Polymer safety glazing for vehicles

Information

  • Patent Grant
  • 11364715
  • Patent Number
    11,364,715
  • Date Filed
    Monday, March 16, 2020
    4 years ago
  • Date Issued
    Tuesday, June 21, 2022
    2 years ago
Abstract
A laminate includes a polycarbonate substrate and an ultraviolet hard coat film disposed on the polycarbonate substrate. The ultraviolet hard coat film may include a polyethylene terephthalate (PET) layer, an adhesive interposed between the PET layer and the polycarbonate substrate, and an exterior hard coat disposed on the PET layer opposite the polycarbonate substrate. The exterior hard coat may include UV stabilizers. The laminate may include additional ultraviolet hard coat films stacked on the ultraviolet hard coat film. The laminate may be thermoformed into the shape of a curved vehicle windshield.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND
1. Technical Field

The present disclosure relates generally to safety glazing and, more particularly, to polymer safety glazing for vehicle windows including windshields.


2. Related Art

Safety glazing has historically been made of glass. Glass has a hardness that can withstand scratching from windshield wipers and some amount of abrasive debris. It is also very economical and lends itself to mass production techniques. However, glass breaks easily and can present dangerous sharp pieces that can lacerate passengers, causing personal injuries. This problem has been mitigated to a point by tempering, causing the glass to break into small pieces (½″), and by laminating two glass pieces together with a flexible polymer polyvinylbutyral (PVB) core between them in an attempt to hold the small fragments together.


Unfortunately, glass safety glazing is susceptible to pitting by small aggregates and dust in the air, causing obscured vision while traveling toward the sun. Over 15 million glass windshields are replaced each year for pitting and breaking in the USA alone. Moreover, laminated glass-PVB-glass windshields cannot be recycled because the PVB core contaminates the glass.


Considering the drawbacks of glass safety glazing, laceration of passengers remains a longstanding problem with no ideal solution. For example, 30 years of research has attempted to place a polymer coating or layer on the interior of a glass windshield without any commercial success.


Polycarbonate exhibits superior impact resistance and is used for vehicle glazing in auto racing and off-road vehicles. However, polycarbonate is so soft a material that it scratches and pits too easily for use in commercial or public vehicles. To date, there is no available direct hard coating to overcome these durability issues. Therefore, polycarbonate windshields are currently restricted to motorcycles on public roads. For example, Saudi Basic Industries Corporation (SABIC) is the producer of LEXAN branded polycarbonate. In their 2016 Department of Transportation (DOT) Guidebook regarding LEXAN sheet products, they state, “Except for motorcycle windshields, SABIC's thermoplastics materials generally cannot be used for forward facing exterior glazing . . . .”


BRIEF SUMMARY

The present disclosure contemplates various systems and methods for overcoming the above drawbacks accompanying the related art. One aspect of the embodiments of the present disclosure is a laminate including a polycarbonate substrate and an ultraviolet hard coat film disposed on the polycarbonate substrate. The ultraviolet hard coat film may include a polyethylene terephthalate (PET) layer, an adhesive interposed between the PET layer and the polycarbonate substrate, and an exterior hard coat disposed on the PET layer opposite the polycarbonate substrate. The exterior hard coat, the PET layer, and/or the adhesive may include UV stabilizers.


The polycarbonate substrate may be 3-8 mm thick. The PET layer may be 2-6 mil thick. The exterior hard coat may be 2-10 microns thick. The exterior hard coat may have a gouge pencil hardness of greater than 8H. The adhesive may be a pressure sensitive adhesive.


The laminate may include an interior hard coat disposed on the polycarbonate substrate opposite the PET layer. The interior hard coat may have a gouge pencil hardness of 6H to 8H.


The ultraviolet hard coat film may be a first of a plurality of ultraviolet hard coat films stacked on the polycarbonate substrate. The plurality of ultraviolet hard coat films may include a second ultraviolet hard coat film disposed on the first ultraviolet hard coat film, the second ultraviolet hard coat film including a second PET layer, a second adhesive interposed between the second PET layer and the first ultraviolet hard coat film, and a second exterior hard coat disposed on the second PET layer opposite the first ultraviolet hard coat film. The second exterior hard coat, the second PET layer, and/or the second adhesive may include UV stabilizers. The adhesive of the first ultraviolet hard coat film may be stronger than the second adhesive.


The laminate may be thermoformed into the shape of a curved vehicle windshield.


Another aspect of the embodiments of the present disclosure is a method. The method may include depositing a UV stabilized hard coat on a first side of a polyethylene terephthalate (PET) carrier, coating a second side of the PET carrier, opposite the first side, with an adhesive, and adhering the second side of the PET carrier to a polycarbonate substrate using the adhesive.


The PET carrier, the UV stabilized hard coat, and the adhesive may define an ultraviolet hard coat film. The method may include winding the ultraviolet hard coat film on a roll prior to adhering the second side of the PET carrier to the polycarbonate substrate. The method may include applying a removable liner to the second side of the PET carrier after the coating. The method may include removing the removable liner from the second side of the PET carrier prior to adhering the second side of the PET carrier to the polycarbonate substrate. The method may include thermoforming the polycarbonate substrate with the adhered ultraviolet hard coat film to the shape of a curved vehicle windshield.


The PET carrier, the UV stabilized hard coat, and the adhesive may define a first ultraviolet hard coat film. The method may include depositing a second UV stabilized hard coat on a first side of a second PET carrier, coating a second side of the second PET carrier, opposite the first side, with a second adhesive, and adhering the second side of the second PET carrier to the first ultraviolet hard coat film using the second adhesive. The adhesive of the first ultraviolet hard coat film may be stronger than the second adhesive. The second PET carrier, the second UV stabilized hard coat, and the second adhesive may define a second ultraviolet hard coat film.


The method may include thermoforming the polycarbonate substrate with adhered first and second ultraviolet hard coat films to the shape of a vehicle windshield. The method may include peeling off the second ultraviolet hard coat film to reveal the first ultraviolet hard coat film. The method may include depositing a new second UV stabilized hard coat on a first side of a new second PET carrier, coating a second side of the new second PET carrier, opposite the first side, with a new second adhesive, and adhering the second side of the new second PET carrier to the first ultraviolet hard coat film using the new second adhesive.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:



FIG. 1 shows a laminate that is thermoformed into the shape of a vehicle windshield and installed in a vehicle according to an embodiment of the present disclosure;



FIG. 2 is a cross-sectional view of the laminate taken along the line 2-2 in FIG. 1; and



FIG. 3 shows an example operational flow according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses various embodiments of a laminate for use as a vehicle windshield and a manufacturing method thereof. The detailed description set forth below in connection with the appended drawings is intended as a description of several currently contemplated embodiments and is not intended to represent the only form in which the disclosed invention may be developed or utilized. The description sets forth the functions and features in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions may be accomplished by different embodiments that are also intended to be encompassed within the scope of the present disclosure. It is further understood that relational terms such as first and second and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship in order between such entities.



FIG. 1 shows a laminate 100 that is thermoformed into the shape of a vehicle windshield and installed in a vehicle 10 according to an embodiment of the present disclosure. FIG. 2 is a cross-sectional view of the laminate 100 taken along the line 2-2 in FIG. 1. As shown in FIG. 2, the laminate 100 may including a polycarbonate substrate 110 and one or more ultraviolet hard coat films 120 (120a, 120b, etc.) disposed on the polycarbonate substrate 110. By disposing the one or more ultraviolet hard coat films 120 on the polycarbonate substrate 110, the polycarbonate substrate 110 can be protected from scratching and pitting by windshield wipers and debris during use. In this way, the laminate 100 may combine the impact resistance of polycarbonate with the durability needed for widespread vehicle use, all while avoiding the safety hazards associated with glass windshields.


Unlike prior attempts to apply hard coating to polycarbonate, the ultraviolet hard coat film 120a includes a polyethylene terephthalate (PET) layer 122a serving as a carrier, which may be adhered to the polycarbonate substrate 110 by an adhesive 124a interposed therebetween. A UV stabilized exterior hard coat 126a may be disposed on the PET layer 122a opposite the polycarbonate substrate 110, with the PET layer 122a, adhesive 124a, and exterior hard coat 126a defining the ultraviolet hard coat film 120a. The exterior hard coat 126a may have a gouge pencil hardness of greater than 8H, making the laminate 100 far more durable than the polycarbonate substrate 110 would be alone. By using the PET layer 122a as a carrier, the exterior hard coat 126a can be applied without the difficulties that would arise if one were to attempt to apply the exterior hard coat 126a to the polycarbonate substrate 110 directly. For example, the polycarbonate substrate 110 may be too soft to support the hard coat 126a, the difference in thermal expansion coefficient between the polycarbonate substrate 110 and the hard coat 126a may cause the hard coat 126a to fracture over time, and/or the hydrophilic quality of the polycarbonate substrate 110 may cause absorbed water to lift the hard coat 126a. These concerns may be avoided by applying the hard coat 126a to the PET layer 122a and allowing the PET layer 122a to “float” on the polycarbonate substrate 110 with the adhesive 124a interposed therebetween.


As shown in the example of FIG. 2, the ultraviolet hard coat film 120a may be a first of a plurality of ultraviolet hard coat films 120 (120a, 120b, etc.) stacked on the polycarbonate substrate 110. By way of example, a second ultraviolet hard coat film 120b may include and be defined by a PET layer 122b, an adhesive 124b, and an exterior hard coat 126b, which may be the same as the PET layer 122a, adhesive 124a, and exterior hard coat 126a, respectively, except that the adhesive 124b may be interposed between the PET layer 122b and the first ultraviolet hard coat film 120 (e.g. the exterior hard coat 126a thereof). Additional (e.g. third, fourth, etc.) ultraviolet hard coat films 120 may be applied in the same way. When a laminate 100 having more than one ultraviolet hard coat film 120 becomes unacceptably degraded over time during the life of the vehicle windshield or other window (e.g. due to chips, oxidation, etc.), the outermost ultraviolet hard coat film 120 may simply be peeled off and removed, revealing the fresh ultraviolet hard coat film 120 beneath. To this end, the adhesive 124a of the first ultraviolet hard coat film 120a may be stronger than the adhesive 124b etc. used for additional ultraviolet hard coat films 120 (and in some cases the adhesives 124b etc. may have further decreasing strength with each additional ultraviolet hard coat film 120). In this way, the first ultraviolet hard coat film 120a may remain adhered to the polycarbonate substrate 110 while another ultraviolet hard coat film 120 is peeled off. It is contemplated, for example, that the first ultraviolet hard coat film 120a may be intended to remain on the polycarbonate substrate 110 for the life of the laminate 100, with additional hard coat films 120 being removable (and possibly replenishable as described below) as needed. Along the same lines, each such additional ultraviolet hard coat film 120 beyond the first 120a may be provided with a tab or other means for easy peel-away during the life of the laminate 100.


The PET layer 122a of the ultraviolet hard coat film 120a may be 2-6 mil thick (1 mil=1 thousandth of an inch) and may be, for example, a biaxially-oriented polyethylene terephthalate (BoPET) sold under the registered trademark Mylar owned by the DuPont Company. The exterior hard coat 126a may be 2-10 microns (e.g. 5 microns) thick and may be, for example, a UV-curable polysiloxane-acrylic hybrid resin, such as a UV-curable resin marketed by DIC Corporation. In addition to having a gouge pencil hardness of greater than 8H, the exterior hard coat 126a may pass the abrasion test #18 specified in the American National Standards Institute (ANSI) Z26.1-1996 standard and the one-year weather test #16 specified in the ANSI Z26.1-1996 standard. As noted above, the exterior hard coat 126a may be UV-stabilized, for example, by the inclusion of UV stabilizers such as hydroxyphenyl-benzotriazole or hydroxyphenyl-triazine UV absorbers. By including UV stabilizers in the exterior hard coat 126a, degradation of the PET carrier 122a and adhesive 124a caused by ultraviolet radiation in sunlight (e.g. yellowing or becoming brittle) can be prevented or slowed during the life of the ultraviolet hard coat film 120a. It is contemplated that UV stabilizers may be additionally or alternatively included in the PET carrier 122a and/or the adhesive 124a. The adhesive 124a may be 10-25 microns (e.g. 25 microns) thick and may be, for example, a pressure sensitive adhesive (PSA) such as a low tack PSA having a peel strength determined as a constant load per unit width needed for peeling of about 30 grams per inch. The components of any additional ultraviolet hard films 120 beyond the first ultraviolet hard coat film 120a may have the same or similar specifications. The underlying polycarbonate substrate 110 may be 3-8 mm (e.g. 4 mm) thick.


As shown in FIG. 2, the laminate 100 may further include an interior hard coat 130 disposed on the polycarbonate substrate 110 opposite the PET layer 122a. Because the interior hard coat 130 will be the inward-facing surface of the windshield, it will not be subject to the same abrasions and impacts as the exterior hard coat 126a and need not be held to the same standards. As such, the interior hard coat 130 may be softer than the exterior hard coat 126a, thus mitigating the difficulties discussed above with respect to directly applying the exterior hard coat 126a to the polycarbonate substrate 110. The interior hard coat 130 may have a gouge pencil hardness of only 6H to 8H, for example. The interior hard coat 130 need not necessarily pass the abrasion test #13 specified in the ANSI Z26.1-1996 standard or the one-year weather test #16 specified in the ANSI Z26.1-1996 standard. Like the exterior hard coat 126a, the interior hard coat 130 may be 2-10 microns (e.g. 5 microns) thick and may be, for example, a UV-curable polysiloxane-acrylic hybrid resin, such as a UV-curable resin marketed by DIC Corporation. Because it will not be exposed directly to sunlight, the interior hard coat 130 may or may not have UV stabilizers.



FIG. 3 shows an example operational flow according to an embodiment of the present disclosure. The operational flow may begin with depositing a UV stabilized hard coat that will serve as an exterior hard coat 126a on a first side of a PET carrier 122a (step 310). The exterior hard coat 126a is preferably wet deposited onto the PET carrier 122a but may be applied according to any appropriate methods including spin coating, dip coating, or vacuum deposition. Before or after the exterior hard coat 126a is applied, the PET carrier 122a may be coated on the opposite side with the adhesive 124a (step 320). These three elements, the PET carrier 122a, adhesive 124a, and exterior hard coat 126a, may be permanently bonded to each other and can be collectively regarded as the ultraviolet hard coat film 120a. Once the adhesive 124a is coated on the PET carrier 122a, a removable liner may be applied to the same side of the PET carrier 122a to protect the adhesive 124a (step 330). The ultraviolet hard coat film 120a may then be wound on a roll to form a roll-to-roll processing web that may be about 2 meters wide (step 340). The operational flow of steps 310-340 may produce a roll of the ultraviolet hard coat film 120a at a rate of about 30 meters per minute.


As the ultraviolet hard coat film 120a is unwound from the roll, the removable liner may be removed to expose the adhesive 124a (step 350), and the PET carrier 122a may be adhered to the polycarbonate substrate 110 by the exposed adhesive 124a (step 360). For example, the ultraviolet hard coat film 120a may be dry nipped to the flat polycarbonate substrate 110 by rollers. With the ultraviolet hard coat film 120a having been adhered to the polycarbonate substrate 110, the laminate 100 may be ready for thermoforming to the desired final shape of the windshield or other window. However, as described above and shown in FIG. 2, the laminate 100 may include additional ultraviolet hard coat films 120b, etc., which may later be peeled off one at a time as they degrade with use. In this case, steps 310-360 may be repeated for each additional ultraviolet hard coat film 120, except that each subsequent ultraviolet hard coat film 120 is adhered to the preceding ultraviolet hard coat film 120 of the stack rather than to the polycarbonate substrate 110 in step 360. Once the desired number of ultraviolet hard coat films 120 is stacked on the polycarbonate substrate 110, the entire laminate 110 including the polycarbonate substrate 110 and one or more adhered ultraviolet hard coat films 120 may be 2D or 3D thermoformed to create the windshield or other window (step 370). The thermoforming temperature may be typically about 180 degrees Celsius and may utilize a windshield-shaped pattern or mold surface to form a properly sized 2D or 3D shaped vehicle windshield for installation in a vehicle 10 (see FIG. 1).


As explained above, it is contemplated that a laminate 100 having more than one ultraviolet hard coat film 120 may allow for the outermost ultraviolet hard coat film 120 to be peeled off and removed to reveal a fresh ultraviolet hard coat film 120 beneath. In this respect, the operational flow of FIG. 3 may continue during the life of the laminate 100 that has been installed in a vehicle 10. When the outermost ultraviolet hard coat film 120 becomes unacceptably degraded over time, it may be peeled off to reveal the next ultraviolet hard coat film 120 underneath (step 380).


Following removal of one or more ultraviolet hard coat films 120 in step 380, it is further contemplated that the set of ultraviolet hard coat films 120 may in some cases be replenished to avoid any degradation to the first, innermost ultraviolet hard coat film 120a and prolong the life of the laminate 100. It is envisioned that this first ultraviolet hard coat film 120a would generally not be removed, as doing so would expose the softer polycarbonate substrate 110 which may not conform to the same standards for use in the vehicle 10. As such, the operational flow of FIG. 3 may include a step of applying one or more new ultraviolet hard coat films 120 to the first ultraviolet hard coat film 120a or to the remaining stack of ultraviolet hard coat films 120 (step 390). For example, steps 310-360 may be performed for each additional new ultraviolet hard coat film 120, except that, in step 360, the new ultraviolet hard coat film(s) 120 may be added to the laminate 100 while the laminate 100 is already installed in the vehicle 10 and thus after it has been thermoformed. This may be done, for example, by wet laminating the new ultraviolet hard coat film(s) 120 to the stack and shrinking them with a heat gun or blow dryer to conform them to the existing shape of the laminate 100 while applying pressure using a card or squeegee. In some cases, such additional ultraviolet hard coat film(s) may be applied using a sacrificial layer serving as a female mold cavity as described in commonly owned U.S. application Ser. No. 16/778,928, filed Jan. 31, 2020 and entitled “THERMOFORM WINDSHIELD STACK WITH INTEGRATED FORMABLE MOLD,” the entire contents of which is expressly incorporated herein by reference.


At the end of the life of the laminate 100, there is no contamination as in the case of conventional laminated glass-PVB-glass windshields. Thus, the polycarbonate substrate 110 can easily be recycled, resulting in less waste and benefiting the environment.


In the above examples of the laminate 100, it is assumed that at least one ultraviolet hard coat film 120 is adhered to the polycarbonate substrate 110 prior to thermoforming into the desired shape of the windshield or other window. However, the disclosure is not intended to be so limited, and it is contemplated that the one or more ultraviolet hard coat films 120 may be applied after the polycarbonate substrate 110 is already thermoformed. For example, the same techniques described above in relation to replenishing the stack of ultraviolet hard coat films 120 in step 390 may be used to apply the original one or more ultraviolet hard coat films 120.


The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.

Claims
  • 1. A laminate comprising: a polycarbonate substrate;an ultraviolet hard coat film disposed on the polycarbonate substrate, the ultraviolet hard coat film including a polyethylene terephthalate (PET) layer, an adhesive interposed between the PET layer and the polycarbonate substrate, and an exterior hard coat disposed on the PET layer opposite the polycarbonate substrate, the exterior hard coat including UV stabilizers and having a gouge pencil hardness of greater than 8H; andan interior hard coat disposed on the polycarbonate substrate opposite the PET layer, the interior hard coat having a gouge pencil hardness of 6H to 8H.
  • 2. The laminate of claim 1, wherein the polycarbonate substrate is 3-8 mm thick.
  • 3. The laminate of claim 1, wherein the PET layer is 2-6 mil thick.
  • 4. The laminate of claim 1, wherein the exterior hard coat is 2-10 microns thick.
  • 5. The laminate of claim 1, wherein the adhesive is a pressure sensitive adhesive.
  • 6. The laminate of claim 1, wherein the ultraviolet hard coat film is a first of a plurality of ultraviolet hard coat films stacked on the polycarbonate substrate, the plurality of ultraviolet hard coat films including a second ultraviolet hard coat film disposed on the first ultraviolet hard coat film, the second ultraviolet hard coat film including a second PET layer, a second adhesive interposed between the second PET layer and the first ultraviolet hard coat film, and a second exterior hard coat disposed on the second PET layer opposite the first ultraviolet hard coat film, the second exterior hard coat including UV stabilizers.
  • 7. The laminate of claim 6, wherein the adhesive of the first ultraviolet hard coat film is stronger than the second adhesive.
  • 8. The laminate of claim 1, wherein the laminate is thermoformed into the shape of a curved vehicle windshield.
  • 9. A method comprising: depositing a UV stabilized hard coat on a first side of a polyethylene terephthalate (PET) carrier, the UV stabilized hard coat having a gouge pencil hardness of greater than 8H;coating a second side of the PET carrier, opposite the first side, with an adhesive;adhering the second side of the PET carrier to a polycarbonate substrate using the adhesive; anddisposing an interior hard coat on the polycarbonate substrate opposite the PET carrier, the interior hard coat having a gouge pencil hardness of 6H to 8H.
  • 10. The method of claim 9, wherein the PET carrier, the UV stabilized hard coat, and the adhesive define an ultraviolet hard coat film, the method further comprising winding the ultraviolet hard coat film on a roll prior to the adhering.
  • 11. The method of claim 9, further comprising: applying a removable liner to the second side of the PET carrier after the coating; andremoving the removable liner from the second side of the PET carrier prior to the adhering.
  • 12. The method of claim 9, wherein the PET carrier, the UV stabilized hard coat, and the adhesive define an ultraviolet hard coat film, the method further comprising thermoforming the polycarbonate substrate with the adhered ultraviolet hard coat film to the shape of a curved vehicle windshield.
  • 13. The method of claim 9, wherein the PET carrier, the UV stabilized hard coat, and the adhesive define a first ultraviolet hard coat film, the method further comprising: depositing a second UV stabilized hard coat on a first side of a second PET carrier;coating a second side of the second PET carrier, opposite the first side, with a second adhesive; andadhering the second side of the second PET carrier to the first ultraviolet hard coat film using the second adhesive.
  • 14. The method of claim 13, wherein the adhesive of the first ultraviolet hard coat film is stronger than the second adhesive.
  • 15. The method of claim 13, wherein the second PET carrier, the second UV stabilized hard coat, and the second adhesive define a second ultraviolet hard coat film, the method further comprising thermoforming the polycarbonate substrate with the adhered first and second ultraviolet hard coat films to the shape of a vehicle windshield.
  • 16. The method of claim 15, further comprising peeling off the second ultraviolet hard coat film to reveal the first ultraviolet hard coat film.
  • 17. The method of claim 16, further comprising: depositing a new second UV stabilized hard coat on a first side of a new second PET carrier;coating a second side of the new second PET carrier, opposite the first side, with a new second adhesive; andadhering the second side of the new second PET carrier to the first ultraviolet hard coat film using the new second adhesive.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application relates to and claims the benefit of U.S. Provisional Application No. 62/850,966, filed May 21, 2019 and entitled “POLYMER SAFETY GLAZING FOR VEHICLES,” the entire contents of which is expressly incorporated herein by reference.

US Referenced Citations (312)
Number Name Date Kind
1337036 Frederic Apr 1920 A
1366907 Dunand Feb 1921 A
2339280 Madson Jan 1944 A
2354415 Woodard Jul 1944 A
2461604 Huntsman Feb 1949 A
2511329 Craig Jun 1950 A
2546117 Whelan Mar 1951 A
2563125 Malcom, Jr. Aug 1951 A
2569715 Green Oct 1951 A
2640068 Schaefer et al. May 1953 A
2736109 Scholl Feb 1956 A
2923944 Lindblom Feb 1960 A
2963708 Herbine et al. Dec 1960 A
3095575 Radov Jul 1963 A
3298031 Harold Jan 1967 A
3475766 Raschke Nov 1969 A
3785102 Amos Jan 1974 A
3810815 Welhart et al. May 1974 A
3937863 Moore Feb 1976 A
3948662 Alston et al. Apr 1976 A
3950580 Boudet Apr 1976 A
3987569 Chase Oct 1976 A
4076373 Moretti Feb 1978 A
4090464 Bishopp et al. May 1978 A
D249597 Dillon Sep 1978 S
4138746 Bergmann Feb 1979 A
D254638 Bay, Jr. Apr 1980 S
4204231 Permenter May 1980 A
4248762 Hornibrook et al. Feb 1981 A
4248918 Hornibrook et al. Feb 1981 A
4268134 Gulati et al. May 1981 A
4273098 Silverstein Jun 1981 A
4301193 Zuk Nov 1981 A
4332861 Franz et al. Jun 1982 A
4380563 Ayotte Apr 1983 A
4528701 Smith Jul 1985 A
4557980 Hodnett, III Dec 1985 A
4582764 Allerd et al. Apr 1986 A
4658515 Oatman Apr 1987 A
4696860 Epperson Sep 1987 A
4716601 McNeal Jan 1988 A
4729179 Quist Mar 1988 A
4769265 Coburn, Jr. Sep 1988 A
D299767 Hsin Feb 1989 S
4842919 David et al. Jun 1989 A
4850049 Landis et al. Jul 1989 A
4852185 Olson Aug 1989 A
4852186 Landis Aug 1989 A
4853974 Olim Aug 1989 A
4864653 Landis Sep 1989 A
4867178 Smith Sep 1989 A
4884296 Nix, Jr. Dec 1989 A
4889754 Vargas Dec 1989 A
D306363 Stackhouse et al. Feb 1990 S
4907090 Ananian Mar 1990 A
D307065 Friedman Apr 1990 S
4920576 Landis May 1990 A
4934792 Tovi Jun 1990 A
4964171 Landis Oct 1990 A
4965887 Paoluccio et al. Oct 1990 A
4973511 Farmer et al. Nov 1990 A
5000528 Kawakatsu Mar 1991 A
5002326 Westfield et al. Mar 1991 A
D318147 Russell Jul 1991 S
D319449 Millar Aug 1991 S
D321268 Nix, Jr. Oct 1991 S
5067475 Posnansky Nov 1991 A
5071206 Hood et al. Dec 1991 A
H1023 Wiseman, Sr. Mar 1992 H
5104929 Bilkadi Apr 1992 A
5113528 Burke et al. May 1992 A
D331820 Scanlon Dec 1992 S
5183700 Austin Feb 1993 A
5194293 Foster Mar 1993 A
5239406 Lynam Aug 1993 A
5318685 O'Shaughnessy Jun 1994 A
D349177 Russell Jul 1994 S
D349178 Russell Jul 1994 S
D349362 Russell Aug 1994 S
5364671 Gustafson Nov 1994 A
D353691 Scanlon Dec 1994 S
D354589 Russell Jan 1995 S
5420649 Lewis May 1995 A
D359586 Lofton Jun 1995 S
D361160 Russell Aug 1995 S
5443877 Kramer et al. Aug 1995 A
D362086 Russell Sep 1995 S
5471036 Sperbeck Nov 1995 A
5486883 Candido Jan 1996 A
5510173 Pass et al. Apr 1996 A
5512116 Campfield Apr 1996 A
5523132 Zhang et al. Jun 1996 A
RE35318 Warman Aug 1996 E
5544361 Fine et al. Aug 1996 A
5557683 Eubanks Sep 1996 A
5584130 Perron Dec 1996 A
5592698 Woods Jan 1997 A
5593786 Parker et al. Jan 1997 A
5622580 Mannheim Apr 1997 A
5633049 Bilkadi et al. May 1997 A
5668612 Hung Sep 1997 A
5671483 Reuber Sep 1997 A
5694650 Hong Dec 1997 A
5709825 Shih Jan 1998 A
5740560 Muoio Apr 1998 A
5792535 Weder Aug 1998 A
5846659 Hartmut et al. Dec 1998 A
D404849 Desy Jan 1999 S
5896991 Hippely et al. Apr 1999 A
5937596 Leeuwenburgh et al. Aug 1999 A
5956175 Hojnowski Sep 1999 A
5972453 Akiwa et al. Oct 1999 A
5991072 Solyntjes et al. Nov 1999 A
5991081 Haaland et al. Nov 1999 A
D418256 Caruana Dec 1999 S
6008299 McGrath et al. Dec 1999 A
6049419 Wheatley et al. Apr 2000 A
6085358 Cogan Jul 2000 A
6217099 McKinney et al. Apr 2001 B1
6250765 Murakami Jun 2001 B1
6305073 Badders Oct 2001 B1
6375865 Paulson et al. Apr 2002 B1
6388813 Wilson et al. May 2002 B1
6416872 Maschwitz Jul 2002 B1
6432522 Friedman et al. Aug 2002 B1
6461709 Janssen et al. Oct 2002 B1
6469752 Ishikawa et al. Oct 2002 B1
6536045 Wilson et al. Mar 2003 B1
6536589 Chang Mar 2003 B2
6555235 Aufderheide et al. Apr 2003 B1
6559902 Kusuda et al. May 2003 B1
6576349 Lingle et al. Jun 2003 B2
6592950 Toshima et al. Jul 2003 B1
6614423 Wong et al. Sep 2003 B1
D480838 Martin Oct 2003 S
6654071 Chen Nov 2003 B2
6660389 Liu et al. Dec 2003 B2
6667738 Murphy Dec 2003 B2
6750922 Benning Jun 2004 B1
6773778 Onozawa et al. Aug 2004 B2
6777055 Janssen et al. Aug 2004 B2
6800378 Hawa et al. Oct 2004 B2
6838610 de Moraes Jan 2005 B2
6841190 Liu et al. Jan 2005 B2
6847492 Wilson et al. Jan 2005 B2
6864882 Newton Mar 2005 B2
6870686 Wilson et al. Mar 2005 B2
6879319 Cok Apr 2005 B2
6907617 Johnson Jun 2005 B2
6911593 Mazumder et al. Jun 2005 B2
6952950 Doe et al. Oct 2005 B2
6967044 O'Brien Nov 2005 B1
D512797 Canavan et al. Dec 2005 S
6995976 Richardson Feb 2006 B2
7070837 Ross Jul 2006 B2
7071927 Blanchard Jul 2006 B2
7101810 Bond et al. Sep 2006 B2
7143979 Wood et al. Dec 2006 B2
7184217 Wilson et al. Feb 2007 B2
7215473 Fleming May 2007 B2
7226176 Huang Jun 2007 B1
7238401 Dietz Jul 2007 B1
7311956 Pitzen Dec 2007 B2
D559442 Regelbrugge et al. Jan 2008 S
7351470 Draheim et al. Apr 2008 B2
D569557 Cho May 2008 S
7410684 McCormick Aug 2008 B2
7425369 Oakey et al. Sep 2008 B2
7495895 Carnevali Feb 2009 B2
7629052 Brumwell Dec 2009 B2
7663047 Hanuschak Feb 2010 B2
7709095 Persoone et al. May 2010 B2
7727615 Kato et al. Jun 2010 B2
7752682 VanDerWoude et al. Jul 2010 B2
7858001 Qin et al. Dec 2010 B2
7957524 Chipping Jun 2011 B2
8044942 Leonhard et al. Oct 2011 B1
8261375 Reaux Sep 2012 B1
8294843 Hollaway Oct 2012 B2
8361260 Wilson et al. Jan 2013 B2
8455105 Hobeika et al. Jun 2013 B2
D692187 Isobe Oct 2013 S
D692189 Isobe Oct 2013 S
8567596 Mason, Jr. Oct 2013 B1
8693102 Wilson et al. Apr 2014 B2
8889801 Liao et al. Nov 2014 B2
8974620 Wilson et al. Mar 2015 B2
D726378 Wako Apr 2015 S
8999509 Port et al. Apr 2015 B2
9104256 Wilson et al. Aug 2015 B2
9128545 Wilson et al. Sep 2015 B2
9150763 Lopez et al. Oct 2015 B2
9274625 Wilson et al. Mar 2016 B2
9295297 Wilson Mar 2016 B2
9442306 Hines et al. Sep 2016 B1
9471163 Wilson et al. Oct 2016 B2
9526290 Wilson Dec 2016 B2
D781507 Huh Mar 2017 S
D781508 Huh Mar 2017 S
9726940 Tomiyasu Aug 2017 B2
D805256 Yang Dec 2017 S
9905297 Best Feb 2018 B2
D815190 Dellemann Apr 2018 S
9968155 Wilson May 2018 B2
10070678 Wilson Sep 2018 B2
10226095 Wilson Mar 2019 B2
10227501 Hwang et al. Mar 2019 B2
D849240 Guo et al. May 2019 S
10321731 Wilson Jun 2019 B2
10345934 Wilson et al. Jul 2019 B2
D879384 Sato Mar 2020 S
D882182 Fekete Apr 2020 S
10620670 Wilson et al. Apr 2020 B2
20010035936 Maisnik Nov 2001 A1
20020025441 Hieda et al. Feb 2002 A1
20020101411 Chang Aug 2002 A1
20020109922 Wilson et al. Aug 2002 A1
20020114934 Liu et al. Aug 2002 A1
20020122925 Liu et al. Sep 2002 A1
20020159159 Wilson et al. Oct 2002 A1
20020195910 Hus et al. Dec 2002 A1
20030012936 Draheim et al. Jan 2003 A1
20030087054 Janssen et al. May 2003 A1
20030110613 Ross Jun 2003 A1
20040004605 David Jan 2004 A1
20040109096 Anderson et al. Jun 2004 A1
20040121105 Janssen et al. Jun 2004 A1
20040202812 Congard et al. Oct 2004 A1
20040227722 Friberg et al. Nov 2004 A1
20040238690 Wood et al. Dec 2004 A1
20040246386 Thomas et al. Dec 2004 A1
20040258933 Enniss Dec 2004 A1
20050002108 Wilson et al. Jan 2005 A1
20050186415 McCormick Aug 2005 A1
20050188821 Yamashita et al. Sep 2005 A1
20050200154 Barbee Sep 2005 A1
20050249957 Jing Nov 2005 A1
20050260343 Han Nov 2005 A1
20060024494 Amano et al. Feb 2006 A1
20060052167 Boddicker et al. Mar 2006 A1
20060057399 Persoone et al. Mar 2006 A1
20060114245 Masters et al. Jun 2006 A1
20060177654 Shoshi Aug 2006 A1
20060204776 Chen et al. Sep 2006 A1
20060254088 McCormick Nov 2006 A1
20060285218 Wilson et al. Dec 2006 A1
20070019300 Wilson et al. Jan 2007 A1
20070181456 Kusuda et al. Aug 2007 A1
20070211002 Zehner et al. Sep 2007 A1
20070212508 Mase Sep 2007 A1
20070229962 Mason Oct 2007 A1
20070234592 Crates Oct 2007 A1
20070234888 Rotolo de Moraes Oct 2007 A1
20070286995 Li et al. Dec 2007 A1
20080014446 Donea et al. Jan 2008 A1
20080030631 Gallagher Feb 2008 A1
20080055258 Sauers Mar 2008 A1
20080118678 Huang et al. May 2008 A1
20080151177 Wang Jun 2008 A1
20080160321 Padiyath et al. Jul 2008 A1
20080176018 Enniss Jul 2008 A1
20080231979 Chen Sep 2008 A1
20080286500 Sussner et al. Nov 2008 A1
20080292820 Padiyath et al. Nov 2008 A1
20090011205 Thiel Jan 2009 A1
20090026095 Lofland et al. Jan 2009 A1
20090086415 Chipping Apr 2009 A1
20090087655 Yamada et al. Apr 2009 A1
20090105437 Determan et al. Apr 2009 A1
20090181242 Enniss et al. Jul 2009 A1
20090233032 Craig Sep 2009 A1
20100026646 Xiao et al. Feb 2010 A1
20100033442 Kusuda et al. Feb 2010 A1
20100102197 McIntyre Apr 2010 A1
20100238119 Dubrovsky et al. Sep 2010 A1
20100245273 Hwang et al. Sep 2010 A1
20100270189 Pedersen, II et al. Oct 2010 A1
20110007388 Wilson et al. Jan 2011 A1
20110010994 Wilson et al. Jan 2011 A1
20110012841 Lin Jan 2011 A1
20110013273 Wilson et al. Jan 2011 A1
20110014481 Wilson et al. Jan 2011 A1
20110035936 Lee Feb 2011 A1
20110052864 Son Mar 2011 A1
20110097574 Faldysta Apr 2011 A1
20110119801 Wright May 2011 A1
20110165361 Sherman et al. Jul 2011 A1
20110267793 Cohen et al. Nov 2011 A1
20110279383 Wilson et al. Nov 2011 A1
20120003431 Huang Jan 2012 A1
20120070603 Hsu Mar 2012 A1
20120081792 Neuffer Apr 2012 A1
20120183712 Leonhard et al. Jul 2012 A1
20120188743 Wilson et al. Jul 2012 A1
20130045371 O'Donnell Feb 2013 A1
20130089688 Wilson et al. Apr 2013 A1
20130293959 McDonald Nov 2013 A1
20140050909 Choi et al. Feb 2014 A1
20140220283 Wilson et al. Aug 2014 A1
20140259321 Arnold Sep 2014 A1
20150033431 Hofer Kraner et al. Feb 2015 A1
20150234209 Miyamoto et al. Aug 2015 A1
20150294656 Hanuschak Oct 2015 A1
20150309609 Wilson et al. Oct 2015 A1
20160023442 Faris Jan 2016 A1
20160231834 Hardi Aug 2016 A1
20160271922 Uzawa et al. Sep 2016 A1
20170129219 Uebelacker et al. May 2017 A1
20170173923 Davis et al. Jun 2017 A1
20170281414 Wilson Oct 2017 A1
20180094164 Ito et al. Apr 2018 A1
20180236753 Wykoff, II et al. Aug 2018 A1
Foreign Referenced Citations (20)
Number Date Country
3637188 May 1988 DE
19808535 Sep 1999 DE
192075 Aug 1986 EP
671258 Sep 1995 EP
1471415 Oct 2004 EP
3157480 Apr 2017 EP
2310862 Sep 1997 GB
2015128896 Jan 1986 JP
62053832 Mar 1987 JP
2002328613 Nov 2002 JP
2012183822 Sep 2012 JP
2014032222 Feb 2014 JP
20120001292 Jan 2012 KR
200700793 Jan 2007 TW
201027992 Jul 2010 TW
0024576 May 2000 WO
03052678 Jun 2003 WO
2015009114 Jan 2015 WO
2015091425 Jun 2015 WO
2015195814 Dec 2015 WO
Non-Patent Literature Citations (97)
Entry
Machine translation of JP 2012-183822. (Year: 2012).
Prosecution History of U.S. Re-Examination Application No. 95/002,073 titled Touch Screen Protector; pp. 1-1,980.
Defendant's Motion for Summary Judgment; Oct. 25, 2013; pp. 1-31.
www.nushield.com/technology.php; “What Makes NuShield Screen Protectors Superior”, 2 pages, Year: 2012.
www.spigen.com; “Something You Want”; 2 pages, Year: 2012.
www.zagg.com; “Apple iPad 2 (Wi-Fi 3G) Screen Protector”; 2 pages, Year: 2012.
www.incipotech.com; “Protect Your iPhone 4 with Screen Protectors from Incipo”; 3 pages, Year: 2012.
www.store.moshimonde.com; “iVisor AG iPad Screen Protector”; 7 pages, Year: 2012.
www.store.moshimonde.com; “iVisor XT Crystal Clear Protector for iPad”; 3 pages, Year: 2012.
www.store.moshimonde.com; “iVisor AG for iPad 2 Black”; 5 pages, Year: 2012.
www.store.moshimonde.com; “iVisor AG for iPad 2 White”; 3 pages, Year: 2012.
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S Black”; 5 pages, Year: 2012.
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S White”; 4 pages, Year: 2012.
Dictionary.com (http://dictionary.reference.com) 2012.
Racing Optics, Inc. v. Aevoe, Inc., d/b/a/ Moshi; Case No. 15-cv-017744-JCM-VCF; Aevoe's Initial Disclosure Non-Infringement, Invalidity and Unenforceability Contentions (Redacted) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,128,545) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,104,256) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 8,974,620) dated Jan. 7, 2016.
I-Blason LLC v. Aevoe, Inc. and Aevoe Corp.; Case IPR2016-TBA; Petition for Inter Partes Review of U.S. Pat. No. 8,044,942 (including Exhibits 1001-1019).
Dupont Teijin Films, “Mylar Polyester Film—Optical Properties”, Jun. 2003, 2 pages.
https://en.wikipedia.org/wiki/Black_body, “Black Body”, Jul. 2009, 11 pages.
https://en.wikipedia.org/wiki/Infrared, “Infrared”, Jul. 2009, 12 pages.
https://en.wikipedia.org/wiki/BoPET, “PET Film (biaxially oriented)”, Jul. 2009, 4 pages.
Instashield LLC, Bionic Wrench® Inventor Creates Low-Cost Face Shield For Masses, Apr. 15, 2020, 3 pages.
Tom Zillich, Surrey manufacturer hopes to hit home run with face shield that clips to baseball cap, Apr. 29, 2020, 3 pages.
Opentip, Opromo Safety Face Shield Visor for Adult Kids,Protective Cotton Hat with Removable PVC Face Cover <https://www.opentip.com/product.php?products_id=11699030>, May 5, 2020, 3 pages.
Hefute, Hefute 5 PCS Protective Face Cover with Shield Comfortable Full Protection Face Compatiable with Glasses Anti-Droplet Anti-Pollution and Windproof Transparent Safety Face Cover with Shield(Style B) <https://www.amazon.com/dp/B086GSG8DH/ref=sspa_dk_detail_9?psc=1&pd_rd_i=B086GSG8DH&pd_rd_w=Ocdm2&pf_rd_p=48d372c1-f7c1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=qkB2b&pf_rd_r=M%E2%80%A6>, May 6, 2020, 7 pages.
Geanbaye, Geanbaye Safety Full Face Shield Cap Detachable Baseball Cap Anti-Saliva Anti-Spitting Eye Protective Hat Windproof Dustproof <https://www.amazon.com/dp/B086DV32B8/ref=sspa_dk_detail_8?psc=1&pd_rd_i=B086DV32B8&pd_rd_w=MwjfT&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=pxuOs&pf_rd_r=PNDA%E2%80%A6>, May 5, 2020, 8 pages.
Leigh Buchanan, These 2 Companies Are Making Face Shields for Everyone <https://www.inc.com/leigh-buchanan/face-shields-coronavirus-protection-open-source.html>, May 6, 2020, 8 pages.
Brim Shield, photographs, Apr. 21, 2020, 1 pages.
Hatshield, Shield Yourself With The Hatshield <https://www.hat-shield.com/?gclid=CjwKCAjwp-X0BRAFEiwAheRui1u89v_3URuiwEVvBRGa9TaEfWoZVMJXRkWsZgPTUw-0fHJ5HD-8uhoCc84QAvD_BwE>, Apr. 17, 2020, 11 pages.
Eli N. Perencevich, Moving Personal Protective Equipment Into the Community Face Shields and Containment of COVID-19, Apr. 29, 2020, 2 pages.
Chang, Tian-Ci; Cao, Xun; Bao, Shan-Hu; Ji, Shi-Dong; Luo, Hong-Jie; Jin, Ping; Review of Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application; Dec. 16, 2017.
Saudi Basic Industries Corporation (SABIC); “The Department of Transportation [DOT] Guidebook” Oct. 2016.
Hostaphan RBB, “Transparent, Temperature Stable Polyester Film for Cooking & Roasting Bags'” Jul. 2016.
Hostaphan WIN, “White, Long-Term Stable, Thermally Stable Polyester Film for PV Back Sheet Laminates”; Jul. 2016.
PCT Search Report & Written Opinion for PCT/US2019/054565 (dated Dec. 20, 2019).
PCT Search Report & Written Opinion for PCT/US2015/036248 (dated Sep. 16, 2015).
“Declaration of Jerome Aho”; Filed Aug. 3, 2007; Case 3:07-cv-00221-FDW-DCK; Includes: Exhibit A, Nascar Postcard (1 page), Exhibit B, 50th Anniversary Nascar letter sent Jan. 7, 1998 (1 page), and Exhibit C, Front page of “The Official Nascar Preview and Press Guide” (1 page); 9 pages.
Racing Optics, Inc. v. David Leon O'Neal, Edward M. Wallace and Clear View Racing Optics, LLC; Case 3:07 CV 221; Includes: Exhibit A, Wilson et al. U.S. Pat. No. 6,847,492; and Exhibit B, Wilson et al. U.S. Pat. No. 7,184,217; 34 pages.
International Search Report; International Application No. PCT/US99/95128; Date of Completion: Jan. 18, 2000; 54 pages.
International Search Report; International Application No. PCT/US02/10971; Date of Completion: Nov. 20, 2002; 3 pages.
International Search Report; International Application No. PCT/US03/16284; Date of Completion: Mar. 9, 2004; 3 pages.
European Search Report for Application No. 15809930.9-107/3157480 (dated Dec. 15, 2017).
Canadian Office Action for Application Serial No. 2,952,436 (dated Nov. 15, 2019).
Canadian Office Action for Application Serial No. 2,952,436 (dated May 3, 2019).
Australian Examination Report for Application Serial No. 2015277196 (dated Oct. 18, 2018).
www.wikipedia.org, Refractive Index, Oct. 31, 2014.
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US20/24639, dated Jun. 11, 2020, 13 pages.
Racing Optics, Inc. v. Aevoe Corp. DBA Moshi; Case 2:15-cv-01774-RCJ-VCF; “Answer to Aevoe's Counterclaims—Jury Trial Demanded”; Nov. 2, 2015; 15 pages.
Gregory Brower et al.; “Complaint for Patent Infringement”; Sep. 15, 2015; 15 pages.
United States Patent and Trademark Office; Office Action for U.S. Appl. No. 15/090,681; dated Aug. 26, 2016; 8 pages.
List of References considered by Examiner for U.S. Appl. No. 15/090,681; 3 pages.
List of References considered by Examiner for U.S. Appl. No. 15/090,681; 4 pages.
Examiner's search strategy and results for U.S. Appl. No. 15/090,681; Aug. 21, 2016; 2 pages.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01164; Petition for Inter Partes Review of U.S. Pat. No. 9,104,256 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01165; Petition for Inter Partes Review of U.S. Pat. No. 9,128,545(including Exhibits 1001-1006 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition tor Inter Partes Review); Jun. 21, 2016.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01166; Petition for Inter Partes Review of U.S. Pat. No. 9,274,625 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition tor Inter Partes Review); Jun. 21, 2016.
Exhibit 1—Invalidity Contentions re: '545 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 2—Invalidity Contentions re: '256 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 3—Invalidity Contentions re: '620 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 4—Invalidity Contentions re: '625 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 1002—U.S. Pat. No. 5,364,671 to Gustafson; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-6.
Exhibit 1004—U.S. Pat. No. 7,351,470 to Draheim et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620 at least as early as Sep. 7, 2016; pp. 1-15.
Exhibit 1001—U.S. Pat. No. 8,974,620 to Wilson et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620 at least as early as Sep. 7, 2016; pp. 1-15.
Exhibit 1003—U.S. Pat. No. 6,250,765 to Murakami; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at east as early as Sep. 7, 2016; p. 1-8.
Exhibit 1005—U.S. Pat. No. 7,957,524 to Chipping; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at east as early as Sep. 7, 2017; pp. 1-20.
Aevoe Corp., Racing Optics, Inc.; Petition for Inter Partes Review; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-55.
Exhibit 1006—Japanese Application No. JP 2002-328613 to Kitaguchi Translation; IPR2016-01745; at least as early as Sep. 7, 2016; pp. 1-10.
Exhibit 1009—U.S. Appl. No. 13/838,311; Interview Summary; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-3.
Exhibit 1010—U.S. Appl. No. 15/838,311; Notice of Allowance; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-8.
Aevoe Corp; . v. Racing Optics, Inc.; Declaration of Darran Cairns; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-32.
Aevoe Corp. v. Racing Optics, Inc.; Petitioner's Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-3.
Exhibit 1007—U.S. Appl. No. 13/838,311; Response to Office Action; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-19.
Exhibit 1008—U.S. Appl. No. 13/838,311; Response and Request for Continued Examination; Case IPR2016-01745 Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-21.
Aevoe Corp. v. Racing Optics, Inc.; Mandatory Notices; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 3,974,620; at least as early as Sep. 7, 2016; pp. 1-4.
Aevoe Corp. v. Racing Optics, Inc.;Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 3,974,620; at least as early as Sep. 7, 2016; pp. 1-4.
Aevoe Corp v. Racing Optics, Inc.; Notice of Filing Date; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 3,974,620; at least as early as Sep. 6, 2016; p. 1-5.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01164; Inter Partes Review of U.S. Pat. No. 9,104,256; at least as early as Nov. 7, 2016; p. 1-24.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01166; Inter Partes Review of U.S. Pat. No. 9,274,625; at least as early as Nov. 7, 2016; p. 1-23.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01165; Inter Partes Review of U.S. Pat. No. 9,128,545; at least as early as Nov. 7, 2016; p. 1-25.
Settlement and License Agreement, Dec. 21, 2007, 28 pgs.
United States Patent and Trademark Office; Office Action dated Dec. 21, 2016 pertaining to U.S. Appl. No. 15/090,681, filed Apr. 5, 2016; 8 pages.
PCT Search Report and Written Opinion for US2020/016245 (dated Apr. 28, 2020).
Professional Plastics (http://www.professionalplastics.com/MelinexPETFilmDupont) 2012.
Whitney, Frank D., Preliminary Injunction, Aug. 21, 2007, 5 pgs.
Higgins, John P., Answer and Counterclaims to First Amended Complaint, Sep. 4, 2007, 27 pgs.
Ballato, John, Expert Report of John Ballato, Ph.D., Nov. 12, 2007, 5 pgs.
Russell, Geoffrey A., Rebuttal Report of Geoffrey A. Russell, Ph.D., on issues raised in the Export Report of John Ballato, Ph D., Nov. 21, 2007, 15 pgs.
Higgins, John P., Defendants' Second Supplement to Its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 25 pgs.
Barnhardt, John J. III, Redacted Version Defendants' Memorandum in Support of Motion for Partial Summary Judgment, Dec. 3, 2007, 36 pgs.
Higgins, John P., Defendants' Second Supplement to its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 26 pgs.
Whitney, Frank D., Consent Judgment Order, Jan. 3, 2008, 5 pgs.
Ballato, John, Supplemental Expert Report of John Ballato, Ph D., Nov. 19, 2007, 10 pgs.
Moore, Steven D., Plaintiffs' Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 3 pgs.
Moore, Steven D., Plaintiffs' Brief in Support of Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 10 pgs.
Barnhardt, John J. III, Notice Pursuant to 35 U.S.C. 282, Dec. 18, 2007, 3 pgs.
Related Publications (1)
Number Date Country
20200369015 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62850966 May 2019 US