The present invention generally relates to the production of hollow articles using the rotational molding process. More particularly, the present invention relates to the additives described hereinbelow and their use in such processes to improve molding cycle time (i.e., reducing curing time) while maintaining process stability over a broader range of temperatures.
Rotational molding, or rotomolding, is a high-temperature, low-pressure forming process that uses heat and biaxial rotation to produce hollow, one-piece parts, typically made of plastic. Such plastic hollow parts typically made by a rotomolding process include, for example, gasoline containers, garbage cans, agricultural storage vessels, septic tanks, toys, and sporting goods such as kayaks.
The process is undertaken by loading a charge of finely divided plastic resin into the mold “shell”, then rotating the mold (usually, on two axes) while heating it to a temperature above the melting point of the plastic resin. The melted plastic flows through the mold cavity under the forces caused by the rotation of the apparatus. The rotation continues for sufficient time to allow the molten plastic to cover the surface of the mold. The mold is then cooled to permit the plastic to freeze into a solid. The final stage of the molding cycle is the removal of the part from the rotomolding machine.
The time required to complete the molding cycle is a function of the bulk properties of the plastic which is being molded. For example, it is recognized by those skilled in the art that the plastic resin which is charged into the mold is preferably finely divided (i.e. ground into powder) and has a high bulk density and a narrow particle size distribution to facilitate the “free flow” of the resin.
It will also be appreciated that the physical properties of the rotomolded part are influenced by the use of a proper molding cycle time with “undercooked” parts having poor strength properties and “overcooked” parts suffering from poor appearance (a “burnt” color) and/or a deterioration of strength properties. It is desirable to have a short molding cycle (so as to improve the productivity of the expensive rotomolding machinery) and a broad processing window. Thus, the rotomolding composition ideally provides “properly cooked” parts in a short period of time but does not become “overcooked” for an extended period of time.
Therefore, the length of time the resin-filled mold spends in the oven is critical, because if left too long the polymer will yellow and/or degrade, thereby negatively affecting the mechanical and/or physical properties of the molded article (e.g., reducing impact strength). If the time the resin filled mold spends in the oven is too short, the sintering and laydown of the molten polymer will be incomplete, thereby negatively affecting the final physical and/or mechanical properties of the molded article. Thus, there is only a narrow temperature and/or time range for achieving the desired mechanical and/or physical properties of the molded article (i.e., processing window). Accordingly, it would be advantageous to widen/broaden this processing window so that parts that have been processed with longer oven cycle times will still exhibit optimal mechanical and/or physical properties.
Various additives are known and have been used in the rotomolding process to stabilize the polyolefin material and effectively reduce the production of microstructural defects during the heating cycle of the rotomolding process, which negatively affect the molded article. Some of these additives are also known to affect the cycle time of the rotomolding process. See, e.g., Botkin et al., 2004 “An additive approach to cycle time reduction in rotational molding,” Society of Plastics Engineers Rotomolding Conference, Session 2. For example, the use of stabilizer combinations of phosphites or phosphonites with sterically hindered phenols in polyolefins is generally known. Such phenolic/phosphite or phosphonite blends (e.g., CYANOX® 2777 antioxidant (available from Cytec Industries Inc., Woodland Park N.J.)) will stabilize the resin in the oven for a longer time (resulting in a broader process window), but requires a longer time in the oven to achieve maximum physical properties (resulting in a longer cycle time). Other stabilizer compositions (e.g., hydroxylamine derivatives blended with phosphites and/or phosphonites and HALS), allow for faster polymerization and cure times of the resins, but the processing window remains very narrow. For example, improvements to widen the processing window by using sterically hindered amines are disclosed in US Patent Application Publication No. 2009/0085252.
Accordingly, the rotational molding of polyolefin resins requires further improvements in cycle time reduction. A stabilizer composition that effectively reduces the time for sintering and laydown of the polymer melt (with reduced oven cycle time), while maintaining a broad processing window, would be a useful advance in the field, and would find rapid acceptance in the rotational molding industry. Shorter cycle times would lead to greater production yield, higher production efficiency, and, thus, lower energy uses. Formulations exhibiting a broadened process window would be easier to fabricate, without concerns about overcuring and the potential for deterioration of the mechanical properties of the resulting part. Further, formulations exhibiting both a broadened process window and shorter cycle time would enable molders to fabricate parts of different thickness at the same time, thereby further enhancing productivity.
The discovery described in detail hereinbelow include stabilizer compositions and processes for using same for reducing cycle time without compromising the processing window in rotational molding processes related to polyolefin articles. These stabilizer compositions and processes effectively reduce the time in the oven needed to reach optimal physical and/or mechanical properties, thereby reducing cycle times of the rotomolding process and consequently increasing production yield and production efficiency, and lowering energy requirements.
Accordingly, in one aspect of the disclosure, a stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, comprises stabilizing amounts of:
(i) at least one chroman-based compound according to Formula (V):
wherein
R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl;
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O;
In another aspect of the disclosure, a polymeric hollow article is made by a process comprising: a) filling a mold with a polyolefin and a stabilizing amount of the stabilizer composition; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting product, thereby producing the polymeric hollow article.
In another aspect of the disclosure, the polyolefin, vitamin E acetate, phosphite or phosphonite compound, and at least one basic co-additive, and amounts of the vitamin E acetate, phosphite or phosphonite compound, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS): a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval; a higher MFE of the polymeric article is retained over a longer heating time; or a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
These and other objects, features and advantages will become apparent from the following detailed description taken in conjunction with the accompanying Figures and Examples.
As summarized above, the compositions and processes using same that have now been discovered and disclosed herein for the first time are surprisingly useful for achieving optimal physical and/or mechanical properties of a rotomolded hollow article in a shorter period of time in the oven (i.e., cycle time) compared to those rotomolded articles made with current commercially available polymer stabilizer packages. Furthermore, the processes and compositions disclosed herein additionally (and surprisingly) provide a wider/broader processing window within which the desired final properties of the rotomolded article can be obtained before the physical and/or mechanical properties are negatively affected.
As employed above and throughout the disclosure, the following terms are provided to assist the reader. Unless otherwise defined, all terms of art, notations and other scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the chemical arts. As used herein and in the appended claims, the singular forms include plural referents unless the context clearly dictates otherwise.
Throughout this specification the terms and substituents retain their definitions. A comprehensive list of abbreviations utilized by organic chemists (i.e. persons of ordinary skill in the art) appears in the first issue of each volume of the Journal of Organic Chemistry. The list, which is typically presented in a table entitled “Standard List of Abbreviations” is incorporated herein by reference.
The term “hydrocarbyl” is a generic term encompassing aliphatic, alicyclic and aromatic groups having an all-carbon backbone and consisting of carbon and hydrogen atoms. In certain cases, as defined herein, one or more of the carbon atoms making up the carbon backbone may be replaced or interrupted by a specified atom or group of atoms, such as by one or more heteroatom of N, O, and/or S. Examples of hydrocarbyl groups include alkyl, cycloalkyl, cycloalkenyl, carbocyclic aryl, alkenyl, alkynyl, alkylcycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, and carbocyclic aralkyl, alkaryl, aralkenyl and aralkynyl groups. Such hydrocarbyl groups can also be optionally substituted by one or more substituents as defined herein. Accordingly, the chemical groups or moieties discussed in the specification and claims should be understood to include the substituted or unsubstituted forms. The examples and preferences expressed below also apply to each of the hydrocarbyl substituent groups or hydrocarbyl-containing substituent groups referred to in the various definitions of substituents for compounds of the formulas described herein unless the context indicates otherwise.
Preferred non-aromatic hydrocarbyl groups are saturated groups such as alkyl and cycloalkyl groups. Generally, and by way of example, the hydrocarbyl groups can have up to fifty carbon atoms, unless the context requires otherwise. Hydrocarbyl groups with from 1 to 30 carbon atoms are preferred. Within the sub-set of hydrocarbyl groups having 1 to 30 carbon atoms, particular examples are C1-20 hydrocarbyl groups, such as C1-12 hydrocarbyl groups (e.g. C1-6 hydrocarbyl groups or C1-4 hydrocarbyl groups), specific examples being any individual value or combination of values selected from C1 through C30 hydrocarbyl groups.
Alkyl is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof. Lower alkyl refers to alkyl groups of from 1 to 6 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like. Preferred alkyl groups are those of C30 or below.
Alkoxy or alkoxyalkyl refers to groups of from 1 to 20 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like.
Acyl refers to formyl and to groups of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. Examples include acetyl, benzoyl, propionyl, isobutyryl, t-butoxycarbonyl, benzyloxycarbonyl and the like. Lower-acyl refers to groups containing one to six carbons.
References to “carbocyclic” or “cycloalkyl” groups as used herein shall, unless the context indicates otherwise, include both aromatic and non-aromatic ring systems. Thus, for example, the term includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated carbocyclic ring systems. In general, such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members. Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members. Examples of bicyclic groups are those containing 8, 9, 10, 11 and 12 ring members, and more usually 9 or 10 ring members. Examples of non-aromatic carbocycle/cycloalkyl groups include c-propyl, c-butyl, c-pentyl, c-hexyl, and the like. Examples of C7 to C10 polycyclic hydrocarbons include ring systems such as norbornyl and adamantyl.
Aryl (carbocyclic aryl) refers to a 5- or 6-membered aromatic carbocycle ring containing; a bicyclic 9- or 10-membered aromatic ring system; or a tricyclic 13- or 14-membered aromatic ring system. The aromatic 6- to 14-membered carbocyclic rings include, e.g., substituted or unsubstituted phenyl groups, benzene, naphthalene, indane, tetralin, and fluorene.
Substituted hydrocarbyl, alkyl, aryl, cycloalkyl, alkoxy, etc. refer to the specific substituent wherein up to three H atoms in each residue are replaced with alkyl, halogen, haloalkyl, hydroxy, alkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, acylamino, amidino, phenyl, benzyl, halobenzyl, heteroaryl, phenoxy, benzyloxy, heteroaryloxy, benzoyl, halobenzoyl, or loweralkylhydroxy.
The term “halogen” means fluorine, chlorine, bromine or iodine.
As used herein, the term “chroman-based compound” refers to those compounds having a functional chroman group as part of the compound. In certain embodiments the chroman-based compound will be substituted. In other embodiments, the chroman-based compound can include chromanones. Coumarin and tocotrienols are specific examples of chroman-based compounds.
The terms “cycle time” or “molding cycle” as used herein are given their ordinary meaning as commonly understood by those of skill in the rotomolding arts and refer to the time from one point in the cycle to the corresponding point in the next repeated sequence (i.e., the time required to produce a plastic part in a molding operation as measured from a point of one operation to the same point of the first repeat of the operation).
The terms “optimal mechanical property” or “optimal physical property” as used herein refer to rotomolded parts having the most desirable: impact strength, coalescence or scintering of polymer particles, and general appearance such as color.
All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.
Rotational molding technology is well known and described in the literature. Many aspects of the rotational molding process are described, for example, by R. J. Crawford and J. L. Throne in Rotational Molding Technology, Plastics Design Library, William Andrew Publishing, 2001. The rotomolded articles described herein are made from stabilized polymer compositions according to the invention using rotational molding techniques generally accepted by those skilled in the art as being representative of commercial rotational molding processes. In general, these rotational molding techniques involve the use of a rotational mold and an oven. A polymer composition (e.g., a stabilized polymer composition including a stabilizer composition and a polymer composition as described herein) is placed in a mold possessing a predetermined shape. The mold is heated within the oven at a predetermined rate to a peak temperature. During heating, the resin melts and the mold is rotated in two or three dimensions to ensure that the melted resin evenly coats the interior surfaces of the mold. Optionally, the melted resin may be cured for a predetermined time. After heating is complete, the mold is removed from the oven and cooled (with the mold optionally being in rotation). Once cool, the formed plastic part is removed from the mold.
Surprisingly, it has now been found that when at least one chroman-based compound is added to the rotomolding resin formulation the time at which it takes to reach peak internal air temperature (PIAT) is reduced and a significantly broader processing window towards higher temperatures is achieved without adversely affecting the physical and/or mechanical properties of the molded article.
Consequently, in one aspect the invention provides a process for reducing cycle time while maintaining an enlarged process window in a rotational molding process for producing a polymeric hollow article by subjecting a polymer composition and a polymer-stabilizing amount of a stabilizer composition to a rotational molding process, wherein the stabilizer composition includes at least one chroman-based compound according to Formula V as described herein.
In certain embodiments, the cycle time of the process will be reduced by at least 4%, at least 5%, at least 10%, at least 15%, or at least 20%, at least 25%, at least 40%, or at least 50% as compared to a process that does not include at least one chroman-based compound in the resin formulation.
In another aspect, the invention provides a process for producing a polymeric hollow article by a) filling a mold with a polymer composition and a polymer-stabilizing amount of a stabilizer composition, wherein the stabilizer composition includes at least one chroman-based compound according to Formula V as described herein; b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold; c) cooling the mold; and d) opening the mold to remove the resulting product, thereby producing a polymeric hollow article.
During the rotomolding process, the temperature of the oven can reach from 70° C. to 400° C., preferably from 280° C. to 400° C., and more preferably from 310° C. to 400° C.
The stabilized polymer compositions suitable for use with the aforementioned processes are further described below.
A stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, comprises a stabilizing amount of:
(i) at least one chroman-based compound according to Formula (V):
wherein
R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl;
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O;
(ii) at least one phosphite or phosphonite; and
(iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids.
The stabilizer compositions according to the invention and suitable for use with the polymer compositions for the rotomolding processes as described herein include at least one chroman-based compound according to Formula (V):
wherein
R21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl; and
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O.
In certain embodiments, R21 is present as acyl and methyl.
In certain embodiments, R23 is a C1-C18 hydrocarbyl.
In some embodiments, the chroman-based compound according to Formula (V) is a tocotrienol, including, but not limited to, α-tocotrienol; β-tocotrienol; γ-tocotrienol, and 6-tocotrienol. In other embodiments, the chroman-based compound is a tocopherol including, but not limited to, α-tocopherol, 0-tocopherol, γ-tocopherol, and 6-tocopherol.
In some embodiments, the chroman-based compound is vitamin E acetate according to Formula (Va):
wherein R21 is —OC(O)CH3.
In certain embodiments, the stabilizer composition includes two or more chroman-based compounds according to Formula (V).
The chroman-based compound is present from 0.001% to 5.0% by weight of the total weight of a stabilized polymer composition, preferably from 0.01% to 2.0% by weight of the total weight of the stabilized polymer composition, and more preferably from 0.01% to 1.0% by weight of the total weight of the stabilized polymer composition. In certain embodiments, the chroman-based compound is present at about 0.05% by weight of the total weight of the stabilized polymer composition. In some embodiments the polymer is a polyolefin and the stabilized polymer composition is a polyolefin.
In certain embodiments, the stabilizer composition can further include at least one compound chosen from the group of organic phosphites or phosphonites. In some embodiments the organic phosphite or phosphonite compound includes at least one organic phosphite or phosphonite chosen from:
(i) a compound according to Formulas (1)-(7):
in which the indices are integral and
n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; y is 1, 2 or 3; and z is 1 to 6; A1, if n is 2, is C2-C18 alkylene; C2-C12 alkylene interrupted by oxygen, sulfur or —NR4—; a radical of the formula
or phenylene;
A1, if n or q is 3, is a trivalent radical of the formula —CrH2r−1—; wherein r is an integer from 4 to 12;
A1, if n is 4, is
B is a direct bond, —CH2—, —CHR4—, —CR1R4—, sulfur, C5-C7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C1-C4 alkyl radicals in position 3, 4 and/or 5;
D1, if p is 1, is C1-C4 alkyl and, if p is 2, is —CH2OCH2—;
D2 is C1-C4 alkyl;
E, if y is 1, is C1-C18 alkyl, —OR1 or halogen;
E, if y is 2, is —O-A2-O—, wherein A2 is as defined for A1 when n is 2;
E, if y is 3, is a radical of the formula R4C(CH2O—)3 or N(CH2CH2O—)3;
Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
R1, R2 and R3 independently of one another are C1-C18 alkyl which is unsubstituted or substituted by halogen, —COOR4, —CN or —CONR4R4; C2-C18 alkyl interrupted by oxygen, sulfur or —NR4—; C7-C9 phenylalkyl; C5-C12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C7-C9 phenylalkyl; or a radical of the formula
in which m is an integer from the range 3 to 6;
R4 is hydrogen, C1-C5 alkyl, C5-C12 cycloalkyl or C7-C9 phenylalkyl;
R5 and R6 independently of one another are hydrogen, C1-C5 alkyl or C5-C6 cycloalkyl;
R7 and R8, if q is 2, independently of one another are C1-C4 alkyl or together are a 2,3-dehydropentamethylene radical; and
R7 and R8, if q is 3, are methyl;
each instance of R14 is independently hydrogen, C1-C9 alkyl or cyclohexyl;
each instance of R15 is independently hydrogen or methyl;
X and Y are each a direct bond or oxygen;
Z is a direct bond, methylene, —C(R16)2— or sulfur; and
R16 is C1-C8 alkyl;
(ii) a trisarylphosphite according to Formula (8):
wherein R17 is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C1-C20 alkyl, C3-C20 cycloalkyl, C4-C20 alkyl cycloalkyl, C6-C10 aryl or C7-C20 alkylaryl; or
(iii) mixtures of (i) and (ii).
In some embodiments, the following organic phosphites or phosphonites are preferred: triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-t-butylphenol phosphite; bis-(2,6-di-t-butyl-4-methlphenyl) pentaerythritol diphosphite; 2-butyl-2-ethyl-1,3-propanediol 2,4-di-cumylphenol phosphite; 2-butyl-2-ethyl-1,3-propanediol 4-methyl-2,6-di-t-butylphenol phosphite or bis-(2,4,6-tri-t-butyl-phenyl) pentaerythritol diphosphite.
The following organic phosphites and phosphonites are particularly suitable for use in the rotomolding processes described herein: tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS®168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228); and tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
The organic phosphites or phosphonites can be present in an amount from 0.01% to 10% by weight based on the weight of the polymer material to be stabilized. Preferably, the amount of organic phosphite or phosphonite is available from 0.05% to 5%, and more preferably from 0.1% to 3% by weight based on the weight of the polymer material to be stabilized.
In certain embodiments, the stabilizer composition can further include at least one hindered phenol compound. Suitable hindered phenols for use with the rotomolding processes described herein include, but are not limited to, those having a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
wherein “” indicates the point of attachment (via a carbon bond) of the molecular fragment to a parent compound, and wherein R18 of Formula (IVa), (IVb), and (IVc) is independently chosen from hydrogen or a C1-4 hydrocarbyl; R19 and R20 of Formula (IVa), (IVb), and (IVc) are the same or different and are independently chosen from hydrogen or a C1-C20 hydrocarbyl; and R37 of Formula (IVa), (IVb), and (IVc) is independently chosen from a C1-C12 hydrocarbyl. In some embodiments, R18 and R37 are independently chosen from methyl or t-butyl.
The following compounds exemplify some hindered phenols that are suitable for use in the compositions and processes disclosed herein: (1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione; 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (IRGANOX® 3114); 1,1,3-tris(2′-methyl-4′-hydroxy-5′-t-butylphenyl)butane; triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate]; 4,4′-thiobis(2-t-butyl-5-methylphenol); 2,2′-thiodiethylene bis[3-(3-t-butyl-4-hydroxyl-5-methylphenyl)propionate]; octadecyl 3-(3′-t-butyl-4′-hydroxy-5′-methylphenyl)propionate; tetrakismethylene(3-t-butyl-4-hydroxy-5-methylhydrocinnamate)methane; N,N′-hexamethylene bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionamide]; di(4-t-butyl-3-hydroxy-2,6-dimethyl benzyl) thiodipropionate; octadecyl 3,5-di-t-butyl-4-hydroxyhydrocinnamate; or mixtures thereof.
Other phenols also suitable for use with processes and compositions of the invention are known to those of skill in the art and include, for example:
2,6-di-tert-butyl-4-methylphenol; 2-tert-butyl-4,6-dimethylphenol; 2,6-di-tert-butyl-4-ethylphenol; 2,6-di-tert-butyl-4-n-butylphenol; 2,6-di-tert-butyl-4 isobutylphenol; 2,6-dicyclopentyl-4-methylphenol; 2-(α-methylcyclohexyl)-4,6 dimethylphenol; 2,6-di-octadecyl-4-methylphenol; 2,4,6,-tricyclohexyphenol; and 2,6-di-tert-butyl-4-methoxymethylphenol;
2,2′-methylene-bis-(6-tert-butyl-4-methylphenol) (CYANOX® 2246); 2,2′-methylene-bis-(6-tert-butyl-4-ethylphenol) (CYANOX® 425); 2,2′-methylene-bis-(4-methyl-6-(α-methylcyclohexyl)phenol); 2,2′-methylene-bis-(4-methyl-6-cyclohexylphenol); 2,2′-methylene-bis-(6-nonyl-4-methylphenol); 2,2′-methylene-bis-(6-nonyl-4methylphenol); 2,2′-methylene-bis-(6-(α-methylbenzyl)-4-nonylphenol); 2,2′-methylene-bis-(6-(α,α-dimethylbenzyl)-4-nonyl-phenol); 2,2′-methylene-bis-(4,6-di-tert-butylphenol); 2,2′-ethylidene-bis-(6-tert-butyl-4-isobutylphenol); 4,4′methylene-bis-(2,6-di-tert-butylphenol); 4,4′-methylene-bis-(6-tert-butyl-2-methylphenol); 1,1-bis-(5-tert-butyl-4-hydroxy-2-methylphenol)butane 2,6-di-(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol; 1,1,3-tris-(5-tert-butyl-4-hydroxy-2-methylphenyl)butane; 1,1-bis-(5-tert-butyl-4-hydroxy2-methylphenyl)-3-dodecyl-mercaptobutane; ethyleneglycol-bis-(3,3,-bis-(3′-tert-butyl-4′-hydroxyphenyl)-butyrate)-di-(3-tert-butyl-4-hydroxy-5-methylpenyl)-dicyclopentadiene; di-(2-(3′-tert-butyl-2′hydroxy-5′-methylbenzyl)-6-tert-butyl-4-methylpheny-1)terephthalate; and other phenolics such as monoacrylate esters of bisphenols such as ethylidiene bis-2,4-di-t-butylphenol monoacrylate ester;
Hydroquinones, such as 2,6-di-tert-butyl-4-methoxyphenol; 2,5-di-tert-butyihydroquinone; 2,5-di-tert-amyl-hydroquinone; and 2,6-diphenyl-4-octadecyloxyphenol; and
Thiodiphenyl ethers such as 2,2′-thio-bis-(6-tert-butyl-4-methylphenol); 2,2′-thio-bis-(4-octylphenol); 4,4′-thio-bis-(6-tert-butyl-3-methylphenol); and 4,4′-thio-bis-(6-tert-butyl-2-methylphenol).
A stabilizer composition including at least one chroman-based compound according to Formula V is suitable for stabilizing polyolefin hollow articles which are prepared by the rotomolding process. Examples of polyolefins suitable for such use with the stabilizer composition according to the invention include at least the following:
(A) Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE);
(B) Polyolefins, i.e. the polymers of monoolefins exemplified in (A), preferably polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:
i) radical polymerisation (normally under high pressure and at elevated temperature); or
ii) catalytic polymerisation using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerisation medium. The catalysts can be used by themselves in the polymerisation or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups Ia, IIa and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler(-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
(C) Mixtures of the polymers mentioned under (A), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).
(D) Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in (A) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
In some embodiments, the polyolefin is chosen from:
(i) polymers of monoolefins chosen from polypropylene, polyisobutylene, polybut-1-ene, or poly-4-methylpent-1-ene;
(ii) polymers of diolefins chosen from polyisoprene or polybutadiene;
(iii) polymers of cycloolefins chosen from cyclopentene or norbornene;
(iv) polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
(v) copolymers of the monoolefins, diolefins, or cycloolefins of any of (i) to (iv); or
vi) mixtures of any of (i) to (v).
In some embodiments, the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
The stabilized polymer compositions according to the invention may further include one or more co-stabilizers and/or additives that include, but are not limited to, hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
Suitable hindered amine light stabilizers for use with the processes and stabilized polymer compositions according to the invention include, for example, compounds having a molecular fragment according to Formula (VI):
wherein R31 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy; R38 is chosen from hydrogen or C1-C8 hydrocarbyl; and each of R29, R30, R32, and R33 is independently chosen from C1-C20 hydrocarbyl; or R29 and R30 and/or R32 and R33 taken together with the carbon to which they are attached form a C5-C1O cycloalkyl; or Formula (VIa)
wherein
each of G1-G4 is independently a C1-C20 hydrocarbyl.
Hindered amine light stabilizers particularly suitable for use with the present invention include, but are not limited to, bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl dodecanate; 1,2,2,6,6-pentamethylpiperidin-4-yl stearate; 1,2,2,6,6-pentamethylpiperidin-4-yl dodecanate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; a condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; a condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; a condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; oxo-piperanzinyl-triazines; or a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; N-alkoxy hindered amine light stabilizers including, but not limited to, tetrakis(2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate (MARK® LA-57;); 1,2,3,4-butanetetracarboxylic acid, tetrakis(1,2,2,6,6-pentamethyl-4-piperidinyl)ester (MARK® LA-52); 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperdinyl tridecyl ester (MARK® LA-62); 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester (MARK® LA-67); 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol,1,2,2,6,6-pentamethyl-4-piperdinyl ester (MARK® LA-63); 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperdinyl ester (MARK® LA-68); bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate (MARK® LA-81; aka STAB® LA-81 available from Adeka Palmarole, Saint-Louis, France); TINUVIN® 123; TINUVIN® NOR 371; TINUVIN® XT-850/XT-855; FLAMESTAB® NOR 116; or those disclosed in EP 0 889 085;
hydroxyl-substituted N-alkoxy HALS including, but not limited to, those disclosed in U.S. Pat. No. 6,271,377 such as 1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethyl-4-piperdinol; 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine; 1-(4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-octadecanoyloxy-2-methylpropane; 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol; or a reaction product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol and dimethylsuccinate;
any of the tetramethylpiperidyl groups disclosed in WO 2007/104689 including, but not limited to, 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one (HOSTAVIN® N20); the ester of 2,2,6,6-tetramethyl-4-piperidinol with higher fatty acids (CYASORB® 3853); 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione (SANDUVOR® 3055); and their wax reaction products such as HALS NOW (LS X—N—O—W1); or
piperazinone compounds and derivatives thereof disclosed in U.S. Pat. Nos. 6,843,939; 7,109,259; 4,240,961; 4,480,092; 4,629,752; 4,639,479; 5,013,836; 5,310,771; or WO 88/08863.
The hindered amine light stabilizers include, but are not limited to, for example, 1H-Pyrrole-2,5-dione, 1-octadecyl-, polymer with (1-methylethenyl)benzene and 1-(2,2,6,6-tetramethyl-4-piperidinyl)-1H-pyrrole-2,5-dione; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,5,5-tetramethyl-; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl-; the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; the condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; the condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 2-[(2-hydroxyethyl)amino]-4,6-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino-1,3,5-triazine; propanedioic acid, [(4-methoxyphenyl)-methylene]-bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, 1-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-2,2,6,6-tetramethyl-4-piperidinyl ester; N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N′-dodecyloxalamide; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl): 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl); the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinyl tridecyl ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; tetrakis(1,2,2,6,6-pentamethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; mixture of 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-dodecylester and 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-tetradecylester; 1H,4H,5H,8H-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-4,8-dione, hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidinyl)-; polymethyl[propyl-3-oxy(2′,2′,6′,6′-tetramethyl-4,4′-piperidinyl)]siloxane; polymethyl[propyl-3-oxy(1′,2′,2′,6′,6′-pentamethyl-4,4′-piperidinyl)]siloxane; copolymer of methylmethacrylate with ethyl acrylate and 2,2,6,6-tetramethylpiperidin-4-yl acrylate; copolymer of mixed C20 to C24 alpha-olefins and (2,2,6,6-tetramethylpiperidin-4-yl)succinimide; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 1,2,2,6,6-pentamethyl-4-piperidinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperidinyl ester copolymer; 1,3-benzenedicarboxamide, N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl; 1,1′-(1,10-dioxo-1,10-decanediyl)-bis(hexahydro-2,2,4,4,6-pentamethylpyrimidine; ethane diamide, N-(1-acetyl-2,2,6,6-tetramethylpiperidinyl)-N′-dodecyl; formamide, N,N′-1,6-hexanediylbis[N-(2,2,6,6-tetramethyl-4-piperidinyl); D-glucitol, 1,3:2,4-bis-O-(2,2,6,6-tetramethyl-4-piperidinylidene)-; 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane; propanamide, 2-methyl-N-(2,2,6,6-tetramethyl-4-piperidinyl)-2-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; 7-oxa-3,20-diazadispiro[5.1.11.2]heneicosane-20-propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-N′-aminooxalamide; propanamide, N-(2,2,6,6-tetramethyl-4-piperidinyl)-3-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,1′-(1,2-ethanediyl)bis(3,3,5,5-tetramethylpiperazinone); 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl) and 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl); N1-(β-hydroxyethyl)3,3-pentamethylene-5,5-dimethylpiperazin-2-one; N1-tert-octyl-3,3,5,5-tetramethyl-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-hexamethylene-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-dimethylpiperazin-2-one; trans-1,2-cyclohexane-bis-(N1-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-(N1-3,3,5,5-dispiropentamethylene-2-piperazinone); N1-isopropyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-2-piperazinone; N1-isopropyl-1,4-diazadispiro-3,3-pentamethylene-5,5-tetramethylene-2-piperazinone; N1-isopropyl-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-N1-(dimethyl-3,3-pentamethylene-2-piperazinone); N1-octyl-5,5-dimethyl-3,3-pentamethylene-1,4-diazepin-2-one; and N1-octyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-1,5-diazepin-2-one. Other sterically hindered amines suitable for use with the invention include, for example, any of those disclosed in EP 1 308 084.
The hindered amine light stabilizer can be present in an amount from 0.01% to 10% by weight based on the total weight of the polymer material to be stabilized (polyolefin). Preferably, the amount of hindered amine is available from 0.05% to 5%, and more preferably from 0.1% to 3% by weight based on the total weight of the polymer material to be stabilized.
The light stabilizer can be an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof. In particular, suitable light stabilizers can include one or more of the following:
2-(2′-Hydroxyphenyl)benzotriazoles, for example 2-(2′-hydroxy-5′-methylphenyl)-benzotriazole; 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(5′-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(2′-hydroxy-5′-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole; 2-(3′,5′-di-tert-butyl-2′-hydroxyphenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-methylphenyl)-5-chloro-benzotriazole; 2-(3′-sec-butyl-5′-tert-butyl-2′-hydroxyphenyl)benzotriazole; 2-(2′-hydroxy-4′-octyloxyphenyl)benzotriazole; 2-(3′,5′-di-tert-amyl-2′-hydroxyphenyl)benzotriazole; 2-(3′,5′-bis-(α,α-dimethylbenzyl)-2′-hydroxyphenyl)benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-octyloxycarbonylethyl)phenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-5′-[2-(2-ethylhexyloxy)-carbonylethyl]-2′-hydroxyphenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-methoxycarbonylethyl)phenyl)-5-chloro-benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-methoxycarbonylethyl)phenyl)benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-octyloxycarbonylethyl)phenyl)benzotriazole; 2-(3′-tert-butyl-5′-[2-(2-ethylhexyloxy)carbonyl]-2′-hydroxyphenyl)benzotriazole; 2-(3′-dodecyl-2′-hydroxy-5′-methylphenyl)benzotriazole; 2-(3′-tert-butyl-2′-hydroxy-5′-(2-isooctyloxycarbonylethyl)phenylbenzotriazole; 2,2′-methylene-bis[4-(1,1,3,3-tetramethylbutyl)-6-benzotriazole-2-ylphenol]; the transesterification product of 2-[3′-tert-butyl-5′-(2-methoxycarbonylethyl)-2′-hydroxyphenyl]-2H-benzotriazole with polyethylene glycol 300; [R—CH2CH2—COO—CH2CH2]2 where R=3′-tert-butyl-4′-hydroxy-5′-2H-benzotriazol-2-ylphenyl; 2-[2′-hydroxy-3′-(α,α-dimethylbenzyl)-5′-(1,1,3,3-tetramethylbutyl)-phenyl]benzotriazole; or 2-[2′-hydroxy-3′-(1,1,3,3-tetramethylbutyl)-5′-(α,α-dimethylbenzyl)-phenyl]benzotriazole;
2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, or 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives;
Esters of substituted and unsubstituted benzoic acids, as for example 4-tertbutyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate;
Nickel compounds, for example nickel complexes of 2,2′-thio-bis-[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenyl undecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands; and
2-(2′-hydroxyphenyl)-1,3,5-triazine compounds according to Formula (VII):
wherein each of R34 and R35 is independently chosen from optionally substituted C6-C10 aryl, C1-C10 hydrocarbyl-substituted amino, C1-C10 acyl or C1-C10 alkoxyl; and wherein R36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C1-C12 hydrocarbyl, C1-C12 alkoxyl, C1-C12 alkoxyester, or C1-C12 acyl. Such 2-(2-hydroxyphenyl)-1,3,5-triazines include, but are not limited to, 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-[(octyloxycarbonyl)ethylideneoxy]phenyl]-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-(2-ethylhexyloxy)phenyl]-s-triazine; 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4(-3-benzyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-nonyloxy-2-hydroxypropyloxy)-5-α-cumylphenyl]-s-triazine; methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine}; methylene bridged dimer mixture bridged in the 3:5′, 5:5′ and 3:3′ positions in a 5:4:1 ratio; 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonyliso-propylideneoxy-phenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine; 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine; mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodecyloxy-2-hydroxypropoxy)phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridecyloxy-2-hydroxypropoxy)phenyl)-s-triazine (TINUVIN® 400 available from BASF Corp.); 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine; 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine; 2-(4,6-Diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol (ADK STAB® LA-46 available from Adeka Palmarole, Saint-Louis, France); 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine; propanoic acid, 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris[(3-hydroxy-4,1-phenylene)oxy]]tris-1,1′,1″-trioctyl ester (TINUVIN® 477 available from BASF Corp.); propanoic acid, 2-[4-[4,6-bis([1,1′-biphenyl]-4-yl)-1,3,5-triazin-2yl]-3-hydroxyphenoxyl]-isooctyl ester (TINUVIN® 479 available from BASF Corp.); or mixtures thereof.
In certain embodiments, the stabilized polymer compositions according to the invention include a blend of at least one hindered amine light stabilizer and at least one ultraviolet light absorber.
Further embodiments of the stabilized polymer compositions according to the invention include at least one compound chosen from:
wherein
T1 is chosen from an optionally substituted C1-C36 hydrocarbyl, C5-C12 cycloalkyl, or C7-C9 aralkyl; and
T2 is chosen from hydrogen or T1; or
wherein
each of W1 and W2 is independently a C6-C36 hydrocarbyl chosen from a straight or branched chain C6-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C5-C36 cycloalkyl, C6-C36 alkcycloalkyl, or C6-C36 cycloalkylalkyl;
W3 is a C1-C36 hydrocarbyl chosen from straight or branched chain C1-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C5-C36 cycloalkyl, C6-C36 alkcycloalkyl; or C6-C36 cycloalkylalkyl;
with the proviso that at least one of W1, W2 and W3 contains a R carbon-hydrogen bond; and
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO2—, —COO—, —OCO—, —CO—, —NW4—, —CONW4— or —NW4CO—, or
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are substituted with from one to sixteen groups chosen from —OW4, —SW4, —COOW4, —OCOW4, —COW4, —N(W4)2, —CON(W4)2, —NW4COW4 and 5- and 6-membered rings containing the group —C(CH3)(CH2Rx)NL(CH2Rx)(CH3)C—; and
wherein
W4 is chosen from hydrogen or C1-C8 alkyl;
Rx is chosen from hydrogen or methyl; and
L is chosen from C1-C30 alkyl, —C(O)R or —OR, wherein R is C1-C30 straight or branched chain alkyl; or
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are both interrupted and substituted by any of the groups mentioned above; or
wherein said aryl groups of W1, W2 and W3 are substituted with from one to three substituents independently chosen from halogen, C1-C8 alkyl or C1-C8 alkoxy; or (iii) mixtures of (i) and (ii).
In particular embodiments, preference is given to N,N-dihydrocarbylhydroxylamine compounds according to Formula (VIII) wherein T1 and T2 are independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein T1 and T are each the alkyl mixture found in hydrogenated tallow amine.
In certain embodiments, hydroxylamine compounds according to Formula (VIII) are chosen from: N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine; N,N-di(hydrogenated tallow)hydroxylamine; or N,N-di(alkyl)hydroxylamine produced by the direct oxidation of N,N-di(hydrogenated tallow)amine.
In certain embodiments, preference is given to those structures of Formula (IX) where W1 and W2 are independently benzyl or substituted benzyl. It is also possible for each of W1, W2, and W3 to be the same residue. In other embodiments, W1 and W2 can be alkyl groups of 8 to 26 carbon atoms, more preferably alkyl groups of 10 to 26 carbon atoms. W3 can be an alkyl group of 1 to 22 carbon atoms, more preferably methyl or substituted methyl. Other preferred amine oxides include those wherein W1, W2, and W3 are the same alkyl groups of 6 to 36 carbon atoms. Preferably, all of the aforementioned residues for W1, W2, and W3 are saturated hydrocarbon residues or saturated hydrocarbon residues containing at least one of the aforementioned —O—, —S—, —SO—, —COO—, —CO—, or —CONW4— moieties. Those skilled in the art will be able to envision other useful residues for each of W1, W2, and W3 without detracting from the present invention.
The saturated amine oxides may also include poly(amine oxides). By poly(amine oxide) is meant tertiary amine oxides containing at least two tertiary amine oxides per molecule. Illustrative poly(amine oxides), also called “poly(tertiary amine oxides)”, include, but are not limited to, the tertiary amine oxide analogues of aliphatic and alicyclic diamines such as, for example, 1,4-diaminobutane; 1,6-diaminohexane; 1,10-diaminodecane; and 1,4-diaminocyclohexane, and aromatic based diamines such as, for example, diamino anthraquinones and diaminoanisoles.
Suitable amine oxides for use with the invention also include tertiary amine oxides derived from oligomers and polymers of the aforementioned diamines. Useful amine oxides also include amine oxides attached to polymers, for example, polyolefins, polyacrylates, polyesters, polyamides, polystyrenes, and the like. When the amine oxide is attached to a polymer, the average number of amine oxides per polymer can vary widely as not all polymer chains need to contain an amine oxide. All of the aforementioned amine oxides may optionally contain at least one —O—, —S—, —SO—, —CO2—, —CO—, or —CONW4— moiety. In a preferred embodiment, each tertiary amine oxide of the polymeric tertiary amine oxide contains a C1 residue.
The groups W1, W2 and W3 of Formula (IX) may be attached to a molecule containing a hindered amine. Hindered amines are known in the art and the amine oxide of the present invention may be attached to the hindered amine in any manner and structural position of the hindered amine. Useful hindered amines when part of an amine oxide compound include those of the general Formulas (X) and (XI):
wherein L and Rx are defined as described above.
Also included are amine oxides containing more than one hindered amine and more than one saturated amine oxide per molecule. The hindered amine may be attached to a poly(tertiary amine oxide) or attached to a polymeric substrate, as discussed above.
The hydroxyl amine derivatives and/or amine oxide derivatives can be used in amounts, in total, of about 0.0005% to about 5%, in particular from about 0.001% to about 2%, typically from about 0.01% to about 2% by weight, based on the weight of the polyolefin.
In other embodiments, the stabilized polymer composition (polyolefin) includes further optional co-additives chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
Examples of such co-additives include, but are not limited to:
Basic co-additives, for example, melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate; In some embodiments, the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
Nucleating agents, for example, inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds such as ionic copolymers (ionomers);
Fillers and reinforcing agents, for example, calcium carbonate, silicates, glass fibres, glass bulbs, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides (e.g., aluminium hydroxide or magnesium hydroxide, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers; impact modifiers
Benzofuranones and indolinones, for example those disclosed in U.S. Pat. Nos. 4,325,863; 4,338,244; 5,175,312; 5,216,052; 5,252,643; 5,369,159; 5,488,117; 5,356,966; 5,367,008; 5,428,162; 5,428,177; 5,516,920; DE-A-4316611; DE-A-4316622; DE-A-4316876; EP-A-0589839 or EP-A-0591102 or 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one, 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one, 3,3′-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one], 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one, 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(3,5-dimethyl-4-pivaloyloxyphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(3,4-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one, 3-(2,3-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one;
Metal deactivators, for example N,N′-diphenyloxamide, N-salicylal-N′-salicyloyl hydrazine, N,N′-bis(salicyloyl)hydrazine, N,N′-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl) hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N′-diacetyladipoyl dihydrazide, N,N′-bis(salicyloyl)oxalyl dihydrazide, N,N′-bis(salicyloyl)thiopropionyl dihydrazide;
Nitrones, for example, N-benzyl-alpha-phenyl-nitrone, N-ethyl-alpha-methyl-nitrone, N-octyl-alpha-heptyl-nitrone, N-lauryl-alpha-undecyl-nitrone, N-tetradecyl-alpha-tridcyl-nitrone, N-hexadecyl-alpha-pentadecyl-nitrone, N-octadecyl-alpha-heptadecyl-nitrone, N-hexadecyl-alpha-heptadecyl-nitrone, N-ocatadecyl-alpha-pentadecyl-nitrone, N-heptadecyl-alpha-heptadecyl-nitrone, N-octadecyl-alpha-hexadecyl-nitrone, nitrone derived from N,N-di(hydrogenated tallow)hydroxylamine;
Thiosynergists, for example, dilauryl thiodipropionate or distearyl thiodipropionate; and/or
Peroxide scavengers, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate.
Other additives include, for example, plasticisers, lubricants, emulsifiers, pigments, rheology additives, catalysts, flow-control agents, optical brighteners, flameproofing agents, antistatic agents, clarifying agents and blowing agents.
In masterbatch compositions, the stabilizer composition is present from 0.001% to 65.0% by weight based on the total weight of the masterbatch composition, and the amount is based on the number and type of stabilizing additives being added and/or the characteristics of the polymer composition to be stabilized. In some embodiments, the stabilizer composition is present from 0.01% to 50% by weight of the total weight of the masterbatch composition, and preferably from 0.05% to 25% by weight of the total, or from 0.1% to 10% by weight of the total. Those of ordinary skill in the art will be able to readily determine the amount and type of stabilizing additive(s) that should be added based on preparations as known and/or described in the literature, or through no more than routine experimentation.
The stabilized polymer compositions according to the invention can be readily made by any suitable method known to those of skill in the art. In certain embodiments, the components of the stabilized polymer compositions are mixed by at least one technique chosen from extruding, pelletizing, grinding, and molding. In other embodiments, mixing can be performed by at least one of melting, dissolution in a solvent, and dry mixing.
The incorporation of components for the stabilizer composition and optional further additives into the polymer composition is carried out by any suitable method known to those of skill in the art, for example before or after molding or also by applying the dissolved or dispersed stabilizer mixture to the polyolefin, with or without subsequent evaporation of the solvent. The stabilizer components and optional further additives can also be added to the polymer compositions to be stabilized in the form of a masterbatch.
Components of the stabilizer composition and optional further additives can also be added before or during the polymerization or before crosslinking. They can also be incorporated into the polymer composition to be stabilized in pure form (i.e., neat and directly to the resin) or encapsulated in waxes, oils or polymers. Various additives can also be preblended (i.e., mixed together) for simple addition to the polymer compositions to be stabilized. Components of the stabilizer composition and optional further additives can also be sprayed onto the polymer compositions to be stabilized. They are able to dilute other additives (for example the conventional additives indicated above) or their melts so that they can be sprayed also together with these additives onto the polymer compositions to be stabilized. In the case of spherically polymerized polymers it may, for example, be advantageous to apply components of the stabilizer composition optionally together with other additives, by spraying.
It is also contemplated that the components of the stabilizer compositions and/or polymer compositions described herein may be contained in a kit. The kit may include single or multiple components of at least one stabilizer composition according to the invention, at least one polymer composition according to the invention, and at least one further optional additive, each packaged or formulated individually, or single or multiple components of at least one stabilizer composition according to the invention, at least one polymer composition according to the invention, and at least one further optional additive packaged or formulated in combination. Thus, one or more components of a stabilizer composition can be present in first container, and the kit can optionally include one or more components of the stabilizer composition and/or polymer composition in a second or further container. The container or containers are placed within a package, and the package can optionally include administration or mixing instructions in the form of a label or website address on the package, or in the form of an insert included in the packaging of the kit. A kit can include additional components or other means for administering or mixing the components as well as solvents or other means for formulation.
As can be seen from the following examples, the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive can be selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
As can be further seen from the following examples, the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive can be selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of a sterically hindered amine light stabilizer (HALS):
a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval;
a higher MFE of the polymeric article is retained over a longer heating time; or
a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
Notably, these results were obtained, even in the absence of sterically hindered amine light stabilizers (HALS), for example in the absence of secondary HALS as disclosed in U.S. Patent Publication No. 2009/0085252 A1. These results were also obtained, even in the absence of antistatic agents, for example in the absence of the ethoxylated amines and ethoxylated amides as disclosed in U.S. Patent Application Publication No. 2006/0167146 A1.
Embodiment 1. A polymeric hollow article made by a process comprising:
a) filling a mold with a polyolefin and a stabilizing amount of a stabilizer composition, wherein the stabilizer composition comprises:
R21 is present at from 1 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl;
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″, wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O;
b) rotating the mold around at least one axis while heating the mold in an oven, thereby fusing the composition and spreading it to the walls of the mold;
c) cooling the mold; and
d) opening the mold to remove the resulting product,
thereby producing the polymeric hollow article.
Embodiment 2. A polymeric hollow article according to embodiment 1, wherein the at least one phosphite or phosphonite is chosen from:
(i) a compound according to Formulas (1)-(7):
in which the indices are integral and
n is 2, 3 or 4; p is 1 or 2; q is 2 or 3; y is 1, 2 or 3; and z is 1 to 6;
A1, if n or q is 2, is C2-C18 alkylene; C2-C12 alkylene interrupted by oxygen, sulfur or —NR4—; a radical of the formula
or phenylene;
A1, if n or q is 3, is a trivalent radical of the formula CrH2r−1; wherein r is an integer from 4 to 12;
A1, if n is 4, is
B is a direct bond, —CH2—, —CHR4—, —CR1R4—, sulfur, C5-C7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C1-C4 alkyl radicals in position 3, 4 and/or 5;
D1, if p is 1, is C1-C4 alkyl and, if p is 2, is —CH2OCH2—;
D2, if p is 1, is C1-C4 alkyl;
E, if y is 1, is C1-C18 alkyl, —OR1 or halogen;
E, if y is 2, is —O-A2-O—, wherein A2 is as defined for A1 when n is 2;
E, if y is 3, is a radical of the formula R4C(CH2O—)3 or N(CH2CH2O—)3;
Q is the radical of an at least z-valent mono- or poly-alcohol or phenol, this radical being attached via the oxygen atom of the OH group of the mono- or poly-alcohol or phenol to the phosphorus atom;
R1, R2 and R3 independently of one another are C1-C18 alkyl which is unsubstituted or substituted by halogen, —COOR4, —CN or —CONR4R4; C2-C18 alkyl interrupted by oxygen, sulfur or —NR4—; C7-C9 phenylalkyl; C5-C12 cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to 18 carbon atoms or by C7-C9 phenylalkyl; or a radical of the formula
in which m is an integer from the range 3 to 6;
R4 is hydrogen, C1-C8 alkyl, C5-C12 cycloalkyl or C7-C9 phenylalkyl,
R5 and R6 independently of one another are hydrogen, C1-C8 alkyl or C5-C6 cycloalkyl,
R7 and R8, if q is 2, independently of one another are C1-C4 alkyl or together are a 2,3-dehydropentamethylene radical;
R7 and R8, if q is 3, are methyl;
each instance of R14 is independently hydrogen, C1-C9 alkyl or cyclohexyl;
each instance of R15 is independently hydrogen or methyl;
X and Y are each a direct bond or oxygen;
Z is a direct bond, methylene, —C(R16)2— or sulfur; and
R16 is C1-C8 alkyl;
(ii) a trisarylphosphite according to Formula 8:
wherein R17 is a substituent that is present at from 0 to 5 positions of the aromatic portion of Formula (8) and in each instance is independently chosen from C1-C20 alkyl, C3-C20 cycloalkyl, C4-C20 alkyl cycloalkyl, C6-C10 aryl or C7-C20 alkylaryl; or
(iii) mixtures of (i) and (ii).
Embodiment 3. A polymeric hollow article according to embodiment 1 or 2, wherein the phosphite or phosphonite is chosen from triphenyl phosphite; diphenyl alkyl phosphites; phenyl dialkyl phosphites; trilauryl phosphite; trioctadecyl phosphite; distearyl pentaerythritol phosphite; tris(2,4-di-t-butylphenyl) phosphite; tris(nonylphenyl) phosphite; a compound of formulae (A), (B), (C), (D), (E), (F), (G), (H), (J), (K) or (L):
2-butyl-2-ethyl-1,3-propanediol 2,4,6-tri-t-butylphenol phosphite; bis-(2,6-di-t-butyl-4-methlphenyl) pentaerythritol diphosphite; 2-butyl-2-ethyl-1,3-propanediol 2,4-di-cumylphenol phosphite; 2-butyl-2-ethyl-1,3-propanediol 4-methyl-2,6-di-t-butylphenol phosphite or bis-(2,4,6-t-butyl-phenyl) pentaerythritol diphosphite.
Embodiment 4. A polymeric hollow article according to any of embodiments 1 to 3, wherein the at least one phosphite or phosphonite is chosen from tris(2,4-di-t-butylphenyl)phosphite (IRGAFOS® 168); bis(2,4-dicumylphenyl)pentaerythritol diphosphite (DOVERPHOS® S9228) or tetrakis(2,4-di-t-butylphenyl)4,4′-biphenylene-diphosphonite (IRGAFOS® P-EPQ).
Embodiment 5. A polymeric hollow article according to any of embodiments 1 to 4, wherein the stabilizer composition further comprises at least one hindered phenol.
Embodiment 6. A polymeric hollow article according to embodiment 5, wherein the at least one hindered phenol comprises a molecular fragment according to one or more of Formula (IVa), (IVb), or (IVc):
wherein
R18 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C1-4 hydrocarbyl;
each of R19 and R20 of Formula (IVa), (IVb), or (IVc) is independently chosen from hydrogen or a C1-C20 hydrocarbyl; and
R37 of Formula (IVa), (IVb), or (IVc) is independently chosen from a C1-C12 hydrocarbyl.
Embodiment 7. A polymeric hollow article according to embodiment 6, wherein R18 and R37 are chosen from methyl or t-butyl.
Embodiment 8. A polymeric hollow article according to any of embodiments 5 to 7, wherein the at least one hindered phenol compound is chosen from (1,3,5-tris(4-t-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione; 1,1,3-tris(2′-methyl-4′-hydroxy-5′-t-butylphenyl)butane; triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate]; 4,4′-thiobis(2-t-butyl-5-methylphenol); 2,2′-thiodiethylene bis[3-(3-t-butyl-4-hydroxyl-5-methylphenyl)propionate]; octadecyl 3-(3′-t-butyl-4′-hydroxy-5′-methylphenyl)propionate; tetrakismethylene(3-t-butyl-4-hydroxy-5-methylhydrocinnamate)methane; N,N′-hexamethylene bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionamide]; di(4-t-butyl-3-hydroxy-2,6-dimethyl benzyl) thiodipropionate; octadecyl 3,5-di-t-butyl-4-hydroxyhydrocinnamate; or mixtures thereof.
Embodiment 9. A polymeric hollow article according to any of embodiments 1 to 8, wherein R21 is present in at least one instance as OR27.
Embodiment 10. A polymeric hollow article according to any of embodiments 1 to 9, wherein R21 is present in at least three instances and is chosen from OR27 or methyl.
Embodiment 11. A polymeric hollow article according to any of embodiments 1 to 10, wherein R23 is a C1-C18 hydrocarbyl.
Embodiment 12. A polymeric hollow article according to any of embodiments 1 to 11, wherein the chroman-based compound is vitamin E acetate according to Formula (Va)
wherein R21 is —OC(O)CH3.
Embodiment 13. A polymeric hollow article according to any of embodiments 1 to 12, wherein the chroman-based compound comprises two or more compounds according to Formula (V).
Embodiment 14. A polymeric hollow article according to any of embodiments 1 to 13, wherein the chroman-based compound is present from 0.001% to 5.0% by weight of the weight of the polyolefin.
Embodiment 15. A polymeric hollow article according to embodiment 14, wherein the chroman-based compound is present from 0.01% to 1.0% by weight of the weight of the polyolefin.
Embodiment 16. A polymeric hollow article according to any of embodiments 1 to 15, wherein the polyolefin is chosen from:
(i) polymers of monoolefins chosen from polypropylene, polyisobutylene, polybut-1-ene, or poly-4-methylpent-1-ene;
(ii) polymers of diolefins chosen from polyisoprene or polybutadiene;
(iii) polymers of cycloolefins chosen from cyclopentene or norbornene;
(iv) polyethylene chosen from optionally crosslinked polyethylene, high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), or ultralow density polyethylene (ULDPE);
(v) copolymers of the monoolefins, diolefins, or cycloolefins of any of (i) to (iv); or
vi) mixtures of any of (i) to (v).
Embodiment 17. A polymeric hollow article according to any of embodiments 1 to 16, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
Embodiment 18. A polymeric hollow article according to any of embodiments 1 to 17, wherein the stabilizer composition further comprises a light stabilizer chosen from hindered amine light stabilizers, hindered hydroxyl benzoates, nickel phenolates, ultraviolet light stabilizers, or mixtures thereof, in an amount effective to stabilize the polymer composition against the degradative effects of visible and/or ultraviolet light radiation.
Embodiment 19. A polymeric hollow article according to embodiment 18, wherein the light stabilizer is a hindered amine light stabilizer comprising a molecular fragment according to:
(i) Formula (VI):
wherein
R31 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy;
R38 is chosen from hydrogen or C1-C8 hydrocarbyl; and
each of R29, R30, R31, and R32 is independently chosen from a C1-C20 hydrocarbyl; or R60 and R61 and/or R63 and R64 taken together with the carbon to which they are attached form a C5-C10 cycloalkyl; or
(ii) Formula (VIa)
wherein
m is an integer from 1 to 2;
R39 is chosen from hydrogen, OH, C1-C20 hydrocarbyl, —CH2CN, C1-C12 acyl or C1-C18 alkoxy; and
each of G1-G4 is independently a C1-C20 hydrocarbyl.
Embodiment 20. A polymeric hollow article according to embodiment 19, wherein the hindered amine light stabilizer is chosen from bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)sebacate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; a condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; 2,2,6,6-tetramethylpiperidin-4-yl stearate; 2,2,6,6-tetramethylpiperidin-4-yl dodecanate; 1,2,2,6,6-pentamethylpiperidin-4-yl stearate; 1,2,2,6,6-pentamethylpiperidin-4-yl dodecanate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; a condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; a condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; a condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; a condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; oxo-piperanzinyl-triazines; a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; tetrakis(2,2,6,6-tetramethyl-4-piperidyl) butane-1,2,3,4-tetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, tetrakis(1,2,2,6,6-pentamethyl-4-piperidinyl)ester; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperdinyl tridecyl ester; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol,1,2,2,6,6-pentamethyl-4-piperdinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with 2,2,6,6-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]-undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperdinyl ester; bis(1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl)carbonate; 1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethyl-4-piperdinol; 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine; 1-(4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin-1-yloxy)-2-octadecanoyloxy-2-methylpropane; 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol; a reaction product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-piperdinol and dimethylsuccinate; 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro[5.1.11.2]heneicosan-21-one; the ester of 2,2,6,6-tetramethyl-4-piperidinol with higher fatty acids; 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione; 1H-Pyrrole-2,5-dione, 1-octadecyl-, polymer with (1-methylethenyl)benzene and 1-(2,2,6,6-tetramethyl-4-piperidinyl)-1H-pyrrole-2,5-dione; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,5,5-tetramethyl-; piperazinone, 1,1′,1″-[1,3,5-triazine-2,4,6-triyltris[(cyclohexylimino)-2,1-ethanediyl]]tris[3,3,4,5,5-pentamethyl-; the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine; the condensate of 1,2-bis(3-aminopropylamino)ethane, 2,4,6-trichloro-1,3,5-triazine and 4-butylamino-2,2,6,6-tetramethylpiperidine; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine; the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane; the condensate of 2-chloro-4,6-bis(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane; 2-[(2-hydroxyethyl)amino]-4,6-bis[N-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino-1,3,5-triazine; propanedioic acid, [(4-methoxyphenyl)-methylene]-bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, 1-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-2,2,6,6-tetramethyl-4-piperidinyl ester; N-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-N′-dodecyloxalamide; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl): 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl); the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid; the condensate of N,N′-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine; 1,2,3,4-butanetetracarboxylic acid, 1,2,2,6,6-pentamethyl-4-piperidinyl tridecyl ester; tetrakis(2,2,6,6-tetramethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester; tetrakis(1,2,2,6,6-pentamethylpiperidin-4-yl)-1,2,3,4-butanetetracarboxylate; mixture of 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-dodecylester and 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazaspiro(5.1.11.2)-heneicosane-20-propanoic acid-tetradecylester; 1H,4H,5H,8H-2,3a,4a,6,7a,8a-hexaazacyclopenta[def]fluorene-4,8-dione, hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidinyl)-; polymethyl[propyl-3-oxy(2′,2′,6′,6′-tetramethyl-4,4′-piperidinyl)]siloxane; polymethyl[propyl-3-oxy(1′,2′,2′,6′,6′-pentamethyl-4,4′-piperidinyl)]siloxane; copolymer of methylmethacrylate with ethyl acrylate and 2,2,6,6-tetramethylpiperidin-4-yl acrylate; copolymer of mixed C20 to C24 alpha-olefins and (2,2,6,6-tetramethylpiperidin-4-yl)succinimide; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 1,2,2,6,6-pentamethyl-4-piperidinyl ester; 1,2,3,4-butanetetracarboxylic acid, polymer with β,β,β′,β′-tetramethyl-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diethanol, 2,2,6,6-tetramethyl-4-piperidinyl ester copolymer; 1,3-benzenedicarboxamide, N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl; 1,1′-(1,10-dioxo-1,10-decanediyl)-bis(hexahydro-2,2,4,4,6-pentamethylpyrimidine; ethane diamide, N-(1-acetyl-2,2,6,6-tetramethylpiperidinyl)-N′-dodecyl; formamide, N,N′-1,6-hexanediylbis[N-(2,2,6,6-tetramethyl-4-piperidinyl); D-glucitol, 1,3:2,4-bis-O-(2,2,6,6-tetramethyl-4-piperidinylidene)-; 2,2,4,4-tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]heneicosane; propanamide, 2-methyl-N-(2,2,6,6-tetramethyl-4-piperidinyl)-2-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; 7-oxa-3,20-diazadispiro[5.1.11.2]heneicosane-20-propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-β-aminopropionic acid dodecyl ester; N-(2,2,6,6-tetramethylpiperidin-4-yl)-N′-aminooxalamide; propanamide, N-(2,2,6,6-tetramethyl-4-piperidinyl)-3-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-; mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; bis(2,2,6,6-tetramethylpiperidin-4-yl)succinate; bis(1,2,2,6,6-pentamethylpiperidin-4-yl) n-butyl 3,5-di-tert-butyl-4-hydroxybenzylmalonate; tris(2,2,6,6-tetramethylpiperidin-4-yl) nitrilotriacetate; 1,1′-(1,2-ethanediyl)bis(3,3,5,5-tetramethylpiperazinone); 4-benzoyl-2,2,6,6-tetramethylpiperidine; 4-stearyloxy-2,2,6,6-tetramethylpiperidine; bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)malonate; 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)sebacate; bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)succinate; 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione; 3-dodecyl-1-(2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1-ethanoyl-2,2,6,6-tetramethylpiperidin-4-yl)pyrrolidin-2,5-dione; 3-dodecyl-1-(1,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine-2,5-dione; a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine; 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane; 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(2,2,6,6-tetramethyl-4-piperidinyl) and 1,5-dioxaspiro{5,5}undecane-3,3-dicarboxylic acid, bis(1,2,2,6,6-pentamethyl-4-piperidinyl); N1-(β-hydroxyethyl)3,3-pentamethylene-5,5-dimethylpiperazin-2-one; N1-tert-octyl-3,3,5,5-tetramethyl-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-hexamethylene-diazepin-2-one; N1-tert-octyl-3,3-pentamethylene-5,5-dimethylpiperazin-2-one; trans-1,2-cyclohexane-bis-(N1-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-(N1-3,3,5,5-dispiropentamethylene-2-piperazinone); N1-isopropyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-2-piperazinone; N1-isopropyl-1,4-diazadispiro-3,3-pentamethylene-5,5-tetramethylene-2-piperazinone; N1-isopropyl-5,5-dimethyl-3,3-pentamethylene-2-piperazinone; trans-1,2-cyclohexane-bis-N1-(dimethyl-3,3-pentamethylene-2-piperazinone); N1-octyl-5,5-dimethyl-3,3-pentamethylene-1,4-diazepin-2-one; N1-octyl-1,4-diazadispiro-(3,3,5,5)pentamethylene-1,5-diazepin-2-one; or mixtures thereof.
Embodiment 21. A polymeric hollow article according to embodiment 18, wherein the light stabilizer is an ultraviolet light absorber chosen from a 2-hydroxybenzophenone, a 2-(2′-hydroxyphenyl)benzotriazole, a 2-(2′-hydroxyphenyl)-1,3,5-triazine, or mixtures thereof.
Embodiment 22. A polymeric hollow article according to embodiment 21, wherein the ultraviolet light absorber is a 2-(2′-hydroxyphenyl)-1,3,5-triazine according to Formula (VII):
wherein
each of R34 and R35 is independently chosen from optionally substituted C6-C10 aryl, C1-C10 hydrocarbyl-substituted amino, C1-C10 acyl or C1-C10 alkoxyl; and
R36 is present at from 0 to 4 positions of the phenoxy portion of Formula (VII) and in each instance is independently chosen from hydroxyl, C1-C12 hydrocarbyl, C1-C12 alkoxyl, C1-C12 alkoxyester, or C1-C12 acyl.
Embodiment 23. A polymeric hollow article according to embodiment 22, wherein the 2-(2′-hydroxyphenyl)-1,3,5-triazine is chosen from 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine (CYASORB® 1164 available from Cytec Industries Inc.); 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxy-4-(2-hydroxy-ethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine; 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine; 2,4-bis(2,4-dihydroxyphenyl)-6-(2,4-dimethylphenyl)-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-[(octyloxycarbonyl)ethylideneoxy]phenyl]-s-triazine; 2,4-bis(4-biphenylyl)-6-[2-hydroxy-4-(2-ethylhexyloxy)phenyl]-s-triazine; 2-phenyl-4-[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4(-3-benzyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4-bis(2-hydroxy-4-n-butyloxyphenyl)-6-(2,4-di-n-butyloxyphenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-nonyloxy-2-hydroxypropyloxy)-5-α-cumylphenyl]-s-triazine; methylenebis-{2,4-bis(2,4-dimethylphenyl)-6-[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine}; methylene bridged dimer mixture bridged in the 3:5′, 5:5′ and 3:3′ positions in a 5:4:1 ratio; 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonyliso-propylideneoxy-phenyl)-s-triazine; 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine; 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropyloxy)phenyl]-s-triazine; 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropyloxy)-phenyl]-s-triazine; mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodecyloxy-2-hydroxypropoxy)phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridecyloxy-2-hydroxypropoxy)phenyl)-s-triazine (Tinuvin® 400 available from Ciba Specialty Chemicals Corp.); 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine; 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine; or mixtures thereof.
Embodiment 24. A polymeric hollow article according to embodiment 18, wherein the light stabilizer is a hindered amine light stabilizer and an ultraviolet light absorber.
Embodiment 25. A polymeric hollow article according to any of embodiments 1 to 24, wherein the stabilizer composition further comprises at least one of:
(i) a hydroxylamine according to Formula (VIII):
wherein
T1 is chosen from an optionally substituted C1-C36 hydrocarbyl, C5-C12 cycloalkyl, or C7-C9 aralkyl; and
T2 is chosen from hydrogen or T1; or
(ii) a tertiary amine oxide according to Formula (IX):
wherein
each of W1 and W2 is independently a C6-C36 hydrocarbyl chosen from straight or branched chain C6-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkaryl, C6-C36 cycloalkyl, C6-C36 alkcycloalkyl, or C6-C36 cycloalkylalkyl;
W3 is a C1-C36 hydrocarbyl is chosen from straight or branched chain C1-C36 alkyl, C6-C12 aryl, C7-C36 aralkyl, C7-C36 alkylaryl, C5-C36 cycloalkyl, C6-C36 alkylcycloalky, and C6-C36 cycloalkylalkyl;
with the proviso that at least one of W1, W2 or W3 contains a R carbon-hydrogen bond; and
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 may be interrupted by from one to sixteen groups chosen from —O—, —S—, —SO—, —SO2—, —COO—, —OCO—, —CO—, —NW4—, —CONW4— or —NW4CO—, or wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are substituted with from one to sixteen groups chosen from —OW4, —SW4, —COOW4, —OCOW4, —COW4, —N(W4)2, —CON(W4)2, —NW4COW4 and 5- and 6-membered rings containing the group —C(CH3)(CH2Rx)NL(CH2Rx)(CH3)C—; and
wherein
W4 is chosen from hydrogen or C1-C8 alkyl;
Rx is chosen from hydrogen or methyl; and
L is chosen from C1-C30 alkyl, —C(O)R or —OR, wherein R is C1-C30 straight or branched chain alkyl; or
wherein said alkyl, aralkyl, alkaryl, cycloalkyl, alkcycloalkyl and cycloalkylalkyl groups of W1, W2 and W3 are both interrupted and substituted by any of the groups mentioned above; or
wherein said aryl groups of W1, W2 and W3 are substituted with from one to three substituents independently chosen from halogen, C1-C8 alkyl or C1-C8 alkoxy; or
(iii) mixtures of (i) and (ii).
Embodiment 26. A polymeric hollow article according to embodiment 25, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine wherein each of T1 and T2 is independently chosen from benzyl, ethyl, octyl, lauryl, dodecyl, tetradecyl, hexadecyl, heptadecyl or octadecyl; or wherein each of T1 and T2 is the alkyl mixture found in hydrogenated tallow amine.
Embodiment 27. A polymeric hollow article according to embodiment 25 or 26, wherein the hydroxylamine according to Formula (VIII) is an N,N-dihydrocarbylhydroxylamine chosen from N,N-dibenzylhydroxylamine; N,N-diethylhydroxylamine; N,N-dioctylhydroxylamine; N,N-dilaurylhydroxylamine; N,N-didodecylhydroxylamine; N,N-ditetradecylhydroxylaamine; N,N-dihexadecylhydroxylamine; N,N-dioctadecylhydroxylamine; N-hexadecyl-N-tetradecylhydroxylamine; N-hexadecyl-N-heptadecylhydroxylamine; N-hexadecyl-N-octadecylhydroxylamine; N-heptadecyl-N-octadecylhydroxylamine; N,N-di(hydrogenated tallow)hydroxylamine; or mixtures thereof.
Embodiment 28. A polymeric hollow article according to any of embodiments 1 to 27, wherein the hollow article further comprises at least one co-additive chosen from nucleating agents, fillers, reinforcing agents, polymer additives or mixtures thereof.
Embodiment 29. A polymeric hollow article according to any of embodiments 1 to 28, wherein the polyolefin is at least one of linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), or polypropylene.
Embodiment 30. A polymeric hollow article according to any of embodiments 1 to 29, wherein the basic co-additive (iii) is at least one of calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate or potassium palmitate.
Embodiment 31. A polymeric hollow article according to any of embodiments 1 to 30, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that the polyolefin remains stable and retains its optimal mechanical and/or physical properties over a longer period of time in the oven, even in the absence of a sterically hindered amine light stabilizer (HALS).
Embodiment 32. A polymeric hollow article according to any of embodiments 1 to 31, wherein the polyolefin, chroman-based compound, phosphite or phosphonite, and at least one basic co-additive, and amounts of the chroman-based compound, phosphite or phosphonite, and at least one basic co-additive are selected so that at least one of the following results are obtained in a rotational molding operation employed to produce the polymeric hollow article, even in the absence of sterically hindered amine light stabilizers (HALS):
a maximum mean failure energy (MFE) of the polymeric article is reached at a shorter time interval;
a higher MFE of the polymeric article is retained over a longer heating time; or
a processing window is enlarged to a peak internal air temperature (PIAT) of up to 452° F. with yellowness index of the article remaining substantially unchanged up to a PIAT of 452° F.
Embodiment 33. A polymeric hollow article according to embodiment 31 or 32, wherein the results are obtained even in the absence of antistatic agents.
Embodiment 34. A stabilizer composition for use in producing a polymeric hollow article in a rotomolding process, the stabilizer composition comprising a stabilizing amount of:
(i) at least one chroman-based compound according to Formula (V):
wherein
R21 is present at from 0 to 4 positions of the aromatic portion of Formula (V) and in each instance is independently chosen from:
R22 is chosen from H or C1-C12 hydrocarbyl;
R23 is chosen from H or C1-C20 hydrocarbyl;
each of R24-R25 is independently chosen from H, C1-C12 hydrocarbyl or OR″″,
wherein R″″ is chosen from H or C1-C12 hydrocarbyl; and
R26 is H or a bond which together with R25 forms ═O;
(ii) at least one phosphite or phosphonite; and
(iii) a basic co-additive selected from alkali metal or alkaline metal salts of higher fatty acids.
Additional embodiments of the individual elements of the stabilizer composition (e.g., chroman-based compound, phosphite or phosphonite, and basic co-additive) are substantially similar to those contemplated above for the polymeric hollow article, but are not repeated herewith.
The following examples are provided to assist one skilled in the art to further understand certain embodiments of the present disclosure. These examples are intended for illustration purposes and are not to be construed as limiting the scope of the various embodiments of the present disclosure.
50-lb. batches of LLDPE formulated with any type of commercially available stabilizer additive package is dry blended and compounded at 190° C. on a Davis Standard single screw extruder, with a 24:1 L/D screw with a mixing head running at 65 RPM. The resulting pellets are ground to rotomesh powder (less than 35 micron) on a Reduction Engineering pulverizor.
Using enough resin to produce a ⅛″-¼″ thick walled part, the formulation is rotationally molded using laboratory scale equipment (e.g., a Ferry E-40 shuttle rotational molder). The ground resin is placed in a cast aluminum mold, which is rotated biaxially in a gas fired oven heated to a temperature of 630° F. (332° C.). The arm ratio for the cast aluminum mold is 8:2. After rotating in the oven for specific time intervals, the mold is removed from the oven and air cooled for 13 minutes while still rotating, followed by a 2 minute water spray, and then 1 minute in circulating air. After the cooling cycle, the mold is opened and the hollow part is removed and then tested by measuring the mean failure energy (MFE) of the part. Sections can be cut from the part and then tested according to the “Dart Drop Low Temperature Impact Resistance Test Procedure,” per American Rotational Molders (ARM).
Formulations that achieve the highest mean fracture energy (MFE) at the shortest rotational molding time interval are desirable (reduced cycle time), as well as formulations that show retention of high MFE at longer cycle times (broad process window).
The color (or yellowness) of the molded part can also be tested. Prior to the impact test, the impact specimen from the upper left corner is read for color. The sample is read using a GretagMacbeth Color i7 spectrophotometer. The yellowness according to ASTM D1925 is reported from the mold side of the roto molded part. Positive yellowness values indicates presence and magnitude of yellowness (generally unfavorable), while a negative yellowness value indicates that a material appears bluish (generally favorable).
Control and test samples are prepared and tested according to Example 1 above. The additive formulation for each sample is provided in Table 1 below.
In all cases the LLDPE resin contains 0.035% by weight of the total polymer composition of zinc stearate. The samples are rotomolded and tested according to the ARM procedure as described in Example 1. The stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process. The mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than either of the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected (
Control and test samples are prepared and tested according to Example 1 above. The LLDPE resin is the same as in Example 2 (Resin 1). The additive formulation for each sample is provided in Table 2 below.
The samples are rotomolded and tested according to the ARM procedure as described in Example 1, to ¼″ thickness. The stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process. The mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected (
The Yellowness Index is also tested. As seen in
Control and test samples are prepared and tested according to Example 1 above. However, in this Example the LLDPE resin (Resin 2) is provided by a different supplier than that of Examples 2 and 3. The additive formulation for each sample is provided in Table 3 below.
The samples are rotomolded and tested according to the ARM procedure as described in Example 1, to ¼″ thickness. Again, it is seen that the stabilizer formulations of the present invention provide superior and unexpected properties compared to the state-of-the-art stabilizer formulations used in the rotomolding process. The mean failure energy (MFE) of the sample containing the stabilizer formulation according to the invention reached maximum MFE sooner than either of the control sample containing the typical commercial stabilizer system or the sample containing the low phenolic stabilizer system, and also maintained a higher MFE for a longer period of time than expected (
The Yellowness Index is also tested. As seen in
The results demonstrate that the heating times required to achieve optimal cure of a polyolefin article using a standard rotomolding process can be reduced by using the processing stabilizer systems described in detail herein. Reduction of heating times provides the direct benefits of lower energy costs and increased production efficiency without compromising physical and/or mechanical properties of the rotomolded article. The new rotomolding processing stabilizer systems described herein are also shown to provide a broad processing window, thereby enabling the production of parts having high impact strength over a broader range of peak internal air temperatures or heating times versus conventional processing stabilizer systems. Accordingly, these new processing stabilizer systems provide an excellent alternative to other approaches and/or systems to accelerate the sintering/densification of the polymer resin during the rotomolding process.
Various patent and/or scientific literature references have been referred to throughout this application. The disclosures of these publications in their entireties are hereby incorporated by reference as if written herein. In view of the above description and the examples, one of ordinary skill in the art will be able to practice the disclosure as claimed without undue experimentation.
Although the foregoing description has shown, described, and pointed out the fundamental novel features of the present teachings, it will be understood that various omissions, substitutions, and changes in the form of the detail of the apparatus as illustrated, as well as the uses thereof, may be made by those skilled in the art, without departing from the scope of the present teachings. Consequently, the scope of the present teachings should not be limited to the foregoing discussion, but should be defined by the appended claims.
This application is a divisional of U.S. application Ser. No. 13/323,173 filed Dec. 12, 2011 (allowed), which claims priority benefit of U.S. Provisional Application No. 61/422,255 filed Dec. 13, 2010 (expired), each of which is incorporated herein by reference in its entirety. This application is also related in subject matter to U.S. Pat. No. 11,267,951 issued Mar. 8, 2022, and U.S. application Ser. No. 17/591,781 filed Feb. 3, 2022.
Number | Date | Country | |
---|---|---|---|
61422255 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13323173 | Dec 2011 | US |
Child | 17697232 | US |