The disclosure of the present patent application relates to chemical separations, and particularly to a polymer-supported chelating agent for recovering a transition metal catalyst from a reaction mixture.
While catalysis is a key aspect of green chemistry and while homogeneous catalyzed processes using transition metals are now commonly used in synthesis of most drugs and chemical intermediates, the separation of the metal catalysts or their by-products from the desired products remains a problem. This issue has been addressed in a variety of ways. The established approach to address this problem is to use solid state sequestrants. There is an immense arsenal of ion exchange resins and functionalized inorganic supports that can sequester metals or metal catalyst residues. As insoluble solids, these materials have the advantage that they can be easily physically separated from product solutions. However, they are generally only effective when the solution components and the sequestrant can be intimately mixed. A crosslinked polystyrene resin with a covalent sequestrant that does not have solvent swellability is simply ineffective. In other cases, the transition metal catalysts decompose into insoluble metal colloids and interactions of these colloidal particles with solid supports can be ineffective, either because of the physical limitations of solid-solid interactions, or because other ligands present in the mixture compete with the sequestrating agent
Thus, a polymer-supported chelating agent solving the aforementioned problems is desired.
The polymer-supported chelating agent is polyisobutylene having a thiol-thioether terminal group. The polymer-supported chelating agent is made by reaction of the terminal carbon double bond of polyisobutylene with 1,2-ethanedithiol in a one-step click reaction, resulting in PIB functionalized with a thiol-thioether sequestering group. In use, the polymer-supported chelating agent is added to a biphasic solvent system containing a transition metal in solution for removal of the transition metal by liquid/liquid extraction. The transition metal is chelated or sequestered by the chelating agent and removed in a nonpolar organic phase, such as heptane.
The one-step click reaction avoids the multistep synthesis typically required to make polymer-bound catalysts that are soluble in organic solvents. In model experiments, a range of transition metal salts of Co2+, Ni2+, Cu2+, Pd2+ and Ru3+ were successfully extracted from aqueous or polar organic solutions into immiscible heptane solution of a PIB-bound thioether-thiol sequestrant. This PIB derivative demonstrated an excellent performance with quantitative metal complexation in many cases. This functional polymer is efficient even in the presence of competing ligands that are typically used in homogeneous catalysis. In addition, this sequestrant was successfully used for treatment of aqueous and polar organic solutions of crude product mixtures obtained in model Pd-catalyzed Suzuki and Buchwald-Hartwig cross-coupling reactions, as well as in a Cu(I)-catalyzed alkyne/azide cyclization (CuAAC) reaction.
These and other features of the present disclosure will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The polymer-supported chelating agent is polyisobutylene having a thiol-thioether terminal group. The polymer-supported chelating agent is made by reaction of the terminal carbon double bond of polyisobutylene with 1,2-ethanedithiol in a one-step click reaction, resulting in PIB functionalized with a thiol-thioether sequestering group. In use, the polymer-supported chelating agent is added to a biphasic solvent system containing a transition metal in solution for removal of the transition metal by liquid/liquid extraction. The transition metal is chelated or sequestered by the chelating agent and removed in a nonpolar organic phase, such as heptane.
The one-step click reaction avoids the multistep synthesis typically required to make polymer-bound catalysts that are soluble in organic solvents. In model experiments, a range of transition metal salts of Co2+, Ni2+, Cu2+, Pd2+ and Ru3+ were successfully extracted from aqueous or polar organic solutions into immiscible heptane solution of a PIB-bound thioether-thiol sequestrant. This PIB derivative demonstrated an excellent performance with quantitative metal complexation in many cases. This functional polymer is efficient even in the presence of competing ligands that are typically used in homogeneous catalysis. In addition, this sequestrant was successfully used for treatment of aqueous and polar organic solutions of crude product mixtures obtained in model Pd-catalyzed Suzuki cross-coupling and Buchwald-Hartwig amination reactions, as well as in a Cu(I)-catalyzed alkyne/azide cyclization (CuAAC) reaction.
The polymer-supported chelating agent will be better understood with reference to the following examples
Dithiol-functionalized polybutadiene 1 was prepared via a green and simple single step radical thiol-ene “click” reaction between commercially available and inexpensive 1,2-ethanedithiol and alkene-terminated PIB Glissopal 1000 (DPn=18), as depicted in
based on 1H NMR spectroscopic analysis (see
The PIB-bound sequestrant we prepared contains two different binding sites—thioether and thiol. They have differing complexation activity and affinity to transition metals. 1H NMR spectroscopy titration of 1 with palladium acetate was used to understand better the complexation of 1 to Pd2+ (see
A series of experiments were performed to determine the ability of 1 to sequester metals (in particular Cu2+ and Pd2+) from various polar solvents, including water. Our initial studies involved sequestration of transition metal cations such as Co2+, Ni2+, Cu2+, Pd2+ and Ru3+ from solutions of their salts in deionized water, methanol or acetonitrile by a heptane solution of 1. In a typical experiment, a solution of sequestrant in heptane was added to a solution of CuSO4 in water and shaken, with resulting formation of an emulsion. Shaking was continued for 2 h. During this time, visually observed discoloration of the aqueous phase qualitatively indicated a high level of Cu2+ sequestration. Quantitative inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the polar phase that indicated 60-fold decrease of copper content (Table 1) confirmed this observation. A control experiment with heptane that did not contain 1 did not result in any metal extraction, based on ICP-OES.
According to the results in Table 1, polymer 1 demonstrates good to excellent sequestration efficiency for a variety of transition metals under biphasic conditions. The best results were obtained for copper, palladium and ruthenium ions (Table 1, entries 5-13). In case of Co2+ and Ni2+ cations, sequestration efficiency for neutral solutions was modest, but it significantly increased under basic conditions. The same trend was observed for other metals. This observation can be explained by formation of poorly soluble metal hydroxides with enhanced affinity to sequestrant 1. Although 99.5% of palladium was absorbed from water solution in only 15 minutes, sequestration from acetonitrile required extended times to achieve the same efficiency. This observation is attributed to competitive complexation of Pd2+ cation by the acetonitrile.
a pH = 10
We also investigated whether a heptane solution of 1 could competitively sequester palladium species from polar organic solutions in the presence of other ligands that are commonly used in catalytic reactions. According to ICP-OES results (Table 2) high levels of Pd were sequestered by 1 in 4 h, in most cases. Sequestration efficiency tended to increase with time and generally exceeded 96%, except for samples where Pd was complexed by P(o-Anisyl)3, P(o-Tolyl)3, RuPhos, DPPF and Hermann's ligand. Even in those cases, around 90-95% of Pd could be removed with 1 if the extraction time was increased.
Metal sequestration is often important in catalytic reactions where the catalysts end up in a product phase. Our results in Tables 1 and 2 suggest that the soluble polymer bound sequestrant 1 should be useful in these cases. To explore this question, we decided to investigate the use of 1 for removal of the Pd residues from Suzuki cross-coupling (see
Reaction of phenyl boronic acid 3 with different substituted bromoarenes under typical coupling conditions described above using 2.5 mol % of Pd(OAc)2 afforded biaryls 4a-4c in toluene (
aat 25° C.;
bat 80° C.
Bromobenzene and 2-bromopyridine were successfully coupled to morpholine under neat conditions using 1 mol % of Pd(OAc)2 and RuPhos as a ligand to afford compounds 6a,6b (see
The azide-alkyne “click” reaction between benzyl azide 7 and dimethyl ethynyl carbinol in the presence of 15 mol % of Cu led to formation of a triazole 8. Copper sequestration afforded nearly 2500-fold reduction of the residual Cu amount in the reaction product (Table 3) that corresponds to more than 99.9% efficiency.
The results obtained in these experiments show that a heptane-soluble, PIB-bound thioether-thiol metal scavenger is easy to synthesize and is generally highly effective at removing metals from aqueous or polar organic solutions under biphasic conditions. In many cases, this sequestrating agent removes >99% of the metal from the aqueous or polar organic phase. This material is successful at metal sequestration even when there are other ligands present and can be used for the treatment of crude reaction mixtures following catalytic reactions. Even in cases where the sequestration is not initially quantitative, minor experimental changes are effective in producing near quantitative metal sequestration.
It is to be understood that the polymer-supported chelating agent is not limited to the specific embodiments described above, but encompasses any and all embodiments within the scope of the generic language of the following claims enabled by the embodiments described herein, or otherwise shown in the drawings or described above in terms sufficient to enable one of ordinary skill in the art to make and use the claimed subject matter.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/511,327, filed May 25, 2017.
Number | Date | Country | |
---|---|---|---|
62511327 | May 2017 | US |