
5318685 O'Shaughnessy Jun 1994 A
D349177 Russell Jul 1994 S
D349178 Russell Jul 1994 S
5327180 Hester, III et al. Jul 1994 A
D349362 Russell Aug 1994 S
5364671 Gustafson Nov 1994 A
5365615 Piszkin Nov 1994 A
D353691 Scanlon Dec 1994 S
D354588 Russell Jan 1995 S
D354589 Russell Jan 1995 S
5420649 Lewis May 1995 A
D359586 Lofton Jun 1995 S
D361160 Russell Aug 1995 S
5443877 Kramer et al. Aug 1995 A
D362086 Russell Sep 1995 S
5468247 Matthai et al. Nov 1995 A
5471036 Sperbeck Nov 1995 A
5473778 Bell Dec 1995 A
5486883 Candido Jan 1996 A
5507332 McKinnon Apr 1996 A
5510173 Pass et al. Apr 1996 A
5512116 Campfield Apr 1996 A
5523132 Zhang et al. Jun 1996 A
RE35318 Warman Aug 1996 E
5544361 Fine et al. Aug 1996 A
5553608 Reese et al. Sep 1996 A
5555570 Bay Sep 1996 A
5557683 Eubanks Sep 1996 A
5584130 Perron Dec 1996 A
5592698 Woods Jan 1997 A
5593786 Parker et al. Jan 1997 A
5622580 Mannheim Apr 1997 A
5633049 Bilkadi et al. May 1997 A
5668612 Hung Sep 1997 A
5671483 Reuber Sep 1997 A
5673431 Batty Oct 1997 A
5687420 Chong Nov 1997 A
5694650 Hong Dec 1997 A
5702415 Matthai et al. Dec 1997 A
5709825 Shih Jan 1998 A
5740560 Muoio Apr 1998 A
5792535 Weder Aug 1998 A
5806102 Park Sep 1998 A
5815848 Jarvis Oct 1998 A
5819311 Lo Oct 1998 A
5846659 Hartmut et al. Dec 1998 A
D404849 Desy Jan 1999 S
5885704 Peiffer et al. Mar 1999 A
5896991 Hippely et al. Apr 1999 A
5924129 Gill Jul 1999 A
5937596 Leeuwenburgh et al. Aug 1999 A
5956175 Hojnowski Sep 1999 A
5972453 Akiwa et al. Oct 1999 A
5991072 Solyntjes et al. Nov 1999 A
5991081 Haaland et al. Nov 1999 A
5991930 Sorrentino Nov 1999 A
D418256 Caruana Dec 1999 S
6008299 Mcgrath et al. Dec 1999 A
6049419 Wheatley et al. Apr 2000 A
6085358 Cogan Jul 2000 A
6173447 Arnold Jan 2001 B1
6217099 Mckinney et al. Apr 2001 B1
6221112 Snider Apr 2001 B1
6237147 Brockman May 2001 B1
6250765 Murakami Jun 2001 B1
6305073 Badders Oct 2001 B1
6347401 Joyce Feb 2002 B1
6375865 Paulson et al. Apr 2002 B1
6378133 Daikuzono Apr 2002 B1
6381750 Mangan May 2002 B1
6385776 Linday May 2002 B2
6388813 Wilson et al. May 2002 B1
6403005 Mientus et al. Jun 2002 B1
6416872 Maschwitz Jul 2002 B1
6432522 Friedman et al. Aug 2002 B1
6461709 Janssen et al. Oct 2002 B1
6469752 Ishikawa et al. Oct 2002 B1
6481019 Diaz et al. Nov 2002 B2
6491390 Provost Dec 2002 B1
6531180 Takushima et al. Mar 2003 B1
6536045 Wilson et al. Mar 2003 B1
6536589 Chang Mar 2003 B2
6555235 Aufderheide et al. Apr 2003 B1
6559902 Kusuda et al. May 2003 B1
6576349 Lingle et al. Jun 2003 B2
6584614 Hogg Jul 2003 B2
6592950 Toshima et al. Jul 2003 B1
6614423 Wong et al. Sep 2003 B1
6622311 Diaz et al. Sep 2003 B2
D480838 Martin Oct 2003 S
6654071 Chen Nov 2003 B2
6660389 Liu et al. Dec 2003 B2
6662371 Shin Dec 2003 B2
6667738 Murphy Dec 2003 B2
6739718 Jung May 2004 B1
6745396 Landis et al. Jun 2004 B1
6750922 Benning Jun 2004 B1
6773778 Onozawa et al. Aug 2004 B2
6773816 Tsutsumi Aug 2004 B2
6777055 Janssen et al. Aug 2004 B2
6800378 Hawa et al. Oct 2004 B2
6838610 De Moraes Jan 2005 B2
6841190 Liu et al. Jan 2005 B2
6847492 Wilson et al. Jan 2005 B2
6864882 Newton Mar 2005 B2
6870686 Wilson et al. Mar 2005 B2
6879319 Cok Apr 2005 B2
6907617 Johnson Jun 2005 B2
6911593 Mazumder et al. Jun 2005 B2
6922850 Arnold Aug 2005 B1
6952950 Doe et al. Oct 2005 B2
6967044 O'Brien Nov 2005 B1
D512797 Canavan et al. Dec 2005 S
6973677 Diaz et al. Dec 2005 B2
6995976 Richardson Feb 2006 B2
7070837 Ross Jul 2006 B2
7071927 Blanchard Jul 2006 B2
D526446 Cowan et al. Aug 2006 S
7097080 Cox Aug 2006 B2
7101810 Bond et al. Sep 2006 B2
7103920 Otterson Sep 2006 B1
7143979 Wood et al. Dec 2006 B2
7184217 Wilson et al. Feb 2007 B2
D541991 Lawrence May 2007 S
7215473 Fleming May 2007 B2
7226176 Huang Jun 2007 B1
7238401 Dietz Jul 2007 B1
7311956 Pitzen Dec 2007 B2
D559442 Regelbrugge et al. Jan 2008 S
7344241 Baek Mar 2008 B2
7351470 Draheim et al. Apr 2008 B2
D569557 Cho May 2008 S
7389869 Mason, Jr. Jun 2008 B2
7410684 Mccormick Aug 2008 B2
7425369 Oakey et al. Sep 2008 B2
D586052 Elias Feb 2009 S
7495895 Carnevali Feb 2009 B2
7597441 Farwig Oct 2009 B1
7629052 Brumwell Dec 2009 B2
7631365 Mahan Dec 2009 B1
7663047 Hanuschak Feb 2010 B2
7709095 Persoone et al. May 2010 B2
7722921 Shimoda et al. May 2010 B2
7727615 Kato et al. Jun 2010 B2
7735156 VanDerWoude et al. Jun 2010 B2
7752682 Vanderwoude et al. Jul 2010 B2
7812077 Borade et al. Oct 2010 B2
7858001 Qin et al. Dec 2010 B2
7937775 Manzella, Jr. et al. May 2011 B2
7957524 Chipping Jun 2011 B2
8024818 Davenport Sep 2011 B1
8044942 Leonhard et al. Oct 2011 B1
8234722 VanDerWoude et al. Aug 2012 B2
8261375 Reaux Sep 2012 B1
8282234 VanDerWoude et al. Oct 2012 B2
8292347 Drake Oct 2012 B1
8294843 Hollaway Oct 2012 B2
8316470 McNeal et al. Nov 2012 B2
8361260 Wilson et al. Jan 2013 B2
8407818 VanDerWoude et al. Apr 2013 B2
D683077 Klotz et al. May 2013 S
8455105 Hobeika et al. Jun 2013 B2
D692187 Isobe Oct 2013 S
D692189 Isobe Oct 2013 S
8567596 Mason, Jr. Oct 2013 B1
8693102 Wilson et al. Apr 2014 B2
8819869 VanDerWoude et al. Sep 2014 B2
8889801 Liao et al. Nov 2014 B2
8918198 Atanasoff Dec 2014 B2
8974620 Wilson et al. Mar 2015 B2
D726378 Wako Apr 2015 S
8999509 Port et al. Apr 2015 B2
9023162 Mccormick et al. May 2015 B2
9104256 Wilson et al. Aug 2015 B2
9128545 Wilson et al. Sep 2015 B2
9150763 Lopez et al. Oct 2015 B2
9161858 Capers et al. Oct 2015 B2
9170415 Mansuy Oct 2015 B2
9173437 VanDerWoude et al. Nov 2015 B2
9204823 Derenne et al. Dec 2015 B2
9274625 Wilson et al. Mar 2016 B2
9295297 Wilson Mar 2016 B2
D759900 Cummings et al. Jun 2016 S
9442306 Hines et al. Sep 2016 B1
9471163 Wilson et al. Oct 2016 B2
9526290 Wilson Dec 2016 B2
9575231 Chu et al. Feb 2017 B2
D781507 Huh Mar 2017 S
D781508 Huh Mar 2017 S
9629407 Foster Apr 2017 B2
9671622 Vetrini et al. Jun 2017 B1
9706808 Sclafani et al. Jul 2017 B2
9726940 Tomiyasu Aug 2017 B2
D805256 Yang Dec 2017 S
9905297 Best Feb 2018 B2
D815190 Dellemann Apr 2018 S
9968155 Wilson May 2018 B2
10070678 Wilson Sep 2018 B2
10165819 Klotz et al. Jan 2019 B2
10201207 VanDerWoude et al. Feb 2019 B2
10226095 Wilson Mar 2019 B2
10227501 Hwang et al. Mar 2019 B2
D849240 Guo et al. May 2019 S
D850256 Ryszawy Jun 2019 S
10321731 Wilson Jun 2019 B2
10345934 Wilson et al. Jul 2019 B2
10384084 Isham et al. Aug 2019 B2
10427385 Wilson et al. Oct 2019 B2
10449397 VanDerWoude et al. Oct 2019 B2
10520756 Gallina et al. Dec 2019 B2
10537236 Bennett et al. Jan 2020 B2
D879384 Sato Mar 2020 S
D882182 Fekete Apr 2020 S
10620670 Wilson et al. Apr 2020 B2
10687569 Mcdirmid Jun 2020 B1
10716986 Winter et al. Jul 2020 B2
10874163 VanDerWoude et al. Dec 2020 B2
D907299 Brown, II et al. Jan 2021 S
D907300 Brown, II et al. Jan 2021 S
D925129 Wilson Jul 2021 S
D925834 Babin et al. Jul 2021 S
11090516 VanDerWoude et al. Aug 2021 B2
11141959 Wilson et al. Oct 2021 B2
11147323 Wilson Oct 2021 B1
11307329 Wilson Apr 2022 B1
11480801 Morris et al. Oct 2022 B1
11490667 Wilson Nov 2022 B1
11510718 Childers et al. Nov 2022 B2
11548356 Wilson et al. Jan 2023 B2
11579339 Thothadri et al. Feb 2023 B2
20010035936 Maisnik Nov 2001 A1
20020025441 Hieda et al. Feb 2002 A1
20020036362 Chigira et al. Mar 2002 A1
20020101411 Chang Aug 2002 A1
20020109922 Wilson et al. Aug 2002 A1
20020114934 Liu et al. Aug 2002 A1
20020122925 Liu et al. Sep 2002 A1
20020159159 Wilson et al. Oct 2002 A1
20020195910 Hus et al. Dec 2002 A1
20030012936 Draheim et al. Jan 2003 A1
20030087054 Janssen et al. May 2003 A1
20030110613 Ross Jun 2003 A1
20040004605 David Jan 2004 A1
20040109096 Anderson et al. Jun 2004 A1
20040121105 Janssen et al. Jun 2004 A1
20040139530 Yan Jul 2004 A1
20040202812 Congard et al. Oct 2004 A1
20040227722 Friberg et al. Nov 2004 A1
20040238690 Wood et al. Dec 2004 A1
20040246386 Thomas et al. Dec 2004 A1
20040258933 Enniss et al. Dec 2004 A1
20050002108 Wilson et al. Jan 2005 A1
20050015860 Reaux Jan 2005 A1
20050071909 Diaz et al. Apr 2005 A1
20050133035 Yahiaoui et al. Jun 2005 A1
20050186415 Mccormick et al. Aug 2005 A1
20050188821 Yamashita et al. Sep 2005 A1
20050200154 Barbee et al. Sep 2005 A1
20050249957 Jing et al. Nov 2005 A1
20050260343 Han Nov 2005 A1
20060024494 Amano et al. Feb 2006 A1
20060052167 Boddicker et al. Mar 2006 A1
20060056030 Fukuda et al. Mar 2006 A1
20060057399 Persoone et al. Mar 2006 A1
20060114245 Masters et al. Jun 2006 A1
20060138694 Biernath et al. Jun 2006 A1
20060158609 Heil Jul 2006 A1
20060177654 Shoshi Aug 2006 A1
20060204776 Chen et al. Sep 2006 A1
20060254088 Mccormick Nov 2006 A1
20060285218 Wilson et al. Dec 2006 A1
20070019300 Wilson et al. Jan 2007 A1
20070181456 Kusuda et al. Aug 2007 A1
20070211002 Zehner et al. Sep 2007 A1
20070212508 Mase Sep 2007 A1
20070229962 Mason Oct 2007 A1
20070234592 Crates Oct 2007 A1
20070234888 Rotolo De Moraes Oct 2007 A1
20070286995 Li et al. Dec 2007 A1
20080014446 Donea et al. Jan 2008 A1
20080030631 Gallagher Feb 2008 A1
20080030675 Dillon Feb 2008 A1
20080055258 Sauers Mar 2008 A1
20080118678 Huang et al. May 2008 A1
20080151177 Wang Jun 2008 A1
20080160321 Padiyath et al. Jul 2008 A1
20080176018 Enniss et al. Jul 2008 A1
20080192351 Miyagawa et al. Aug 2008 A1
20080231979 Chen Sep 2008 A1
20080256688 Bruce Oct 2008 A1
20080286500 Sussner et al. Nov 2008 A1
20080292820 Padiyath et al. Nov 2008 A1
20090011205 Thiel Jan 2009 A1
20090026095 Lofland et al. Jan 2009 A1
20090054115 Horrdin et al. Feb 2009 A1
20090086415 Chipping Apr 2009 A1
20090087655 Yamada et al. Apr 2009 A1
20090105437 Determan et al. Apr 2009 A1
20090119819 Thompson May 2009 A1
20090181242 Enniss et al. Jul 2009 A1
20090233032 Craig Sep 2009 A1
20090239045 Kato et al. Sep 2009 A1
20090239048 Sugihara et al. Sep 2009 A1
20100026646 Xiao et al. Feb 2010 A1
20100033442 Kusuda et al. Feb 2010 A1
20100102197 Mcintyre Apr 2010 A1
20100102476 Higgins Apr 2010 A1
20100122402 Tipp May 2010 A1
20100146679 Heil Jun 2010 A1
20100238119 Dubrovsky et al. Sep 2010 A1
20100245273 Hwang et al. Sep 2010 A1
20100270189 Pedersen, II et al. Oct 2010 A1
20110007388 Wilson et al. Jan 2011 A1
20110010994 Wilson et al. Jan 2011 A1
20110012841 Lin Jan 2011 A1
20110013273 Wilson et al. Jan 2011 A1
20110014481 Wilson et al. Jan 2011 A1
20110035936 Lee Feb 2011 A1
20110052864 Son Mar 2011 A1
20110097574 Faldysta et al. Apr 2011 A1
20110119801 Wright May 2011 A1
20110165361 Sherman et al. Jul 2011 A1
20110168261 Welser et al. Jul 2011 A1
20110267793 Cohen et al. Nov 2011 A1
20110271497 Suh et al. Nov 2011 A1
20110277361 Nichol et al. Nov 2011 A1
20110279383 Wilson et al. Nov 2011 A1
20120003431 Huang Jan 2012 A1
20120030095 Marshall et al. Feb 2012 A1
20120047614 Choi Mar 2012 A1
20120070603 Hsu Mar 2012 A1
20120081792 Neuffer Apr 2012 A1
20120137414 Saylor Jun 2012 A1
20120180204 Hawkins Jul 2012 A1
20120183712 Leonhard et al. Jul 2012 A1
20120188743 Wilson et al. Jul 2012 A1
20120200816 Krasnov et al. Aug 2012 A1
20120291173 Gleason et al. Nov 2012 A1
20130045371 O'Donnell Feb 2013 A1
20130089688 Wilson et al. Apr 2013 A1
20130098543 Reuter et al. Apr 2013 A1
20130141693 McCabe et al. Jun 2013 A1
20130145525 Arenson et al. Jun 2013 A1
20130222913 Tomoda et al. Aug 2013 A1
20130247286 Vanderwoude et al. Sep 2013 A1
20130293959 Mcdonald Nov 2013 A1
20140020153 Romanski et al. Jan 2014 A1
20140050909 Choi et al. Feb 2014 A1
20140220283 Wilson et al. Aug 2014 A1
20140259321 Arnold Sep 2014 A1
20140289937 Capers et al. Oct 2014 A1
20150033431 Hofer Kraner et al. Feb 2015 A1
20150103474 Cho Apr 2015 A1
20150131047 Saylor et al. May 2015 A1
20150202847 Johnson et al. Jul 2015 A1
20150234209 Miyamoto et al. Aug 2015 A1
20150258715 Ohta Sep 2015 A1
20150294656 Hanuschak Oct 2015 A1
20150309609 Wilson et al. Oct 2015 A1
20150349147 Xi et al. Dec 2015 A1
20150359675 Wilson Dec 2015 A1
20160023442 Faris Jan 2016 A1
20160050990 Hayes Feb 2016 A1
20160073720 Niedrich Mar 2016 A1
20160231834 Hardi Aug 2016 A1
20160259102 Taka Sep 2016 A1
20160271922 Uzawa et al. Sep 2016 A1
20160291543 Saito Oct 2016 A1
20160318227 Kim et al. Nov 2016 A1
20170071792 Wilson et al. Mar 2017 A1
20170079364 Paulson Mar 2017 A1
20170129219 Uebelacker et al. May 2017 A1
20170173923 Davis et al. Jun 2017 A1
20170192131 Wilson et al. Jul 2017 A1
20170208878 Kakinuma et al. Jul 2017 A1
20170232713 Mannheim Astete et al. Aug 2017 A1
20170281414 Wilson Oct 2017 A1
20170299898 Gallina et al. Oct 2017 A1
20170318877 Yahiaoui et al. Nov 2017 A1
20180029337 Wilson et al. Feb 2018 A1
20180042324 King Feb 2018 A1
20180052334 Repko Feb 2018 A1
20180094164 Ito et al. Apr 2018 A1
20180148578 Ohta et al. May 2018 A1
20180161208 Huh Jun 2018 A1
20180229480 Chung Aug 2018 A1
20180236753 Wykoff et al. Aug 2018 A1
20180295925 Gagliardo et al. Oct 2018 A1
20180338550 Boulware et al. Nov 2018 A1
20190021430 Elliott Jan 2019 A1
20190037948 Romanski et al. Feb 2019 A1
20190116300 Okuno Apr 2019 A1
20190118057 Winter et al. Apr 2019 A1
20190209912 Isserow et al. Jul 2019 A1
20190212474 Le Quang et al. Jul 2019 A1
20190346591 Thothadri et al. Nov 2019 A1
20190389182 Wilson et al. Dec 2019 A1
20200100657 Lee et al. Apr 2020 A1
20200115519 Phillips et al. Apr 2020 A1
20200124768 Wilson Apr 2020 A1
20200134773 Pinter et al. Apr 2020 A1
20200154808 Inouye May 2020 A1
20200178622 Jascomb et al. Jun 2020 A1
20200247102 Wilson et al. Aug 2020 A1
20200261055 Zwierstra et al. Aug 2020 A1
20200281301 Wynalda, Jr. Sep 2020 A1
20200359718 Jefferis et al. Nov 2020 A1
20200375272 Ulmer et al. Dec 2020 A1
20210030095 Reicher Feb 2021 A1
20210162645 Wilson et al. Jun 2021 A1
20210298380 Brown, II et al. Sep 2021 A1
20210298390 Sup, IV et al. Sep 2021 A1
20210307425 Keim Oct 2021 A1
20210315291 Votolato et al. Oct 2021 A1
20210318553 Gharabegian Oct 2021 A1
20210321692 Wilson Oct 2021 A1
20210321693 Wilson et al. Oct 2021 A1
20210329999 Ackerman Oct 2021 A1
20210368886 Swart et al. Dec 2021 A1
20210386155 Rose Dec 2021 A1
20210393440 Leatt et al. Dec 2021 A1
20220015472 Boza Jan 2022 A1
20230106407 Arima et al. Apr 2023 A1
Foreign Referenced Citations (36)
Number Date Country
2005244595 Jul 2006 AU
2015277196 Jan 2017 AU
3637188 May 1988 DE
19808535 Sep 1999 DE
202004010014 Apr 2005 DE
202020101562 Apr 2020 DE
202020101794 Apr 2020 DE
192075 Aug 1986 EP
671258 Sep 1995 EP
1471415 Oct 2004 EP
3157480 Apr 2017 EP
2310862 Sep 1997 GB
61017860 Jan 1986 JP
S6117860 Jan 1986 JP
62053832 Mar 1987 JP
04314537 Nov 1992 JP
06143496 May 1994 JP
07021456 Jan 1995 JP
10167765 Jun 1998 JP
2000334812 Dec 2000 JP
2002328613 Nov 2002 JP
2012183822 Sep 2012 JP
2014032222 Feb 2014 JP
2015128896 Jul 2015 JP
20120001292 Jan 2012 KR
200700793 Jan 2007 TW
201027992 Jul 2010 TW
0024576 May 2000 WO
03052678 Jun 2003 WO
2015009114 Jan 2015 WO
2015091425 Jun 2015 WO
2015093413 Jun 2015 WO
2015195814 Dec 2015 WO
2019006151 Jan 2019 WO
2019055267 Mar 2019 WO
2021176316 Sep 2021 WO
Non-Patent Literature Citations (131)
Entry
Prosecution History of U.S. Re-Examination Application No. 95/002,073 titled Touch Screen Protector; pp. 1-1,980.
www.store.moshimode.com; “iVisor AG for iPad 2 Black”; 2004-2010.
Defendant's Motion for Summary Judgment; Oct. 25, 2013; pp. 1-31.
Jake Gaecke; “Appletell Reviews the iVisor for iPad”; www.appletell.com; Sep. 15, 2010 at 12:32 p.m. www.technologytell.com/apple/60407/appletell-reviews-ag-for-ipad/; 2 pages.
www.nushield.com/technology.php; “What Makes NuShield Screen Protectors Superior”, 2 pages.
www.spigen.com; “Something You Want”; 2 pages.
www.zagg.com; “Apple iPad 2 (Wi-Fi 3G) Screen Protector”; 2 pages.
www.gadgetguard.com; “Invisible Gadget Guard, the Original”; 1 page.
www.incipotech.com; “Protect Your iPhone 4 with Screen Protectors from Incipo”; 3 pages.
www.store.moshimonde.com; “iVisor AG iPad Screen Protector”; Jul. 2010; 7 pages.
www.store.moshimonde.com; “iVisor XT Crystal Clear Protector for iPad”; Aug. 2010; 3 pages.
www.store.moshimonde.com; “iVisor AG for iPad 2 Black”; Mar. 2011; 5 pages.
www.store.moshimonde.com; “iVisor AG for iPad 2 White”; Mar. 2011; 3 pages.
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S Black”; Nov. 2010; 5 pages.
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S White”; May 2010; 4 pages.
Dictionary.com (http://dictionary.reference.com) 2012.
Racing Optics, Inc. v. Aevoe, Inc., d/b/a/ Moshi; Case No. 15-cv-017744-JCM-VCF; Aevoe's Initial Disclosure Non-Infringement, Invalidity and Unenforceability Contentions (Redacted) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,128,545) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,104,256) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 8,974,620) dated Jan. 7, 2016.
I-Blason LLC v. Aevoe, Inc. and Aevoe Corp.; Case IPR2016-TBA; Petition for Inter Partes Review of U.S. Pat. No. 8,044,942 (including Exhibits 1001-1019).
Dupont Teijin Films, “Mylar Polyester Film—Optical Properties”, Jun. 2003, 2 pages.
https://en.wikipedia.org/wiki/Black_body, “Black Body”, Jul. 2009, 11 pages.
https://en.wikipedia.org/wiki/Infrared, “Infrared”, Jul. 2009, 12 pages.
https://en.wikipedia.org/wiki/BoPET, “PET Film (biaxially oriented)”, Jul. 2009, 4 pages.
Instashield LLC, Bionic Wrench® Inventor Creates Low-Cost Face Shield For Masses, Apr. 15, 2020, 3 pages.
Tom Zillich, Surrey manufacturer hopes to hit home run with face shield that clips to baseball cap, Apr. 29, 2020, 3 pages.
Opentip, Opromo Safety Face Shield Visor for Adult Kids, Protective Cotton Hat with Removable PVC Face Cover <https://www.opentip.com/product.php?products_id=11699030>, May 5, 2020, 3 pages.
Hefute, Hefute 5 PCS Protective Face Cover with Shield Comfortable Full Protection Face Compatiable with Glasses Anti-Droplet Anti-Pollution and Windproof Transparent Safety Face Cover with Shield(Style B) <https://www.amazon.com/dp/B086GSG8DH/ref=sspa_dk_detail_9? psc=1&pd_rd_i=B086GSG8DH&pd_rd_w=Ocdm2&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=qkB2b&pf_rd_r=M%E2%80%A6>, May 6, 2020, 7 pages.
Geanbaye, Geanbaye Safety Full Face Shield Cap Detachable Baseball Cap Anti-Saliva Anti-Spitting Eye Protective Hat Windproof Dustproof <https://www.amazon.com/dp/B086DV32B8/ref=sspa_dk_detail_8?psc=1&pd_rd_i=B086DV32B8&pd_rd_w=MwjfT&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=pxuOs&pf_rd_r=PNDA%E2%80%A6>, May 5, 2020, 8 pages.
Leigh Buchanan, These 2 Companies are Making Face Shields for Everyone <https://www.inc.com/leigh-buchanan/face-shields-coronavirus-protection-open-source.html>, May 6, 2020, 8 pages.
Brim Shield, photographs, Apr. 21, 2020, 1 pages.
Hatshield, Shield Yourself With The Hatshield <https://www.hat-shield.com/?gclid=CjwKCAjwp-X0BRAFEiwAheRui1u89v_3URuiwEVvBRGa9TaEfWoZVMJXRkWsZgPTUw-0fHJ5HD-8uhoCc84QAvD_BwE>, Apr. 17, 2020, 11 pages.
Eli N. Perencevich, Moving Personal Protective Equipment Into the Community Face Shields and Containment of COVID-19, Apr. 29, 2020, 2 pages.
Chang, Tian-Ci; Cao, Xun; Bao, Shan-Hu; Ji, Shi-Dong; Luo, Hong-Jie; Jin, Ping; Review of Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application; Dec. 16, 2017.
Saudi Basic Industries Corporation (Sabic); “The Department of Transportation [DOT] Guidebook”; Oct. 2016.
Hostaphan RBB, “Transparent, Temperature Stable Polyester Film for Cooking & Roasting Bags” Jul. 2016.
Hostaphan Win, “White, Long-Term Stable, Thermally Stable Polyester Film for PV Back Sheet Laminates”; Jul. 2016.
PCT Search Report & Written Opinion for PCT/US2019/054565 (Dec. 20, 2019).
PCT Search Report & Written Opinion for PCT/US2015/036248 (Sep. 16, 2015).
“Declaration of Jerome Aho”; Filed Aug. 3, 2007; Case 3:07-cv-00221-FDW-DCK; Includes: Exhibit A, Nascar Postcard (1 page), Exhibit B, 50th Anniversary Nascar letter sent Jan. 7, 1998 (1 page), and Exhibit C, Front page of “The Official Nascar Preview and Press Guide” (1 page); 9 pages.
Racing Optics, Inc. v. David Leon O'Neal, Edward M. Wallace and Clear View Racing Optics, LLC; Case 3:07 CV 221; Includes: Exhibit A, Wilson et al. U.S. Pat. No. 6,847,492; and Exhibit B, Wilson et al. U.S. Pat. No. 7,184,217; 34 pages.
International Search Report; International Application No. PCT/US99/95128; Date of Completion: Jan. 18, 2000; 54 pages.
International Search Report; International Application No. PCT/US02/10971; Date of Completion: Nov. 20, 2002; 3 pages.
International Search Report; International Application No. PCT/US03/16284; Date of Completion: Mar. 9, 2004; 3 pages.
European Search Report for Application No. 15809930.9-107 / 3157480 (Dec. 15, 2017).
Canadian Office Action for Application Serial No. 2,952,436 (Nov. 15, 2019).
Canadian Office Action for Application Serial No. 2,952,436 (May 3, 2019).
Australian Examination Report for Application Serial No. 2015277196 (Oct. 18, 2018).
www.wikipedia.org, Refractive Index, Oct. 31, 2014.
www.wikipedia.org. “Black Body”, Jul. 2009, 11 pages.
www.wikipedia.org. “Infrared”, Jul. 2009, 12 pages.
www.wikipedia.org. “PET Film (biaxially oriented)”, Jul. 2009, 4 pages.
PCT International Application No. PCT/US99/25128 with International Search Report, Date of Completion Jan. 18, 2000, 54 Pages.
English translation of TW201027992, “Monitor Protection Device for a Flat Panel Display”, 11 pgs.
Pulse Racing Innovations, EZ Tear Universal Single Pull Tearoff Ramp, webpage <https://www.pulseracinginnovations.com>, Dec. 30, 2020, 6 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US20/24639, Jun. 11, 2020, 13 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/049919; Nov. 27, 2020.
Tian-Chi Chang, Xun Cao, Shan-Hu Bao, Shi=Dong Ji, Hong-Jie Luo, Ping Jin; “Review on Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application”; Dec. 16, 2017.
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/062230; Feb. 8, 2021.
“Anti-reflective coating,” Wikipedia, last updated Jul. 13, 2017 by Andy Dingley, <https://en.m.wikipedia.org/wiki/Anti-reflective_coating>.
“Monotonic function,” Wikipedia, accessed May 24, 2017, <https://en.wikipedia.org/wiki/Monotonic_function>.
“Thin Film,” Wikipedia, last updated Jun. 20, 2017, <https://en.wikipedia.org/wiki/Thin_film>.
“Tips to Get Quality Anti-Reflection Optical Coatings,” Penn Optical Coatings, accessed May 24, 2017, <http://www.pennoc.com/tipsgetqualityantireflectionopticalcoatings/>.
Langlet, M., “Antireflective Films”, from Chapter 15 of Handbook of Sol-Gel Science and Technology Processing Characterization and Applications, copyright 2005, pp. 332-334, 337, 339-341., taken from website <https://books.google.com/books?id=i9swy1D2HxlC&lpg=PA339&dq=AR%20thick%20film%20coatings&pg=PA339#v=onepage&q=AR%20thick%20film%20coatings&f=false>.
Li, H.-M. et al., “Influence of weight ratio in polymer blend film on the phase separation structure and its optical properties”, The European Physical Journal Applied Physics, 45, 20501, published Jan. 31, 2009, EDP Sciences, 4 pages.
MDS Nordion, “Gamma Compatible Materials,” Datasheet, Aug. 2007, 4 pages, <https://ab-div-bdi-bl-blm.web.cern.ch/Radiation/Gamma_Compatible_Materials_List_company.pdf>, retrieved on Sep. 29, 2021.
Zhang, Xin_Xiang et al., Abstract of “One-step sol-gel preparation of PDMS-silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings,” Journal of Materials Chemistry, Issue 26, 2012, <http://pubs.rsc.org/en/content/articlelanding/2012/m/c2jm31005h#!divAbstract>.
PCT International Search Report and Written Opinion for International Application No. PCT/US2017/044438, dated Oct. 23, 2017, 12 pages.
Chemical Book, “Benzophenone”, https://www.chemicalbook.com/Chemical ProductProperty_EN_CB57 44679.htm, available at least as of 2017, accessed on line on Dec. 15, 2021 (Year: 2017).
Chemical Book, “Polymethylhydrosiloxane”, https://www.chemicalbook.com/Chemical ProductProperty _En_ CB3694969. htm, available at least as of 2017, accessed online on Dec. 15, 2021 (Year: 2017).
Guide Chem, “UV Stabilizer”, https://wap.guidechem.com/trade/uv-stabilizer-uv-absorber-ligh-id3578792.html, available at least as of 2018, accessed online on Dec. 15, 2021 (Year: 2018).
Hostaphan RBB biaxially oriented film data sheet (Year: 2011).
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/024639; Jun. 11, 2020.
PCT International Search Report and Written Opinion for International Application No. PCT/US2021/026165, dated Jul. 9, 2021, 10 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US21/20421, May 20, 2021, 8 pages.
Wiseman, Sr., United States Statutory Invention Registration No. H1023, published Mar. 3, 1992, 7 pages.
Chemical Book, Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, available online at least as of 2017, https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8121619.htm, accessed online Mar. 15, 2022 (Year: 2017).
Pearson Dental, “UV Protection Face Shields”, https://www.pearsondental.com/catalog/subcat_thumb.asp?majcatid=750&catid=10149, available online at least as of Jan. 27, 2021 per Internet Archive, accessed online on Sep. 15, 2021. (Year: 2021).
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/031823, mailed Jul. 14, 2022, 11 pages.
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/046171, mailed Jan. 18, 2023, 15 pages.
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2023/012316, mailed Apr. 14, 2023, 11 pages.
Racing Optics, Inc. v. Aevoe Corp. DBA Moshi; Case 2:15-cv-01774-RCJ-VCF; “Answer to Aevoe's Counterclaims—Jury Trial Demanded”; Nov. 2, 2015; 15 pages.
Gregory Brower et al.; “Complaint for Patent Infringement”; Sep. 15, 2015; 15 pages.
Jeffrey A. Silverstri et al.; “Answer to Complaint for Patent Infringement”; Oct. 7, 2015; 59 pages.
United States Patent and Trademark Office; Office Action for U.S. Appl. No. 15/090,681; Aug. 26, 2016; 8 pages.
List of References for U.S. Appl. No. 15/090,681; Receipt date Jun. 30, 2016; 3 pages.
List of References for U.S. Appl. No. 15/090,681; Receipt date Apr. 27, 2016; 4 pages.
Examiner's search strategy and results for U.S. Appl. No. 15/090,681; Aug. 21, 2016; 2 pages.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01164; Petition for Inter Partes Review of U.S. Pat. No. 9,104,256 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01165; Petition for Inter Partes Review of U.S. Pat. No. 9,128,545(including Exhibits 1001-1006 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01166; Petition for Inter Partes Review of U.S. Pat. No. 9,274,625 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Exhibit 1—Invalidity Contentions re: '545 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 2—Invalidity Contentions re: '256 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 3—Invalidity Contentions re: '620 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 4—Invalidity Contentions re: '625 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 1002—U.S. Pat. No. 5,364,671 to Gustafson; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-6.
Exhibit 1004—U.S. Pat. No. 7,351,470 to Draheim et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15.
Exhibit 1001—U.S. Pat. No. 8,974,620 to Wilson et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15.
Exhibit 1003—U.S. Pat. No. 6,250,765 to Murakami; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-8.
Exhibit 1005—U.S. Pat. No. 7,957,524 to Chipping; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2017; pp. 1-20.
Aevoe Corp., Racing Optics, Inc.; Petition for Inter Partes Review; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-55.
Exhibit 1006—Japanese Application No. JP 2002-328613 to Kitaguchi Translation; IPR2016-01745; at least as early as Sep. 7, 2016; pp. 1-10.
Exhibit 1009—U.S. Appl. No. 13/838,311; Interview Summary; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-3.
Exhibit 1010—U.S. Appl. No. 15/838,311; Notice of Allowance; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-8.
Aevoe Corp. v. Racing Optics, Inc.; Declaration of Darran Cairns; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-32.
Aevoe Corp. v. Racing Optics, Inc.; Petitioner's Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-3.
Exhibit 1007—U.S. Appl. No. 13/838,311; Response to Office Action; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-19.
Exhibit 1008—U.S. Appl. No. 13/838,311; Response and Request for Continued Examination; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-21.
Aevoe Corp. v. Racing Optics, Inc.; Mandatory Notices; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4.
Aevoe Corp. v. Racing Optics, Inc.; Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4.
Aevoe Corp v. Racing Optics, Inc.; Notice of Filing Date; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 6, 2016; p. 1-5.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01164; Inter Partes Review of U.S. Pat. No. 9,104,256; at least as early as Nov. 7, 2016; p. 1-24.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01166; Inter Partes Review of U.S. Pat. No. 9,274,625; at least as early as Nov. 7, 2016; p. 1-23.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01165; Inter Partes Review of U.S. Pat. No. 9,128,545; at least as early as Nov. 7, 2016; p. 1-25.
Settlement and License Agreement, Dec. 21, 2007, 28 pgs.
United States Patent and Trademark Office; Office Action dated Dec. 21, 2016 pertaining to U.S. Appl. No. 15/090,681, filed Apr. 5, 2016; 8 pages.
PCT Search Report and Written Opinion for US2020/016245 (Apr. 28, 2020).
Professional Plastics (http://www.professionalplastics.com/MelinexPETFilmDupont) 2012.
Whitney, Frank D., Preliminary Injunction, Aug. 21, 2007, 5 pgs.
Higgins, John P., Answer and Counterclaims to First Amended Complaint, Sep. 4, 2007, 27 pgs.
Ballato, John, Expert Report of John Ballato, Ph.D., Nov. 12, 2007, 5 pgs.
Russell, Geoffrey A., Rebuttal Report of Geoffrey A. Russell, Ph.D., on issues raised in the Export Report of John Ballato, Ph.D., Nov. 21, 2007, 15 pgs.
Higgins, John P., Defendants' Second Supplement to Its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 25 pgs.
Barnhardt, John J. III, Redacted Version Defendants' Memorandum in Support of Motion for Partial Summary Judgment, Dec. 3, 2007, 36 pgs.
Higgins, John P., Defendants' Second Supplement to its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 26 pgs.
Whitney, Frank D., Consent Judgment Order, Jan. 3, 2008, 5 pgs.
Ballato, John, Supplemental Expert Report of John Ballato, Ph.D., Nov. 19, 2007, 10 pgs.
Moore, Steven D., Plaintiffs' Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 3 pgs.
Moore, Steven D., Plaintiffs' Brief in Support of Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 10 pgs.
Barnhardt, John J. III, Notice Pursuant to 35 U.S.C. 282, Dec. 18, 2007, 3 pgs.
Related Publications (1)
Number Date Country
20230211590 A1 Jul 2023 US
Provisional Applications (1)
Number Date Country
62850966 May 2019 US
Continuations (2)
Number Date Country
Parent 17664018 May 2022 US
Child 18182274 US
Parent 16819526 Mar 2020 US
Child 17664018 US