1. Field of the Invention
Micellar combinations of cationic or anionic polymers and oppositely charged surfactants are made preferably with C6-23 alcohols in proportions coordinated in aqueous media with the aid of Zeta Potential measurements. The resulting gels are useful in drilling and formation fracturing in hydrocarbon recovery, manifesting excellent proppant suspending properties in low concentrations of polymer and surfactant as compared to the prior art.
In particularly, micellar combinations of cationic or anionic polymers and oppositely charged surfactants and further including an effective amount of a phosphorus-containing compound to sufficient to improve gel formation and stability are made preferably with C6-23 alcohols in proportions coordinated in aqueous media with the aid of Zeta Potential measurements and a phosphorus-containing compounds such as mono, di or tri carbyl phosphates or phosphate salts, which enhances gel viscosity, improved viscosity build up and improved viscoelastic properties such as stability.
2. Description of the Related Art
In U.S. Pat. No. 5,169,441, Lauzon suggests the use of Zeta Potential for characterizing particulates such as pigments treated with cationic polymers. Lauzon's U.S. Pat. No. 5,846,308 describes the stabilization of a rosin dispersion for use as a sizing composition by treating it with a “cationic colloidal coacervate” which may include both a cationic polymer and an anionic surfactant; the finished sizing composition is to have a Zeta Potential of at least 20 millivolts. Poly(diallyldimethyl ammonium chloride), sometimes known as polyDADMAC, is the preferred cationic polymer. Also, Lauzon's U.S. Pat. No. 6,315,824 describes a similar coacervate stabilizing system used for hydrophobic non-rosin sizing agents, which maybe liquid as well as solid. See also Lauzon's U.S. Pat. No. 4,507,210, which suggests a correlation of Zeta Potential to certain filtration properties in the treatment of shale and clay in hydrocarbon recovery; see also Engelmann et al in U.S. Pat. No. 5,196,401.
Other compositions comprising a cationic polymer and an anionic surfactant, often in high ratios of anionic surfactant to cationic polymer, may be found in Matz and LeMar U.S. Pat. No. 6,110,451, Verdicchio and Spilatro U.S. Pat. No. 4,948,576, and the shampoo and other personal care products described by Guskey et al in U.S. Pat. Nos. 6,297,203 and 6,221,817, Sako et al in U.S. Pat. No.6,284,230, (which also describes betaines) Hoshowski et al in U.S. Pat. No.5,137,715, and Snyder et al in U.S. Pat. No. 6,248,317.
In the field of hydrocarbon recovery from the earth, formation fracturing fluids proposed by Zhang in Canadian patent 2,257,699 combine anionic surfactants such as sodium xylene sulfonate and cationic surfactants such as N, N, N, trimethyl-1-octadecammonium chloride to make a gel said to be viscoelastic. Carbon dioxide is added to similar combinations in Zhang's Canadian patent 2,257,697 to generate a foam. Borchardt et al, in U.S. Pat. No. 4,409,110, describe formation flooding compositions which may comprise cationic polymers and anionic surfactants. Numerous combinations of surfactants and other compounds are proposed by Dahayanake et al in U.S. Pat. No. 6,258,859 (WO 98/56497; PCT/US/12067). See also the compositions said to be viscoelastic and proposed for well treatment by Hughes et al in U.S. Pat. No. 6,232,274 and Jones et al in U.S. Pat. No. 6,194,356.
Combinations of cationic polymers, betaines, and anionic surfactants may be inferred from the numerous combinations of materials that are possibly 25 viscoelastic within the disclosure of Balzer in U.S. Pat. No. 5,956,502, dealing with compositions for use on the hair and skin. See also the combination of cationic polymer with anionic surfactants for use as an automatic dishwashing detergent, in Tartakovsky et al U.S. Pat. No. 6,281,180.
U.S. Pat. Nos. 7,205,262 and 7,183,239, which are also continuations-in-part of U.S. patent application Ser. No. 10/228,875, represent gellant system with other desirable properties, all incorporated herein by reference.
There remains a need for improved aqueous gels and methods of making them.
The entire specification, including description, claims, and drawings, of provisional application 60/339,630 filed Dec. 12, 2001 entitled “Cationic Polymeric Coacervates,” is hereby incorporated by reference. Our invention includes aqueous gels, gel-forming compositions, methods of making them, and their use in well treatment.
In its most basic form, the novel composition comprises (a) a cationic or anionic polymer and (b) a lesser amount of an oppositely charged surfactant, in a ratio to provide a Zeta Potential of 20 millivolts or higher, or −20 millivolts or lower, (c) a small amount of a hydrophobic alcohol having 6 to 23 carbon atoms and (d) an effective amount of a phosphorus-containing compound sufficient to improve gel, reduce a gel time, improve gel stability and to improve gel viscosity up to 3 times compared to the gel in the absence of the phosphorus-containing compound, where the effective amount is between about 0.001 wt % and about 10 wt. %. In certain embodiments, the effective amount is between about 0.05 wt. % and about 3 wt. %. In certain embodiments, the effective amount is between about 0.05 wt. % and about 1 wt. %. In certain embodiments, the composition also includes a small amount of a gel promoter comprising one or more of (e) an amphoteric surfactant and/or (f) an amine oxide surfactant, while maintaining the same limits of Zeta Potential. The composition represents a polymer coacervate because the viscosifying properties of the polymer are controlled in coacervate form—that is, the long chain cationic or anionic polymer and the smaller amount of oppositely charged surfactant act in the presence of the hydrophobic alcohol to form a singular phase distinguished by a characteristic Zeta Potential. These properties are also modified by the small amount of a phosphorus-containing compound, which increases gellant viscosity, gellant viscosity build up and final gellant properties. This singular phase, under the prescribed Zeta Potential, is capable of imparting a significantly increased viscosity compared to other solutions of the same polymer at the same concentration, including such concentrations in the presence of higher and lower amounts of the same other additives or components.
The invention can be better understood with reference to the following detailed description together with the appended illustrative drawings in which like elements are numbered the same:
In
In
The inventor has found that a new surfactant water gellant can be prepared having a desired higher viscosity by the addition of a small amount of a phosphorus-containing compound, than in the absence of a phosphorus-containing compound. The phosphorus-containing compound can be added to adjust the gellation rate, to increase the build up of viscosity, to increase the final viscosity of the gelled system and to modify gellant properties. The inventor has also found that the phosphorus-containing compound increases the viscosity of the gellant at low dosages up to as much as 3 times the amount of viscosity as measured in centipoise as compared to the gellant in the absence of the phosphorus-containing compound.
The compositions of this invention relates broadly to a gelling composition: (a) a cationic or anionic polymer, (b) a lesser amount of an oppositely charged surfactant, in a ratio to provide a Zeta Potential of 20 millivolts or higher, or −20 millivolts or lower, (c) a small amount of a hydrophobic alcohol having 6 to 23 carbon atoms and (d) an effective amount of a phosphorus—containing compound sufficient to improve gel viscosity, to improve gel, reduce a gel time, and improve gel stability. In certain embodiments, the composition also includes a small amount of a gel promoter comprising one or more of (e) an amphoteric surfactant and/or (f) an amine oxide surfactant, while maintaining the same limits of Zeta Potential. The present compositions are ideally well suited for well treatment, especially fracturing fluid treatments, and aqueous gellants.
The present invention also broadly relates to method for treating wells, fracturing formations, and fracturing and propping formations.
Suitable Reagents
The surfactant which is oppositely charged from the polymer is sometimes called herein the “counterionic surfactant.” By this we mean a surfactant having a charge opposite that of the polymer.
Suitable cationic polymers include polyamines, quaternary derivatives of cellulose ethers, quaternary derivatives of guar, homopolymers and copolymers of at least 20 mole percent dimethyl diallyl ammonium chloride (DMDAAC), homopolymers and copolymers of methacrylamidopropyl trimethyl ammonium chloride (MAPTAC), homopolymers and copolymers of acrylamidopropyl trimethyl ammonium chloride (APTAC), homopolymers and copolymers of methacryloyloxyethyl trimethyl ammonium chloride (METAC), homopolymers and copolymers of acryloyloxyethyl trimethyl ammonium chloride (AETAC), homopolymers and copolymers of methacryloyloxyethyl trimethyl ammonium methyl sulfate (METAMS), and quaternary derivatives of starch.
Suitable anionic polymers include homopolymers and copolymers of acrylic acid (AA), homopolymers and copolymers of methacrylic acid (MAA), homopolymers and copolymers of 2-acrylamido-2-methylpropane sulfonic acid (AMPSA), homopolymers and copolymers of N-methacrylamidopropyl N,N-dimethyl amino acetic acid, N-acrylamidopropyl N,N-dimethyl amino acetic acid, N-methacryloyloxyethyl N,N-dimethyl amino acetic acid, and N-acryloyloxyethyl N,N-dimethyl amino acetic acid.
Anionic surfactants suitable for use with the cationic polymers include alkyl, aryl or alkyl aryl sulfates, alkyl, aryl or alkyl aryl carboxylates or alkyl, aryl or alkyl aryl sulfonates. Preferably, the alkyl moieties have about 1 to about 18 carbons, the aryl moieties have about 6 to about 12 carbons, and the alkyl aryl moieties have about 7 to about 30 carbons. Exemplary groups would be propyl, butyl, hexyl, decyl, dodecyl, phenyl, benzyl and linear or branched alkyl benzene derivatives of the carboxylates, sulfates and sulfonates. Included are alkyl ether sulphates, alkaryl sulphonates, alkyl succinates, alkyl sulphosuccinates, N-alkoyl sarcosinates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulphonates and acyl methyl taurates, especially their sodium, magnesium ammonium and mono-, di- and triethanolamine salts. The alkyl and acyl groups generally contain from 8 to 18 carbon atoms and may be unsaturated. The alkyl ether sulphates, alkyl ether phosphates and alkyl ether carboxylates may contain from one to 10 ethylene oxide or propylene oxide units per molecule, and preferably contain 2 to 3 ethylene oxide units per molecule. Examples of suitable anionic surfactants include sodium lauryl sulphate, sodium lauryl ether sulphate, ammonium lauryl sulphosuccinate, ammonium lauryl sulphate, ammonium lauryl ether sulphate, sodium dodecylbenzene sulphonate, triethanolamine dodecylbenzene sulphonate, sodium cocoyl isethionate, sodium lauroyl isethionate, and sodium N-lauryl sarcosinate.
Cationic surfactants suitable for use with the anionic polymers include quaternary ammonium surfactants of the formula X−N+R1R2R3 where R3, R2, and R3 are independently selected from hydrogen, an aliphatic group of from about 1 to about 22 carbon atoms, or aromatic, aryl, an alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, or alkylaryl group having from about 1 to about 22 carbon atoms; and X is an anion selected from halogen, acetate, phosphate, nitrate, sulfate, alkylsulfate radicals (e.g., methyl sulfate and ethyl sulfate), tosylate, lactate, citrate, and glycolate. The aliphatic groups may contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as hydroxy or amino group substituents (e.g., the alkyl groups can contain polyethylene glycol and polypropylene glycol moieties). The longer chain aliphatic groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. More preferably, R1 is an alkyl group having from about 12 to about 18 carbon atoms; R2 is selected from H or an alkyl group having from about 1 to about 18 carbon atoms; R3 and R4 are independently selected from H or an alkyl group having from about 1 to about 3 carbon atoms; and X is as described above.
Suitable hydrophobic alcohols having 6-23 carbon atoms are linear or branched alkyl alcohols of the general formula CMH2M+2−N(OH)N, where M is a number from 6-23, and N is 1 when M is 6-12, but where M is 13-23, N may be a number from 1 to 3. Our most preferred hydrophobic alcohol is lauryl alcohol, but any linear monohydroxy alcohol having 8-15 carbon atoms is also preferable to an alcohol with more or fewer carbon atoms.
By a gel promoter we mean a betaine, a sultaine or hydroxysultaine, or an amine oxide. Examples of betaines include the higher alkyl betaines such as coco dimethyl carboxymethyl betaine, lauryl dimethyl carboxymethyl betaine, lauryl dimethyl alphacarboxyethyl betaine, cetyl dimethyl carboxymethyl betaine, cetyl dimethyl betaine, lauryl bis-(2-hydroxyethyl)carboxymethyl betaine, oleyl dimethyl gamma-carboxypropyl betaine, lauryl bis-(2-hydroxypropyl)alpha-carboxyeth-yl betaine, coco dimethyl sulfopropyl betaine, lauryl dimethyl sulfoethyl betaine, lauryl bis-(2-hydroxyethyl)sulfopropyl betaine, amidobetaines and amidosulfobetaines (wherein the RCONH(CH2)3 radical is attached to the nitrogen atom of the betaine, oleyl betaine, and cocamidopropyl betaine. Examples of sultaines and hydroxysultaines include materials such as cocamidopropyl hydroxysultaine.
By a Zeta potential having an absolute value of at least 20 we mean a Zeta potential having a value of +20 of higher or −20 or lower.
Amphoteric surfactants suitable for use with either cationic polymers or anionic polymers include those surfactants broadly described as derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group such as carboxy, sulfonate, sulfate, phosphate, or phosphonate. Suitable amphoteric surfactants include derivatives of aliphatic secondary and tertiary amines in which the aliphatic radical can be straight or branched chain and wherein one of the aliphatic aliphatic substituents contains from about 8 to about 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. Examples of compounds falling within this definition are sodium 3-dodecylaminopropionate, and sodium 3-dodecylaminopropane sulfonate.
Suitable amine oxides include cocoamidopropyl dimethyl amine oxide and other compounds of the formula R1R2R3N→O wherein R3 is a hydrocarbyl or substituted hydrocarbyl having from about 8 to about 30 carbon atoms, and R1 and R2 are independently hydrogen, a hydrocarbyl or substituted hydrocarbyl having up to 30 carbon atoms. Preferably, R3 is an aliphatic or substituted aliphatic hydrocarbyl having at least about 12 and up to about 24 carbon atoms. More preferably R3 is an aliphatic group having at least about 12 carbon atoms and having up to about 22, and most preferably an aliphatic group having at least about 18 and no more than about 22 carbon atoms.
Suitable phosphorus-containing compounds suitable for use in the invention include, without limitation, phosphates or phosphate equivalents or mixtures or combinations thereof. Suitable phosphates include, without limitation, mono-alkali metal phosphates (PO(OH)(OM), where M is Li, Na, K, Rd, or Cs), di-alkali metal phosphates (PO(OH)(OM)2, where each M is the same or different and is Li, Na, K, Rd, or Cs) such as dipotassium phosphate (PO(OH)(OK)2) and disodium phosphate, (PO(OH)(ONa)2), tri-alkali metal phosphates (PO(OM)3, where each M is the same or different and is Li, Na, K, Rd, or Cs) such as trisodium phosphate (PO(ONa)3) and tripotassium phosphate (PO(OK)3), carbyl phosphates (PO(OR1)(OM)2, where R1 is a carbyl group and M is H, Li, Na, K, Rd, and/or Cs), dicarbyl phosphates (PO(OR1)(OR2)(OM), where R1 and R2 are the same or different carbyl groups and M is H, Li, Na, K, Rd, or Cs), tricarbyl phosphates (PO(OR1)(OR2)(OR3), where R1, R2, and R3 are the same or different carbyl groups), or mixtures or combinations thereof.
Suitable carbyl group include, without limitations, carbyl group having between about 3 and 40 carbon atoms, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. The carbyl group can be an alkyl group , an alkenyl group, an aryl group, an alkaaryl group, an aryalkyl group, or mixtures or combinations thereof, i.e., each carbyl group in the phosphate can be the same or different. In certain embodiments, the carbyl group has between about 3 and about 20, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. In certain embodiments, the carbyl group has between about 3 and about 16, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. In certain embodiments, the carbyl group has between about 3 and about 12, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. In certain embodiments, the carbyl group has between about 4 and about 8, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group.
Suitable tri-alkyl phosphates include, without limitations, alkyl group having from about 3 to about 20 carbon atoms, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. In certain embodiments, the tri-alkyl phosphate includes alkyl groups having from about 4 to about 12 carbon atoms, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. In other embodiments, the tri-alkyl phosphate includes alkyl groups having from about 4 to about 8 carbon atoms, where one or more of the carbon atoms can be replaced with a hetero atom selected from the group consisting of oxygen and nitrogen, with the remainder of valences comprising hydrogen or a mono-valent group such as a halogen, an amide (—NHCOR), an alkoxide (—OR), or the like, where R is a carbyl group. Such phosphates can be produced by reacting a phosphate donor such as phosphorus pentoxide and a mixture of alcohols in desired proportions.
Features of the Compositions
Although we prefer to use polymers of diallyl dimethyl ammonium chloride and particularly its homopolymers where cationic polymers are used in our invention, we may use any water soluble cationic polymer effective to viscosify water. Preferably the polymers will have a molecular weight of at least 10,000. Such polymers include homopolymers and copolymers made with cationic monomers (that is, at least 20% of the mer units contain cationic functional groups, while the balance may be nonfunctional or nonionic) such as diallyldimethyl ammonium chloride, methacrylamidopropyltrimethyl ammonium chloride, acryloyloloxyethyltrimet-hylammonium chloride, diallyl diethylammonium chloride, methacryloyoloxyethyltrimethyl ammonium chloride, vinyl pyridine, and vinyl benzyltrimethyl ammonium chloride.
The preferred anionic surfactant to be used with the cationic polymer is sodium lauryl sulfate, but any alkali metal alkyl sulfate or sulfonate having 8-22 carbon atoms may be used, and alkyl ether sulfates and sulfonates having 8-22 carbon atoms are included within our term “counterionic surfactant”. Commercial forms of sodium lauryl sulfate including minor or even significant amounts of other similar surfactants maybe used. Other common anionic surfactants may also be useful.
The alkyl alcohol is preferably a linear alkyl one having from 8 to 22 carbon atoms or, more preferably, 8-15 carbon atoms. Commercial forms of lauryl alcohol having other alcohols as a minor ingredient are satisfactory. We have found that some commercial forms of sodium lauryl sulfate contain lauryl alcohol in amounts sufficient to satisfy the lauryl alcohol requirements of our invention, and accordingly such sodium lauryl sulfates may sometimes be used as the anionic surfactant of our invention together with a cationic polymer, but without additional moieties of lauryl alcohol or other hydrophobic alcohol as described herein. We may substitute sodium lauryl ether sulfate for the sodium lauryl sulfate; lauryl alcohol should be added separately where this substitution is made.
When used, the amine oxide promoter is preferably lauryl amine oxide, but we may use any amine oxide of the formula R1R2R3NO, preferably R1N(CH3)2O, where R1 is an alkyl group of 8-22 carbon atoms, and R1 and R2 are independently alkyl groups having from 1 to 4 carbon atoms. We may use any amine oxide of the formula R1R2R3N→O as defined by Dahayanake et al in U.S. Pat. No. 6,258,859, which is hereby incorporated by reference in its entirety. See also Tillotson U.S. Pat. No. 3,303,896 and Thompson U.S. Pat. No. 4,108,782, which are also incorporated by reference in their entirety for their descriptions of amine oxides. Generally, up to 1% by weight may be used, but as will be seen in
When used, the amphoteric surfactant is preferably a betaine such as cocamidopropyl betaine, but we may use other types of amphoteric surfactants, including aminopropionate and sultaines. We may use any of the surfactant betaines listed or described by Sake et al in U.S. Pat. No. 6,284,230, which is hereby incorporated by reference in its entirety.
The weight ratio of cationic polymer to alkyl sulfate is generally 10:1 to 1.1:1, but the ratio may also be based on the molar ratio of cationic moieties on the polymer and the anionic sites on the surfactant.
Where an anionic polymer is used, we prefer to use a homopolymer of “AMPSA”—acrylamidomethylpropyl sulfonic acid—together with a common quaternery surfactant generally in the same ratios as recited above for cationic polymers and anionic surfactants, provided the absolute value of the Zeta Potential is at least 20. This may be done with or without gel promoters, but where there are no gel promoters, the concentration of anionic polymer will be significantly higher than where a gel promoter is used.
In
In
In
Likewise, as shown in
Table 1 below shows the effect on viscosity of certain of our compositions with components in addition to polymer and surfactant.
In Table 2, a different source of sodium lauryl sulfate is used for comparison, using all the other ingredients in the same concentrations as Table 1.
Following is a Key to the Superscripts in Tables 1 and 2:
A comparison of the initial use of the sodium lauryl sulfate, at 0.5% in each case, shows a much higher viscosity achieved by the Acmepon product. We surmise that this is attributable to a higher percentage of lauryl alcohol impurity in the Acmepon product. Persons skilled in the art will perceive that the rest of the data are consistent with this assumption. The compositions including separately added lauryl alcohol yielded significantly higher viscosities than the remainder of those without such a separate addition.
In
In
The zero shear viscosity extrapolation of
The result after 60 minutes, 7 millimeters of substantially clear gel, compares quite favorably with the settling rate, for example, of a Diesel gel which exhibited 16 ml of settling after 60 minutes. We refer to the above described settling rate test as a “10/100 20/40” settling rate test, meaning that a 20/40 proppant is used in a volume ratio of proppant to gel of 10/100 in a gel comprising 0.65% polymer. The depth of the upper layer of clear gel after 1 hour of settling provides a good rough comparison. Thus, our invention includes an aqueous gel comprising no more than 1% by weight water soluble polymer, preferably no more than 0.7% by weight polymer, characterized by a “10/100 20/40” settling rate result at 60 minutes no more than 8 millimeters, preferably no more than 7 millimeters.
In
Standard foam generating surfactants were used to simulate a foam system and nitrogen was used as the gas. The mixture was pumped through sand to generate a standard foam texture and, at 1200 ml/min, routed to each of four conduits designated Tube A, Tube B, Pipe A, and Pipe B. Tube A has an internal diameter of 0.30 inch and is 5.29 feet long; tube B has an I.D of 0.45 inch and is 10/53 feet long, pipe A has an I.D of 0.50 inch and is 14.29 inches long, and Pipe B has an I.D. of 0.61 inch and is 20.45 feet long. Pressure drops across the lengths of the tubes and pipes are collected, temperatures are measured in the centers of the conduits. Viscosities are calculated and reported in
Thus it is seen that our invention includes an aqueous gel comprising 5 water and, by weight based on the water, (a) 0.1% to 5% of an anionic or cationic polymer, (b) a lesser amount but at least 0.01% of a surfactant having from 8 to 22 carbon atoms and a charge opposite that of the polymer, (c) from 0.001 to 5% of a hydrophobic alcohol, (d) up to 10% of aphosphorus-containing viscosity enhancer, (e) up to 5% of an amphoteric surfactant, and (f) up to 5% of an amine oxide, the gel having a Zeta Potential of an absolute value of at least 20 millivolts. In another aspect, our invention is a method of making an aqueous gel comprising adding to water 0.1% to 5%, by weight based on the water, cationic polymer and a lesser amount but at least 0.01% by weight of an anionic surfactant having from 8 to 22 carbon atoms, in the presence of 0.001% to 5% linear or branched alkyl alcohol of the general formula CMH2M+2−N(OH)N, where M is a number from 6-23, and N is 1 when M is 6-12, but where M is 13-23, N may be a number from 1 to 3, and optionally in the presence of at least one of (a) up to 5% by weight amphoteric surfactant and (b) up to 5% by weight amine oxide, the ratio of the cationic polymer to the anionic surfactant being effective to provide a Zeta Potential having an absolute value of at least 20 millivolts. Further, our invention includes an aqueous gel comprising a polymer in an amount no greater than 1% by weight in water, characterized by a “10/100 20/40” settling rate result at 60 minutes of no more than 8 millimeters, preferably no more than 7 millimeters. Stated another way, our invention includes an aqueous gel comprising no more than 1%, preferably no more than 0.7%, water soluble polymer, the gel having a zero shear viscosity of at least 45,000 following the zero shear viscosity extrapolation procedure of Asadi, Conway and Barree in SPE 73755 or, expressed another way, characterized by a “10/100 20/40” settling rate result at 60 minutes of no more than 8 millimeters, preferably no more than 7 millimeters.
The invention further includes the use of the described gels as plugs or pigs in pipes. By pipes, we mean any duct, conduit or pipe in which a gel plug or pig can be formed, where the phosphorus-containing compound increases gel viscosity improving plug and pig properties. The gel plug or pig is generally used as described above and in U.S. Pat. Nos. 5,537,700, 5,346,339, 4,252,465, 5,483,986, 4,543,131, 4,473,408, 6,076,278, 5,346,011, and 4,767,603, all of which are incorporated herein in their entireties. The gel plug or pig is formed in a sealing relationship to the pipe and to the fluids on either side of it. It may itself form a segment of material moving through the pipe. Any convenient length may be used so long as there is enough gel to form a substantially sealing relationship (that is, to substantially prevent the mixing of the fluids it separates) with the pipe. In another aspect, our invention includes a method of separating two portions of fluid for movement in a pipe comprising placing between the portions of fluid in the pipe an aqueous gel separating pig comprising a water-soluble polymer in an amount no greater than 1% by weight, having at least one of (a) a zero shear viscosity of at least 45,000 following the zero shear viscosity extrapolation procedure of Asadi, Conway and Barree in SPE 73755 or (b) a “10/100 20/40” settling rate result at 60 minutes of no more than 8 millimeters. The separate portions of fluid may be used to transport cleaning fluids, drying fluids, well cementing fluids, and any other fluid for maintenance of a pipeline or for the placement of a specialized fluid in a desired location in the pipe system. The plug or pig may be used to separate portions or segments of fluids—for example, one segment may be a gas and the other a liquid; one may be a hydrocarbon and the other an aqueous fluid. In any case, the use of our pigs will facilitate the movement of such separated or isolated fluids through a pipe.
Examples 1-4 illustrate the formation of Zeta gels having different weight percentages of the phosphorus-containing compound tri-n-butyl phosphate.
Crosslinker/Anionic Portion of the Gel
1 wt. % , 2.5 wt. %, 4 wt. %, and 6 wt. % of tri-n-butyl phosphate were added to WGA 300W to form a crosslink/anionic portions to form WGA 300WTBP1, WGA 300WTBP2, WGA 300WTBP3, and WGA 300WTBP4. WGA 300W comprises 20 wt. % Sodium Lauryl Sulfate, 20 wt. % isopropyl alcohol (IPA), and 60 wt. % water, an available from Weatherford, Inc. of Houston, Tex.
Gellant/Cationic Portion of the Gel
The gellant or WGA-305 comprises of 81 wt. % high molecular weight polyDadmac 8.77 wt. % , Coco Betaine, and 9.97 wt. % Coco amine oxide, an available from Weatherford, Inc. of Houston, Tex.
Mixing
Using a Waring® blender set at 30% power with a variac, the gellant was initially added to 300 mL of tap water and mixed for 30 seconds to a minute. The four solutions were then each added to the gellant. Gelling occurs within 10-20 seconds.
Loadings
1.2 wt. % gellant or 12 gpt (gallons per thousand gallons) of WGA 305 with 0.35 wt. % or 3.5 gpt (gallons per thousand gallons) WGA 300W, WGA 300WTBP1, WGA 300WTBP2, WGA 300WTBP3, and WGA 300WTBP4. Ratios roughly around 4:1 can be used, although previous testing has shown by dropping the pH, closer to 1:1 ratios can be achieved. Overall, the gelling system is flexible except putting the anionic portion of the gel in excess of the cationic, i.e., portions are adjusted so that the cationic component portion is equal to or greater than the anionic component portion.
Testing:
Viscosity tests were run on a Fann 50 SL Viscometer at ambient temperature, 40 reciprocal seconds' sheer rate, and 400-500 psi of pressure. The tests determined that by adding an optimal loading of tri-n-butyl phosphate to the anionic portion of the gel, much higher viscosity was obtained.
Referring now to
All references cited herein are incorporated by reference. Although the invention has been disclosed with reference to its preferred embodiments, from reading this description those of skill in the art may appreciate changes and modification that may be made which do not depart from the scope and spirit of the invention as described above and claimed hereafter.
This application claims the full benefit of Provisional application Ser. No. 60/339,630 filed Dec. 12, 2001, and also the full benefit as a continuation-in-part of Nonprovisional application 10/228,875 filed Aug. 27, 2002 titled “Polymeric Gel system and Use in hydrocarbon Recovery.”
Number | Name | Date | Kind |
---|---|---|---|
2196042 | Timpson | Apr 1940 | A |
2390153 | Kern | Dec 1945 | A |
3018695 | George | Jan 1962 | A |
3059909 | Wise | Oct 1962 | A |
3163219 | Wyant et al. | Dec 1964 | A |
3292698 | Savins | Dec 1966 | A |
3301723 | Chrisp | Jan 1967 | A |
3301848 | Halleck | Jan 1967 | A |
3303896 | Tillotson et al. | Feb 1967 | A |
3317430 | Priestley et al. | May 1967 | A |
3361213 | Savins | Jan 1968 | A |
3373107 | Rice et al. | Mar 1968 | A |
3406115 | White | Oct 1968 | A |
3565176 | Wittenwyler | Feb 1971 | A |
3578871 | Sakamoto | May 1971 | A |
3604508 | Son, Jr. | Sep 1971 | A |
3760881 | Kiel | Sep 1973 | A |
3849348 | Hewitt | Nov 1974 | A |
3856921 | Shrier et al. | Dec 1974 | A |
3888312 | Tiner et al. | Jun 1975 | A |
3892252 | Poettmann | Jul 1975 | A |
3920599 | Hurlock et al. | Nov 1975 | A |
3933205 | Kiel | Jan 1976 | A |
3937283 | Blauer et al. | Feb 1976 | A |
3954627 | Dreher et al. | May 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
3965982 | Medlin | Jun 1976 | A |
3990978 | Hill | Nov 1976 | A |
4007792 | Meister | Feb 1977 | A |
4049608 | Steckler et al. | Sep 1977 | A |
4052159 | Fuerst et al. | Oct 1977 | A |
4061580 | Jahnke | Dec 1977 | A |
4064091 | Samour et al. | Dec 1977 | A |
4067389 | Savins | Jan 1978 | A |
4071457 | Meister | Jan 1978 | A |
4108782 | Thompson | Aug 1978 | A |
4112050 | Sartori et al. | Sep 1978 | A |
4112051 | Sartori et al. | Sep 1978 | A |
4112052 | Sartori et al. | Sep 1978 | A |
4113631 | Thompson | Sep 1978 | A |
4120356 | Meister | Oct 1978 | A |
4148736 | Meister | Apr 1979 | A |
4192753 | Pye et al. | Mar 1980 | A |
4252465 | Broussard et al. | Feb 1981 | A |
4324669 | Norman et al. | Apr 1982 | A |
4337185 | Wessling et al. | Jun 1982 | A |
4360061 | Canter et al. | Nov 1982 | A |
4378845 | Medlin et al. | Apr 1983 | A |
4409110 | Borchardt et al. | Oct 1983 | A |
4412586 | Sifferman | Nov 1983 | A |
4416297 | Wolfram et al. | Nov 1983 | A |
4418755 | Sifferman | Dec 1983 | A |
4432881 | Evani | Feb 1984 | A |
4438045 | Nieh et al. | Mar 1984 | A |
4458757 | Bock et al. | Jul 1984 | A |
4461716 | Barbarin et al. | Jul 1984 | A |
4465801 | Peiffer et al. | Aug 1984 | A |
4469873 | Nieh | Sep 1984 | A |
4473408 | Purinton, Jr. | Sep 1984 | A |
4479041 | Fenwick et al. | Oct 1984 | A |
4506734 | Nolte | Mar 1985 | A |
4507210 | Lauzon | Mar 1985 | A |
4514309 | Wadhwa | Apr 1985 | A |
4517351 | Szymanski | May 1985 | A |
4534875 | Rose | Aug 1985 | A |
4541935 | Constien et al. | Sep 1985 | A |
4543131 | Purinton, Jr. | Sep 1985 | A |
4549608 | Stowe et al. | Oct 1985 | A |
4561985 | Glass, Jr. | Dec 1985 | A |
4569799 | House | Feb 1986 | A |
4579667 | Echt et al. | Apr 1986 | A |
4579670 | Payne | Apr 1986 | A |
4591447 | Kubala | May 1986 | A |
4604217 | Lukach et al. | Aug 1986 | A |
4615825 | Teot et al. | Oct 1986 | A |
4617132 | Dalrymple | Oct 1986 | A |
4623021 | Stowe | Nov 1986 | A |
4637883 | Patel et al. | Jan 1987 | A |
4646834 | Bannister | Mar 1987 | A |
4653584 | Ball et al. | Mar 1987 | A |
4654266 | Kachnik | Mar 1987 | A |
4657081 | Hodge | Apr 1987 | A |
4660643 | Perkins | Apr 1987 | A |
4662444 | Yang | May 1987 | A |
4681165 | Bannister | Jul 1987 | A |
4683068 | Kucera | Jul 1987 | A |
4686052 | Baranet et al. | Aug 1987 | A |
4695389 | Kubala | Sep 1987 | A |
4702848 | Payne | Oct 1987 | A |
4705113 | Perkins | Nov 1987 | A |
4707306 | Leighton et al. | Nov 1987 | A |
4710586 | Patel et al. | Dec 1987 | A |
4714115 | Uhri | Dec 1987 | A |
4718490 | Uhri | Jan 1988 | A |
4724905 | Uhri | Feb 1988 | A |
4725372 | Teot et al. | Feb 1988 | A |
4735731 | Rose et al. | Apr 1988 | A |
4737296 | Watkins | Apr 1988 | A |
4739834 | Peiffer et al. | Apr 1988 | A |
4741401 | Walles et al. | May 1988 | A |
4743384 | Lu et al. | May 1988 | A |
4748011 | Baize | May 1988 | A |
4767603 | Byrd et al. | Aug 1988 | A |
4770814 | Rose et al. | Sep 1988 | A |
4778865 | Leighton et al. | Oct 1988 | A |
4779680 | Sydansk | Oct 1988 | A |
4790958 | Teot | Dec 1988 | A |
4795574 | Syrinek et al. | Jan 1989 | A |
4796702 | Scherubel | Jan 1989 | A |
4806256 | Rose et al. | Feb 1989 | A |
4817717 | Jennings, Jr. et al. | Apr 1989 | A |
4830106 | Uhri | May 1989 | A |
4831092 | Bock et al. | May 1989 | A |
4834182 | Shu | May 1989 | A |
4846277 | Khalil et al. | Jul 1989 | A |
4848468 | Hazlett et al. | Jul 1989 | A |
4852650 | Jennings, Jr. et al. | Aug 1989 | A |
4852652 | Kuehne | Aug 1989 | A |
4869322 | Vogt, Jr. et al. | Sep 1989 | A |
4880565 | Rose et al. | Nov 1989 | A |
4892147 | Jennings, Jr. et al. | Jan 1990 | A |
4910248 | Peiffer | Mar 1990 | A |
4911241 | Williamson et al. | Mar 1990 | A |
4926940 | Stromswold | May 1990 | A |
4938286 | Jennings, Jr. | Jul 1990 | A |
4948576 | Verdicchio et al. | Aug 1990 | A |
4975482 | Peiffer | Dec 1990 | A |
4978512 | Dillon | Dec 1990 | A |
4988450 | Wingrave et al. | Jan 1991 | A |
5005645 | Jennings, Jr. et al. | Apr 1991 | A |
5024276 | Borchardt | Jun 1991 | A |
5036136 | Peiffer | Jul 1991 | A |
5049383 | Huth et al. | Sep 1991 | A |
5062969 | Holtmyer et al. | Nov 1991 | A |
5067556 | Fudono et al. | Nov 1991 | A |
5074359 | Schmidt | Dec 1991 | A |
5074991 | Weers | Dec 1991 | A |
5082579 | Dawson | Jan 1992 | A |
5093448 | Peiffer | Mar 1992 | A |
5101903 | Llave et al. | Apr 1992 | A |
5105884 | Sydansk | Apr 1992 | A |
5106518 | Cooney et al. | Apr 1992 | A |
5110486 | Manalastas et al. | May 1992 | A |
5125456 | Hutchins et al. | Jun 1992 | A |
H1077 | Peiffer et al. | Jul 1992 | H |
5129457 | Sydansk | Jul 1992 | A |
5137715 | Hoshowski et al. | Aug 1992 | A |
5159979 | Jennings, Jr. | Nov 1992 | A |
5162475 | Tang et al. | Nov 1992 | A |
5169411 | Weers | Dec 1992 | A |
5169441 | Lauzon | Dec 1992 | A |
5196401 | Engelmann et al. | Mar 1993 | A |
5203411 | Dawe et al. | Apr 1993 | A |
5224546 | Smith et al. | Jul 1993 | A |
5228510 | Jennings, Jr. et al. | Jul 1993 | A |
5246072 | Frazier, Jr. et al. | Sep 1993 | A |
5246073 | Sandiford et al. | Sep 1993 | A |
5258137 | Bonekamp et al. | Nov 1993 | A |
5259455 | Nimerick et al. | Nov 1993 | A |
5276248 | Engelhardt et al. | Jan 1994 | A |
5310002 | Blauch et al. | May 1994 | A |
5330005 | Card et al. | Jul 1994 | A |
5342530 | Aften et al. | Aug 1994 | A |
5346011 | Onan et al. | Sep 1994 | A |
5346339 | Himes et al. | Sep 1994 | A |
5347004 | Rivers et al. | Sep 1994 | A |
5362827 | Bock | Nov 1994 | A |
5363919 | Jennings, Jr. | Nov 1994 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5411091 | Jennings, Jr. | May 1995 | A |
5424284 | Patel et al. | Jun 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5462689 | Choy et al. | Oct 1995 | A |
5462721 | Pounds et al. | Oct 1995 | A |
5465792 | Dawson et al. | Nov 1995 | A |
5472049 | Chaffee et al. | Dec 1995 | A |
5482116 | El-Rabaa et al. | Jan 1996 | A |
5483986 | Onan et al. | Jan 1996 | A |
5488083 | Kinsey, III et al. | Jan 1996 | A |
5497831 | Hainey et al. | Mar 1996 | A |
5501275 | Card et al. | Mar 1996 | A |
5529122 | Thach | Jun 1996 | A |
5537700 | Way et al. | Jul 1996 | A |
5547026 | Brannon et al. | Aug 1996 | A |
5551516 | Norman et al. | Sep 1996 | A |
5562866 | Hu et al. | Oct 1996 | A |
5566760 | Harris | Oct 1996 | A |
5573709 | Wells | Nov 1996 | A |
5587356 | Dauderman et al. | Dec 1996 | A |
5591701 | Thomas | Jan 1997 | A |
5597783 | Audibert et al. | Jan 1997 | A |
5607904 | Jarrett | Mar 1997 | A |
5624886 | Dawson et al. | Apr 1997 | A |
5635458 | Lee et al. | Jun 1997 | A |
5637556 | Argillier et al. | Jun 1997 | A |
5649596 | Jones et al. | Jul 1997 | A |
5652200 | Davies et al. | Jul 1997 | A |
5669447 | Walker et al. | Sep 1997 | A |
5670460 | Neely et al. | Sep 1997 | A |
5674377 | Sullivan, III et al. | Oct 1997 | A |
5679877 | Erilli et al. | Oct 1997 | A |
5688478 | Pounds et al. | Nov 1997 | A |
5693837 | Smith et al. | Dec 1997 | A |
5701955 | Frampton | Dec 1997 | A |
5705467 | Choy | Jan 1998 | A |
5706895 | Sydansk | Jan 1998 | A |
5707955 | Gomes et al. | Jan 1998 | A |
5711376 | Sydansk | Jan 1998 | A |
5711396 | Joerg et al. | Jan 1998 | A |
5722490 | Ebinger | Mar 1998 | A |
5728654 | Dobson, Jr. et al. | Mar 1998 | A |
5735349 | Dawson et al. | Apr 1998 | A |
5741757 | Cooper et al. | Apr 1998 | A |
5744024 | Sullivan, III et al. | Apr 1998 | A |
5755286 | Ebinger | May 1998 | A |
5756436 | Royce et al. | May 1998 | A |
5767050 | Adamy et al. | Jun 1998 | A |
5775425 | Weaver et al. | Jul 1998 | A |
5785747 | Vollmer et al. | Jul 1998 | A |
5787986 | Weaver et al. | Aug 1998 | A |
5806597 | Tjon-Joe-Pin et al. | Sep 1998 | A |
5807812 | Smith et al. | Sep 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5846308 | Lauzon | Dec 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5871049 | Weaver et al. | Feb 1999 | A |
5877127 | Card et al. | Mar 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5908814 | Patel et al. | Jun 1999 | A |
5956502 | Manning | Sep 1999 | A |
5964295 | Brown et al. | Oct 1999 | A |
5965502 | Balzer | Oct 1999 | A |
5979555 | Gadberry et al. | Nov 1999 | A |
5979557 | Card et al. | Nov 1999 | A |
5980845 | Cherry | Nov 1999 | A |
6007802 | Coffindaffer et al. | Dec 1999 | A |
6011075 | Parris et al. | Jan 2000 | A |
6016871 | Burts, Jr. | Jan 2000 | A |
6020289 | Dymond | Feb 2000 | A |
6035936 | Whalen | Mar 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6054417 | Graham et al. | Apr 2000 | A |
6059034 | Rickards et al. | May 2000 | A |
6060436 | Snyder et al. | May 2000 | A |
6063737 | Haberman et al. | May 2000 | A |
6068056 | Frenier et al. | May 2000 | A |
6069118 | Hinkel et al. | May 2000 | A |
6076046 | Vasudevan et al. | Jun 2000 | A |
6076278 | Bradley | Jun 2000 | A |
6100222 | Vollmer et al. | Aug 2000 | A |
6103153 | Park et al. | Aug 2000 | A |
6106700 | Collins et al. | Aug 2000 | A |
6110451 | Matz et al. | Aug 2000 | A |
6123394 | Jeffrey | Sep 2000 | A |
6133205 | Jones | Oct 2000 | A |
6140277 | Tibbles et al. | Oct 2000 | A |
6143709 | Carey | Nov 2000 | A |
6147034 | Jones et al. | Nov 2000 | A |
6156805 | Smith et al. | Dec 2000 | A |
6162449 | Maier et al. | Dec 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6172010 | Argillier et al. | Jan 2001 | B1 |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6194354 | Hatchman | Feb 2001 | B1 |
6194356 | Jones et al. | Feb 2001 | B1 |
6221817 | Guskey et al. | Apr 2001 | B1 |
6227295 | Mitchell et al. | May 2001 | B1 |
6228812 | Dawson et al. | May 2001 | B1 |
6230805 | Vercaemer et al. | May 2001 | B1 |
6232274 | Hughes et al. | May 2001 | B1 |
6239183 | Farmer et al. | May 2001 | B1 |
6247543 | Patel et al. | Jun 2001 | B1 |
6248317 | Snyder et al. | Jun 2001 | B1 |
6258859 | Dahayanake et al. | Jul 2001 | B1 |
6267938 | Warrender et al. | Jul 2001 | B1 |
6268314 | Hughes et al. | Jul 2001 | B1 |
6279656 | Sinclair et al. | Aug 2001 | B1 |
6281180 | Tartakovsky et al. | Aug 2001 | B1 |
6283212 | Hinkel et al. | Sep 2001 | B1 |
6284230 | Sako et al. | Sep 2001 | B1 |
6291405 | Lee et al. | Sep 2001 | B1 |
6297203 | Gusky et al. | Oct 2001 | B1 |
6302209 | Thompson et al. | Oct 2001 | B1 |
6305470 | Woie | Oct 2001 | B1 |
6306800 | Samuel et al. | Oct 2001 | B1 |
6315824 | Lauzon | Nov 2001 | B1 |
6330916 | Rickards et al. | Dec 2001 | B1 |
6350721 | Fu et al. | Feb 2002 | B1 |
6359040 | Burdick | Mar 2002 | B1 |
6399546 | Chang et al. | Jun 2002 | B1 |
6399547 | Frenier et al. | Jun 2002 | B1 |
6403537 | Chesser et al. | Jun 2002 | B1 |
6410489 | Zhang et al. | Jun 2002 | B1 |
6417268 | Zhang et al. | Jul 2002 | B1 |
6432885 | Vollmer | Aug 2002 | B1 |
6433075 | Davies et al. | Aug 2002 | B1 |
6446727 | Zemlak et al. | Sep 2002 | B1 |
6454005 | Smith | Sep 2002 | B1 |
6468945 | Zhang | Oct 2002 | B1 |
6474413 | Barbosa et al. | Nov 2002 | B1 |
6482866 | Dahayanake et al. | Nov 2002 | B1 |
6488091 | Weaver et al. | Dec 2002 | B1 |
6489270 | Vollmer et al. | Dec 2002 | B1 |
6491099 | Di Lullo Arias et al. | Dec 2002 | B1 |
6506710 | Hoey et al. | Jan 2003 | B1 |
6508307 | Almaguer | Jan 2003 | B1 |
6509300 | Gupta | Jan 2003 | B1 |
6509301 | Vollmer | Jan 2003 | B1 |
6534449 | Gilmour et al. | Mar 2003 | B1 |
6569814 | Brady et al. | May 2003 | B1 |
6573305 | Thunhorst et al. | Jun 2003 | B1 |
6575242 | Woie | Jun 2003 | B2 |
6579947 | Heitz et al. | Jun 2003 | B2 |
6586371 | Maroy et al. | Jul 2003 | B1 |
6605570 | Miller et al. | Aug 2003 | B2 |
6627183 | Young et al. | Sep 2003 | B1 |
6649155 | Dunlop et al. | Nov 2003 | B1 |
2074047 | Dechant | Jan 2004 | A1 |
6719053 | Thompson | Apr 2004 | B2 |
6725931 | Nguyen et al. | Apr 2004 | B2 |
6756345 | Pakulski et al. | Jun 2004 | B2 |
6767867 | Chatterji et al. | Jul 2004 | B2 |
6793018 | Dawson et al. | Sep 2004 | B2 |
6832650 | Nguyen et al. | Dec 2004 | B2 |
6844296 | Dawson et al. | Jan 2005 | B2 |
6849584 | Geary et al. | Feb 2005 | B2 |
6875728 | Gupta et al. | Apr 2005 | B2 |
6974569 | Dunlop et al. | Dec 2005 | B2 |
7140433 | Gatlin et al. | Nov 2006 | B2 |
7183239 | Smith et al. | Feb 2007 | B2 |
7205262 | Schwartz et al. | Apr 2007 | B2 |
7268100 | Kippie et al. | Sep 2007 | B2 |
7350579 | Gatlin et al. | Apr 2008 | B2 |
7405188 | Chen | Jul 2008 | B2 |
20020002205 | Dahayanake et al. | Jan 2002 | A1 |
20020004464 | Nelson et al. | Jan 2002 | A1 |
20020033260 | Lungwitz et al. | Mar 2002 | A1 |
20020049256 | Bergeron, Jr. | Apr 2002 | A1 |
20020125012 | Dawson et al. | Sep 2002 | A1 |
20020132741 | Chang et al. | Sep 2002 | A1 |
20020147114 | Dobson, Sr. et al. | Oct 2002 | A1 |
20020165308 | Kinniard et al. | Nov 2002 | A1 |
20020169085 | Miller et al. | Nov 2002 | A1 |
20020185278 | Brown et al. | Dec 2002 | A1 |
20020189810 | DiLullo et al. | Dec 2002 | A1 |
20020193257 | Lee et al. | Dec 2002 | A1 |
20030008779 | Chen et al. | Jan 2003 | A1 |
20030008781 | Gupta et al. | Jan 2003 | A1 |
20030008803 | Nilsson et al. | Jan 2003 | A1 |
20030019627 | Qu et al. | Jan 2003 | A1 |
20030040441 | Miller et al. | Feb 2003 | A1 |
20030040546 | Dahayanake et al. | Feb 2003 | A1 |
20030057401 | Craig | Mar 2003 | A1 |
20030073585 | Di Lullo Arias et al. | Apr 2003 | A1 |
20030114315 | Schwartz | Jun 2003 | A1 |
20030119680 | Chang et al. | Jun 2003 | A1 |
20030125215 | Schwartz et al. | Jul 2003 | A1 |
20030130133 | Vollmer | Jul 2003 | A1 |
20030134751 | Lee et al. | Jul 2003 | A1 |
20030139298 | Fu et al. | Jul 2003 | A1 |
20030158269 | Smith et al. | Aug 2003 | A1 |
20030220204 | Baran, Jr. et al. | Nov 2003 | A1 |
20040142825 | Jovancicevic et al. | Jul 2004 | A1 |
20050045330 | Nguyen et al. | Mar 2005 | A1 |
20050092489 | Welton et al. | May 2005 | A1 |
20050137114 | Gatlin et al. | Jun 2005 | A1 |
20050153846 | Gatlin | Jul 2005 | A1 |
20050250666 | Gatlin et al. | Nov 2005 | A1 |
20060194700 | Gatlin et al. | Aug 2006 | A1 |
20070032693 | Gatlin et al. | Feb 2007 | A1 |
20070129257 | Kippie et al. | Jun 2007 | A1 |
20070131425 | Gatlin et al. | Jun 2007 | A1 |
20070173413 | Lukocs et al. | Jul 2007 | A1 |
20070173414 | Wilson, Jr. | Jul 2007 | A1 |
20080039345 | Kippie et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
200221299 | May 2005 | AU |
1185779 | Apr 1985 | CA |
2125513 | Jan 1995 | CA |
2007965 | Feb 1996 | CA |
2257697 | Dec 1998 | CA |
2257699 | Dec 1998 | CA |
2257697 | Jun 2000 | CA |
2257699 | Jun 2000 | CA |
2257699 | Jun 2000 | CA |
2239600 | Jun 2002 | CA |
4027300 | May 1992 | DE |
0 280 341 | Aug 1988 | EP |
0 474 284 | Mar 1992 | EP |
0 474 284 | Mar 1992 | EP |
0 681 016 | Nov 1995 | EP |
0 681 016 | Nov 1995 | EP |
0 681 017 | Nov 1995 | EP |
0730018 | Sep 1996 | EP |
0 835 983 | Apr 1998 | EP |
0 835 983 | Mar 1999 | EP |
0 681 017 | Dec 1999 | EP |
1 042 425 | Nov 2002 | EP |
1 273 756 | Jan 2003 | EP |
1 051 452 | Mar 2003 | EP |
1 323 888 | Jul 2003 | EP |
0 993 334 | Aug 2003 | EP |
775376 | Oct 1954 | GB |
816337 | Jul 1959 | GB |
1073338 | May 2001 | GB |
2397595 | Jul 2004 | GB |
2397596 | Jul 2004 | GB |
10001461 | Jan 1988 | JP |
08151422 | Jun 1996 | JP |
10110115 | Apr 1998 | JP |
2005194148 | Jul 2005 | JP |
WO 9607710 | Mar 1996 | WO |
WO 9726310 | Jul 1997 | WO |
WO 9726311 | Jul 1997 | WO |
WO 9819774 | May 1998 | WO |
WO 9856497 | Dec 1998 | WO |
WO 9932572 | Jul 1999 | WO |
WO 9938931 | Aug 1999 | WO |
WO 9950529 | Oct 1999 | WO |
WO 9950530 | Oct 1999 | WO |
WO 0006102 | Feb 2000 | WO |
WO 0032711 | Jun 2000 | WO |
WO 0039241 | Jul 2000 | WO |
WO 0040667 | Jul 2000 | WO |
WO 0065196 | Nov 2000 | WO |
WO 0078890 | Dec 2000 | WO |
WO 0123703 | Apr 2001 | WO |
WO 0123801 | Apr 2001 | WO |
WO 0129369 | Apr 2001 | WO |
WO 0151767 | Jul 2001 | WO |
WO 0151767 | Jul 2001 | WO |
WO 0163090 | Aug 2001 | WO |
WO 0163090 | Aug 2001 | WO |
WO 0164809 | Sep 2001 | WO |
WO 0177487 | Oct 2001 | WO |
WO 0177487 | Oct 2001 | WO |
WO 0177487 | Oct 2001 | WO |
WO 0181499 | Nov 2001 | WO |
WO 0181499 | Nov 2001 | WO |
WO 0181499 | Nov 2001 | WO |
WO 0183946 | Nov 2001 | WO |
WO 0183946 | Nov 2001 | WO |
WO 0194742 | Dec 2001 | WO |
WO 0211873 | Feb 2002 | WO |
WO 0211874 | Feb 2002 | WO |
WO 0212673 | Feb 2002 | WO |
WO 0224771 | Mar 2002 | WO |
WO 0224771 | Mar 2002 | WO |
WO 0224831 | Mar 2002 | WO |
WO 0225058 | Mar 2002 | WO |
WO 02055843 | Jul 2002 | WO |
WO 02064946 | Aug 2002 | WO |
WO 02064947 | Aug 2002 | WO |
WO 02066790 | Aug 2002 | WO |
WO 02070862 | Sep 2002 | WO |
WO 02088520 | Nov 2002 | WO |
WO 03015523 | Feb 2003 | WO |
WO 03018695 | Mar 2003 | WO |
WO 03048267 | Jun 2003 | WO |
WO 03050387 | Jun 2003 | WO |
WO 03054352 | Jul 2003 | WO |
WO 03056130 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080251252 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60339630 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10228875 | Aug 2002 | US |
Child | 11760581 | US |