Metalworking fluids are well known, and there is a need for improved metalworking fluids.
A composition having a compound having the structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety; wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety; wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
A composition having a compound having the structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety; wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety; wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
A composition having a compound having the structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety; wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety; wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
A composition having a compound having the structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety; wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety; wherein each Z is independently selected from the group consisting of S and O; wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
A composition having a compound having the structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety; wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety; wherein each Z is independently selected from the group consisting of S and O; wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
A method having the step of using the following compound as a metalworking fluid additive:
wherein each R is an independently selected moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety; wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety; wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
Embodiments are directed to compounds that are useful as metalworking-fluid additives.
An embodiment is directed to polyhydrogen-phosphite compounds having the general structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety;
wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety;
wherein m is an integer ranging from 1 to 100; and wherein x is an integer ranging from 1 to 1000.
In some polyhydrogen-phosphite embodiments, each Y is an ethylene, propylene, or caprylactone moiety.
In some polyhydrogen-phosphite embodiments, the compound has a weight ranging from 1000 to 30000 Daltons. In some polyhydrogen-phosphite embodiments, the compound has a weight ranging from 400 to 30000 Daltons. In some polyhydrogen-phosphite embodiments, the compound has a weight ranging from 500 to 30000 Daltons.
An embodiment is directed to phosphate compounds having the general structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety;
wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety;
wherein m is an integer ranging from 1 to 100; and
wherein x is an integer ranging from 1 to 1000.
In some phosphate embodiments, each Y is an ethylene, propylene, or caprylactone moiety.
In some phosphate embodiments, the compound has a weight ranging from 1000 to 30000 Daltons. In some phosphate embodiments, the compound has a weight ranging from 400 to 30000 Daltons. In some phosphate embodiments, the compound has a weight ranging from 500 to 30000 Daltons.
An embodiment is directed to thiophosphate compounds having the general structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety;
wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety;
wherein m is an integer ranging from 1 to 100; and
wherein x is an integer ranging from 1 to 1000.
In some thiophosphate embodiments, each Y is an ethylene, propylene, or caprylactone moiety.
In some thiophosphate embodiments, the compound has a weight ranging from 1000 to 30000 Daltons. In some thiophosphate embodiments, the compound has a weight ranging from 400 to 30000 Daltons. In some thiophosphate embodiments, the compound has a weight ranging from 500 to 30000 Daltons.
An embodiment is directed to phosphorus-containing compounds having the general structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety;
wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety;
wherein each Z is independently selected from the group consisting of S and O;
wherein m is an integer ranging from 1 to 100; and
wherein x is an integer ranging from 1 to 1000.
In some phosphorus-containing-compound embodiments, each Y is an ethylene, propylene, or caprylactone moiety.
In some phosphorus-containing-compound embodiments, the compound has a weight ranging from 1000 to 30000 Daltons. In some phosphorus-containing embodiments, the compound has a weight ranging from 400 to 30000 Daltons. In some phosphorus-containing embodiments, the compound has a weight ranging from 500 to 30000 Daltons.
An embodiment is directed to phosphorus-containing copolymer compounds having the general structure:
wherein each R is an independently selected alkylphenol-free moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety;
wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety;
wherein each Z is independently selected from the group consisting of S and O;
wherein m is an integer ranging from 1 to 100; and
wherein x is an integer ranging from 1 to 1000.
In some phosphorus-containing copolymer compound embodiments, each Y is an ethylene, propylene, or caprylactone moiety.
In some phosphorus-containing copolymer compound embodiments, the compound has a weight ranging from 1000 to 30000 Daltons. In some phosphorus-containing copolymer compound embodiments, the compound has a weight ranging from 400 to 30000 Daltons. In some phosphorus-containing copolymer compound embodiments, the compound has a weight ranging from 500 to 30000 Daltons.
An embodiment is directed to phosphite compounds having the general structure:
wherein each R is an independently selected moiety that is a C1-20 alkyl, C2-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C3-20 methoxy alkyl glycol ether, C3-20 alkyl glycol ether, or Y—OH moiety;
wherein each Y is an independently selected alkylphenol-free moiety that is a C2-40 alkylene, C7-40 cycloalkylene, or C3-40 alkyl lactone moiety;
wherein m is an integer ranging from 1 to 100; and
wherein x is an integer ranging from 1 to 1000.
In some phosphite embodiments, each Y is an ethylene, propylene, or caprylactone moiety.
In some phosphorus-containing copolymer compound embodiments, the compound has a weight ranging from 1000 to 30000 Daltons. In some phosphorus-containing copolymer compound embodiments, the compound has a weight ranging from 400 to 30000 Daltons. In some phosphorus-containing copolymer compound embodiments, the compound has a weight ranging from 500 to 30000 Daltons.
Methods for manufacturing phosphite compounds, polyhydrogen phosphite compounds, phosphate compounds, thiophosphate compounds, and thiophosphite-phosphate copolymer compounds can be determined by persons of ordinary skill in the art without having to exercise undue experimentation. Non-limiting examples of manufacturing methods can be found in the below Examples.
Metalworking additives are well known, and any of the above compounds, either alone or in any combination, can be used as additives for metalworking fluids. Any of the above compounds, either alone or in any combination, can be used as additives for metalworking fluids in useful amounts that can be determined by persons of ordinary skill in the art. As a non-limiting example, useful amounts of the above compounds, either alone or in any combination, range from 5 to 10% by weight of the metalworking fluid. In an additional non-limiting example, useful amounts of the above compounds, either alone or in any combination, range from 0.5 to 20% by weight of the metalworking fluid.
In any of the above sulfur-containing compounds, the amount of sulfur within the compound can range from 50 to 100 mole percent relative to the amount of phosphorus within the compound; stated differently, in any of the above sulfur-containing compounds, anywhere from half to all of the phorphorus atoms are bonded to a sulfur atom. In another embodiment, the amount of sulfur within the compound can range from 90 to 100 mole percent relative to the amount of phosphorus within the compound. In another embodiment, the amount of sulfur within the compound is 100 mole percent relative to the amount of phosphorus within the compound.
To a three-neck 250 mL flask equipped with a mechanical stirrer and purged with nitrogen was added 75.83 grams of triisnonylphenol phosphite (0.110 mol), with a total nonylphenol content ranging from 0.05% to 0.5% with 0.1% being the target and 0.39 grams of 2,5-dimercapto-1,3,4-thiadiazole (0.0026 mol). The mixture was mixed well and heat was applied to a reaction temperature of 240° F. 3.37 grams of elemental sulfur (0.130 mol) was then added at this temperature. After one hour, the reaction temperature is increased to 280° F. and held for 16-24 hours. This reaction takes place under a nitrogen blanket. The resulting thiophosphate had the following analysis:
LGP-11-T (Alkylphenol Free Polymeric Polyphosphite), U.S. Pat. No. 8,563,637B
To a three-neck 250 mL flask equipped with a mechanical stirrer and purged with nitrogen was added 75.83 grams of a alkylphenol-free liquid polymeric phosphite (Example #2 from U.S. Pat. No. 8,563,637), with a molecular weight of about 9100 and 0.39 grams of 2,5-dimercapto-1,3,4-thiadiazole (0.0026 mol). The mixture was mixed well and heat was applied to a reaction temperature of 240° F. Then 3.51 grams of elemental sulfur (0.109 mol) was added. After one hour, the reaction temperature is increased to 280° F. and held for 16-24 hours. This reaction takes place under a nitrogen blanket. The resulting alkyl phenol free polymeric thiophosphate had the following analysis:
LGP-12-T (Alkylphenol Free Cycloaliphatic Poly and Copoly Phosphites) U.S. Pat. No. 8,981,042B2
To a three-neck 250 mL flask equipped with a mechanical stirrer and purged with nitrogen was added 75.83 grams of cycloaliphatic polyphosphite (Example 2 from U.S. Pat. No. 8,981,042) with a molecular weight range of about 14,000 and 0.39 grams of 2,5-dimercapto-1,3,4-thiadiazole (0.0026 mol). The mixture was mixed well and heat was applied to a reaction temperature of 240° F. 5.52 grams of elemental sulfur (0.172 mol) was then added. After one hour, the reaction temperature is increased to 280° F. and held for 16-24 hours. This reaction takes place under a nitrogen blanket. The resulting analysis of the phenol free cycloaliphatic alkylated poly thiophosphate was:
LGP(DPG)-11-T, U.S. Pat. No. 8,563,637B
To a three-neck 250 mL flask equipped with a mechanical stirrer and purged with nitrogen was added 75.83 grams of a alkylphenol-free liquid polymeric phosphite (Example #3 from U.S. Pat. No. 8,563,637), with a molecular weight of about 1200 and 0.39 grams of 2,5-dimercapto-1,3,4-thiadiazole (0.0026 mol). The mixture was mixed well and heat was applied to a reaction temperature of 240° F. Then 6.29 grams of elemental sulfur (0.196 mol) was added. After one hour, the reaction temperature is increased to 280° F. and held for 16-24 hours. This reaction takes place under a nitrogen blanket. The resulting alkyl phenol free polymeric thiophosphate had the following analysis:
To a three-neck 250 mL flask equipped with a mechanical stirrer and purged with nitrogen was added 75.83 grams of a Triisodecyl phosphite, with a molecular weight of about 500 and 0.39 grams of 2,5-dimercapto-1,3,4-thiadiazole (0.0026 mol). The mixture was mixed well and heat was applied to a reaction temperature of 240° F. Then 4.87 of elemental sulfur (0.152 mol) was added. After one hour, the reaction temperature is increased to 280° F. and held for 16-24 hours. This reaction takes place under a nitrogen blanket. The resulting alkyl phenol free thiophosphate had the following analysis:
Four Ball Wear: This test is used for evaluating friction-reducing and anti-wear fluids. Testing involves 3 stationary steel balls secured in a steel cup and a 4th steel ball lowered to make contact with the 3 stationary balls. The fluid to be tested is poured into the cup. The 4th ball is the only ball that spins. Typical rpm for the ball is 1200 rpm. The single ball spins in contact with the 3 stationary balls at a constant load of 40 kg. Typical run time is 1 hour. The wear on the lower 3 balls is measured and reported in mm. The fluid to produce the smallest wear scars has the best performance.
Wear Scar (mm)
Test results clearly show that the alkylphenol free polymeric polyphosphites give excellent results, better than the commercial trisnonylphenyl thiophosphate with excellent color. And there are no alkylphenols in the final products.
Timken Testing: Timken testing was carried out by adding weight to a lever applying pressure to a block that is in contact with a wheel. The bottom portion of the wheel is submersed in the fluid to be tested. As the wheel spins, the lubricant is carried to the interface of the block and wheel. A one pound weight is added to the lever every minute until a maximum of 13 pounds has been added. The wear scar on the block is measured and reported in millimeters. See
Wear Scar (mm)
Test results clearly show that the alkylphenol free polymeric polyphosphites give excellent results, better than the commercial trisnonylphenyl thiophosphate with excellent color. And there are no alkylphenols in the final products.
The following formulae were prepared for various machine testing:
The water based formulae were prepared using a commercial semi-synthetic. The additive was added to either the Super Concentrate (SC) prior to dilution of the semi-synthetic with water, or to the concentrate after 50% dilution of the semi-synthetic with water. After the 50% dilution with water, all testing was conducted with the semi-synthetic diluted in water at 5%.
Four Ball Wear: This test is used for evaluating friction-reducing and anti-wear fluids. Testing involves 3 stationary steel balls secured in a steel cup and a 4th steel ball lowered to make contact with the 3 stationary balls. The fluid to be tested is poured into the cup. The 4th ball is the only ball that spins. Typical rpm for the ball is 1200 rpm. The single ball spins in contact with the 3 stationary balls at a constant load of 40 kg. Typical run time is 1 hour. The wear on the lower 3 balls is measured and reported in mm. The fluid to produce the smallest wear scars has the best performance.
Wear Scar (mm)
Vertical Drawbead: Vertical Drawbead is a machine used to determine a fluids ability to form a piece of metal. Vertical Drawbead works by applying pressure to a coated metal strip. The formulae to be tested is applied to a 24 inch metal strip which is raised between two dye. The dyes apply 500 psi of pressure to the bottom of the strip. The coated strip is pulled between the two dyes. The amount of force needed to pull the strip between the dyes, is plotted by an X-Y plotter and the force is calculated from this curve. In all cases, higher percent efficiency refers to the performance of the fluid being better.
In this test, all formulae were evaluated on 1018 Steel and 316 Stainless Steel.
Microtap Tap and Torque Testing: Microtap testing is one method used to determine a fluids ability to remove metal. A metal bar with predrilled holes is fastened to a vice. The tap and the metal bar are coated in the fluid to be tested. The tap rotates to tap out the pre-drilled hole. The force needed to tap the hole is measured by a computer and is reported as torque in newton centimeters. In all cases, higher percent efficiency refers to the performance of the fluid being better.
In this test, all formulae were evaluated on 1018 Steel.
Falex Pin and Vee Block Testing: Falex Pin and Vee Block measures the fluids ability to perform in more severe operations, such as cold heading, but can also apply to grinding operations. A pin is fastened using a brass shear pin. Two Vee blocks are clamped onto the pin. The pin and vee blocks are submerged in the fluid to be tested. The load applied on the pin from the vee blocks begins at 250 pounds. The load is increased automatically by a ratcheting arm as the pin spins between the two vee blocks. The torque generated by the load on the pin is read at 250 pound load and is recorded every 250 pounds until a final load of 4500 pounds is reached or a failure occurs. A failure implies the pin or shear pin has broken. See
Microtap Tap and Torque Testing: Microtap testing is one method used to determine a fluids ability to remove metal. A metal bar with predrilled holes is fastened to a vice. The tap and the metal bar are coated in the fluid to be tested. The tap rotates to tap out the predrilled hole. The force needed to tap the hole is measured by a computer and is reported as torque in newton centimeters. In all cases, higher percent efficiency refers to the performance of the fluid being better.
In this test, all formulae were evaluated on 1018 Steel and 316 Stainless Steel.
Falex Pin and Vee Block Testing: Falex Pin and Vee Block measures the fluids ability to perform in more severe operations, such as cold heading, but can also apply to grinding operations. A pin is fastened using a brass shear pin. Two Vee blocks are clamped onto the pin. The pin and vee blocks are submerged in the fluid to be tested. The load applied on the pin from the vee blocks begins at 250 pounds. The load is increased automatically by a ratcheting arm as the pin spins between the two vee blocks. The torque generated by the load on the pin is read at 250 pound load and is recorded every 250 pounds until a final load of 4500 pounds is reached or a failure occurs. A failure implies the pin or shear pin has broken. See
This nonprovisional patent application claims priority to the following-two U.S. patent applications: i) U.S. provisional patent application 62/461,084 titled, “Alkylphenol-Free Polymeric Thiophosphates for Metalworking Fluids,” andii) ii) U.S. provisional patent application 62/619,351 titled, “Alkylphenol-Free Polymeric Phosphites for Metalworking Fluids.” The subject matter of both provisional patent applications is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62461084 | Feb 2017 | US | |
62619351 | Jan 2018 | US |