Polymeric treatment compositions

Information

  • Patent Grant
  • 11331340
  • Patent Number
    11,331,340
  • Date Filed
    Monday, March 2, 2020
    4 years ago
  • Date Issued
    Tuesday, May 17, 2022
    a year ago
Abstract
Compositions are described comprising a polymer; a non-physiological pH solution; and a visualization agent; wherein the polymer is soluble in the non-physiological pH solution and insoluble at a physiological pH. Methods of forming the solutions and polymers are disclosed as well as methods of therapeutic use.
Description
FIELD

The present invention relates generally to vascular treatment compositions and methods of using these compositions to treat vascular conditions. The compositions can comprise a polymer(s) that transition from a liquid to a solid upon being subject to a physiological pH generally found in a tissue or lumen.


BACKGROUND

Embolization is widely used to treat vascular malformations, such as aneurysms, arteriovenous malformations, fistulas, and tumors. These malformations can be treated with a variety of different products, including metallic coils, polymer-metal hybrid coils, microparticles, glues, and foams. However, there remains a need for products that can minimize the risks associated with embolization.


SUMMARY

Treatment compositions are described which comprise a polymer; a solution, e.g., an aqueous solution, having a non-physiological pH; and a visualization agent; wherein the polymer is soluble in the non-physiological pH solution and insoluble in a physiological pH. In some embodiments, the polymer is biocompatible.


Methods of delivering a composition as described herein are also described comprising injecting through a delivery device to a location with a physiological pH a liquid embolic composition comprising a polymer, a solution having a non-physiological pH and a visualization agent, wherein the polymer precipitates when it reaches the physiological pH and treats the vascular disorder.


Methods of treating a vascular disorder are also described comprising injecting through a delivery device into a vessel with a physiological pH environment a liquid embolic composition comprising a polymer, a solution having a non-physiological pH and a visualization agent, wherein the polymer precipitates when it reaches the physiological pH and treats the vascular disorder.


The visualization agent can be a particulate and can have a concentration of about 5% w/w to about 65% w/w. Depending on the type of imaging used with the present compositions, the visualization agent can be iodinated compounds, metal particles, barium sulfate, superparamagnetic iron oxide, gadolinium molecules or a combination thereof.


The polymer can be a reaction product of two or more different monomers or a reaction product of three different monomers. In other embodiments, the polymer can be a reaction product of one or more different monomers. The polymer can have a concentration between about 1% w/w and about 35% w/w. Again, in some embodiments, the polymer can be biocompatible.


The solution having a non-physiological pH can be aqueous and can have a pH of less than about 7. In other embodiments, the solution has a pH of greater than about 8.


In one embodiment, a composition is described for treating vascular defects comprised of a biocompatible polymer at a concentration of from about 1% to 35% w/w soluble in a solution having a non-physiological pH and insoluble in a physiological pH aqueous solution; a solution having a non-physiological pH; and a particulate visualization agent at a concentration of from about 20% w/w to about 60% w/w.


In another embodiment, methods of treating a vascular disorder are described comprising providing a liquid embolic composition comprising a polymer, a solution having a non-physiological pH and a visualization agent, wherein the polymer is soluble in the solution having a non-physiological pH and insoluble in a physiological pH environment; inserting a delivery device into a vessel or tissue; guiding the delivery device to an area in need of treatment wherein the area has a physiological pH; injecting the liquid embolic polymer composition through the delivery device into the vessel at the area in need of treatment thereby immediately precipitating the polymer and forming a solid polymeric mass; and treating the vascular condition.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a one month follow-up angiogram of a kidney treated with a polymer administered according to Example 5.



FIG. 2 illustrates an x-ray image of an excised kidney treated according to Example 5.



FIG. 3 illustrates a histological section of a renal artery filled with liquid embolic polymer.



FIGS. 4A and 4B illustrate pre- and post-treatment angiograms of a rete in a pig according to Example 6.



FIGS. 5A and 5B illustrate a post treatment angiogram and a post-treatment CT angiogram of renal vasculature in a rabbit according to Example 7 for visualization comparison.



FIG. 6 illustrates a post treatment angiogram using barium sulfate of renal vasculature in a rabbit according to Example 8.



FIGS. 7A and 7B illustrate a post treatment angiogram and a post-treatment MR angiogram using tantalum of a renal vasculature in a rabbit according to Example 8 for visualization comparison.





DETAILED DESCRIPTION

Described herein generally are vascular treatment compositions comprising (i) a polymer that can be soluble in solutions at non-physiological pH and insoluble at a physiological pH or when subjected to a physiological pH, (ii) an aqueous solution with a non-physiological pH, and (iii) an opacification agent(s) that can permit visualization in vivo. These compositions can be introduced through a delivery device in the liquid state and transition to the solid state once in the body at subjected to a physiological pH. In one embodiment, the aqueous solution does not include an organic solvent.


When the polymer is soluble, it can be deployed through a delivery device. A delivery device can be any device suitable to deliver the liquid embolic polymers described herein. For example, a delivery device can be a catheter or a microcatheter that is deployed to a delivery site and/or treatment site. However, once precipitated out of solution, the polymer can be much more difficult to deploy. For example, once precipitated, the polymer can in some instances reduce the ability to deliver the polymer through a delivery device. As such, the compositions and methods described herein can provide a polymer treatment solution the can be deployed to a treatment site and having it precipitate once at the location of interest; the precipitated product would generally not be deliverable.


Treatment site and/or delivery site as used herein can be any site within a living creature. In some embodiments, the creature is a mammal such as a human. Human sites can include blood vessels, renal lumens, fatty tissue, muscle, connective tissue, cerebral spinal fluid, brain tissue, repertory tissue, nerve tissue, subcutaneous tissue, intra atria tissue, gastrointestinal tissue, and the like. As a skilled artisan understands, the physiological pH of different tissues and lumens within a mammalian body such as a human can vary. A polymeric solution can be customized for a particular delivery site pH. For example, if the polymer solution is to be delivered to the stomach, where pHs tend to be acidic, the polymeric solution can be formed in as an alkaline solution.


A function of the polymer, e.g. liquid embolic polymer, can be to precipitate when coming in contact with blood or other physiological fluid at a physiological pH at the intended site of treatment. In some embodiments, physiological pH of the blood stream can be a pH of about 7.0, about 7.1, about 7.2, about 7.3, about 7.4, about 7.5, about 7.6, about 7.7 or about 7.8. In another embodiment, physiological pH of the stomach can be a pH of about 3.5, about 3.6, about 3.7, about 3.8, about 3.9, about 4.0, about 4.1, about 4.2, about 4.3, about 4.4, or about 4.5. In still another embodiment, physiological pH of the intestines can depend on the location within the intestines, but generally can be a pH of about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, about 6.0, about 6.1, about 6.2, about 6.3, about 6.4, about 6.5, about 6.6, about 6.7, about 6.8, about 6.9, or about 7.0. Ranges of pH for any of the lists above can be created between any set of values listed. Precipitation of the polymer at a physiological pH can be used to occlude a biological structure and/or a tissue. Control of the liquid embolic polymer's solubility can be achieved by selection of the composition of the polymer.


The vascular treatment compositions can comprise a solution at a non-physiological pH. The solution may be aqueous. The solution can include a polymer soluble in the solution at non-physiological pH but insoluble in a physiological pH. Further included in the solution can be a visualization agent. This change in solubility can be a result in a changing viscosity of the polymer within the solution. In other embodiments, this change in solubility can result in a change in density of the polymer in solution.


The polymer can be prepared with monomers having ionizable moieties. In some embodiments, the polymers can be a reaction product of two different monomers, three different monomers, four different monomers, five different monomers or more. A hydrophobic polymer can be constructed with a minimum amount of ionizable moieties to render the polymer soluble in non-physiological pH solutions. The ratio of monomers with ionizable moieties and other monomers can be dependent on the structure of the monomers and can be determined experimentally.


Amine-containing liquid embolic polymers can be dissolved in a low pH solution, the amines may be substantially protonated and can enhance the solubility of the polymer. The resulting solution can be placed in conditions with a physiological pH and the amines can deprotonate and render the polymer insoluble. Conversely, carboxylic acid-containing polymers can be dissolved in a high pH solution, the carboxylic acids can be substantially deprotonated and enhance the solubility of the polymer. The resulting solution can be placed in conditions with a physiological pH and the carboxylic acids can protonate and render the polymer insoluble.


Monomers with ionizable moieties can contain a polymerizable moiety and can contain an ionizable moiety. Polymerizable moieties can be those that permit free radical polymerization, including but not limited to acrylates, methacrylates, acrylamides, methacrylamides, vinyl groups, combinations thereof and derivatives thereof. Alternatively, other reactive chemistries can be employed to polymerize the polymer, such as but not limited to nucleophile/N-hydroxysuccinimide esters, nucleophile/halide, vinyl sulfone/acrylate or maleimide/acrylate. A polymerizable moiety can be an acrylate and/or an acrylamide.


Ionizing moieties can be added to impart the pH-sensitive solubility to the polymer. Ionizable moieties can include carboxylic acids, amines, and derivatives thereof. Alternatively or additionally, amines protected using any suitable technique, such as t-Boc, may be used in the synthesis of the liquid embolic polymer. Molecules containing polymerizable and ionizable moieties can include acrylic acid, methacrylic acid, aminopropyl methacrylamide, aminoethyl methacrylamide, N-(3-methylpyridine)acrylamide, N-(2-(4-aminophenyl)ethyl)acrylamide, N-(4-aminobenzyl)acrylamide, N-(2-(4-imidazolyl)ethyl)acrylamide, deverivatives thereof and combinations thereof.


Other monomers can contain a polymerizable moiety and have a structure that facilitates the desired performance in dissolution or in precipitation. Polymerizable moieties can be those that permit free radical polymerization, including acrylates, methacrylates, acrylamides, methacrylamides, vinyl groups, and derivatives thereof. Alternatively or additionally, other reactive chemistries can be employed to polymerize the polymer, such as but not limited to nucleophile/N-hydroxysuccinimde esters, nucleophile/halide, vinyl sulfone/acrylate or maleimide/acrylate. In one embodiment, polymerizable moieties may be acrylates and acrylamides. In general, any monomer(s) can be utilized to form the described liquid embolic polymers.


Less hydrophobic monomers can require less ionizable monomer to be copolymerized with it to have the desired solubility characteristics. Likewise, more hydrophobic monomers can require more ionizable monomer to be copolymerized with it to have the desired solubility characteristics. Monomers containing moieties available for hydrogen bonding, such as hydroxyl groups, can increase the cohesiveness of the precipitated polymer. Monomers used can include acrylates and acrylamides such as alkyl acrylates, alkyl alkacrylates, alkyl alkacrylamides, and alkyl acrylamides. Acrylates and acrylamides can include but are not limited to t-butyl acrylate, t-butyl acrylamide, n-octyl methacrylate, methyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, derivatives thereof and combinations thereof.


In one embodiment, liquid embolic polymers can be polymerized from solutions, mixtures, prepolymer solutions of monomers with ionizable moieties and other monomers. The solvent used to dissolve the monomers can be any solvent that dissolves or substantially dissolves the chosen monomers. Solvents can include methanol, acetonitrile, dimethyl formamide, and dimethyl sulfoxide.


Polymerization initiators can be used to start the polymerization of the monomers in the solution. The polymerization can be initiated by reduction-oxidation, radiation, heat, or any other method known in the art. Radiation cross-linking of the monomer solution can be achieved with ultraviolet light or visible light with suitable initiators or ionizing radiation (e.g. electron beam or gamma ray) without initiators. Polymerization can be achieved by application of heat, either by conventionally heating the solution using a heat source such as a heating well, or by application of infrared light to the monomer solution.


In one embodiment, the polymerization initiator can azobisisobutyronitrile (AIBN) or a water soluble AIBN derivative (2,2′-azobis(2-methylpropionamidine) dihydrochloride). Other initiators can include N,N,N′,N′-tetramethylethylenediamine, ammonium persulfate, benzoyl peroxides, azobisisobutyronitriles and combinations thereof. Initiator concentrations can range from about 0.25% w/w to about 2% w/w, about 0.5% w/w to about 1% w/w, about 0.25% w/w, about 0.5% w/w, about 0.75% w/w, about 1% w/w, about 1.25% w/w, about 1.50% w/w, about 1.75% w/w, about 2% w/w, of the mass of the monomers in solution or any range or value within the listed percentages. The polymerization reaction can be performed at elevated temperatures, of about 30° C. to about 200° C., about 50° C. to about 100° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C. or about 100° C. After the polymerization is completed, the polymer can be recovered by precipitation in a non-solvent and dried under vacuum.


The aqueous solution with non-physiological pH can dissolve the liquid embolic polymer. In one embodiment, the aqueous solution does not include an organic solvent. Concentrations of the polymer in the aqueous solution can range from about 2.5% to about 25%, about 5% to about 15%, about 2.5%, about 5%, about 7.5%, about 10%, about 12.5%, about 15%, about 17.5%, about 20%, about 22.5%, about 25% or any percentage or range of percentages bound by the above percentages. The aqueous solution can contain the minimum amount of buffer to maintain the non-physiologic pH after dissolution of the liquid embolic polymer, but not adversely affect the pH of the patient after administration. Buffer concentrations range from about 1 mM to about 200 mM, about 10 mM to about 100 mM, about 20 mM to about 80 mM, about 30 mM to about 70 mM, about 40 mM to about 60 mM, about 45 mM to about 55 mM, about 10 mM, about 20 mM, about 30 mM, about 40 mM, about 50 mM, about 60 mM, about 70 mM, about 80 mM, about 90 mM, about 100 mM or any concentration or range of concentrations within the values listed. In other embodiments, the buffer concentration can be less than about 1 mM or even not used. In one embodiment, the buffer concentration can be about 25 mM.


For liquid embolic polymers containing amines, buffers can include citrate and acetate and solution pH's can be from about 3 to about 6, from about 3 to about 5, about 3, about 4, about 5 or about 6. For liquid embolic polymers containing carboxylic acids, buffers can include carbonate, N-cyclohexyl-2-aminoethanesulfonic acid (CHES), N-cyclohexyl-2-hydroxyl-3-aminopropanesulfonic acid (CAMPSO), N-cyclohexyl-3-aminopropanesulfonic acid (CAPS), 3-[4-(2-Hydroxyethyl)-1-piperazinyl]propanesulfonic acid (HEPPS or EPPS), 3-(N-morpholino)propanesulfonic acid (MOPS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 2-(N-morpholino)ethanesulfonic acid (MES) and 2-amino-2-methyl-1-propanol (AMP) and solution pH's can be from about 8 to about 11, from about 8 to about 10, about 8, about 9, about 10 or about 11.


Particulate visualization and/or opacification agent or agents can impart visibility to the liquid embolic polymer when imaged using a medically relevant imaging technique such as fluoroscopy, computed tomography, or magnetic resonance techniques. Visualization of the polymer under fluoroscopy can be imparted by the incorporation of solid particles of radiopaque materials such as barium, bismuth, tantalum, platinum, gold, and other dense metals suspended in the non-physiological pH solution of the liquid embolic polymer. In one embodiment, the visualization agent for fluoroscopy can be barium sulfate. Visualization of the polymer under computed tomography imaging can be imparted by incorporation of solid particles of barium or bismuth. In one embodiment, the visualization agent for computed tomography imaging can be barium sulfate. Concentrations of barium sulfate to render the liquid embolic visible using fluoroscopic and computed tomography imaging can be from about 10% to about 30%, about 20% to about 30%, about 30% to about 50% w/w, about 40% to about 45% w/w, about 10%, about 13%, about 15%, about 17%, about 20%, about 23%, about 25%, about 27%, about 30%, about 33%, about 35%, about 37%, about 40%, about 43%, about 45%, about 47% about 50% of the non-physiological pH solution or any concentration or range of concentrations within the values listed.


In another embodiment, the visualization agent for fluoroscopy can be tantalum. Concentrations of tantalum to render the liquid embolic visible using fluoroscopic and/or computed tomography imaging can be from about 10% to about 30%, about 20% to about 30%, about 30% to about 50% w/w, about 40% to about 45% w/w, about 10%, about 13%, about 15%, about 17%, about 20%, about 23%, about 25%, about 27%, about 30%, about 33%, about 35%, about 37%, about 40%, about 43%, about 45%, about 47% about 50% of the non-physiological pH solution or any concentration or range of concentrations within the values listed.


Visualization of the liquid embolic polymer under magnetic resonance imaging can be imparted by the incorporation of solid particles of superparamagnetic iron oxide or gadolinium molecules polymerized into the polymer structure or encased into the polymeric structure once precipitated. One example visualization agent for magnetic resonance can be superparamagnetic iron oxide with a particle size of 10 microns. Concentrations of superparamagnetic iron oxide particles to render the hydrogel visible using magnetic resonance imaging range from about 0.01% w/w to about 1% w/w, about 0.05% w/w to about 0.5% w/w, or about 0.1% w/w to about 0.6% w/w of the polymerization solution.


Further, an iodinated compound can be used to impart visibility of the liquid embolic polymer when imaged using fluoroscopy or computer tomography. Dissolution of iohexol, iothalamate, diatrizoate, metrizoate, ioxaglate, iopamidol, ioxilan, iopromide, or iodixanol in the aqueous solution with non-physiological pH can render the radiopaque. Suspension of ethiodol, iodophenylundecylic acid, or both in the aqueous solution with non-physiological pH can render the liquid embolic polymer radiopaque.


In other embodiments, lipiodol ultra fluid which can include ethyl esters of iodized fatty acids of poppy seed oil qs ad for one ampoule with an iodine content of about 48% (i.e. 480 mg per mL). Additionally, in some embodiments, the use of iodinated compounds can provide temporary radiopacity of the polymer because the iodinated compounds can diffuse or otherwise be carried away from the embolization site by in vivo processes.


Polymer visualization under magnetic resonance imaging can be imparted by the incorporation of solid particles of superparamagnetic iron oxide or water soluble gadolinium compounds. In one embodiment, the visualization agent for magnetic resonance can be superparamagnetic iron oxide with a particle size of about 5 μm, about 10 μm or about 15 μm. Concentrations of superparamagnetic iron oxide particles with any of the above particle sizes to render the liquid embolic visible using magnetic resonance imaging can be from about 0.1% w/w to about 1% w/w, about 0.1% w/w, about 0.2% w/w, about 0.3% w/w, about 0.4% w/w, about 0.5% w/w, about 0.6% w/w, about 0.7% w/w, about 0.8% w/w, about 0.9% w/w, about 1% w/w of the non-physiological pH solution or any concentration or range of concentrations within the values listed.


If a particulate visualization agent is utilized, it can be prepared by dissolving the liquid embolic polymer in the aqueous solution with non-physiologic pH and adding the particulate agent. If a soluble visualization agent is utilized, it can be prepared by dissolving the liquid embolic polymer and water soluble visualization agent in an aqueous solution with non-physiologic pH.


The liquid embolic polymers, solutions and mixtures described herein can be sterilized without substantially degrading the polymer. After sterilization, at least about 50%, about 60%, about 70%, about 80%, about 90%, about 95% about 99% or about 100% of the polymer can remain intact. In one embodiment, the sterilization method can be autoclaving and can be utilized before administration of the polymer.


The liquid embolic polymer formulation can be removed from the vial using a needle and syringe, the syringe to be later connected to a delivery catheter. To prevent premature liquid embolic polymer deposition, the delivery catheter can be primed with a bolus of the same aqueous solution with non-physiologic pH as was used to dissolve the liquid embolic polymer. This flushing can prevent clogging of the delivery catheter with the liquid embolic polymer. The syringe containing the liquid embolic formulation can then be connected to the proximal end of a delivery catheter, such as a microcatheter, cannula, or the like, and positioned in the desired vascular or other anatomic site.


As the liquid embolic formulation is injected, it can push the aqueous solution with non-physiologic pH flushing solution out of the microcatheter. The rate of injection can provide differing precipitation amounts and/or precipitation performance. For example, a slower injection rate can achieve a more distal penetration of the liquid embolic polymer and a faster injection rate can achieve a more proximal penetration. In other embodiments, the opposite can be true. In yet another embodiment, a slower injection rate can result in more precipitation whereas a faster injection rate can result in less precipitation. In other embodiments, the opposite effect may occur. The speed of precipitation can be fast and in some cases can be immediate, e.g. faster than the human eye can discern. In other embodiments, the polymer can precipitate in less than about 60 s, about 50 s, about 40 s, about 30 s, about 20 s, about 10 s, about 5 s, about 4 s, about 3 s, about 2 s, about 1 s, about 0.75 s, about 0.5 s, about 0.25 s, about 0.1 s, about 0.05 s, about 0.01 s, about 0.001 s or any range encompassed by any of these values. For example, in one embodiment, the polymer can precipitate in between about 0.01 s and about 30 s.


The pH of the aqueous solution can then rapidly change to physiological pH as a result of the large buffering capacity of the body's tissues and fluids. Also, a low buffer strength of the solution can lead to the rapid change of pH. The progress of the liquid embolic formulation inside the delivery catheter can be observed using an imaging technique compatible with the particulate agent or agents selected. With continued injection, the liquid embolic formulation can enter a target delivery site or treatment site.


The large buffering capacity of the body's tissues can cause the fluids to rapidly deprotonate or protonate the ionizable moieties present on the liquid embolic polymer, thus reducing the solubility of the liquid embolic polymer and causing it to precipitate from solution. The precipitated liquid embolic polymer can entrap the particulate agents and can provide occlusion of the target site.


The precipitated liquid embolic polymer can be a solid mass of precipitate. In some embodiments, the mass can have less than about 20%, about 10%, about 5%, about 1%, about 0.1%, about 0.01, or about 0.001% fragmentation. In some embodiments, the precipitated polymer can be cohesive and remain substantially a solid mass.


The precipitated liquid embolic polymer can remain substantially stable once implanted. For example, the liquid embolic polymer can remain greater than about 60%, about 70% about 80%, about 90%, about 95%, about 99% or about 100% intact after about 5 days, about 2 weeks, about 1 month, about 2 months, about 6 months, about 9 months, about a year, about 2 years, about 5 years, about 10 years or about 20 years.


In some embodiments, however, it may be desirable for the precipitated liquid embolic polymer to degrade over time. In such embodiments, the liquid embolic polymer can degrade to less than about 40%, about 30% about 20%, about 10%, about 5% or about 1% intact after about 5 days, about 2 weeks, about 1 month, about 2 months, about 6 months, about 9 months, about a year, about 2 years, about 5 years, or about 10 years.


Further, the liquid embolic polymers once precipitated can be cohesive enough to stick to the tissue and/or remain in place through friction with the tissues. In other embodiments, the precipitated polymer can act as a plug in a vessel held in place by the flow and pressure of the blood itself.


Example 1
Polymer Preparation

To 3 mL of methanol, 1.6 g t-butyl acrylate, 0.4 g of aminoethyl methacrylate, and 10 mg of azobisisobutyronitrile were added. Upon complete dissolution, the solution was placed at 80° C. for 8 hr. Then, after cooling to room temperature, the polymer was recovered by precipitation in ethyl ether and dried under vacuum.


Example 2
Aqueous Solution Preparation

To 1 L of distilled water, 9 g sodium chloride and 6.81 g potassium phosphate monobasic were added. Upon complete dissolution, the pH of the solution was adjusted to 3 using phosphoric acid.


Example 3
Preparation of Liquid Embolic Polymer Formulation

To 9 g of the liquid of Example 2, 1 g of the polymer of Example 1 was added. Dissolution of the polymer was aided by incubating at 55° C. for 24 hr. After complete dissolution, 3 g of barium sulfate was added. The liquid embolic polymer formulation was then aliquoted into vials and capped. The vials were autoclaved at 121° C. for 15 min.


Example 4
Effect of Monomer Concentration on Solubility

Using the techniques described in Examples 1 and 2, the polymers described in Table 1 were prepared. The solubility of the polymers was investigated in aqueous solutions at pH 3 (non-physiological) and at pH 7.4 (physiological).













TABLE 1






Fraction
Fraction





t-butyl
aminopropyl
Soluble
Soluble


Polymer
acrylate
methacrylate
at pH 3?
at pH 7.4?







1
0.88
0.12
No
No


2
0.75
0.25
Yes
No


3
0.73
0.27
Yes
No


4
0.68
0.32
Yes
Slightly


5
0.65
0.35
Yes
Slightly


6
0.63
0.37
Yes
Yes









The results of Table 1 show how the solubility of the liquid embolic polymer can be controlled by the amount of ionizable moieties present in the polymer.


Example 5
In Vivo Evaluation of the Liquid Embolic Polymer in a Rabbit Kidney

The liquid embolic polymer formulation prepared according to the techniques of Examples 1, 2, and 3 was utilized for the embolization of five rabbit kidneys. Angiographic occlusion was obtained in all five kidneys. The kidneys remained occluded angiographically at the follow-up evaluation at 1 month (n=2, FIG. 1) and 3 months (n=3). Histological evaluation of the kidneys demonstrated good penetration of the liquid embolic polymer into the vasculature and substantial tissue destruction from the removal of the blood supply by the liquid embolic polymer (FIGS. 2 and 3).


Example 6
In Vivo Evaluation of the Liquid Embolic Polymer in a Porcine Rete

The liquid embolic polymer formulation prepared according to the techniques of Examples 1, 2, and 3 was utilized for the embolization of a rete in an acute pig. At the end of the procedure, angiographic occlusion of the rete was obtained and can be seen when comparing the pre-treatment angiogram in FIG. 4A and the post-treatment angiogram in FIG. 4B.


Example 7
CT Evaluation of the Liquid Embolic Polymer

The liquid embolic polymer formulation prepared according to the techniques of Examples 1, 2, and 3 was utilized for the embolization of the renal vasculature of rabbits. The liquid embolic formulation was opacified with barium sulfate. At the end of the procedure, the rabbit was imaged using a CT scanner and differences can be seen when comparing the pre-treatment angiogram in FIG. 5A and the post-treatment CT angiogram in FIG. 5B.


Example 8
MR Evaluation of the Liquid Embolic Polymer

The liquid embolic polymer formulation prepared according to the techniques of Examples 1, 2, and 3 was utilized for the embolization of the renal vasculature of rabbits. The liquid embolic formulation was opacified with either tantalum or barium sulfate. At the end of the procedure, the rabbits were imaged using a MR scanner and differences can be seen when comparing the pre-treatment angiogram in FIGS. 6 and 7A and the post-treatment MR angiogram in FIG. 7B.


Example 9
Preparation of Polymer with Increased Cohesivity

To 3 mL of methanol, 0.5 g t-butyl acrylate, 1.2 g hydroethyl methacrylate, 0.3 g of aminoethyl methacrylate, and 10 mg of azobisisobutyronitrile were added. Upon dissolution of all components, the solution was placed at 80° C. for 8 hr. After cooling to room temperature, the polymer was recovered by precipitation in ethyl ether and dried under vacuum.


Example 10
Preparation of Aqueous Solution with Non-Physiological pH and Soluble Iodine

To 1 L of distilled water, 9 g sodium chloride, 6.81 g potassium phosphate monobasic, and 200 g iohexol were added. Upon dissolution of all components, the pH of the solution was adjusted to 3 using phosphoric acid.


Example 11
Preparation of Liquid Embolic Polymer Formulation

To 9 g of the liquid of Example 11, 1 g of the polymer of Example 10 was added. Dissolution of the polymer was aided by incubating at 55° C. for several hours. After dissolution of the liquid embolic polymer, the liquid embolic polymer formulation was then aliquoted into vials and capped. The vials were autoclaved at 121° C. for 15 min.


Example 12
Comparison of Liquid Embolic Polymer Formulation Precipitation

The liquid embolic polymer formulations of Examples 3 and 11 were evaluated by adding each formulation drop wise into excess phosphate buffered saline at pH 7.4. The speed of precipitation and cohesiveness of the precipitate were evaluated. Results are included in Table 2.












TABLE 2







Speed of
Cohesiveness of



Precipitation
Precipitate


















Example 3 Formulation
Immediate
Multitude of polymer pieces


Example 11 Formulation
Immediate
Single piece of polymer









Example 13
Liquid Embolic for Use in a Basic pH Environment

To 3 mL of methanol, 1.6 g t-butyl acrylate, 0.4 g of aminoethyl methacrylate, and 10 mg of azobisisobutyronitrile were added. Upon dissolution of components, the solution was placed at 80° C. for 8 hr. After cooling to room temperature, the polymer was recovered by precipitation in ethyl ether and dried under vacuum. To 1 L of distilled water, 9 g sodium chloride and 6.81 g potassium phosphate monobasic were added. Upon dissolution of components, the pH of the solution was adjusted to 3 using phosphoric acid.


To 9 g of the liquid, one gram of the polymer was added. Dissolution of the polymer was aided by incubating at 55° C. for 24 hr. After dissolution of the liquid embolic polymer, 7 g of barium sulfate was added to the solution. The liquid embolic formulation was then aliquoted into vials and capped. The vials were autoclaved at 121° C. for 30 min.


Such a liquid embolic formulation can be implanted as described herein into intestines or other high pH environments where the polymer precipitates.


Example 14
Liquid Embolic for Use in an Acidic pH Environment

To 3 mL of methanol, 0.5 g n-octyl methacrylate, 1.5 g of methacrylic acid, and 10 mg of azobisisobutyronitrile were added. Upon dissolution of components, the solution was placed at 80° C. for 8 hr. After cooling to room temperature, the polymer was recovered by precipitation in ethyl ether and dried under vacuum. To 1 L of distilled water, 9 g sodium chloride and 4.2 g sodium bicarbonate were added. Upon dissolution of components, the pH of the solution was adjusted to 10 using sodium hydroxide.


To 9 g of the liquid, one gram of the polymer was added. Dissolution of the polymer was aided by incubating at 55° C. for 24 hr. After dissolution of the liquid embolic polymer, 7 g of barium sulfate was added to the solution. The liquid embolic formulation was then aliquoted into vials and capped. The vials were autoclaved at 121° C. for 30 min.


Such a liquid embolic formulation can be implanted as described herein into a stomach or other low pH environments where the polymer precipitates.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. A method of delivering a composition comprising: injecting through a delivery device into a location with physiological pH environment a liquid embolic composition comprising a biocompatible polymer including a first monomer selected from a group consisting of aminopropyl methacrylamide, aminoethyl methacrylamide, aminoethyl methacylate, aminopropyl methacylate, N-(3-methylphridine)acrylamide, N-(2-(4-aminophenyl)ethylacrylamide, N-(4-aminobenzyl)acrylamide, N-(2-4-imidazolyl)ethyl)acrylamide, and combinations thereof, a second monomer including an acrylate, acrylamide, a derivative thereof, or a combination thereof, a non-physiological pH solution and a visualization agent, and wherein the biocompatible polymer is soluble in the non-physiological pH and precipitates when it reaches the physiological pH, wherein the visualization agent is an iodinated compound, barium sulfate, tantalum, superparamagnetic iron oxide, gadolinium molecules, or a combination thereof.
  • 2. The method of claim 1, wherein the visualization agent is a particulate.
  • 3. The method of claim 1, wherein the visualization agent has a concentration of about 5% to about 65%.
  • 4. The method of claim 1, wherein the biocompatible polymer includes a third monomer.
  • 5. The method of claim 1, wherein the biocompatible polymer is a reaction product of three different monomers.
  • 6. The method of claim 1, wherein the non-physiological pH solution is aqueous.
  • 7. The method of claim 1, wherein the non-physiological pH solution has a pH of less than about 5.
  • 8. The method of claim 1, wherein the biocompatible polymer has a concentration of about 1% w/w to about 35% w/w.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/232,929 filed Dec. 26, 2018, which is a continuation of U.S. patent application Ser. No. 15/924,028 filed Mar. 16, 2018, now U.S. Pat. No. 10,201,562, which is a continuation of U.S. patent application Ser. No. 15/142,395 filed Apr. 29, 2016, now U.S. Pat. No. 9,351,993, which is a divisional of U.S. patent application Ser. No. 13/917,323 filed Jun. 13, 2013, now U.S. Pat. No. 9,351,993, which claims the benefit of U.S. provisional patent application No. 61/659,916, filed Jun. 14, 2012, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (197)
Number Name Date Kind
3852341 Bjork et al. Dec 1974 A
4406878 Boer et al. Sep 1983 A
5580568 Greff et al. Dec 1996 A
5667767 Greff et al. Sep 1997 A
5695480 Evans et al. Dec 1997 A
5702361 Evans et al. Dec 1997 A
5755658 Wallace et al. May 1998 A
5823198 Jones et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5851508 Greff et al. Dec 1998 A
5894022 Ji et al. Apr 1999 A
6004573 Rathi et al. Dec 1999 A
6015541 Greff et al. Jan 2000 A
6017977 Evans et al. Jan 2000 A
6037366 Krall et al. Mar 2000 A
6040408 Koole Mar 2000 A
6051607 Greff et al. Apr 2000 A
6146373 Cragg et al. Nov 2000 A
6281263 Evans et al. Aug 2001 B1
6303100 Ricci et al. Oct 2001 B1
6333020 Wallace et al. Dec 2001 B1
6335384 Evans et al. Jan 2002 B1
6342202 Evans et al. Jan 2002 B1
6394945 Chan et al. May 2002 B1
6454738 Tran et al. Sep 2002 B1
6475477 Kohn et al. Nov 2002 B1
6503244 Hayman Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6511472 Hayman et al. Jan 2003 B1
6531111 Whalen et al. Mar 2003 B1
6558367 Cragg et al. May 2003 B1
6562362 Bae et al. May 2003 B1
6565551 Jones et al. May 2003 B1
6569190 Whalen et al. May 2003 B2
6599448 Ehrhard et al. Jul 2003 B1
6602269 Wallace et al. Aug 2003 B2
6610046 Usami et al. Aug 2003 B1
6616591 Teoh et al. Sep 2003 B1
6623450 Dutta et al. Sep 2003 B1
6645167 Whalen, II et al. Nov 2003 B1
6699222 Jones et al. Mar 2004 B1
6756031 Evans et al. Jun 2004 B2
6759028 Wallace et al. Jul 2004 B2
6962689 Whalen et al. Nov 2005 B2
6964657 Cragg et al. Nov 2005 B2
6979464 Gutowska Dec 2005 B2
7018365 Strauss et al. Mar 2006 B2
7070607 Murayama et al. Jul 2006 B2
7083643 Whalen et al. Aug 2006 B2
7138106 Evans et al. Nov 2006 B2
7374568 Whalen et al. May 2008 B2
7459142 Greff Dec 2008 B2
7476648 Tabata et al. Jan 2009 B1
7507229 Hewitt et al. Mar 2009 B2
7507394 Whalen et al. Mar 2009 B2
7776063 Sawhney et al. Aug 2010 B2
7790141 Pathak et al. Sep 2010 B2
7838699 Schwarz et al. Nov 2010 B2
7976527 Cragg et al. Jul 2011 B2
8066667 Hayman et al. Nov 2011 B2
8235941 Hayman et al. Aug 2012 B2
8454649 Cragg et al. Jun 2013 B2
8486046 Hayman et al. Jul 2013 B2
8492329 Shemesh et al. Jul 2013 B2
8685367 Brandom et al. Apr 2014 B2
9078950 Cruise et al. Jul 2015 B2
9351993 Cruise et al. May 2016 B2
9434800 Chevalier et al. Sep 2016 B2
9655989 Cruise et al. May 2017 B2
9907880 Cruise et al. Mar 2018 B2
9937201 Cruise et al. Apr 2018 B2
10201562 Cruise et al. Feb 2019 B2
10258716 Cruise et al. Apr 2019 B2
10368874 Baldwin et al. Aug 2019 B2
10576182 Cruise et al. Mar 2020 B2
10588923 Cruise et al. Mar 2020 B2
10828388 Cruise et al. Nov 2020 B2
11051826 Baldwin et al. Jul 2021 B2
20010022962 Greff et al. Sep 2001 A1
20010024637 Evans et al. Sep 2001 A1
20010033832 Wallace et al. Oct 2001 A1
20010036451 Goupil et al. Nov 2001 A1
20010046518 Sawhney Nov 2001 A1
20020026234 Li et al. Feb 2002 A1
20020042378 Reich et al. Apr 2002 A1
20030021762 Luthra et al. Jan 2003 A1
20030040733 Cragg et al. Feb 2003 A1
20030099597 Whalen, II May 2003 A1
20030100942 Ken et al. May 2003 A1
20030211083 Vogel et al. Nov 2003 A1
20030232198 Lamberti et al. Dec 2003 A1
20040024098 Mather et al. Feb 2004 A1
20040091425 Boschetti May 2004 A1
20040091543 Bell et al. May 2004 A1
20040157082 Ritter et al. Aug 2004 A1
20040158282 Jones et al. Aug 2004 A1
20040161547 Carlson et al. Aug 2004 A1
20040209998 De Vries Oct 2004 A1
20040224864 Patterson et al. Nov 2004 A1
20040228797 Bein et al. Nov 2004 A1
20040241158 McBride et al. Dec 2004 A1
20050003010 Cohen et al. Jan 2005 A1
20050008610 Schwarz et al. Jan 2005 A1
20050106119 Brandom et al. May 2005 A1
20050123596 Kohane Jun 2005 A1
20050143484 Fang et al. Jun 2005 A1
20050175709 Baty et al. Aug 2005 A1
20050196449 DiCarlo et al. Sep 2005 A1
20050226935 Kamath et al. Oct 2005 A1
20050244504 Little et al. Nov 2005 A1
20050265923 Toner et al. Dec 2005 A1
20060008499 Hudak Jan 2006 A1
20060067883 Krom et al. Mar 2006 A1
20060069168 Tabata et al. Mar 2006 A1
20060088476 Harder et al. Apr 2006 A1
20060233854 Seliktar et al. Oct 2006 A1
20070026039 Drumheller et al. Feb 2007 A1
20070196454 Stockman et al. Aug 2007 A1
20070208141 Shull et al. Sep 2007 A1
20070224234 Steckel et al. Sep 2007 A1
20070231366 Sawhney et al. Oct 2007 A1
20070237741 Figuly et al. Oct 2007 A1
20070248567 Pathak et al. Oct 2007 A1
20080019921 Zhang Jan 2008 A1
20080038354 Slager et al. Feb 2008 A1
20080039890 Matson et al. Feb 2008 A1
20080114277 Ambrosio et al. May 2008 A1
20080214695 Pathak et al. Sep 2008 A1
20080226741 Richard Sep 2008 A1
20080243129 Steffen et al. Oct 2008 A1
20080269874 Wang et al. Oct 2008 A1
20080281352 Ingenito et al. Nov 2008 A1
20090041850 Figuly Feb 2009 A1
20090048659 Weber et al. Feb 2009 A1
20090054535 Figuly et al. Feb 2009 A1
20090093550 Rolfes et al. Apr 2009 A1
20090117033 O'Gara May 2009 A1
20090117070 Daniloff May 2009 A1
20090181068 Dunn Jul 2009 A1
20090186061 Griguol et al. Jul 2009 A1
20090215923 Carnahan et al. Aug 2009 A1
20090221731 Vetrecin et al. Sep 2009 A1
20090259302 Trollsas et al. Oct 2009 A1
20090297612 Koole et al. Dec 2009 A1
20100010159 Belcheva Jan 2010 A1
20100023112 Borck et al. Jan 2010 A1
20100036491 He et al. Feb 2010 A1
20100042067 Koehler Feb 2010 A1
20100049165 Sutherland et al. Feb 2010 A1
20100080788 Barnett et al. Apr 2010 A1
20100086678 Arthur et al. Apr 2010 A1
20100158802 Hansen et al. Jun 2010 A1
20100247663 Day et al. Sep 2010 A1
20100256777 Datta et al. Oct 2010 A1
20100303804 Liska et al. Dec 2010 A1
20110008406 Altman et al. Jan 2011 A1
20110008442 Zawko et al. Jan 2011 A1
20110020236 Bohmer et al. Jan 2011 A1
20110071495 Tekulve Mar 2011 A1
20110091549 Blaskovich et al. Apr 2011 A1
20110105889 Tsukada et al. May 2011 A1
20110182998 Reb et al. Jul 2011 A1
20110190813 Brownlee et al. Aug 2011 A1
20110202016 Zugates et al. Aug 2011 A1
20120041481 Daniloff et al. Feb 2012 A1
20120059394 Brenner et al. Mar 2012 A1
20120114589 Rolfes-Meyering et al. May 2012 A1
20120156164 Park et al. Jun 2012 A1
20120164100 Li et al. Jun 2012 A1
20120184642 Bartling et al. Jul 2012 A1
20120238644 Gong et al. Sep 2012 A1
20120244198 Malmsjo et al. Sep 2012 A1
20130039848 Bradbury et al. Feb 2013 A1
20130045182 Gong et al. Feb 2013 A1
20130060230 Capistron et al. Mar 2013 A1
20130079421 Aviv et al. Mar 2013 A1
20130108574 Chevalier et al. May 2013 A1
20130184660 Swiss et al. Jul 2013 A1
20130225778 Goodrich et al. Aug 2013 A1
20140039459 Folk et al. Feb 2014 A1
20140056806 Vernengo et al. Feb 2014 A1
20140107251 Cruise et al. Apr 2014 A1
20140171907 Golzarian et al. Jun 2014 A1
20140274945 Blaskovich et al. Sep 2014 A1
20140277057 Ortega et al. Sep 2014 A1
20150290344 Alexis et al. Oct 2015 A1
20160243157 Cruise et al. Aug 2016 A1
20170216484 Cruise et al. Aug 2017 A1
20170274101 Hainfeld Sep 2017 A1
20180055516 Baldwin et al. Mar 2018 A1
20180200288 Cruise et al. Jul 2018 A1
20190105425 Cruise et al. Apr 2019 A1
20190134078 Cruise et al. May 2019 A1
20190192726 Cruise et al. Jun 2019 A1
20190298388 Baldwin et al. Oct 2019 A1
20200246501 Cruise et al. Aug 2020 A1
20210023261 Cruise et al. Jan 2021 A1
Foreign Referenced Citations (23)
Number Date Country
2551373 Jun 2014 CA
101513542 Aug 2012 CN
102107025 May 2014 CN
1599258 Aug 2008 EP
1601392 Apr 2009 EP
1558299 Dec 2012 EP
05-057014 Mar 1993 JP
1993253283 Oct 1993 JP
11-166018 Jun 1999 JP
1996005872 Feb 1996 WO
2004073843 Sep 2004 WO
2005013810 Feb 2005 WO
2005030268 Apr 2005 WO
2006095745 Sep 2006 WO
2008118662 Oct 2008 WO
2011110589 Sep 2011 WO
2012025023 Mar 2012 WO
2012088896 Jul 2012 WO
2012171478 Dec 2012 WO
2013188681 Dec 2013 WO
2014062696 Apr 2014 WO
2014152488 Sep 2014 WO
2019074965 Apr 2019 WO
Non-Patent Literature Citations (20)
Entry
U.S. Appl. No. 17/366,620, filed Jul. 2, 2021.
Argawal et al., Chitosan-based systems for molecular imaging. Advanced Drug Delivery Reviews, 62:42-48 (2010).
Dudeck O, Jordan O, Hoffmann KT, et al. Embolization of experimental wide-necked aneurysms with iodine-containing polyvinyl alcohol solubilized in a low-angiotoxicity solvent. AJNR Am J Neuroradiol. 2006;27(9):1849-1855.
Dudeck O, Jordan O, Hoffmann KT, et al. Organic solvents as vehicles for precipitating liquid embolics: a comparative angiotoxicity study with superselective injections of swine rete mirabile. AJNR Am J Neuroradiol. 2006;27(9):1900-1906.
He et al., Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules, vol. 8, pp. 780-792 (2007).
Levasque et al., Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels. Bionconjugate Chemistry, vol. 18, pp. 874-885 (2007).
Moss et al., Solid-Phase synthesis and kinetic characterization of fluorogenic enzyme-degradable hydrogel cross-linkers. Biomacromolecules, vol. 7, pp. 1011-1016 (2006).
Onyx Liquid Embolic System Onyx HD-500, Instructions for Use, ev3 Endovascular, Inc., Nov. 2007.
Supplementary European Search Report dated Sep. 26, 2016 for European Patent Application No. 13846860.8 filed on Oct. 15, 2013.
Takao H, Murayama Y, Yuki I, et al. Endovascular treatment of experimental aneurysms using a combination of thermoreversible gelation polymer and protection devices: feasibility study. Neurosurgery. 2009;65(3):601-609.
Jayakrishnan et al., Synthesis and polymerization of some iodine-containing monomers for biomedical applications. Journal of Applied Polymer Science, vol. 44, pp. 743-748 (1992).
International Search Report and Written Opinion, dated Dec. 31, 2018, for International Application No. PCT/US2018/055074.
International Search Report and Written Opinion, dated Jan. 2, 2014, for International Application No. PCT/US2013/065078.
Wikipedia, “Isotopes of Iodine” Version: Jun. 15, 2017, Retrieved: Nov. 26, 2018 (https://en.wikipedia.org/w/index.php?title=isotopes_of_iodine&oldid=785724472), p. 2, para 7.
Arslan et al., Use of 4-vinylpyridine and 2-hydroxyethylmethacrylate monomer mixture grafted poly(ethylene terephthalate fibers for removal of congo red from aqueous solution. E-Polymers, vol. 8, Issue 1, 016, pp. 1-15 (2008).
Shin et al., Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hyrdrogel. Analytica Chimica Acta, 752:87-93 (2012).
Yi et al., Ionic strength/temperature-induced gelation of aqueous poly(N-isopropylacrylamide-co-vinylimidazole) solution. Macromol. Symp. 207, pp. 131-137 (2004).
Kocer et al., Preliminary experience with precipitating hydrophobic injectable liquid in brain arteriovenous malformations. Diagn Interv Radiol, 22:184-189 (2016).
International Search Report for International Application No. PCT/US2013/045692 filed on Jun. 13, 2013.
U.S. Appl. No. 16/750,635, filed Jan. 23, 2020.
Related Publications (1)
Number Date Country
20200268789 A1 Aug 2020 US
Provisional Applications (1)
Number Date Country
61659916 Jun 2012 US
Divisions (1)
Number Date Country
Parent 13917323 Jun 2013 US
Child 15142395 US
Continuations (3)
Number Date Country
Parent 16232929 Dec 2018 US
Child 16806936 US
Parent 15924028 Mar 2018 US
Child 16232929 US
Parent 15142395 Apr 2016 US
Child 15924028 US