In drawings which illustrates embodiments of the present invention;
In view to qualify the binder, the onium has particularly been chosen from N,N′-alkyl-imidazolium, tetraalkylammonium and trialkylsulfonium, with alkyls substituents particularly containing 1 to 3 carbon atoms and such as counter anion of the onium is (FSO2)2N− or/and (CF3SO2)2N−, and wherein metallic salt is (FSO2)2NLi or/and (CF3SO2)2NLi.
First of all, a film of PVDF-HFP copolymer Poly(vinylidene fluoride-co-hexafluoropropylene), produced by Solvay (Solef® 20810/1001) and a film of Poly(tetrafluoroethylene-co-vinylidene fluoride-co-polypropylene), named PVDF-TFE-PP, obtained from Aldrich (56% wt TFE and 27% wt VDF) have been respectively placed in a solution of widely used N-methyl-N′-ethyl-imidazolium·TFSI. After 24 hours at 80° C., the PVDF-HFP copolymer present an uptake of ionic liquids>20% wt while the PVDF-TFE-PP present almost no uptake of solvent. This insolubility in the imidazolium based ionic liquids is an important property for a binder and a strong argument in favor of the described binders.
In view to evaluate the influence of the binder on power characteristic of the battery with a Ragone plot, one with a LiCoO2 cathode (2.5 C/cm2) using PVDF-HFP, such as disclosed herein, and a Li4Ti5O12 anode (2 C/cm2) using PVDF-HFP, as disclosed herein, was compared with an equivalent battery using PVDF-TFE-PP binder instead of PVDF-HFP. The battery was assembled with a paper separator and used diethyl-methyl-sulfonium·TFSI with 1 M LiTFSI as the electrolyte.
It appears as described in the following Ragone plot that the power capability of the battery at 60° C. is strongly improved with PVDF-TFE-PP binder, especially considering that the capacity of both cathode at C/20 rate and 25° C. are equivalent.
A general procedure to prepare anode and cathode electrodes is provide in example 2 and 3 with PVDF-HFP copolymer, those electrodes was used as reference electrodes to qualify alternative binders.
Film of PVDF-HFP copolymer Poly(vinylidene fluoride-co-hexafluoropropylene), produced by Solvay (Solef® 20810/1001) and a film of Poly(tetrafluoroethylene-co-vinylidene fluoride-co-polypropylene), named PVDF-TFE-PP, obtained from Aldrich (56% wt TFE and 27% wt VDF) have been respectively placed in a solution of 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. After 24 hours at 80° C., the PVDF-HFP copolymer present an uptake of ionic liquids>20% wt while the PVDF-TFE-PP present negligible (<2% wt) uptake of solvent. This insolubility in ionic liquids is an important property for a binder and a strong argument in favor of the described binders.
The following example described the general electrode preparation procedure. 85 gr of LiCoO2 (approx. 5 μm diameter) and 10 gr of carbon black (CPChem, Shawinigan Black®) were thoroughly mixed in an agate crusher with the equivalent of 5 gr Poly(vinylidene fluoride-co-hexafluoropropylene), produced by Solvay (Solef® 20810/1001), dissolved in NMP at 4% wt concentration. 125 ml of NMP were also added to adjust the viscosity of the solution for coating. After crushing up to obtain a dispersed mixture, characterized with a Gardco®) fineness of grind gages, this past was coated on a 20 μm dual side coated conductive aluminum (Intellicoat, Product Code 2651), with a Gardco® universal blade applicator of 7 mils gate clearance. After evaporation of the solvent in air, the cathode electrode (85% wt LiCoO2, 10% wt carbon and 50% wt binder) was dried under vacuum at 60° C. during 24 hours and store under Helium in a glove box. The film has a thickness of ≈47 μm and a porosity of 152%. This electrode has a 2 C/cm2 reversible capacity. Depending on the composition of the coating mixture, clearance of the blade, it is possible to obtain electrode with a thickness comprise between 10 and 100 μm and porosity comprise between 100 and 300%. Porosity is adjusted if necessary by lamination or compression on a carver press.
An anode of 30-50 nm lithium titanate spinel Li4Ti5O2 (Altair Nanomaterials Inc.) was prepared with the same composition (85% wt Li4Ti5O12, 10% wt carbon and 5% wt binder) as in example 2. The past was coated on a 20 μm dual side coated conductive aluminum (Intellicoat, Product Code 2651), with a 12 mils gate clearance of the blade applicator. After drying as in example 1, a film of 50 μm and 209% porosity was obtained. This film has a 2.5 C/cm2 reversible capacity. Depending on the composition of the coating mixture, clearance of the blade, it is possible to obtain electrode with a thickness comprise between 10 and 100 μm and porosity comprise between 100 and 300%. Porosity is adjusted if necessary by lamination or compression on a carver press.
Two coins cells batteries were assembled, first one with a LiCoO2 cathode (≈2 C/cm2) using PVDF-HFP, such as disclosed in example 2, and a Li4Ti5O12 anode (≈2.5 C/cm2) using PVDF-HFP, as disclosed in example 3, and a second equivalent one using PVDF-TFE-PP binder, as described in example 1, instead of PVDF-HFP. The two batteries were assembled with a 20 μm porous paper separator (alkylated cellulose) previously soaked in an electrolyte solution composed of diethyl(methyl)sulfonium bis(trifluoromethyl-sulfonyl)imide ionic liquid containing 1 Mol/kg LiTFSI. Those batteries tests at 25° C. in slow scan voltammetry (C/20) between 1.5 and 2.6 V vs Li+/Li0 presents similar capacities.
The coin cells was charged at a rate of C/3 and maintained at 2.6 Volts for 2.5 hours. The discharge rate in stability test was 1 C.
It appears as described in
In view to evaluate the influence of the binder on power characteristic of the battery with a Ragone plot, one with a LiCoO2 cathode (2.5 C/cm2) using PVDF-HFP, such as disclosed in example 2, and a Li4Ti5O12 anode (2 C/cm2) using PVDF-HFP, as disclosed in example 3, was compared with an equivalent battery using PVDF-TFE-PP binder instead of PVDF-HFP. he battery was assembled with a paper separator and used diethyl-methyl-sulfonium-TFSI with 1 M LITFSI as the electrolyte.
It appears as described in the Ragone plot of
Two coins cells batteries were assembled, first one with a LiCoO2 cathode (≈2 C/cm2) using PVDF-HFP, such as disclosed in example 2, and a Li4Ti5O12 anode (≈2.5 C/cm2) using PVDF-HFP, as disclosed in example 3, and a second equivalent one using PVDF-TFE-PP binder, as described in example 1, instead of PVDF-HFP. The two batteries were assembled with a 20 μm porous paper separator (alkylated cellulose) previously soaked in an electrolyte solution composed of ethyl(methyl)imidazolium bis(trifluoromethylsulfonyl)-imide ionic liquid containing 1 Mol/kg LiTFSI. Those batteries tests were performed at 25° C. in slow scan voltammetry (C/20) between 1.5 and 2.6 V vs Li+/Li0 and presents similar capacities.
The coin cells was charged at a rate of C/3 and maintained at 2.6 Volts for 2.5 hours. The discharge rate in stability test was 1 C.
It appears as described in
Two soft cells batteries were assembled, first one with a LiCoO2 cathode (≈2 C/cm2) using PVDF-HFP, such as disclosed in example 2, and a Li4Ti5O12 anode (≈2.5 C/cm2) using PVDF-HFP, as disclosed in example 4, and a second equivalent one using PVDF-TFE-PP binder, as described in example 1, instead of PVDF-HFP. The two batteries were assembled with a 20 μm porous paper separator (alkylated cellulose) previously soaked in an electrolyte solution composed of ethyl(methyl)imidazolium bis(fluoromethylsulfonyl)-imide ionic liquid containing 1 Mol/kg LiTFSI. Those batteries tests were performed at 25° C. in slow scan voltametry (C/20) between 1.5 and 2.6 V vs Li+/Li0 and presents similar capacities.
The coin cells was charged at a rate of C/3 and maintained at 2.6 Volts for 2.5 hours. The discharge rate in stability test was 1 C.
It appears as described in
Number | Date | Country | Kind |
---|---|---|---|
2427111 | Apr 2003 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA04/00660 | 4/30/2004 | WO | 00 | 7/18/2007 |