The present invention relates to bioreactors, and more particularly to biocatalytic microcapsules that include whole cell-embedded multicomponent polymers that may provide improved surface area and mass transport to facilitate conversion of target gases using living native microbes and/or engineered microbes embedded and/or printed in the multicomponent polymers.
Advances in oil and gas extraction techniques have made vast new stores of natural gas (composed primarily of methane) available for use. However, substantial quantities of methane are leaked, vented, or flared during these operations. Indeed, methane emissions contribute about a third of current net global warming potential. Compared to other hydrocarbons, and especially compared to the oil that is co-produced in hydrofracturing operations, methane has a much lower market value due to difficulty in methane storage and transport, and because methane has limited use as a transportation fuel.
Conversion of methane to methanol via conventional industrial technologies, such as steam reformation followed by the Fischer-Tropsch process, operate at high temperature and pressure, depend on a large number of unit operations, and yield a range of products. Consequently, conventional industrial technologies have a low efficiency of methane conversion to final products and can only operate economically at very large scales. A technology to efficiently convert methane to other hydrocarbons is highly sought after as a potentially profitably way to convert “stranded” sources of methane and natural gas (e.g., sources that are small, temporary, not close to a pipeline, etc.) to liquids for further processes.
Most chemical reactions of interest for clean energy are routinely carried out in nature. These reactions include the conversion of sunlight to chemical energy, the transfer of carbon dioxide into and out of solution, the selective oxidation of hydrocarbons (including methane to methanol), the formation of C—C bonds (including methane to ethylene), and the formation and dissolution of Si—O bonds (including enhanced mineral weathering). Conventional industrial approaches to catalyze these reactions are either inefficient or have yet to be developed.
Biological methane conversion relies on significantly lower energy and capital costs than chemical conversion. Certain enzymes have been identified that carry out each of the aforementioned reactions. Unfortunately, industrial biocatalysis is primarily limited to the synthesis of low-volume, high-value products, such as pharmaceuticals, due to narrow operating parameters in order to preserve biocatalyst activity. Thus, enzyme-catalyzed reactions are typically carried out in a fermenter apparatus, in particular a closed tank reactor with continuous stirring (“stirred”) configured to use bubbled gases for mass transfer.
Using a stirred-tank reactor tends to be restricted by the extra care needed to maintain a narrow set of conditions to favor the desired metabolic pathways rather than competing pathways and competing organisms. Moreover, stirred-tank reactors are energy inefficient by relying on batch processing, suffering loss of catalytic activity by enzyme inactivation, and exhibiting slow rates of throughput due to low catalyst loading and limited mass-transfer.
Immobilizing enzymes on inert, artificial materials may allow reuse of enzymes (e.g., reactivation of the enzymes) in stirred-tank reactors and thus improve stability in reactor conditions. As shown in
Moreover, the use of enzymes and enzymatic components results in limited mass transfer of gas phase reactants to the biocatalyst, and, unfortunately, depends on expensive cofactors such as the electron donor nicotinamide adenine dinucleotide, (NADH) for specific stoichiometric conversion of methane to methanol.
Accordingly, it would be advantageous to develop a novel system and related techniques for effective conversion of methane and/or other common sources of gaseous carbon-containing materials without the use of expensive cofactors such as NADH. Moreover, it would be desirable to develop a system that uses less expensive cofactors and/or coenzymes to provide a scalable carbon capture application and functionality.
According to one inventive concept, a method for forming a bioreactor includes: forming a three-dimensional structure using an additive manufacturing technique; infilling the at least one side of the three-dimensional structure with a mixture for forming a polymer-encapsulated whole cells; and curing the infilled three-dimensional structure.
Other aspects and implementations of the presently described inventive concepts will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
For a fuller understanding of the nature and advantages of the present invention, reference should be made to the following detailed description read in conjunction with the accompanying drawings.
The following description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations.
Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
It must also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless otherwise specified.
As also used herein, the term “about” when combined with a value refers to plus and minus 10% of the reference value. For example, a length of about 100 nm refers to a length of 100 nm±10 nm.
As further used herein, the term “fluid” may refer to a liquid or a gas.
Further, as used herein, all percentage values are to be understood as percentage by weight (wt. %), unless otherwise noted. Moreover, all percentages by weight are to be understood as disclosed in an amount relative to the bulk weight of an organic plastic scintillator material, in various approaches.
Unless expressly defined otherwise herein, each component listed in a particular approach may be present in an effective amount. An effective amount of a component means that enough of the component is present to result in a discernable change in a target characteristic of the ink, printed structure, and/or final product in which the component is present, and preferably results in a change of the characteristic to within a desired range. One skilled in the art, now armed with the teachings herein, would be able to readily determine an effective amount of a particular component without having to resort to undue experimentation.
The following description discloses several preferred structures formed via direct ink writing (DIW), extrusion freeform fabrication, or other equivalent techniques and therefore exhibit unique structural and compositional characteristics conveyed via the precise control allowed by such techniques.
The following description discloses several preferred inventive concepts of polymeric encapsulation of whole cells as bioreactors and/or related systems and methods.
In one general inventive concept, a mixture for forming polymer-encapsulated whole cells includes a pre-polymer, a photoinitiator, and a plurality of whole cells.
In another general inventive concept, a product includes a structure including a plurality of whole cells encapsulated in a polymer, where the polymer is cross-linked.
In yet another general inventive concept, a bioreactor includes a three-dimensional structure, where the three-dimensional structure is comprised of a gas-permeable material, and polymer-encapsulated whole cells. In addition, at least one wall of the three-dimensional structure is infilled with polymer-encapsulated whole cells.
As discussed previously, enzymes have been identified that catalyze virtually all of the reactions relevant to clean energy, such as selective transformations among carbon fuels, gas to liquids technology, storage of solar energy, exchange of CO2, formation and dissolution of silicates, and neutralization of wastes. However, a number of factors limit industrial enzyme biocatalysis to low-volume, high-value products (e.g. pharmaceuticals) such as narrow operating parameters to preserve biocatalyst activity, slow rates of throughput due to low catalyst loading, limited mass transfer, and susceptibility to contamination and poisoning.
Accordingly, many biocatalysis processes are currently carried out in single phase, aqueous media using such processes as stirred-tank reactors. However, stirred-tank reactors are energy inefficient, use batch processing, and have poor mass transfer characteristics. While techniques have emerged to improve the stability and allow reuse of enzymes in stirred-tank reactors, such techniques involve immobilizing the enzymes solely on the exterior surface(s) of an inert material or on the exterior surface(s) of the pores of an inert material. Unfortunately, these conventional immobilization techniques still fail to rectify the slow throughput rates and limited mass transfer associated with current biocatalysis processes.
The only biological catalysts isolated to selectively facilitate conversion of methane gas to liquid products under ambient conditions are methane monooxygenase (MMO) enzymes from certain soil microbes. Biological methane conversion uses significantly lower energy and has fewer capital costs than chemical conversion, however, current stirred-tank bioreactors are limited by mass transfer of gas phase reactants to the biocatalysts, buildup of product within the biomass, and/or the need for expensive cofactors to drive the biocatalysis. To overcome these drawbacks, the presently disclosed inventive concepts include development of advanced manufactured bioreactors encapsulating whole cells thereby enabling use of the full cell proteome to tailor product selectivity and to eliminate previously necessary cofactors, while 1) providing control over reactor size and geometry to overcome mass transfer limitations and 2) enabling three-dimensional (3D) printing with formulations that are compatible with preferred additive manufacturing technologies such as projection microstereolithography (PμSL) and direct ink-write (DIW).
Furthermore, encapsulating whole cells within the bioreactor material may enable conversion to products more valuable than the methanol product currently being generated from methane by the biocatalytic material of other approaches described herein. Moreover, encapsulation of whole cells within a printable material may allow improvement of gas-to-liquid mass transfer via control of the geometry and material chemistry, which is a current limitation of growing the cells in a conventional stirred-tank reactor.
To address the problem of limited yields with conventional biological processes, the approaches described herein offer the advantage of decoupling biomass and bioproduct accumulation by encapsulation of whole cells within the material of the bioreactor. Moreover, these approaches may provide modular and scalable bioreactors designed for stranded natural gas upgrading, so that in terms of economy, this otherwise flared or vented gas may be collected as a liquid product suitable for fuels and chemicals.
In some approaches, aspects disclosed herein are directed to a novel class of bioreactor that includes a membrane comprising one or more types of whole cells and or reactive enzymes, enzyme-containing cell fragments embedded within and throughout the depth of a multicomponent polymer network. In various approaches, this multicomponent polymer network may comprise two or more polymer types, or a mixture of a polymer and inorganic material.
Preferably, the membrane includes permeable, multi-component polymers that may serve as a mechanical support for the embedded enzymes and/or whole cells. In addition, the permeable, multi-component polymers of the membrane may serve as functional materials configured to perform one or more additional functions of the bioreactor, such as: efficiently distributing reactants and removing products, exposing the embedded whole cells and/or enzymes to high concentrations of reactants, separating reactants and products, forming high surface area structures for exposing the whole cells and/or embedded enzymes to reactants, supplying electrons in hybrid enzyme-electrochemical reactions, consolidating enzymes and/or whole cells with coenzymes in nanoscale subdomains for chained reactions, etc. In additional approaches, the membrane described herein may be molded into shapes/features/structures (e.g., hollow fibers, micro-capsules, hollow tube lattices, spiral wound sheets, etc.) to optimize the bioreactor geometry for mass transfer, product removal, and continuous processing.
The novel class of bioreactor disclosed herein may be especially suited to catalyze reactions that occur at phase boundaries, e.g., gas to liquid, liquid to gas, polar to non-polar, non-aqueous to aqueous, etc. Table 1 lists products that may be formed in bioreactors as disclosed herein. Accordingly, the novel class of bioreactors disclosed herein may be useful for reactions in clean energy applications that involve a gas-phase reactant or product.
example, and not meant to be limiting in any way, methane to methanol conversion, CO2 absorption, oxidation reactions with O2, reduction reactions with H2 or methane, CO2 conversion to synthetic fuel, etc. In addition, bioreactors may include reactions in the chemical and pharmaceutical industries that involve treatment of non-polar organic compounds with polar reactants (or vice versa).
In one approach, the bioreactor includes engineered whole cells that may convert methane to produce succinate as one of the possible products. As shown in the schematic pathways of
The following description discloses several general, specific, and preferred aspects relating to bioreactors based on enzyme-embedded and/or whole-cell-embedded multicomponent polymers arranged as nano-, micro- and/or millimeter-structures. For example, in one approach, a bioreactor may include whole-cell-embedded polymers as shown in the image of a scanning electron micrograph (SEM) of
In one general aspect, a membrane includes a polymeric network configured to separate a first fluid and a second fluid, where the first and second fluids are different; and a plurality of whole cells embedded within the polymeric network.
In another general aspect, a bioreactor includes a lattice of three-dimensional (3D) structures, each structure including a membrane having a polymeric network configured to separate a first fluid and a second fluid, where the first and second fluids are different. In addition, the membrane includes whole cells embedded within the polymeric network.
Referring now to
As shown in
In various approaches, the components 302, whole cells and/or enzymatic reactive components, may comprise about 1% to 80% of the mass of the polymer network 304. The components 302, whole cells and/or enzymatic reactive components, may be configured to catalyze any of the reactions described herein, and in particular reactions that take place at phase boundaries (e.g., gas to liquid, liquid to gas, polar to non-polar, non-aqueous to aqueous, etc.).
In some exemplary approaches, the components 302 are whole living cells. A whole living cell is defined as a cell capable of metabolic activity. In some approaches, a whole living cell may be capable of cell division. In some approaches, a whole living cell is an intact proteome. In various approaches, a whole living cell is a prokaryotic cell. In other approaches, a whole living cell is a eukaryotic cell. In some approaches, the components 302 are bacteria that obtain their carbon and energy from methane. Methanotrophs are gamma proteobacteria that obtain their carbon and energy from methane. In general, any suitable methanotrophic and/or methylotrophic species or other organism known in the art to function as a carbon capture/conversion/consumption agent may be employed. Exemplary organisms include members of the methylococcus and/or methylomicrobium, genus, particularly Methylococcus. capsulatus (M. capsulatus) Bath and Methylomicrobium buryatense (M. buryatense).
M. buryatense is a methanotrophic strain suitable for large-scale production of various chemical and fuels. An engineered strain of M. buryatense may enable conversion of methane to lactate, a precursor to bioplastics, according to various approaches. Immobilizing dried whole M. buryatense in various materials describe herein may remove a need for a reducing agent. In some approaches, incorporating whole cells (e.g., each cell as an entire proteome) may allow electron transfer between coenzymes thereby removing the need for a cofactor such as NADH. Without wishing to be bound by any theory, lactate production may be demonstrated in engineered M. buryatense without the addition an exogenous cofactor to participate in electron transfer.
Engineered strains of M. buryatense have been shown to convert about 75% of carbon into lactate. In related studies as described herein, enzymes in a freeze-dried related organism M. capsulatus proteome have been shown to be highly active. In some approaches, whole cells of M. buryatense may be immobilized in a printable polymeric material while maintaining biocatalytic activity.
Of course, it should be understood that the suitable organisms and applications for the presently disclosed inventive concepts are not limited to carbon capture or carbon metabolism. For instance, in other approaches whole cells may include or be yeast (e.g. species in the saccharomyces genus) and the bioreactors may be utilized in applications for generating, e.g., ethanol.
In one aspect, the polymeric network 304 embedded with components 302 may represent polymer-encapsulated whole cells. In one approach, a mixture for forming polymer-encapsulated whole cells may include a pre-polymer, a photoinitiator, and a plurality of whole cells. In one approach, immobilization of whole cells may include whole M. capsulatus Bath and M. buryatense cells encapsulated in various polymers and/or biomaterials.
In some exemplary approaches, the whole cells are whole living cells. In some approaches, the whole cells are bacteria that obtain their carbon and energy from methane. In some approaches, the whole cells may have a characteristic to convert a chemical reactant to product. For example, the chemical reactant is a gas and the whole cells convert the gas to a product, where the product is a liquid. In some approaches, the whole cells are configured to convert methane to methanol. In some approaches, exemplary organisms may be methanotrophic organisms and methylotrophic organisms and include members of the methylococcus and/or methylomicrobium, genus, particularly M. capsulatus Bath and M. buryatense.
In other approaches, the whole cells may be freeze-dried living whole cells. For example, whole cells may include or be yeast (e.g. species in the saccharomyces genus) and the bioreactors may be utilized in applications for generating, e.g., ethanol.
In one aspect, the concentration of whole cells in the mixture may have a cell optical density (OD) in a range from about 4 to about 80. In exemplary approaches, the concentration of whole cells in the mixture may have an OD in a range of at least 20 to about 160. In other approaches, the concentration of whole cells in the mixture may have an OD in a range of about 30 to about 70. In yet other approaches, the concentration of whole cells in the mixture may have an OD in a range of about 20 to about 60. A particularly preferred formulation includes using M. capsulatus Bath cells in a concentration corresponding to about OD 40 in 12 wt. % acrylate-functionalized PEG pre-polymer (MW=20 kDa).
The viability of the whole cells in suspension compared to immobilized is visualized in the fluorescent microscopy images of
Viability of the whole cells in suspension compared to cured hydrogel may be assessed by counting the fluorescent-stained cells. For example only, and not meant to be limiting in anyway,
In various approaches, the pre-polymer of the mixture may be a monomer, macromer, etc. The concentration of pre-polymer of the encapsulation mixture (e.g., hydrogel material) may be in a range of about 10 wt. % to about 50 wt. % of the total weight of mixture. In some approaches, the concentration of pre-polymer may be about 10 wt. % to about 30 wt. % of total weight of mixture. In other approaches, the concentration of pre-polymer may be 20 wt. % to about 40 wt. % of total weight of the mixture. In some approaches, the concentration of pre-polymer may depend on the type of pre-polymer used.
In one embodiment, the pre-polymer material in the encapsulant may include acrylate-functionalized polyethylene glycol (PEG) pre-polymer material. In one approach, the acrylate-functionalized PEG may include multiple acrylate groups. In a preferred approach, the acrylate-functionalized PEG may include more than two acrylate groups. Examples of exemplary pre-polymer material may include poly(ethylene) glycol (PEG) (e.g. acrylate-functionalized PEG such as PEGDA), gelatin, cellulose nanocrystals, alginate, N—siopropylacrylamide, amphiphilic silicones, etc.
Hydrogel compositions including lower molecular weight pre-polymers (e.g., 575 Daltons (Da) likely have a higher percentage of acryloyl groups (arrow on
Thus, in some approaches, a pre-polymer hydrogel having a higher MW acrylate-functionalized PEG pre-polymer, e.g., having fewer total acryloyl groups in the hydrogel composition, may be a preferable pre-polymer for encapsulation of live cells. In one approach, a higher MW acrylate-functionalized PEG pre-polymer, e.g., greater than 700 Da, may be preferably for a whole cell encapsulant. In an exemplary approach, PEG-tetra-acrylate (PEGTA) pre-polymer may be included for encapsulation of live whole cells.
In another approach, if the reaction of UV curing of the pre-polymer hydrogel is allowed to run to completion, then the acryloyl groups in the 575 Da pre-polymer composition would become unreactive. Thus, without wishing to be to bound by any theory, it is believed that if the curing reaction is able to go to full completion, the hydrogel compositions having low MW pre-polymers may be useful as an encapsulant of whole cells.
In some approaches, the molecular weight of the pre-polymer may in a range of about 575 Daltons (Da) to about 100,000 Da but could be higher or lower. In one approach, a pre-polymer having a molecular weight of less than 575 Da tends to be less soluble and thus may be difficult to mix in the hydrogel composition. In some approaches, the molecular weight of the pre-polymer may be in a range of about 5000 Da to about 10,000 Da. In some approaches, the molecular weight of the pre-polymer may be in a range of about 10,000 Da to about 60,000 Da. In exemplary approaches, the molecular weight of the pre-polymer is in a range of about 10,000 Da to about 40,000 Da. In one exemplary approach, the pre-polymer includes acrylate-functionalized PEG (e.g., PEGDA, PEGTA, etc.) with a molecular weight in the range of 575 Da to 20,000 Da.
In various approaches, the whole cells may be mixed with the pre-polymer formulations and a photoinitiator. In some approaches, an exemplary example of photoinitiator may be lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP).
In one aspect, the mixture of whole cells, pre-polymer, and photoinitiator may be cured by UV radiation for crosslinking the pre-polymer. In some approaches, the curing may include radiation with UV (at a range of 300 nm to 450 nm) for a duration of time effective for crosslinking the pre-polymer for encapsulating the whole cells. In some approaches, the curing with UV radiation may occur for a duration of under approximately 30 seconds. In other approaches, the curing with UV radiation may occur for a duration of under 15 seconds. In other approaches, the curing with UV radiation may occur for a duration of under 10 seconds.
In one aspect, a product includes a structure having a plurality of whole cells encapsulated in a polymer, where the polymer is cross-linked. In some approaches the structure may be a polymeric network encapsulating a plurality of whole cells. In various approaches, the concentration of pre-polymer in the mixture may equal the concentration of cross-linked polymer encapsulating the whole cells. In some approaches, the curing may not change the amount of pre-polymer originally added to the mixture.
In some approaches, the components 302 of the membrane may include a plurality of enzymatic reactive components having one or more of: isolated enzymes, transmembrane enzymes, cell-membrane-bound enzymes, liposomes coupled to/comprising an enzyme, etc.
In some exemplary approaches, a plurality of whole cells converts methane to methanol. In some approaches, enzymatic reactive components may convert methane to methanol. For example, but are not limited to, enzymatic reactive components may include formate dehydrogenase, carbonic anhydrase, cytochrome p450, hydrogenase, particulate methane monooxygenase (pMMO), photosynthetic complexes, etc. In various approaches, a plurality of whole cells may convert methane to methanol better than enzymatic reactive components because the whole cell includes all cofactors and processes for the metabolic pathway. In contrast, enzymatic reactive components may need co-factors and various additives to function and convert methane to methanol.
Moreover, while in particular approaches, the components 302 of the membrane 300 may include enzymatic reactive components and whole cells, and in some of these approaches, the enzymatic reactive components may be the same (e.g., comprise the same structure and/or composition); other of these approaches the components 302 may include at least two of the enzymatic reactive components and/or whole cells to be different from one another (e.g., have a different structure and/or composition, be of different species or strains, etc. as would be appreciated by a person having ordinary skill in the art upon reading the present disclosures).
In approaches where at least one of the enzymatic reactive components includes a membrane-bound enzyme, said enzyme may be stabilized prior to incorporation into the polymer network 304. For instance, in one stabilization approach, cell fragments comprising the enzyme of interest may be used, and directly incorporated into the polymer network 304. In another stabilization approach, a lipopolymer may first be formed by linking a lipid to a polymer of interest. The lipid region of the polymer may spontaneously insert into the cell membrane, thereby creating a polymer functionalized liposome, which may be incorporated in the polymer network 304. In yet another stabilization approach, the enzyme of interest may be coupled to and/or encapsulated into a nano-lipo-protein particle (NLP), which may then be incorporated in the polymer network 304.
The components 302 such as enzymatic reactive components and/or whole cells may be incorporated into the polymeric network 304 via several methods including, but not limited to: attaching the components, e.g., enzymatic reactive components and/or whole cells, to electrospun fibers of a first polymer, and backfilling with a second polymer (see, e.g., the method described in
With continued reference to
In particular approaches involving gas to liquid reactions, the polymeric network may include nanometer scale domains of higher gas permeability, such as silicon, as well as nanometer scale domains of higher product permeability, such as a polyethylene glycol (PEG) based hydrogel. These domains of high gas permeability typically also have higher gas solubility, increasing the local concentration of reactants (e.g., relative to the aqueous medium in a stirred-tank reactor) and therefore increase the turnover frequency of the components 302 e.g., enzymatic reactive components and/or whole cells; whereas, the domains of low gas permeability and high product permeability may efficiently remove the product and reduce product inhibition (thereby also increasing the turnover frequency and stability of the components 302 e.g., enzymatic reactive components and/or whole cells) or serve to stabilize the enzymatic reactive components. In various approaches, the permeability for the “higher gas permeability phase” may be greater than 100 barrer.
In some approaches, the polymer network 304 may comprises a di-block copolymer network. In other approaches, the polymer network 304 may include a tri-block copolymer network. Suitable polymers for the polymeric network 304 may include silicone polymers, polydimethylsiloxane (PDMS), poly(2-methyl-2-oxazoline) (PMOXA), polyimide, PEG, acrylate-functionalized PEG, (e.g., polyethylene glycol diacrylate (PEGDA), polyethylene glycol tetra-acrylate (PEGTA), etc.), poly(lactic acid) (PLA), polyvinyl alcohol (PVA), and other such polymers compatible with membrane proteins and block copolymer synthesis as would become apparent to one skilled in the art upon reading the present disclosure.
In more approaches, each pre-polymer in the polymeric network 304 may have a molecular weight ranging from about 500 Da to about 500 kDa (kDa), more preferably ranging from about 500 Da to about 20 kDa, and most preferably ranging from about 575 Da to about 20 kDa. Moreover, in various approaches the pre-polymers may be present in an amount ranging from about 10 wt. % to about 50 wt. %.
In other approaches, the polymeric network 304 may include a mixture of at least one pre-polymer material and at least one inorganic material.
In various approaches, a thickness, t1, of the enzyme embedded polymer network 304 may be in a range from about 1 micrometer to about 2 millimeters.
As indicated above, the membrane 300 may be configured to separate the reactants and products associated with a catalyzed reaction of interest. In various approaches, the membrane 300 may provide sufficient surface area on a first side 310 for contacting fluids to support efficient transport of reactants to and from reacting components 302, e.g. enzymatic reactive components and/or whole cells. In some approaches, the separating by the membrane may include being configured to be a barrier to the products formed from the reacting components 302 in the membrane 300. For example, in some approaches, reactants may be permeable at the first layer, e.g. a reactant permeable polymer layer 306 of the membrane 300 but impermeable at the second layer, e.g. a product permeable polymer layer 308 thereby allowing reactant to enter and exit the polymeric network 304 from the reactant permeable polymer layer 306. In some approaches, the product permeable polymer layer 308 of the membrane may be a barrier to a reactant.
Furthermore, products formed from the reactants may be permeable at the product permeable polymer layer 308 of the membrane but impermeable at the reactant permeable polymer layer 306 thereby allowing products to exit the polymeric network 304 from the product permeable polymer layer 308 but not the first layer 306. In some approaches, the reactant permeable polymer layer 306 of the membrane may be a barrier to a product.
In various approaches, reactants and products may be two different fluids, such as liquids and gasses, aqueous species and non-aqueous species, polar species and non-polar species, etc. In some approaches, the membrane 300 comprises a polymeric network 304 configured to separate a first fluid and a second fluid, where the first and second fluids are different.
In one exemplary approach where the membrane 300 may be configured to separate methane and oxygen from methanol. The reactant permeable polymer layer 306 of the membrane is permeable to methane (e.g. the reactant) thereby allowing methane to enter the polymeric network 304 of the membrane 300. The reactive components 302 of the polymeric network 304 catalyze methane oxidation to form the product methanol in the following reaction in Equation 1.
In one exemplary example, the product permeable polymer layer 308 of the membrane 300 is configured to be impermeable to the reactant methane (CH4), so any residual methane (e.g. reactant) may exit the polymeric network 304 via only the reactant permeable polymer layer 306. The membrane 300 may act as a barrier to methane passing from the first side 310 of the membrane 300 at the reactant permeable polymer layer 306 through to the second side 312 of the membrane 300 at the product permeable polymer layer 308.
Furthermore, the product permeable polymer layer 308 of the membrane is configured to be permeable to the products methanol (CH3OH) and water (H2O), but the reactant permeable polymer layer 306 is configured to be impermeable to methanol and water, so the products may only exit via the product permeable polymer layer 308 of the membrane 300. The membrane 300 may act as a barrier to products methanol and water passing from the second side 312 of the membrane 300 at the product permeable polymer layer 308 through to the first side 310 of the membrane 300 at the reactant permeable polymer layer 306.
In some approaches, the methane reactant concentration may be in a range from about 1 to about 100 mM, the oxygen reactant concentration may be in a range from about 1 to about 100 mL, and the methanol product concentration range may be in a range from about 0.1 to about 1000 mM.
To further facilitate reactant-production separation, at least a portion of one surface of the membrane 300 may include an optional reactant permeable polymer layer 306 coupled thereto, as shown in
In some approaches, a thickness, t2, of the reactant permeable polymer layer 306 may be in a range from about 0.1 to about 50 micrometers. This optional reactant permeable polymer layer 306 may be particularly suited for approaches involving an organic polar reactant and an organic non-polar product (and vice versa).
As also shown in
In some approaches, a cofactor may be included for one or more of the enzymatic reactive components to function. Accordingly, cofactors may be supplied by co-localized enzymes in reactor domains of the polymer network 304 (not shown in
In various approaches, a total thickness, t4, of the membrane 300 may be in a range from about 10 to about 3100 micrometers.
In yet more approaches, the membrane 300 may be shaped into features, structures, configurations, etc. that provide a desired surface area to support efficient transport of reactants to, and products from, the components 302, e.g., enzymatic reactive components and/or whole cells. For instance, the membrane 300 may be shaped into at least one of: a hollow fiber membrane, a micro-capsule membrane, a hollow tube membrane, a spiral wound membrane, etc.
Advantageously, and regardless of the particular application to which the inventive systems and techniques may be applied, the need for seeding cells or enzymatic reactive components is eliminated, since whole, live cells may be encapsulated within the scaffold itself.
Referring now to
As shown in
In various approaches, the enzymatic reactive component and/or whole cells 402 may be selected from the following group: an isolated enzyme, an enzyme comprising a cell fragment (e.g., a cell membrane or cell membrane fragment), and a liposome comprising/coupled to an enzyme. In some approaches, the enzymatic reactive component and/or whole cells 402 may include at least one of: formate dehydrogenase, carbonic anhydrase, cytochrome p450, hydrogenase, particulate methane monooxygenase (pMMO), photosynthetic complexes, etc. In still more approaches, the enzymatic reactive component and/or whole cells 402 may include whole, wet or dry cells of any organism described herein and/or as would be appreciated as suitable by a person having ordinary skill in the art upon reading the present descriptions.
In the non-limiting aspect shown in
As further shown in
While the resulting polymeric network shown in
Referring now to
As shown in
As shown in the non-limiting aspect of
In various approaches, the enzymatic reactive components and/or whole cells 502 may be incorporated directly into the block copolymer network 504 using lipopolymers (preferably di-block lipopolymers). Lipopolymers may be generated by linking a lipid to a polymer of interest, such as PEG, creating PEG-lipid conjugates, such as PEG-phosphatidylethanolamie. The lipid region of the polymer may spontaneously insert into the cell membrane, thereby creating a polymer functionalized liposome.
As shown in
The conventional stirred-tank reactors 1700 tend to be energy inefficient as well as low levels of mass transfer due to the disparate interactions of the suspended cells 1712 in the aqueous medium 1704 and the interaction with the gas bubbles. It would be desirable to increase the mass transfer of gas absorption density of the suspended cells.
According to one embodiment, the 3D structures 1722 are hollow tubes positioned vertically in the gas 1728 with liquid 1726 flowing in a vertical direction through the hollow portion of the 3D structure 1722.
Part (b) is a magnified view of the mass transfer of the gas 1728 to the liquid 1726 through the wall 1724 of the 3D structure 1722. The gas 1728 absorbs through the wall 1724 of the 3D structure toward the hollow portion 1730 of the 3D structure in a direction about orthogonal to the vertical direction of the flow of the liquid 1726. The wall 1724 of the 3D structure 1722 includes immobilized cells 1732 in a cured hydrogel 1734, according to one approach.
Referring now to
In one aspect, a bioreactor may include a 3D structure where the 3D structure includes a gas-permeable material and polymer-encapsulated whole cells. In one approach, at least one side (e.g., wall, edge, border, etc.) of the 3D structure is infilled with the polymer-encapsulated whole cells. In one aspect, a side of a 3D structure is gas permeable. In other approaches, the side may be comprised of material that is permeable to gas. The material may have holes, spaces, pores, etc. and/or the structure may have holes, spaces, pores, etc.
In some approaches, the 3D structure may be a printed 3D structure. In one approach, the printed 3D structure may be a lattice. The lattices may be, in one approach, composed of a silicone polymer, and the geometry and lattice structure may be easily modified. In some approaches, the wall may have space between a lattice pattern that is permeable to gas.
In various approaches, the polymer formulation may be printed in different geometries. According to one aspect, a lattice may be with PμSL is shown in part (a) of
As particularly shown in
The lattice as shown in part (a) of
In some approaches, the bioreactor may include a buffer in the center portion of the tube, where the buffer comprises nutrients for the polymer-encapsulated whole cells. In various approaches, the polymer-encapsulated whole cells may include living whole cells that have a characteristic to remain viable in the bioreactor (e.g., cured infill of the 3D structure) for a duration of at least five days. In some approaches, the whole cells may remain viable in the bioreactor for a duration of at least 6 days, at least 7 days, at least 8 days, etc. In some approaches, the viability of the whole cells in the bioreactor may depend on the type of whole cell encapsulated in the bioreactor.
In some approaches, the buffer may be changed periodically (e.g., every day, every 3 days, every 5 days, every 7 days, etc.) with fresh nutrients to extend the viability of the whole cells encapsulated in the polymer of the bioreactor.
In various approaches, the polymer-encapsulated whole cell formulation described herein may be cured within structure lattices that were made with PμSL or DIW technology. In some approaches, the curing of the polymer-encapsulated whole cells allows the polymeric network of whole cells to infill the spaces of the lattice structure.
Referring again to
The walls of each hollow tube 604 may comprise a membrane material 606, such as the membrane material of
As particularly shown in
The thickness, tmem, of the membrane material 606 may be in a range from about 10 to about 1000 micrometers. In some approaches, tm may be about 300 μm. Additionally, the thickness, ttube, of each hollow tube 604 may be in a range from about 10 micrometers to about 10 millimeters. In various approaches, ttube may be about 1 mm. In yet more approaches, the length, ltube, of each hollow tube 604 may be in a range from about 5 centimeters to about 10 meters.
It is important to note that while the cross section of each hollow tube 604, as taken perpendicular to the y-axis of
In one particular approach, one or more of the hollow tubes 604 in at least one of the layers may differ from one or more hollow tubes 604 in at least another of the layers with respect to: cross sectional shape, and/or one or more membrane material(s), and/or one or more dimensions. In another particular approach, one or more of the hollow tubes 604 in at least one of the layers may differ from at least another hollow tube 604 in the same layer with respect to: cross sectional shape, and/or one or more membrane materials, and/or one or more dimensions.
In yet further approaches, the spacing between the hollow tubes 604 in at least one of the layers may be about uniform. In more approaches, the spacing between the hollow tubes 604 in at least one of the layers may vary throughout the layer. For example, in one such approach, at least one of the layers may have at least one area having an average spacing, s1, between adjacent hollow tubes 604, and at least a second area having an average spacing s2, where s1 and s2 are different. In yet other approaches, the spacing between the hollow tubes 604 in at least one of the layers may differ from the spacing between the hollow tubes 604 of at least another of the layers.
Where a bioreactor 600 include whole cells 608, preferably the bioreactor may also include additional components such as gelatin, cellulose nanocrystals, acrylate-functionalized PEG, etc. as described in greater detail herein and/or as would be appreciated by a person having ordinary skill in the art upon reading the present descriptions.
In summary, the presently disclosed inventive concepts include, but are not limited to, formulations of polymer and whole cells that can be UV cured within a 3D printed scaffold or used as ink to directly print additively manufactured whole cell bioreactors. The ability to use the formulation with various additive manufacturing techniques the geometry of the structure to be defined and controlled. The methods described herein may overcome mass transfer limitations inherent to conventional stirred-tank reactors. Additionally, the cells remain alive and consume reactant over multiple days. By incorporating the whole cell, the catalysis may result in the production of valuable chemical products without the need for an expensive cofactor.
An example of the permeability of a hydrogel film is shown in
In some approaches, a thickness of hydrogel membrane may be in a range of about 10 μm to about 5000 μm (5 mm). In some approaches, the flux of gas at the interface of the membrane and the gas is independent of the overall thickness of the hydrogel membrane, thus thicknesses of a hydrogel membrane comprising encapsulated cells above 500 μm may not have a significant effect on flux of gas across the membrane. In some approaches, a thickness greater than 500 μm may be preferable in order to gain mechanical strength.
In various approaches, the flux into a membrane (e.g., film, wall, etc.) may be determined by the material of the membrane. For example, if the material is reactive, the flux into the membrane may be slowed, lower, higher, etc. In some approaches, the flux may be independent of the thickness. For example, a membrane loaded with live whole cells could deplete the methane before it diffuses across the membrane, such that the center of the membrane may not contribute to reactivity (e.g., methane consumption). In this case, increasing the thickness of the membrane only increases the unproductive center region and does not change the flux.
The only known true catalyst (industrial or biological) to convert methane to methanol under ambient conditions with 100% selectivity is the enzyme methane monooxygenase (MMO), found in methanotrophic bacteria, which converts methane to methanol according to the following reaction in Equation 2:
Partial methane oxidation by MMO enzymes can be carried out using whole methanotroph organisms, but this approach inevitably depends on energy for upkeep and metabolism of the organisms, which reduces conversion efficiency. Moreover, biocatalysis using whole organisms is typically carried out in low-throughput unit operations, such as a stirred-tank reactor.
One industrial-biological approach may therefore include separating the MMO enzyme from the host organism. Isolated enzymes may offer the promise of highly controlled reactions at ambient conditions with higher conversion efficiency and greater flexibility of reactor and process design. MMOs have been identified in both soluble MMO (sMMO) and particulate (pMMO) form. The use of pMMO has advantages for industrial applications because pMMO comprises an estimated 80% of the proteins in the cell membrane. Moreover, isolating the membrane fraction of the lysed cells by centrifugation provides a reasonably pure concentrated pMMO.
Traditional methods of enzyme immobilization and exposure to reactants are not sufficient to use pMMO effectively. These typical methods include cross-linking enzymes or immobilizing them on a solid support so that they can be separated from the products and carrying out batch reactions in the aqueous phase in a stirred-tank reactor. As discussed previously, operation of a stirred-tank reactor has several drawbacks, including low productivity, high operating costs, loss of catalytic activity due to enzyme inactivation, and variability in the quality of the product. The stirred-tank reactor is also not the optimal design for gas to liquid reactions such as methane to methanol conversion, as it does not allow efficient delivery of reactant gases to enzymes or organisms in the bulk solution. Gas delivery in stirred-tank reactors is often achieved by bubbling the gas through the liquid, but this approach suffers from mass-transfer limitations. Furthermore, methane and oxygen are only sparingly soluble in aqueous solvents: 1.5 mM/atm and 1.3 mM/atm respectively at 25° C. Reactant concentrations are necessarily solubility-limited when the enzymes or organisms are dispersed in the aqueous phase.
Moreover, another reason as to why the pMMO enzyme is not amenable to standard immobilization techniques designed for soluble proteins is due to the fact that surfactant solubilization of isolated pMMO leads to a pronounced reduction in activity. For example, high surface area porous inorganic supports have been extensively studied and implemented for immobilizing soluble enzymes and have been shown to enhance enzyme stability while achieving high enzyme loading in nanometer scale pores. The majority of the surface area in mesoporous materials is accessible only to proteins significantly smaller than 50 nm and would therefore be inaccessible to the large (>100 nm), optically opaque vesicles and liposomes that comprise pMMO in crude membrane preparations.
Accordingly, the exemplary aspects discussed in therein are directed toward advances in biocatalytic processes, e.g., for selective methane conversion. For instance, some exemplary aspects are directed toward a biocatalytic material comprising pMMO and/or whole cells embedded in polyethylene glycol diacrylate (PEGDA) hydrogel. Embedding enzymes, such as pMMO, and/or whole cells that operate on gas phase reactants within the solid, gas permeable polymer hydrogel allows tuning of the gas solubility, permeability, and surface area thereof. An additional advantage to immobilizing pMMO and/or whole cells within the polymer hydrogel, rather than on the surface of an impermeable support, is the potential to fully embed pMMO and/or whole cells throughout the depth of the polymer hydrogel for high loading.
In some approaches, an acrylate-functionalized PEG (e.g., PEGDA, PEGTA, etc.) may be selected as a primary polymer substrate because of its biocompatibility and flexibility for further development. The acrylate-functionalized PEG may be physically or chemically combined with hydrophobic polymers in additional approaches for enhanced gas solubility and transport in various approaches. Moreover, the pMMO and/or whole cells embedded acrylate-functionalized PEG hydrogel may be amenable to various forms of 3D-printing, which offers the ability to rapidly prototype structures, tune micron to centimeter-scale material architecture, and precisely tailor structures for the system configuration and mass transfer, heat, and diffusion limitations.
Referring now to
As shown in
In some approaches, a thickness of the at least one side (wall, sidewall, edge, etc.) of the 3D structure is in a range of about 10 μm to about 5000 μm (5 mm). In preferred approaches, a thickness of at least one side of the 3D structure is in a range of 10 μm to about 500 μm.
As discussed above, a printed 3D structure may be in the form of a tube having a wall. In some approaches, operation 704 of method 700 includes infilling at least one side (e.g., wall, sidewall, border, edge, etc.) of the printed 3D structure with a mixture for forming polymer-encapsulated whole cells. In some approaches, the preferred thickness of the 3D structure provides the preferred optimal density of whole encapsulated cells. For example, in one approach, a thickness of the 3D structure includes whole encapsulated cells having an OD of 20.
In various approaches, a concentration of whole cells in the mixture of polymer-encapsulated whole cells has a cell optical density in a range of about 4.0 to about 160. In preferred approaches, a concentration of whole cells in the mixture of polymer-encapsulated whole cells has a cell optical density in a range of about 10 to about 80.
Operation 706 of method 700 includes curing the 3D structure infilled with the mixture. In one approach, operation 706 includes curing a printed 3D structure infilled with the mixture. In some approaches, the curing may include UV radiation for an effective amount of time to cross-link the polymer in the mixture such that the whole cells are encapsulated in the polymer. In some approaches, the duration of curing by UV radiation may convert greater than 50% of the pre-polymer to crosslinked polymer. In some approaches, the duration of curing of the mixture by UV radiation may be up to 5 minutes. In preferred approaches, the duration of curing by UV radiation may be under one minute. In exemplary approaches, the duration of curing by UV radiation may be in a range of 10 seconds to 30 seconds.
On one concept, the polymer-encapsulated whole cells may be used as an ink to form a printed 3D structure. In some approaches, an additively manufactured reactor may operate with high cell densities that is typically not feasible with a conventional stirred-tank reactor. Thus, an additively manufactured reactor may be a major contributor to process intensification.
In some approaches, the polymeric network may also include enzymatic reactive components that may comprise any of the enzymatic reactive components disclosed herein including, but not limited to, isolated enzymes, trans-cell-membrane enzymes, cell-membrane-bound enzymes, liposomes coupled to/comprising an enzyme, combinations thereof, etc. Moreover, as discussed previously, the enzymatic reactive components may be embedded/incorporated into the polymeric network via several methods including, but not limited to: attaching the enzymatic reactive components to electrospun fibers of a first polymer, and backfilling with a second polymer (see, e.g., the method 400 described in
The polymeric network may include any of the materials, and/or be of the same form, as any of the polymeric networks disclosed herein. For instance, this polymer network may be configured to serve as a mechanical support for the enzymatic reactive components embedded therein, as well as include nanometer scale domains of higher permeability to the first fluid and nanometer scale domains of higher permeability to the second fluid. Moreover, in some approaches, the polymeric network may include at least a two phase polymer network, e.g. a polymer network comprising two or more polymeric materials. In other approaches, the polymeric network may include a mixture of at least one polymer material and at least one inorganic material.
As indicated above, the polymeric network may be configured to separate a first and second fluid associated with a reaction catalyzed by the enzymatic reactive components embedded therein. The first and second fluids may be two different fluids, such as liquids and gasses, an aqueous species and a non-aqueous species, a polar species and a non-polar species, etc.
As also shown in
As discussed in greater detail below, the novel bioreactors described herein, such as described in
In some approaches, a reducing agent may be included with the aforementioned engineered pMMO to assist in methane conversion. However, in other approaches, the engineered pMMO may not need such a reducing agent or be configured to accept electrons via direct electron transfer. For instance, as shown in Table 2, the methane conversion may proceed by: (1) using pMMO configured to use methane as a reducing agent (Reaction 1); (2) supplying electrons directly to the pMMO (Reaction 2);
and (3) using H2 gas. Yet another reaction pathway may involve steam reformation as shown in Reaction 3.
Parts (a) through (c) of
Parts (d) through (f) of
In one approach, the schematic drawings of
In Part (b) the porous scaffold is infiltrated (e.g., infilled, soaked, etc.) with a mixture 1916 of hydrogel 1918 and encapsulated whole cells 1920 (as shown in inset). The mixture 1916 may infiltrate the pores of the scaffold 1902 by capillary force. Part (c) describes the curing step, as described in one approach for operation 704 of method 700 (see
Methane consumption may be determined by the geometry of the 3D structure infiltrated with cured hydrogel and whole encapsulated cells.
In one example, the plot of
In various embodiments, 3D structures infiltrated with cured hydrogel and encapsulated whole cells show sustained methane consumption for more than three weeks, as shown in the plot depicted in
In various approaches, one of the products of methane consumption may include the production of succinate. In one approach, 3D structures infiltrated with cured hydrogel/whole cells produce the organic acid succinate, as shown in the plot of
In one approach, the production of succinate may be determined from the optical density of the whole cells. In one approach, a hydrogel cylinder having a sidewall thickness of 250 μm and infiltrated with whole cells at an OD of 20 to OD of 40 produce significant levels of succinate, greater than 50 mg/mL. In some approaches, increasing the concentration of whole cells to an optical density of 80 and 160 in the hydrogel of the 3D structures may have a less than optimal effect on succinate production. These results are by way of example only and are not meant to be limiting in any way.
The following experiments and examples pertain to various non-limiting aspects of the bioreactors described herein. In particular, the following experiments and examples are directed to bioreactors comprising pMMO embedded in a polymeric network for the conversion of methane to methanol. It is important to note that the following experiments and examples are for illustrative purposes only and do not limit the invention in anyway. It should also be understood that variations and modifications of these experiments and examples may be made by those skilled in the art without departing from the spirit and scope of the invention.
In one aspect, whole M. capsulatus Bath and M. buryatense cells were encapsulated in various polymers and/or biomaterials including PEGDA, gelatin, and cellulose nanocrystals. The polymer concentration may be varied from 10-50% polymer by weight depending on the type of pre-polymer used and the cell optical density (OD) may be varied in a range from 4 to 80. In one aspect, PEGDA with molecular weights ranging from 575-20,000 Da was employed. The cells were mixed with the pre-polymer formulations and the photoinitiator lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) was added prior to curing at 405 nm for 10 seconds.
A particularly preferred formulation includes using M. capsulatus Bath cells in an amount corresponding to about OD 40 and 12 wt. % PEGDA (MW=20 kDa). The formulation may be cured for 10 seconds and activity is shown by the CO2 (product) to methane (reactant) ratio in
The polymer-cell formulation described herein may be cured within structure lattices that were made with PμSL or DIW technology. The lattices were, in one approach, composed of a silicone polymer, and the geometry and lattice structure easily modified. According to one aspect, a lattice was created with PμSL (as shown in
pMMO Activity in PEG Hydrogel
Several methods for embedding pMMO in a PEGDA based polymer hydrogel were explored to enable its use as a biocatalytic material which could be molded into controlled, predetermined structures with tunable permeability and surface area for practical use. Initial efforts focused on solubilizing the crude membrane preparations using surfactant so that the material could be incorporated homogeneously in the polymer. It was discovered that any contact of the crude membrane preparations with surfactant, including encapsulation in nanolipoprotein particles, led to a pronounced decrease in activity. However, mixing the crude membrane fractions, either as prepared or extruded as liposomes directly with low concentrations of PEGDA 575 gave promising results. Accordingly, the experiments described in this section focused on optimizing the activity and protein retention of crude membrane preparations with PEGDA 575.
A schematic of the method 900 used to fabricate the PEG-pMMO hydrogels is shown in
Membrane bound pMMO alone in each activity assay was used a positive control. The measured activity of the membrane bound pMMO alone was highly variable from experiment to experiment, from about 75 to 200 nmol MeOH mg−1 min−1, while the optimized PEG-pMMO samples were less variable, in a range from 65 to 128 nmol MeOH mg−1 min−1. The measured activity for both membrane bound pMMO alone and immobilized pMMO were similar to known values for membrane bound pMMO with methane as a substrate: 25-130 nmol MeOH mg−1 min−1.
However, a dramatic decrease in pMMO activity was observed as the PEGDA vol % was increased (
Preserving the native activity of pMMO in the PEG hydrogel includes a balance between pMMO loading and enzyme activity. Higher polymer concentrations gave rise to higher pMMO loading and retention (
The development of fully active pMMO in a polymer material allowed the reuse of pMMO without painstaking centrifugation with each new set of reactants. Measurements were made regarding the effects of reuse of the PEG-pMMO hydrogel on overall enzyme activity and methanol generation using PEG-pMMO that was prepared with an initial pMMO amount of 150 μg and 10 vol % pMMO (
Establishing that that the PEG-pMMO material could be reused with no measurable protein leaching indicated that the material would be amenable for use in a bench-scale continuous flow reactor. A design where the pMMO material is suspended between gas and liquid reservoirs was discovered herein as desirable given that pMMO acts upon gas phase reactants and generates liquid phase. However, PEG-pMMO, and hydrogels in general, are mechanically brittle and difficult to handle when molded as thin membranes. Accordingly, the PEG-pMMO material was embedded into a 3D silicone lattice (printed using Direct Ink Write) in order to greatly increase the mechanical stability and to easily tune the size and shape of the hydrogel for use in a continuous reactor (
The resulting hybrid silicone-PEG-pMMO lattice materials were mechanically robust, allowing the suspension of the PEG-pMMO lattice of 1 millimeter thickness between gas and liquid reservoirs in a flow-through reactor. A schematic of the reactor cross section is shown in
Projection microstereolithography (PμSL) allows 3D printing of light-curable materials by projecting a series of images on the material, followed by changing the height of the stage at discrete increments, with micron-scale resolution in all three dimensions. Therefore, it was an ideal technique for directly printing the PEG-pMMO material and determining whether changing geometrical features of the material at these length scales can influence activity. PμSL was thus used to print PEG-pMMO lattice structures with increased surface area to volume ratio due to 100 μm2 vertical channels corresponding to ˜15% void volume. In this experiment, the pMMO concentration of 5 mg/ml did not attenuate the light enough for highest resolution printing; consequently, feature resolution was reduced in the z-direction and each layer of printed pMMO was exposed to multiple exposures to UV light. The pMMO activity in the printed cubic lattices with a total volume of about 27 mm3, which took approximately 50 min to print using Pp SL, was reproducible but modest at 29 nmol MeOH min−1 mg−1. The reduction in activity compared to crude pMMO is likely due to the duration of the printing at room temperature as well as the overexposure of pMMO to UV during curing. However, the cubic lattices retained about 85% of the enzyme based on the solid volume of the lattice (23 mm3) corresponding to the highest protein loading that was have achieved. While not wishing to be bound by any theory, it is thought that this high retention was likely due to higher cross-linking efficiency.
Since the lattice geometry did not permit precise tuning of surface area to volume ratios, due to bending of lattice struts under water surface tension, a different PμSL tool designed to generate larger parts was used to print solid and hollow PEG-pMMO cylinders with surface area to volume ratios ranging from 1.47-2.33 and diameters ranging from of 1-5 mm. The hollow tube geometry may allow more facile diffusion of reactants because both the inner and outer surfaces of the cylindrical materials would be exposed. The total print time for an array of cylinders using the large-area PμSL tool was significantly reduced to ˜1 min by eliminating z-axis resolution, and the pMMO concentration was reduced to 2.3 mg/ml to allow UV light penetration through the 1.5-3 mm depth of the resin. Remarkably, the activity of pMMO in the hydrogels increased with greater surface area to volume ratios as shown in
Reagents for buffers (PIPES, NaCl, and NaOH), HPLC grade methanol (>99.9% purity), polyethylene glycol diacrylate 575 (PEGDA 575), and the cross-linking initiator, 2-hydroxy-2-methylpropiophenone (Irgacure® 1173), was purchased from Sigma-Aldrich (St. Louis, MO). All reagents were used as received. Methane gas (99.9% purity) was obtained from Matheson Tri-gas, Inc. (Basking Ridge, NJ). pMMO concentrations were measured using the DC™ protein assay purchased from Bio-Rad (Hercules, CA). Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator was synthesized following a procedure known in the art.
pMMO: Cell Growth and Membrane Isolation
Methylococcus capsulatus (Bath) cells were grown in 12-15 L fermentations. M. capsulatus (Bath) cells were grown in nitrate mineral salts medium (0.2% w/v KNO3, 0.1% w/v MgSO4·7H2O and 0.001% w/v CaCl2·2H2O) and 3.9 mM phosphate buffer, pH 6.8, supplemented with 50 μM CuSO4˜5H2O, 80 μM NaFe(III) EDTA, 1 μM Na2MoO4˜2H2O and trace metals solution. Cells were cultured with a 4:1 air/methane ratio at 45° C. and 300 rpm. Cells were harvested when the A600 reached 5.0-8.0 by centrifugation at 5000×g for 10 min. Cells were then washed once with 25 mM PIPES, pH 6.8 before freezing in liquid nitrogen and storing at −80° C. Frozen cell pellets were thawed in 25 mM PIPES, pH 7.2, 250 mM NaCl buffer (herein referred to as pMMO buffer) and lysed by microfluidizer at a constant pressure of 180 psi. Cell debris was then removed by centrifugation at 20,000-24,000×g for one hr. The membrane fraction was pelleted by centrifugation at 125,000×g for one hour and washed 3 times with pMMO buffer before freezing in liquid nitrogen and storing at −80° C. Final protein concentrations were measured using the Bio-Rad DC™ assay. Typical storage concentrations ranged from 20-35 mg/ml.
Prior to preparation of the PEG-pMMO hydrogels, frozen as-isolated crude membranes from M. Capsulatus (Bath) (herein referred to as membrane-bound pMMO) was thawed at room temperature and used within 5 hours of thawing. Thawed membrane-bound pMMO (50-500 μg) was then mixed with PEGDA 575 in pMMO buffer at room temperature to form liquid PEG and pMMO suspensions having a final volume of 50 μl and 10-80 (v/v %) PEGDA 575. A photoinitiator (not shown in
All reactions were carried out in 2 ml glass reaction vials in pMMO buffer with 6 mM NADH as a reducing agent. Vials with 50-500 μg pMMO in 125 μl buffer solution were used as controls. For the immobilized enzyme samples, each 50 μl PEG-pMMO hydrogel block was placed in a vial and partially submerged in 75 μl buffer solution immediately after curing and rinsing. 1 ml of headspace gas was removed from each vial using a 2 ml gas tight glass syringe and replaced with 1 ml of methane, then the reaction vial was immediately placed in a heating block set at 45° C. and incubated for 4 min at 200 rpm. After 4 min, the samples were heat inactivated at 80° C. for 10 min. Samples were then cooled on ice for 20 min and pMMO control vials were centrifuged to remove the insoluble membrane fraction. For the cyclic activity assays using the PEG-pMMO immobilized enzyme, the reaction was stopped by opening and degassing the head space and immediately removing the solution for GC analysis. The block was then rinsed three times with 1 ml of pMMO buffer per wash and the assay was repeated. The amount of methanol generated during the reaction was measured by gas chromatography/mass spectrometry (GC/MS) analysis using an Agilent Pora-PLOT Q column and calibration curves were generated from methanol standards.
pMMO Flow Reactor
A simple cubic polydimethyl siloxane (PDMS) lattice with 250 micron struts and 250 micron spacing was printed using Direct Ink Write as described to provide methane permeability throughout the PEG material and to provide mechanical support. A top layer of 50 micron thick PDMS was fabricated by spin-coating Dow Corning SE-1700 PDMS diluted in toluene on a hydrophobized silicon wafer. This thin PDMS membrane prevented leakage of liquid through the membrane but provided gas permeability. Two different flow cell geometries were fabricated using polycarbonate plastic: a flow cell for a higher surface area, thin lattice (1.25 cm wide by 3 cm long) and a lower surface area, thick lattice, 1.25 by 1.25 cm. The thin lattice was 6 layers thick, and the thick lattice had 16 layers. The lattices were made hydrophilic by treating them in air plasma for 5 minutes followed by storage in deionized water. To incorporate the pMMO into the lattices, a 10 vol % concentration of PEGDA 575 was mixed with crude pMMO membrane preparations to a final concentration of 5 mg/ml pMMO. Two hundred microliters of the pMMO/PEGDA mixture were pipetted into the lattice and cured with 365 nm UV light at 2.5 mW/cm2 intensity for 4 min, forming the mixed polymer (PEG/PDMS) membrane. The final concentration of pMMO in the lattices was calculated, rather than directly quantified using a protein assay, due to difficulties in quantifying the material in the lattice. The membrane was then loaded into the cell and rinsed with buffer to remove any unpolymerized material. The flow cell was placed on a hot plate calibrated with thermocouple so that the membrane would reach either 25 or 45 degrees ° C. An NADH/buffer solution (4 mg/ml NADH in PIPES pH 7.2) was prepared as the liquid phase in a 5 ml syringe, and the gas phase was prepared as 50% methane and 50% air loaded into a gas-tight 50 ml syringe. The syringes were loaded into Harvard Apparatus syringe pumps and the gas and liquid were delivered at 0.5 and 0.75 ml per hour, respectively. The gas outlet tubing was kept under 2 cm water pressure during the reaction. Fractions of liquid were collected into GC/MS autosampler vials that were kept on ice to reduce methanol evaporation and were analyzed against MeOH standards using GC/MS as described above. Methanol contamination was present in the NADH/buffer solutions, and this concentration was subtracted from the total detected in each fraction by GC/MS. No methanol contamination was found in the water used to store the PDMS. The data shown in
The printing resin was prepared with 20 vol % PEGDA 575, 10 mg/ml LAP initiator, and 2.3-5 mg/ml crude pMMO in buffer. Using projection microstereolithography (PμSL), hydrogel blocks were printed in a cubic lattice with 100 um open channels spaced 100 m apart and size dimensions from 1-3 mm. Solid and hollow cylinders of the same resin formulation were printed using the large area PμSL (LA PμSL) system. The cylinders had an inner diameter of 1-2.5 mm, an outer diameter of 3-5 mm, and were 1.5-3 mm high. The resin was cured with a 395 nm diode with both PμSL and LA PμS, but the intensity and exposure time varied between the systems, ranging from 11.3-20 W/cm2 and 15-30 seconds per layer, respectively. Resin and printed hydrogels were stored on ice before and after the printing process. The pMMO activity assay was carried out as described above at 45° C. for 4 minutes. The methanol concentration of the activity assay and protein content of the printed hydrogels were measured as described above.
Aspects of the present invention may be used in a wide variety of applications and may provide more efficient and higher-throughput use of enzymes to catalyze chemical reactions in any potential industrial application. Illustrative applications in which aspects of the present invention may be used include, but are not limited to, fuel conversion (e.g., natural gas to liquid fuel), chemical production, pharmaceutical production, and other processes where a chemical conversion is catalyzed by enzymes, especially at phase boundaries (e.g., reaction involving a gas and a liquid, polar and non-polar species, aqueous and non-aqueous species, etc.).
The inventive concepts described herein may be used to encapsulate whole cells for biocatalysis of a range of products. In some approaches, the inventive concepts may be used with methanotrophs to upgrade methane to chemical products. In other approaches, the inventive concepts may be used with yeast to produce ethanol.
In more aspects, the inventive concepts described herein may be useful to any industry that utilizes microbes for biocatalysis, including pharmaceutical, food and beverage, chemical synthesis, waste management, and cosmetics. Inventive aspects described herein may be particularly useful for reactions that are limited by mass transfer or depend on a gas/liquid interface.
In still more aspects, the presently described inventive concepts may also be used to encapsulate engineered cell strains to produce enzymes, biological therapeutics, vaccines, and recombinant proteins that are currently produced by industrial fermentation.
In still yet more aspects, the inventive aspects described herein may be useful in applications such as tissue engineering and regenerative medicine. The invention is comprised of highly biocompatible polymers and may be printed into geometries and structures that are directly applicable to scaffolds for tissue engineering.
It should be noted that methodology presented herein for at least some of the various aspects may be implemented, in whole or in part, in computer hardware, software, by hand, using specialty equipment, etc. and combinations thereof.
Moreover, any of the structures and/or steps may be implemented using known materials and/or techniques, as would become apparent to one skilled in the art upon reading the present specification.
The inventive concepts disclosed herein have been presented by way of example to illustrate the myriad features thereof in a plurality of illustrative scenarios, aspects, and/or implementations. It should be appreciated that the concepts generally disclosed are to be considered as modular, and may be implemented in any combination, permutation, or synthesis thereof. In addition, any modification, alteration, or equivalent of the presently disclosed features, functions, and concepts that would be appreciated by a person having ordinary skill in the art upon reading the instant descriptions should also be considered within the scope of this disclosure.
While various aspects have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of an aspect of the present invention should not be limited by any of the above-described exemplary aspects but should be defined only in accordance with the following claims and their equivalents.
This application is Divisional of U.S. patent application Ser. No. 16/862,342, filed Apr. 29, 2020, which is a Continuation in Part of International Application No. PCT/US18/58214 filed Oct. 30, 2018 and claims priority to U.S. Provisional Patent Application No. 62/579,067 filed Oct. 30, 2017, each of which are herein incorporated by reference.
The United States Government has rights in this invention pursuant to Contract No. DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC for the operation of Lawrence Livermore National Laboratory.
Number | Date | Country | |
---|---|---|---|
62579067 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16862342 | Apr 2020 | US |
Child | 18593547 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/058214 | Oct 2018 | WO |
Child | 16862342 | US |