The invention relates to a polymerizable polar compound, a liquid crystal composition, and a liquid crystal display device. More specifically, the invention relates to a polymerizable polar compound having an acryloyloxy group that is replaced by a polar group such as a hydroxyalkyl group, a liquid crystal composition that contains the compound and has positive or negative dielectric anisotropy, and a liquid crystal display device including the composition.
In a liquid crystal display device, a classification based on an operating mode for liquid crystal molecules includes a phase change (PC) mode, a twisted nematic (TN) mode, a super twisted nematic (STN) mode, an electrically controlled birefringence (ECB) mode, an optically compensated bend (OCB) mode, an in-plane switching (IPS) mode, a vertical alignment (VA) mode, a fringe field switching (FFS) mode and a field-induced photo-reactive alignment (FPA) mode. A classification based on a driving mode in the device includes a passive matrix (PM) and an active matrix (AM). The PM is classified into static, multiplex and so forth, and the AM is classified into a thin film transistor (TFT), a metal insulator metal (MIM) and so forth. The TFT is further classified into amorphous silicon and polycrystal silicon. The latter is classified into a high temperature type and a low temperature type based on a production process. A classification based on a light source includes a reflective type utilizing natural light, a transmissive type utilizing backlight and a transflective type utilizing both the natural light and the backlight.
The liquid crystal display device includes a liquid crystal composition having a nematic phase. The composition has suitable characteristics. An AM device having good characteristics can be obtained by improving characteristics of the composition. Table 1 below summarizes a relationship of the characteristics between two aspects. The characteristics of the composition will be further described based on a commercially available AM device. A temperature range of the nematic phase relates to a temperature range in which the device can be used. A preferred maximum temperature of the nematic phase is about 70° C. or higher, and a preferred minimum temperature of the nematic phase is about −10° C. or lower. Viscosity of the composition relates to a response time in the device. A short response time is preferred for displaying moving images on the device. A shorter response time even by one millisecond is desirable. Accordingly, small viscosity of the composition is preferred. The small viscosity at a low temperature is further preferred.
1)A liquid crystal composition can be injected into a liquid crystal display device in a short time.
Optical anisotropy of the composition relates to a contrast ratio in the device. According to a mode of the device, large optical anisotropy or small optical anisotropy, more specifically, suitable optical anisotropy is required. A product (Δn×d) of the optical anisotropy (Δn) of the composition and a cell gap (d) in the device is designed so as to maximize the contrast ratio. A suitable value of the product depends on a type of the operating mode. In a device having a mode such as TN, the value is about 0.45 micrometer. The suitable value is in the range of about 0.30 micrometer to about 0.40 micrometer in a device having the VA mode, and is in the range of about 0.20 micrometer to about 0.30 micrometer in a device having the IPS mode or the FFS mode. In the above case, a composition having large optical anisotropy is preferred for a device having a small cell gap. Large dielectric anisotropy in the composition contributes to a low threshold voltage, small electric power consumption and a large contrast ratio in the device. Accordingly, large positive or negative dielectric anisotropy is preferred. Large specific resistance in the composition contributes to a large voltage holding ratio and the large contrast ratio in the device. Accordingly, a composition having large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase in an initial stage is preferred. The composition having large specific resistance at room temperature and also at a temperature close to the maximum temperature of the nematic phase even after the device has been used for a long period of time is preferred. Stability of the composition to ultraviolet light and heat relates to a service life of the device. In the case where the stability is high, the device has a long service life. Such characteristics are preferred for an AM device used in a liquid crystal projector, a liquid crystal television and so forth.
A composition having positive dielectric anisotropy is used in an AM device having the TN mode. A composition having negative dielectric anisotropy is used in an AM device having the VA mode. In an AM device having the IPS mode or the FFS mode, a composition having positive or negative dielectric anisotropy is used. In an AM device having a polymer sustained alignment (PSA) mode, a composition having positive or negative dielectric anisotropy is used. In a liquid crystal display device having a polymer sustained alignment (PSA) mode, a liquid crystal composition containing a polymer is used. First, a composition to which a small amount of a polymerizable compound is added is injected into the device. Next, the composition is irradiated with ultraviolet light while voltage is applied between substrates of the device. The polymerizable compound is polymerized to form a network structure of the polymer in the composition. In the composition, alignment of liquid crystal molecules can be controlled by the polymer, and therefore the response time of the device is shortened and also image persistence is improved. Such an effect of the polymer can be expected for a device having the mode such as the TN mode, the ECB mode, the OCB mode, the IPS mode, the VA mode, the FFS mode and the FPA mode.
A report has been made on a method of controlling alignment of liquid crystals by using a low molecular weight compound having a cinnamate group, polyvinyl cinnamate, a low molecular weight compound having a chalcone structure, a low molecular weight compound having an azobenzene structure and dendrimers in place of an alignment film such as polyimide (Patent literature No. 1 or No. 2). In the method of Patent literature No. 1 or No. 2, first, the low molecular compound or polymer is dissolved in a liquid crystal composition as an additive. Next, the additive is subjected to phase-separation to form a thin film composed of the low molecular weight compound or polymer on the substrate. Finally, the substrate is irradiated with linearly polarized light at a temperature higher than the maximum temperature of the liquid crystal composition. When the low molecular weight compound or polymer is dimerized or isomerized by this linearly polarized light, the molecules are aligned in a fixed direction. In this method, a horizontal alignment mode device such as IPS and FFS and a vertical alignment mode device such as VA can be produced by selecting a kind of low molecular compounds or polymers. In this method, easily caused phase-separation of the compound from the liquid crystal composition is important when the low molecular weight compound or polymer is easily dissolved at a temperature higher than the maximum temperature of the liquid crystal composition, and then the temperature of the resulting material is returned to room temperature. However, allowance to ensure a compatibility between the low molecular weight compound or polymer and the liquid crystal composition is difficult.
In the liquid crystal display device having no alignment film, a compound (Formula 2) having a methacrylate group at a terminal has been so far described in Patent literature No. 2 as a compound in which liquid crystal molecules can be horizontally aligned. However, in the compound, capability of horizontally aligning liquid crystal molecules is not sufficient.
Patent literature No. 1: WO 2015/146369 A.
Patent literature No. 2: WO 2017/057162 A.
A first object of the invention is to provide a polar compound having high chemical stability, high capability of horizontally aligning liquid crystal molecules, high solubility in a liquid crystal composition, and a large voltage holding ratio when the compound is used in a liquid crystal display device. A second object is to provide a liquid crystal composition that contains the compound, and satisfies at least one of characteristics such as high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large positive or negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, high stability to heat and a large elastic constant. A third object is to provide a liquid crystal display device that includes the composition, and has characteristics such as a wide temperature range in which the device can be used, a short response time, a high voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life.
The invention concerns a compound represented by formula (1), a liquid crystal composition using the compound, and a liquid crystal display device:
wherein in formula (1),
a and b are 0, 1 or 2, and expressions: 0≤a+b≤3 hold;
ring A1, ring A2, ring A3 and ring A4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, fluorene-2,7-diyl, phenanthrene-2,7-diyl, anthracene-2,6-diyl, perhydrocyclopenta[a]phenanthrene-3,17-diyl or 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine, and when a or b is 2, two of arbitrary ring A1 or ring A4 may be different;
Z1, Z2, Z3, Z4 and Z5 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen, in which at least one in Z2, Z3 or Z4 is any one of —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—, and when a or b is 2, two of arbitrary Z1 or Z5 may be different;
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen;
P1 is a group represented by any one of formulas (1a) to (1i);
P2 is a group represented by formula (1a),
wherein in formulas (1a) to (1i), M1 and M2 are independently halogen, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen;
R1 is a group represented by any one of formula (2a), (2b) or (2c),
R2 is any one of hydrogen, halogen, alkyl having 1 to 5 carbons, alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen, formula (2a), formula (2b) or formula (2c),
wherein, R3, R4 and R5 are independently hydrogen or alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen:
wherein, in formulas (2a), (2b) and (2c), Sp3 and Sp4 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —NH—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen;
S1 is >CH—, >SiH— or >N—;
S2 is >C< or >Si<; and
X1 is independently a group represented by —OH, —NH2, —OR3, —N(R3)2, —COOH, —SH, —B(OH)2 or a group represented by —Si(R6) 3, in which R6 is hydrogen or alkyl having 1 to 10 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by halogen.
A first advantage of the invention is to provide a polar compound having high chemical stability, high capability of horizontally aligning liquid crystal molecules, high solubility in a liquid crystal composition, and a large voltage holding ratio when the compound is used in a liquid crystal display device. A second advantage is to provide a liquid crystal composition that contains the compound, and satisfies at least one of characteristics such as high maximum temperature of a nematic phase, low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large positive or negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, high stability to heat and a large elastic constant. A third advantage is to provide a liquid crystal display device that includes the composition, and has characteristics such as a wide temperature range in which the device can be used, a short response time, a high voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life. A formation step of an alignment film becomes unnecessary by utilizing the liquid crystal composition containing the compound of the invention, and therefore a liquid crystal display device in which manufacturing cost is reduced can be obtained.
Usage of terms herein is as described below. Terms “liquid crystal composition” and “liquid crystal display device” may be occasionally abbreviated as “composition” and “device,” respectively. “Liquid crystal display device” is a generic term for a liquid crystal display panel and a liquid crystal display module. “Liquid crystal compound” is a generic term for a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a compound having no liquid crystal phase but to be mixed with the composition for the purpose of adjusting characteristics such as a temperature range of a nematic phase, viscosity and dielectric anisotropy. The compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and rod like molecular structure. “Polymerizable compound” is a compound to be added for the purpose of forming a polymer in the composition. “Polar compound” assists alignment of liquid crystal molecules by interaction of a polar group with a substrate surface.
The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. A proportion (content) of the liquid crystal compounds is expressed in terms of weight percent (% by weight) based on the weight of the liquid crystal composition. An additive such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, the polymerizable compound, a polymerization initiator, a polymerization inhibitor and a polar compound is added to the liquid crystal composition when necessary. A proportion (amount of addition) of the additive is expressed in terms of weight percent (% by weight) based on the weight of the liquid crystal composition in a manner similar to the proportion of the liquid crystal compound. Weight parts per million (ppm) may be occasionally used. A proportion of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the weight of the polymerizable compound.
A compound represented by formula (1) may be occasionally abbreviated as “compound (1).” Compound (1) means one compound, a mixture of two compounds or a mixture of three or more compounds represented by formula (1). A same rule applies also to at least one compound selected from the group of compounds represented by formula (2), or the like. Symbol B1, C1, F or the like surrounded by a hexagonal shape corresponds to ring B1, ring C1 and ring F, respectively. The hexagonal shape represents a six-membered ring such as a cyclohexane ring and a benzene ring, or a condensed ring such as a naphthalene ring. An oblique line crossing the hexagonal shape represents that arbitrary hydrogen on the ring may be replaced by a group such as —Sp1-P1. A subscript such as e represents the number of groups subjected to replacement. When the subscript is 0, no such replacement exists.
A symbol of terminal group R11 is used in a plurality of component compounds. In the compounds, two groups represented by two pieces of arbitrary R11 may be identical or different. For example, in one case, R11 of compound (2) is ethyl and R11 of compound (3) is ethyl. In another case, R11 of compound (2) is ethyl and R11 of compound (3) is propyl. A same rule applies also to a symbol of any other terminal group, ring, bonding group or the like. In formula (8), when i is 2, two of rings D1 exist. In the compound, two groups represented by two of rings D1 may be identical or different. A same rule applies also to two of arbitrary rings D1 when i is larger than 2. A same rule applies also to a symbol of any other ring, bonding group or the like.
An expression “at least one piece of ‘A’” means that the number of ‘A’ is arbitrary. An expression “at least one piece of ‘A’ may be replaced by ‘B’” means that, when the number of ‘A’ is 1, a position of ‘A’ is arbitrary, and also when the number of ‘A’ is 2 or more, positions thereof can be selected without restriction. A same rule applies also to an expression “at least one piece of ‘A’ is replaced by ‘B’.” An expression “at least one piece of ‘A’ may be replaced by ‘B’, ‘C’ or ‘D’” includes a case where at least one piece of ‘A’ is replaced by ‘B’, a case where at least one piece of ‘A’ is replaced by ‘C’, and a case where at least one piece of ‘A’ is replaced by ‘D’, and also a case where a plurality of pieces of ‘A’ are replaced by at least two pieces of ‘B’, ‘C’ and ‘D’. For example, “alkyl in which at least one piece of —CH2— (or —CH2CH2—) may be replaced by —O— (or —CH═CH—)” includes alkyl, alkenyl, alkoxy, alkoxyalkyl, alkoxyalkenyl and alkenyloxyalkyl. In addition, a case where two pieces of consecutive —CH2— are replaced by —O— to form —O—O— is not preferred. In alkyl or the like, a case where —CH2— of a methyl part (—CH2—H) is replaced by —O— to form —O—H is not preferred, either.
Halogen means fluorine, chlorine, bromine or iodine. Preferred halogen is fluorine or chlorine. Further preferred halogen is fluorine. Alkyl is straight-chain alkyl or branched-chain alkyl, but includes no cyclic alkyl. In general, straight-chain alkyl is preferred to branched-chain alkyl. A same rule applies also to a terminal group such as alkoxy and alkenyl. With regard to a configuration of 1,4-cyclohexylene, trans is preferred to cis for increasing the maximum temperature of the nematic phase. Then, 2-fluoro-1,4-phenylene means two divalent groups described below. In a chemical formula, fluorine may be leftward (L) or rightward (R). A same rule applies also to an asymmetrical divalent group formed by eliminating two hydrogens from a ring, such as tetrahydropyran-2,5-diyl.
The invention includes items described below.
Item 1. A compound, represented by formula (1):
wherein, in formula (1),
a and b are 0, 1 or 2, and expressions: 0≤a+b≤3 hold,
ring A1, ring A2, ring A3 and ring A4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, fluorene-2,7-diyl, phenanthrene-2,7-diyl, anthracene-2,6-diyl, perhydrocyclopenta[a]phenanthrene-3,17-diyl or 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine, and when a or b is 2, two of arbitrary ring A1 or ring A4 may be different;
Z1, Z2, Z3, Z4 and Z5 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen, in which at least one in Z2, Z3 or Z4 is any one of —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—, and when a or b is 2, two of arbitrary Z1 or Z5 may be different;
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen;
P1 is a group represented by any one of formulas (1b) to (1i); and
P2 is a group represented by formula (1a);
wherein, in formulas (1a) to (1i), M1 and M2 are independently hydrogen, halogen, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen; and
R1 is a group represented by any one of formula (2a), (2b) or (2c):
wherein, R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—;
R3, R4 and R5 are independently hydrogen or alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen:
in formulas (2a), (2b) and (2c), Sp3 and Sp4 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —NH—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen;
S1 is >CH—, >SiH— or >N—;
S2 is >C< or >Si<;
X1 is independently a group represented by —OH, —NH2, —OR6, —N(R6)2, —COOH, —SH, —B(OH)2 or —Si(R6)3, in which R6 is hydrogen or alkyl having 1 to 10 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by halogen; and
a and b are 0, 1 or 2, and expressions: 0≤a+b≤3 hold.
Item 2. The compound according to item 1, represented by formula (1):
wherein, in formula (1),
a and b are 0, 1 or 2, and expressions: 0≤a+b≤2 hold;
ring A1, ring A2, ring A3 and ring A4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, fluorene-2,7-diyl, phenanthrene-2,7-diyl, anthracene-2,6-diyl, perhydrocyclopenta[a]phenanthrene-3,17-diyl or 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine, and when a or b is 2, two of arbitrary ring A1 or ring A4 may be different;
Z1, Z2, Z3, Z4 and Z5 are independently a single bond, —(CH2)2—, —CH═CH—, —C≡C—, —COO—, —OCO—, —CF2O—, —OCF2—, —CH2O—, —OCH2—, —CF═CF—, —CH═CHCOO—, —OCOCH═CH—, —CH═CHCO— or —COCH═CH—, in which at least one in Z2, Z3 or Z4 is any one of —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—, and when a or b is 2, two of arbitrary Z1 or Z5 may be different;
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO— or —OCO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine; and
P1 is a group represented by any one of formulas (1b) to (1i), and P2 is a group represented by formula (1a):
wherein, in the formulas,
M1 and M2 are independently hydrogen, halogen, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen; and
R1 is a group represented by formula (2a):
wherein, R2 is hydrogen, halogen and alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—;
R3, R4 and R8 are independently hydrogen or alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen:
wherein, in formula (2a),
Sp3 is independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —NH—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen; and
X1 is a group represented by —OH, —NH2, —OR3, —N(R3)2, —COOH, —SH, —B(OH)2 or —Si(R3)3, in which R3 is hydrogen or alkyl having 1 to 10 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by halogen.
Item 3. The compound according to any one of item 1 or 2, represented by any one of formulas (1-1) to (1-3):
wherein, in formulas (1-1) to (1-3),
ring A1, ring A2, ring A3 and ring A4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, fluorene-2,7-diyl, phenanthrene-2,7-diyl or anthracene-2,6-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine;
Z1, Z2, Z3, Z4 and Z5 are independently a single bond, —(CH2)2—, —CH═CH—, —C≡C—, —COO—, —OCO—, —CF2O—, —OCF2—, —CH2O—, —OCH2—, —CF═CF—, —CH═CHCOO—, —OCOCH═CH—, —CH═CHCO— or —COCH═CH—, in which at least any one of Z2, Z3 and Z4 is any one of —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—;
Sp1, Sp2 and Spa are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCOO— or —OCO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine; and
P1 is independently a group represented by any one of formulas (1b) to (1i):
wherein, in the formulas,
M1 and M2 are independently hydrogen, halogen, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen; and
R1 is a group represented by formula (2a):
wherein, R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—; and
R3, R4 and R8 are independently hydrogen or a straight-chain, branched-chain or cyclic alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen.
Item 4. The compound according to any one of items 1 to 3, represented by any one of formulas (1-1A) to (1-3A):
wherein, in formulas (1-1A) to (1-3A),
ring A1, ring A2, ring A3 and ring A4 are independently 1,4-cyclohexylene, 1,4-phenylene, naphthalene-2,6-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, fluorene-2,7-diyl, phenanthrene-2,7-diyl and anthracene-2,6-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine;
Z2, Z3 and Z4 are independently a single bond, —(CH2)2—, —CH═CH—, —C≡C—, —COO—, —OCO—, —CF2O—, —OCF2—, —CH2O—, —OCH2—, —CF═CF—, —CH═CHCOO—, —OCOCH═CH—, —CH═CHCO— or —COCH═CH—, in which at least any one of Z2, Z3 and Z4 is any one of —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—;
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCOO— or —OCO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine; and
P1 is independently a group represented by any one of formulas (1b) to (1i);
wherein, in the formulas,
M1 and M2 are independently hydrogen, halogen, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen; and
R1 is a group represented by formula (2a);
wherein, R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—; and
R3, R4 and R5 are independently hydrogen or a straight-chain, branched-chain or cyclic alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen.
Item 5. The compound according to any one of items 1 to 4, represented by any one of formulas (1-1-1) to (1-3-1):
wherein, in formulas (1-1-1), (1-2-1) and (1-3-1),
ring A1, ring A2, ring A3 and ring A4 are independently 1,4-cyclohexylene, 1,4-phenylene or fluorene-2,7-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons;
Z2, Z3 and Z4 are independently a single bond, —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—, in which at least any one of Z2, Z3 or Z4 is any one of —COO—, —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—;
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —OCO—, —OCOO— or —OCO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—; and
P1 is independently a group represented by any one of formula (1b), (1c) or (1d);
wherein, R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—; and
R5 is independently hydrogen or alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen.
Item 6. The compound according to item 5, wherein, in formulas (1-1-1), (1-2-1) and (1-3-1), any one of Z2, Z3 or Z4 is —COO— or —OCO—.
Item 7. The compound according to item 5, wherein, in formulas (1-1-1), (1-2-1) and (1-3-1), any one of Z2, Z3 or Z4 is —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—.
Item 8. The compound according to any one of items 1 to 5, represented by formula (1-A):
wherein, P1 is independently a group represented by formula (1b), (1c) or (1d);
wherein, R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—;
R5 is independently hydrogen or alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen,
wherein, in the formulas,
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCOO— or —OCO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—; and
Y is a group represented by any one of formulas (MES-1-01) to (MES-1-10);
wherein, in the formulas,
Ra is independently fluorine, chlorine, methyl or ethyl;
Rb is independently hydrogen, fluorine, methyl or ethyl; and
in the formulas, the following notation in which 1,4-phenylene and (Ra) are connected by a straight line represents 1,4-phenylene in which one or two hydrogens may be replaced by Ra:
Item 9. The compound according to any one of items 1 to 5, represented by formula (1-A):
wherein, P1 is independently a group represented by formula (1b), (1c) or (1d);
wherein, in the formulas
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCOO— or —OCO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—;
R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—;
R5 is independently hydrogen or alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen, and
Y is a group represented by any one of (MES-2-01) to (MES-2-16);
wherein, Ra is independently fluorine, chlorine, methyl or ethyl; and
in the formulas, the following notation in which 1,4-phenylene and (Ra) are connected by a straight line represents 1,4-phenylene in which one or two hydrogens may be replaced by Ra:
Item 10. A liquid crystal composition, containing at least one of compounds according to any one of items 1 to 9.
Item 11. The liquid crystal composition according to item 10, further containing at least one compound selected from the group of compounds represented by formulas (2) to (4):
wherein, in formulas (2) to (4),
R11 and R12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine;
ring B1, ring B2, ring B3 and ring B4 are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,5-difluoro-1,4-phenylene or pyrimidine-2,5-diyl; and
Z11, Z12 and Z13 are independently a single bond, —CH2CH2—, —CH═CH—, —C≡C— or —COO—.
Item 12. The liquid crystal composition according to item 10 or 11, further containing at least one compound selected from the group of compounds represented by formulas (5) to (7):
wherein, in formulas (5) to (7),
R13 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine;
X11 is fluorine, chlorine, —OCF3, —OCHF2, —CF3, —CHF2, —CH2F, —OCF2CHF2 or —OCF2CHFCF3;
ring C1, ring C2 and ring C3 are independently 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl or pyrimidine-2,5-diyl;
Z14, Z15 and Z16 are independently a single bond, —CH2CH2—, —CH═CH—, —C≡C—, —COO—, —CF2O—, —OCF2—, —CH2O—, —CF═CF—, —CH═CF— or —(CH2)4—; and
L11 and L12 are independently hydrogen or fluorine.
Item 13. The liquid crystal composition according to item 10 or 11, further containing at least one compound selected from the group of compounds represented by formula (8):
wherein, in formula (8),
R14 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine;
X12 is —C≡N or —C≡C—C≡N;
ring D1 is 1,4-cyclohexylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl or pyrimidine-2,5-diyl;
Z17 is a single bond, —CH2CH2—, —C≡C—, —COO—, —CF2O—, —OCF2— or —CH2O—;
L13 and L14 are independently hydrogen or fluorine; and
i is 1, 2, 3 or 4.
Item 14. The liquid crystal composition according to item 10 or 11, further containing at least one compound selected from the group of compounds represented by formulas (9) to (15):
wherein, in formulas (9) to (15),
R15 and R16 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine;
R17 is hydrogen, fluorine, alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine;
ring E1, ring E2, ring E3 and ring E4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene in which at least one hydrogen may be replaced by fluorine, tetrahydropyran-2,5-diyl or decahydronaphthalene-2,6-diyl;
ring E5 and ring E6 are independently, 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, tetrahydropyran-2,5-diyl or decahydronaphthalene-2,6-diyl;
Z18, Z19, Z20 and Z21 are independently a single bond, —CH2CH2—, —COO—, —CH2O—, —OCF2— or —OCF2CH2CH2—;
L15 and L16 are independently fluorine or chlorine;
S11 is hydrogen or methyl;
X is —CHF— or —CF2—; and
j, k, m, n, p, q, r and s are independently 0 or 1, a sum of k, m, n and p is 1 or 2, a sum of q, r and s is 0, 1, 2 or 3, and t is 1, 2 or 3.
Item 15. The liquid crystal composition according to any one of items 10 to 14, containing at least one polymerizable compound selected from the group of compounds represented by formula (16):
wherein, in formula (16),
ring F and ring I are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen;
ring G is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen;
Z22 and Z23 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine; and
P11, P12 and P13 are independently a polymerizable group selected from the group of groups represented by formulas (P-1) to (P-5);
wherein, M11, M12 and M13 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by fluorine or chlorine;
Sp11, Sp12 and Sp13 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2CH2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine;
u is 0, 1 or 2; and
f, g and h are independently 0, 1, 2, 3 or 4, and a sum of f, g and h is 2 or more.
Item 16. The liquid crystal composition according to any one of items 10 to 15, containing at least one polymerizable compound selected from the group of compounds represented by formulas (16-1) to (16-27):
wherein, in formulas (16-1) to (16-27), P11, P12 and P13 are independently a polymerizable group selected from the group of groups represented by formulas (P-1) to (P-3), in which M11, M12 and M13 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen:
wherein, Sp11, Sp12 and Sp13 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2CH2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine.
Item 17. The liquid crystal composition according to any one of items 10 to 16, further containing at least one of a polymerizable compound other than formulas (1) and (16), a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer and an antifoaming agent.
Item 18. A liquid crystal display device, including at least one liquid crystal composition according to any one of items 10 to 19.
The invention further includes the following items: (a) the liquid crystal composition, further containing at least two of additives such as a polymerizable compound, a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer and an antifoaming agent; (b) a polymerizable composition, prepared by adding a polymerizable compound different from compound (1) or compound (16) to the liquid crystal composition; (c) the polymerizable composition prepared by adding compound (1) and compound (16) to the liquid crystal composition; (d) a liquid crystal composite prepared by polymerizing the polymerizable composition; (e) a device that has a polymer sustained alignment mode, and contains the liquid crystal composite; and (f) a polymer sustained alignment mode device, prepared by using a polymerizable composition prepared by adding compound (1), compound (16), and a polymerizable compound different from compound (1) or compound (16) to the liquid crystal composition.
An aspect of compound (1), synthesis of compound (1), the liquid crystal composition and the liquid crystal display device will be described in the following order.
Compound (1) of the invention has features of having a mesogen moiety formed of at least one ring and an acryloyloxy group replaced by a polar group such as a hydroxyalkyl group. The polar group noncovalently interacts with a substrate surface of glass (or metal oxide), and therefore compound (1) tends to be unevenly distributed in a vicinity of the substrate surface in comparison with a compound having no polar group, and is useful. Thereby, an addition amount thereof becomes small. One of applications is as an additive for the liquid crystal composition used in the liquid crystal display device. Compound (1) is added for the purpose of horizontally controlling the alignment of liquid crystal molecules. Such an additive preferably has chemical stability under conditions in which the additive is sealed in the device, high solubility in the liquid crystal composition, and a large voltage holding ratio when the compound is used in the liquid crystal display device. Compound (1) satisfies such characteristics to a significant extent.
Preferred examples of compound (1) will be described.
Preferred examples of R1, Z1 to Z5, A1 to A5, Sp1, Sp2, P2 and a in compound (1) apply also to a subordinate formula of formula (1) for compound (1). In compound (1), characteristics can be arbitrarily adjusted by suitably combining kinds of the groups. Compound (1) may contain a larger amount of isotope such as 2H (deuterium) and 13C than an amount of natural abundance because no significant difference exists in the characteristics of the compound.
Rings A1, A2, A3 and A4 are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, fluorene-2,7-diyl, phenanthrene-2,7-diyl, anthracene-2,6-diyl, perhydrocyclopenta[a]phenanthrene-3,17-diyl or 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine, and when a is 2, two rings A1 may be different, and when b is 2, two rings A4 may be different.
Preferred ring A1, A2, A3 and A4 are 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, perhydrocyclopenta[a]phenanthrene-3,17-diyl or 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, chlorine, alkyl having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkoxy having 1 to 11 carbons or alkenyloxy having 2 to 11 carbons, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine. Further preferred rings A1, A2, A3 and A4 are 1,4-cyclohexylene, 1,4-phenylene, perhydrocyclopenta[a]phenanthrene-3,17-diyl or 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine or alkyl having 1 to 5 carbons. Particularly preferred rings A1, A2, A3 and A4 are 1,4-cyclohexylene, 1,4-phenylene or perhydrocyclopenta[a]phenanthrene-3,17-diyl, and in the rings, at least one hydrogen may be replaced by fluorine, methyl or ethyl.
Z1, Z2, Z3, Z4 and Z5 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen, in which at least one in Z2, Z3 or Z4 is —COO— and —OCO—, —CH═CHCOO—, —OCOCH═CH—, —CH═CH—, —CH═CHCO— or —COCH═CH—, and when a or b is 2, two of arbitrary Z1 or Z5 may be different.
Preferred Z1, Z2, Z3, Z4 and Z5 are a single bond, —(CH2)2—, —CH═CH—, —C≡C—, —COO—, —OCO—, —CF2O—, —OCF2—, —CH2O—, —OCH2— or —CF═CF—. Further preferred Z1, Z2, Z3, Z4 and Z5 are a single bond, —(CH2)2— or —CH═CH—. Particularly preferred Z1, Z2, Z3, Z4 and Z5 are a single bond.
Sp1 and Sp2 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen.
Preferred Sp1 and Sp2 are a single bond, alkylene having 1 to 6 carbons, alkylene having 1 to 6 carbons in which one piece of —CH2— is replaced by —O—, or —OCOO—. Further preferred Sp1 and Sp2 are alkylene having 1 to 6 carbons or —OCOO—.
P1 is a group represented by any one of formulas (1b) to (1i).
Preferred P1 is represented by formulas (1b), (1c) and (1d).
P2 is represented by formula (1a).
In the formulas (1a) to (1i), M1 and M2 are independently hydrogen, halogen, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen.
Preferred M1 or M2 is hydrogen, fluorine, methyl, ethyl or trifluoromethyl. Further preferred M1 or M2 is hydrogen.
R1 is represented by any one of formula (2a), (2b) or (2c).
Preferred R1 is a group represented by formula (2a) or (2b). Further preferred R1 is a group represented by formula (2a).
R2 is hydrogen, halogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one hydrogen may be replaced by halogen, and at least one piece of —CH2— may be replaced by —O—.
Preferred R2 is hydrogen, fluorine, methyl, ethyl, methoxymethyl or trifluoromethyl. Further preferred R2 is hydrogen.
R3, R4 and R5 are independently hydrogen or straight-chain alkyl having 1 to 15 carbons, branched-chain alkyl having 1 to 15 carbons or cyclic alkyl having 1 to 15 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O— or —S—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen.
Preferred R3, R4 and R5 are hydrogen, straight-chain alkyl having 1 to 10 carbons, straight-chain alkenyl having 2 to 10 carbons, straight-chain alkoxy having 1 to 10 carbons or cyclic alkyl having 3 to 6 carbons. Further preferred R3, R4 and R5 are hydrogen, straight-chain alkyl having 2 to 6 carbons, straight-chain alkenyl having 2 to 6 carbons, straight-chain alkoxy having 1 to 5 carbons or cyclic alkyl having 4 to 6 carbons.
In formulas (2a), (2b) and (2c), Sp3 and Sp4 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —NH—, —CO—, —COO—, —OCO— or —OCOO—, and at least one piece of —(CH2)2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by halogen.
Preferred Sp3 and Sp4 are a single bond, alkylene having 1 to 6 carbons, or alkylene having 1 to 6 carbons in which one piece of —CH2— is replaced by —O—. Further preferred Sp3 and Sp4 are alkylene having 1 to 4 carbons. Particularly preferred Sp3 and Sp4 are —CH2—.
S1 is >CH—, >SiH— or >N—.
S2 is >C< or >Si<.
Preferred S1 is >CH— or >N—, and preferred S2 is >C<.
X1 is a group represented by —OH, —NH2, —OR3, —N(R3)2, —COOH, —SH, —B(OH)2 or —Si(R6)3, in which R6 is hydrogen or alkyl having 1 to 10 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by halogen.
Preferred X1 is a group represented by —OH, —NH2, —OR6, —N(R6)2 or —Si(R6)3, in which R6 is hydrogen or alkyl having 1 to 5 carbons, and in the alkyl, at least one piece of —CH2— may be replaced by —O—, and at least one piece of —(CH2)2— may be replaced by —CH═CH—, and in the groups, at least one hydrogen may be replaced by fluorine. Further preferred X1 is —OH or —NH2. Particularly preferred X1 is —OH.
Then, a and b are 0, 1 or 2, and expressions: 0≤a+b≤3 hold.
Then, expressions: 0≤a+b≤2 preferably hold.
Preferred examples of compound (1) include formulas (1-1) to (1-3).
Definition of a symbol in formulas (1-1) to (1-3) and preferred examples are identical with compound (1). Moreover, specific examples of compound (1) will be described in Examples described later.
In formulas (2) to (15), component compounds of the liquid crystal composition are shown. Compounds (2) to (4) have small dielectric anisotropy. Compounds (5) to (7) have large positive dielectric anisotropy. Compound (8) has a cyano group, and therefore has large positive dielectric anisotropy. Compounds (9) to (15) have large negative dielectric anisotropy. Specific examples of the compounds will be described later.
In compound (16), P11, P12 and P13 are independently a polymerizable group.
Preferred P11, P12 or P13 is a polymerizable group selected from the group of groups represented by formulas (P-1) to (P-5). Further preferred P1, P2 or P3 is group (P-1), group (P-2) or group (P-3). Particularly preferred group (P-1) is —OCO—CH═CH2 or —OCO—C(CH3)═CH2. A wavy line in group (P-1) to group (P-5) represents a site to form a bonding.
In the groups (P-1) to (P-5), M11, M12 and M13 are independently hydrogen, fluorine, alkyl having 1 to 5 carbons, or alkyl having 1 to 5 carbons in which at least one hydrogen is replaced by halogen.
Preferred M11, M12 or M13 is hydrogen or methyl for increasing reactivity. Further preferred M11 is methyl, and further preferred M12 or M13 is hydrogen.
Sp11, Sp12 and Sp13 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —COO—, —OCO— or —OCOO—, and at least one piece of —CH2CH2— may be replaced by —CH═CH— or —C≡C—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine.
Preferred Sp11, SP12 or Sp13 is a single bond.
Ring F and ring I are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxane-2-yl, pyrimidine-2-yl or pyridine-2-yl, and in the rings, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen.
Preferred ring F or ring I is phenyl. Ring G is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in the rings, at least one hydrogen may be replaced by halogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by halogen. Particularly preferred ring G is 1,4-phenylene or 2-fluoro-1,4-phenylene.
Z22 and Z23 are independently a single bond or alkylene having 1 to 10 carbons, and in the alkylene, at least one piece of —CH2— may be replaced by —O—, —CO—, —COO— or —OCO—, and at least one piece of —CH2CH2— may be replaced by —CH═CH—, —C(CH3)═CH—, —CH═C(CH3)— or —C(CH3)═C(CH3)—, and in the groups, at least one hydrogen may be replaced by fluorine or chlorine.
Preferred Z7 or Z8 is a single bond, —CH2CH2—, —CH2O—, —OCH2—, —COO— or —OCO—. Further preferred Z22 or Z23 is a single bond.
Then, u is 0, 1 or 2.
Preferred u is 0 or 1. Then, f, g and h are independently 0, 1, 2, 3 or 4, and a sum of f, g and h is 1 or more. Preferred f, g or h is 1 or 2.
A synthesis method of compound (1) will be described. Compound (1) can be prepared by suitably combining methods in synthetic organic chemistry. Any compounds whose synthetic methods are not described above are prepared according to methods described in books such as “Organic Syntheses” (John Wiley & Sons, Inc.), “Organic Reactions” (John Wiley & Sons, Inc.), “Comprehensive Organic Synthesis” (Pergamon Press) and “New Experimental Chemistry Course (Shin Jikken Kagaku Koza in Japanese)” (Maruzen Co., Ltd.).
An example of a method of forming a bonding group in compound (1) is as described in a scheme described below. In the scheme, MSG1 (or MSG2) is a monovalent organic group having at least one ring. Monovalent organic groups represented by a plurality of MSG1 (or MSG2) may be identical or different. Compounds (1A) to (1G) correspond to compound (1) or an intermediate of compound (1).
Compound (1A) is prepared by allowing aryl boronic acid (21) to react with compound (22) in the presence of carbonate and a tetrakis(triphenylphosphine)palladium catalyst. Compound (1A) is also prepared by allowing compound (23) to react with n-butyllithium and subsequently with zinc chloride, and further with compound (22) in the presence of a dichlorobis(triphenylphosphine)palladium catalyst.
Carboxylic acid (24) is obtained by allowing compound (23) to react with n-butyllithium and subsequently with carbon dioxide. Compound (1B) having —COO— is prepared by dehydration of carboxylic acid (24) and phenol (25) derived from compound (21) in the presence of 1,3-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). A compound having —OCO— is also prepared according to the method.
(III) Formation of —CF2O— and —OCF2—
Compound (26) is obtained by sulfurizing compound (1B) with Lawesson's reagent. Compound (1C) having —CF2O— is prepared by fluorinating compound (26) with a hydrogen fluoride-pyridine complex and N-bromosuccinimide (NBS). Refer to M. Kuroboshi et al., Chem. Lett., 1992, 827. Compound (1C) is also prepared by fluorinating compound (26) with (diethylamino)sulfur trifluoride (DAST). Refer to W. H. Bunnelle et al., J. Org. Chem. 1990, 55, 768. A compound having —OCF2— is also prepared according to the method.
Aldehyde (27) is obtained by allowing compound (22) to react with n-butyllithium and subsequently with N,N-dimethylformamide (DMF). Compound (1D) is prepared by allowing phosphorus ylide generated by allowing phosphonium salt (28) to react with potassium t-butoxide to react with aldehyde (27). A cis isomer may be formed depending on reaction conditions, and therefore the cis isomer is isomerized into a trans isomer according to a publicly-known method when necessary.
(V) Formation of —CH2CH2—
Compound (1E) is prepared by hydrogenating compound (10) in the presence of a palladium on carbon catalyst.
Compound (29) is obtained by allowing compound (23) to react with 2-methyl-3-butyn-2-ol in the presence of a catalyst of dichloropalladium and copper iodide, and then performing deprotection under basic conditions. Compound (1F) is prepared by allowing compound (29) to react with compound (22) in the presence of a catalyst of dichlorobis(triphenylphosphine)palladium and copper halide.
(VII) Formation of —CH2O— and —OCH2—
Compound (30) is obtained by reducing compound (27) with sodium borohydride. Compound (31) is obtained by brominating the obtained compound with hydrobromic acid. Compound (1G) is prepared by allowing compound (25) to react with compound (31) in the presence of potassium carbonate. A compound having —OCH2— is also prepared according to the method.
Compound (32) is obtained by treating compound (23) with n-butyllithium, and then allowing the treated material to react with tetrafluoroethylene. Compound (1H) is prepared by treating compound (22) with n-butyllithium, and then allowing the treated material to react with compound (32).
Compound (1J) is prepared by allowing compound (40) to be subjected to aldol condensation reaction with compound (27) in the presence of NaCH.
Compound (1J) is prepared by dehydration of cinnamic acid (41) and compound (25) in the presence of 1,3-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP).
A starting material is commercially available or a synthetic method is well known with regard to a ring such as 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1,4-phenylene, naphthalene-2,6-diyl, decahydronaphthalene-2,6-diyl, 1,2,3,4-tetrahydronaphthalene-2,6-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, perhydrocyclopenta[a]phenanthrene-3,17-diyl and 2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydrocyclopenta[a]phenanthrene-3,17-diyl.
Preferred examples of polymerizable group P1 or P2 include acryloyloxy (1b), maleimide (1c), itaconate (1d), oxiranyl (1h) or vinyloxy (1i).
An example of a method for preparing a compound in which the polymerizable group is bonded to a ring through linking group Sp1 or Sp2 is as described below. First, an example in which linking group Sp1 or Sp2 is a single bond will be described.
An example of a method for forming a single bond is as described in a scheme below. In the scheme, MSG1 is a monovalent organic group having at least one ring. Compounds (1S) to (1Z) correspond to compound (1).
A synthesis method of the compound in which linking group Sp1 or Sp2 is a single bond is described above. As for a method for producing other linking groups, other linking groups can be prepared according to the synthesis method of bonding groups Z1, Z2, Z3, Z4 and Z5.
An example of a method for preparing compound (1) is as described below. In the compounds, MES is a mesogen group having at least one ring. Definitions of P1, M1, M2, Sp1 and Sp2 are identical to the definitions described above.
Compound (51A) or compound (51B) is commercially available, or can be prepared according to a common organic synthesis method by using a mesogen (MES) having a suitable ring structure as a starting material. When a compound in which MES and Sp1 is connected through an ether bond is prepared, compound (53) can be obtained by allowing compound (51A) as a starting material to perform etherification by using compound (52) and a base such as potassium hydroxide. Moreover, when a compound in which MES and Sp1 is connected by a single bond is prepared, compound (53) can be obtained by allowing compound (51B) as a starting material to perform cross-coupling reaction by using compound (52), a metal catalyst such as palladium and a base. Compound (53) may be derived to compound (54) in which a protective group such as TMS and THP is allowed to act therewith, when necessary.
Then, compound (56) can be obtained by allowing compound (53) or compound (54) to perform etherification again in the presence of a base such as compound (55) and potassium hydroxide. On this occasion, when the protective group is allowed to act in a previous stage, the protective group is removed by a deprotection reaction.
Compound (1A) in which P2 is a group represented by formula (1a), R2 is represented by formula (2a), Sp3 is —CH2— and X1 is —OH can be prepared from compound (56) according to a method described below. Compound (59) is obtained by allowing compound (57) to perform an esterification reaction in the presence of compound (58), DCC and DMAP. Compound (59) can be derived to compound (1A) by performing reaction in the presence of formaldehyde and 1,4-diazabicyclo[2.2.2]octane (DABCO). In addition, compound (59) can be prepared by allowing compound (57) and compound (60) to perform an esterification reaction in the presence of a base such as triethylamine.
Compound (1A) can also be prepared by the method described below. Compound (62) is obtained by allowing compound (61) to react in the presence of formaldehyde and DABCO. Next, for example, compound (63) in which a hydroxyl group is protected by using t-butyldimethylsilyl chloride and a base is obtained, and then compound (64) is obtained by hydrolyzing compound (63) with a base such as lithium hydroxide. Compound (57) and compound (64) obtained are derived to compound (65) by allowing to react in the presence of DCC and DMAP, and then compound (1A) can be obtained by performing deprotection of compound (65) using tetrabutylammonium fluoride (TBAF).
Compound (1B) in which P2 is a group represented by formula (1a), R2 is represented by formula (2a), Sp4 is —(CH2)2— and X1 is —OH can be prepared according to a method described below. Compound (66) is obtained by acting phosphorus tribromide on compound (1A). Then, compound (1B) can be obtained therefrom by acting indium on compound (66), and then allowing the resulting compound to react with formaldehyde.
A liquid crystal composition of the invention contains compound (1) as component A. Compound (1) can control the alignment of liquid crystal molecules by non-covalent interaction with a substrate of the device. The composition contains compound (1) as component A, and preferably further contains a liquid crystal compound selected from components B, C, D and E described below. Component B includes compounds (2) to (4). Component C includes compounds (5) to (7). Component D includes compound (8). Component E includes compounds (9) to (15). The composition may contain any other liquid crystal compound different from compounds (2) to (15). When the composition is prepared, components B, C, D and E are preferably selected by taking into account magnitude of positive or negative dielectric anisotropy or the like. The composition in which the components are appropriately selected has a high maximum temperature, a low minimum temperature, small viscosity, suitable optical anisotropy (more specifically, large optical anisotropy or small optical anisotropy), large positive or negative dielectric anisotropy, large specific resistance, high stability to heat and ultraviolet light and a suitable elastic constant (more specifically, a large elastic constant or a small elastic constant).
A preferred proportion of compound (1) is about 0.01% by weight or more for maintaining high stability to ultraviolet light, and about 5% by weight or less for dissolution in the liquid crystal composition. A further preferred proportion is in the range of about 0.05% by weight to about 2% by weight. A most preferred proportion is in the range of about 0.05% by weight to about 1% by weight.
Component B includes a compound in which two terminal groups are alkyl or the like. Preferred examples of component B include compounds (2-1) to (2-11), compounds (3-1) to (3-19) and compounds (4-1) to (4-7). In the compound of component B, R11 and R12 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl or the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine.
Component B has a small absolute value of dielectric anisotropy, and therefore is a compound close to neutrality. Compound (2) is mainly effective in decreasing the viscosity or adjusting the optical anisotropy. Compounds (3) and (4) are effective in extending a temperature range of a nematic phase by increasing the maximum temperature, or in adjusting the optical anisotropy.
As a content of component B increases, the dielectric anisotropy of the composition decreases, but the viscosity decreases. Thus, as long as a desired value of threshold voltage of a device is met, the content is preferably as large as possible. When a composition for the IPS mode, the VA mode or the like is prepared, the content of component B is preferably 30% by weight or more, and further preferably 40% by weight or more, based on the weight of the liquid crystal composition.
Component C is a compound having a halogen-containing group or a fluorine-containing group at a right terminal. Preferred examples of component C include compounds (5-1) to (5-16), compounds (6-1) to (6-120) and compounds (7-1) to (7-62). In the compound of component C, R13 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine; and X11 is fluorine, chlorine, —OCF3, —OCHF2, —CF3, —CHF2, —CH2F, —OCF2CHF2 or —OCF2CHFCF3.
Component C has positive dielectric anisotropy, and superb stability to heat, light and so forth, and therefore is used when a composition for the IPS mode, the FFS mode, the OCB mode or the like is prepared. A content of component C is suitably in the range of 1% by weight to 99% by weight, preferably in the range of 10% by weight to 97% by weight, and further preferably in the range of 40% by weight to 95% by weight, based on the weight of the liquid crystal composition. When component C is added to a composition having negative dielectric anisotropy, the content of component C is preferably 30% by weight or less based on the weight of the liquid crystal composition. Addition of component C allows adjustment of the elastic constant of the composition and adjustment of a voltage-transmittance curve of the device.
Component D is compound (8) in which a right-terminal group is —C≡N or —C≡C—C≡N. Preferred examples of component D include compounds (8-1) to (8-64). In the compounds of component D, R14 is alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine; and —X12 is —C≡N or —C≡C—C≡N.
Component D has positive dielectric anisotropy and a value thereof is large, and therefore is mainly used when a composition for the TN mode or the like is prepared. Addition of component D can increase the dielectric anisotropy of the composition. Component D is effective in extending a temperature range of a liquid crystal phase, adjusting the viscosity or adjusting the optical anisotropy. Component D is also useful for adjustment of the voltage-transmittance curve of the device.
When the composition for the TN mode or the like is prepared, a content of component D is suitably in the range of 1% by weight to 99% by weight, preferably in the range of 10% by weight to 97% by weight, and further preferably in the range of 40% by weight to 95% by weight, based on the weight of the liquid crystal composition. When component D is added to a composition having negative dielectric anisotropy, the content of component D is preferably 30% by weight or less based on the weight of the liquid crystal composition. Addition of component D allows adjustment of the elastic constant of the composition and adjustment of the voltage-transmittance curve of the device.
Component E includes compounds (9) to (15). The compounds have phenylene in which hydrogen in lateral positions are replaced by two halogens, such as 2,3-difluoro-1,4-phenylene.
Preferred examples of component E include compounds (9-1) to (9-8), compounds (10-1) to (10-17), compound (11-1), compounds (12-1) to (12-3), compounds (13-1) to (13-11), compounds (14-1) to (14-3), compounds (15-1) to (15-3) and compound (16-1). In the compounds of component E, R15 and R16 are independently alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine; and R17 is hydrogen, fluorine, alkyl having 1 to 10 carbons or alkenyl having 2 to 10 carbons, and in the alkyl and the alkenyl, at least one piece of —CH2— may be replaced by —O—, and at least one hydrogen may be replaced by fluorine.
Component E has large negative dielectric anisotropy. Component E is used when a composition for the IPS mode, the VA mode, the PSA mode or the like is prepared. As a content of component E increases, the dielectric anisotropy of the composition negatively increases, but the viscosity increases. Thus, as long as a desired value of threshold voltage of the device is met, the content is preferably as small as possible. When the dielectric anisotropy at a degree of −5 is taken into account, the content is preferably 40% by weight or more in order to allow a sufficient voltage driving.
Among types of component E, compound (9) is a bicyclic compound, and therefore is mainly effective in decreasing the viscosity, adjusting the optical anisotropy or increasing the dielectric anisotropy. Compounds (10) and (11) are a tricyclic compound, and therefore are effective in increasing the maximum temperature, the optical anisotropy or the dielectric anisotropy. Compounds (12) to (15) are effective in increasing the dielectric anisotropy.
When a composition for the IPS mode, the VA mode, the PSA mode or the like is prepared, the content of component E is preferably 40% by weight or more, and further preferably in the range of 50% by weight to 95% by weight, based on the weight of the liquid crystal composition. When component E is added to a composition having positive dielectric anisotropy, the content of component E is preferably 30% by weight or less based on the weight of the liquid crystal composition. Addition of component E allows adjustment of the elastic constant of the composition and adjustment of the voltage-transmittance curve of the device.
The liquid crystal composition satisfying at least one of characteristics such as the high maximum temperature, the low minimum temperature, the small viscosity, the suitable optical anisotropy, the large positive or negative dielectric anisotropy, the large specific resistance, the high stability to ultraviolet light, the high stability to heat and the large elastic constant can be prepared by suitably combining component B, C, D and E described above. A liquid crystal compound different from components B, C, D and E may be added when necessary.
A liquid crystal composition is prepared according to a publicly-known method. For example, the component compounds are mixed and dissolved in each other by heating. According to an application, an additive may be added to the composition. Specific examples of the additives include a polymerizable compound other than formula (1) and formula (16), a polymerization initiator, a polymerization inhibitor, an optically active compound, an antioxidant, an ultraviolet light absorber, a light stabilizer, a heat stabilizer and an antifoaming agent. Such additives are well known to those skilled in the art, and described in literature.
The polymerizable compound is added for the purpose of forming a polymer in the liquid crystal composition. The polymerizable compound and compound (1) are copolymerized by irradiation with ultraviolet light while voltage is applied between electrodes, whereby the polymer is formed in the liquid crystal composition. On the occasion, compound (1) is immobilized in a state in which the polar group non-covalently interacts with the substrate surface of glass (or metal oxide). Thus, capability of controlling the alignment of liquid crystal molecules is further improved, and simultaneously the polar compound no longer leaks into the liquid crystal composition. Moreover, suitable pretilt can be obtained even in the substrate surface of glass (or metal oxide), and therefore a liquid crystal display device in which a response time is shortened and the voltage holding ratio is large can be obtained.
Preferred examples of the polymerizable compound include acrylate, methacrylate, a vinyl compound, a vinyloxy compound, propenyl ether, an epoxy compound (oxirane, oxetane) and vinyl ketone. Further preferred examples include a compound having at least one acryloyloxy, and a compound having at least one methacryloyloxy. Still further preferred examples also include a compound having both acryloyloxy and methacryloyloxy.
Still further preferred examples include compounds (M-1) to (M-17). In compounds (M-1) to (M-17), R25 to R31 are independently hydrogen or methyl; s, v and x are independently 0 or 1; t and u are independently an integer from 1 to 10; and L21 to L26 are independently hydrogen or fluorine, and L27 and L28 are independently hydrogen, fluorine or methyl.
The polymerizable compound can be rapidly polymerized by adding the polymerization initiator. An amount of a remaining polymerizable compound can be decreased by optimizing a reaction temperature. Examples of a photoradical polymerization initiator include TPO, 1173 and 4265 from Darocur series of BASF SE, and 184, 369, 500, 651, 784, 819, 907, 1300, 1700, 1800, 1850 and 2959 from Irgacure series thereof.
Additional examples of the photoradical polymerization initiator include 4-methoxyphenyl-2,4-bis(trichloromethyl)triazine, 2-(4-butoxystyryl)-5-trichloromethyl-1,3,4-oxadiazole, 9-phenylacridine, 9,10-benzphenazine, a benzophenone-Michler's ketone mixture, a hexaarylbiimidazole-mercaptobenzimidazole mixture, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropane-1-one, benzyl dimethyl ketal, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1-one, a mixture of 2,4-diethylxanthone and methyl p-dimethylaminobenzoate, and a mixture of benzophenone and methyltriethanolamine.
After the photoradical polymerization initiator is added to the liquid crystal composition, polymerization can be performed by irradiation with ultraviolet light in a state in which an electric field is applied thereto. However, an unreacted polymerization initiator or a decomposition product of the polymerization initiator may cause poor display such as image persistence in the device. In order to prevent such an event, photopolymerization may be performed with no addition of the polymerization initiator. A preferred wavelength of light to be irradiated is in the range of 150 nanometers to 500 nanometers. A further preferred wavelength is in the range of 250 nanometers to 450 nanometers, and a most preferred wavelength is in the range of 300 nanometers to 400 nanometers.
Upon mixing compound (1) having an ester bonding group, a cinnamic acid ester bond, a chalcone skeleton or a stilbene skeleton in the composition, a main effect of the component compound on the characteristics of the composition is as described below. When Fries rearrangement, photodimerization or cis-trans isomerization of a double bond is caused by polarized light, the compound (1) is aligned in a fixed direction at a molecular level. Accordingly, a thin film prepared from the polar compound aligns the liquid crystal molecules in the same manner as an alignment film of polyimide or the like.
In a compound having an aromatic ester and a polymerizable group, photolysis in an aromatic ester moiety is caused by irradiation with ultraviolet light to form a radical, and photo-Fries rearrangement is caused. In the photo-Fries rearrangement, the photolysis of the aromatic ester moiety is caused when a polarization direction of polarized ultraviolet light and a major axis direction of the aromatic ester moiety are identical. Recombination of the compound is caused after photolysis to generate a hydroxyl group in the molecule by tautomerization. Interaction in a substrate interface is caused by the hydroxyl group, and the polar compound is considered to be easily adsorbed with anisotropy on a side of the substrate interface. Moreover, the compound has the polymerizable group, and therefore is immobilized by polymerization. The property is utilized, whereby the thin film capable of aligning the liquid crystal molecule can be prepared. Linearly polarized light is suitable as ultraviolet light to be irradiated in order to prepare the thin film. First, the polar compound is added to the liquid crystal composition in the range of 0.1% by weight to 10% by weight, and the resulting composition is warmed in order to dissolve the polar compound thereinto. The composition is injected into the device having no alignment film. Next, the devise is irradiated with the linearly polarized light while warming the device to cause the photo-Fries rearrangement of the polar compound to polymerize the compound. The polar compound in which the photo-Fries rearrangement is caused is aligned in a fixed direction, and the thin film formed after polymerization has a function as a liquid crystal alignment film.
Upon storing the polymerizable compound, the polymerization inhibitor may be added thereto for preventing polymerization. The polymerizable compound is ordinarily added to the composition without removing the polymerization inhibitor. Specific examples of the polymerization inhibitor include hydroquinone, a hydroquinone derivative such as methylhydroquinone, 4-t-butylcatechol, 4-methoxyphenol and phenothiazine.
The optically active compound is effective in inducing helical structure in the liquid crystal molecules to give a required twist angle, thereby preventing a reverse twist. A helical pitch can be adjusted by adding the optically active compound thereto. Two or more optically active compounds may be added for the purpose of adjusting temperature dependence of the helical pitch. Specific examples of a preferred optically active compound include compounds (Op-1) to (Op-18) described below. In compound (Op-18), ring J is 1,4-cyclohexylene or 1,4-phenylene, and R28 is alkyl having 1 to 10 carbons.
The antioxidant is effective for maintaining the large voltage holding ratio. Preferred examples of the antioxidant include compounds (AO-1) and (AO-2) described below; and Irganox 415, Irganox 565, Irganox 1010, Irganox 1035, Irganox 3114 and Irganox 1098 (trade names; BASF SE). The ultraviolet light absorber is effective for preventing a decrease of the maximum temperature. Preferred examples of the ultraviolet light absorber include a benzophenone derivative, a benzoate derivative, and a triazole derivative. Specific examples thereof include compounds (AO-3) and (AO-4) described below; Tinuvin 329, Tinuvin P, Tinuvin 326, Tinuvin 234, Tinuvin 213, Tinuvin 400, Tinuvin 328 and Tinuvin 99-2 (trade names; BASF SE); and 1,4-diazabicyclo[2.2.2]octane (DABCO).
The light stabilizer such as an amine having steric hindrance is preferred for maintaining the large voltage holding ratio. Specific examples of a preferred light stabilizer include compounds (AO-5) and (AO-6) described below; and Tinuvin 144, Tinuvin 765 and Tinuvin 770DF (trade names: BASF SE). The heat stabilizer is also effective for maintaining the large voltage holding ratio, and specific preferred examples include Irgafos 168 (trade name; BASF SE). The antifoaming agent is effective for preventing foam formation. Preferred examples of the antifoaming agent include dimethyl silicone oil and methylphenyl silicone oil.
In compound (AO-1), R40 is alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons, —COOR41 or —CH2CH2COOR41, in which R41 is alkyl having 1 to 20 carbons. In compounds (AO-2) and (AO-5), R42 is alkyl having 1 to 20 carbons. In compound (AO-5), R43 is hydrogen, methyl or O. (oxygen radical), ring G is 1,4-cyclohexylene or 1,4-phenylene, and z is 1, 2 or 3.
The liquid crystal composition can be used in a liquid crystal display device having an operating mode such as the PC mode, the TN mode, the STN mode, the OCB mode and the PSA mode, and driven by an active matrix mode. The composition can also be used in a liquid crystal display device having the operating mode such as the PC mode, the TN mode, the STN mode, the OCB mode, the VA mode and the IPS mode, and driven by a passive matrix mode. The device can be applied to any of a reflective type, a transmissive type and a transflective type.
The composition can also be used in a nematic curvilinear aligned phase (NCAP) device prepared by microencapsulating a nematic liquid crystal, and a polymer dispersed liquid crystal display device (PDLCD) and a polymer network liquid crystal display device (PNLCD), in which a three-dimensional network-polymer is formed in the liquid crystal. When an amount of addition of the polymerizable compound is about 10% by weight or less based on the weight of the liquid crystal composition, a liquid crystal display device having the PSA mode is prepared. A preferred proportion thereof is in the range of about 0.1% by weight to about 2% by weight. A further preferred proportion is in the range of about 0.2% by weight to about 1.0% by weight. The device having the PSA mode can be driven by the driving mode such as the active matrix mode and the passive matrix mode. Such a device can be applied to any of the reflective type, the transmissive type and the transflective type. A polymer dispersed mode device can also be prepared by increasing the amount of addition of the polymerizable compound.
In the polymer sustained alignment mode device, the polymer contained in the composition aligns the liquid crystal molecules. The polar compound assists alignment of the liquid crystal molecules. More specifically, the polar compound can be used in place of the alignment film. One example of a method for manufacturing such a device is as described below.
A device having two substrates called an array substrate and a color filter substrate is arranged. The substrate has no the alignment film. At least one of the substrates has an electrode layer. A liquid crystal composition is prepared by mixing liquid crystal compounds. A polymerizable compound and a polar compound are added to the composition. An additive may be further added thereto when necessary. The composition is injected into the device. The device is irradiated with light. Ultraviolet light is preferred. The polymerizable compound is polymerized by irradiation with light. The composition containing a polymer is formed by the polymerization to prepare a device having a PSA mode.
A method of producing a device will be described. First, the method includes a step of adding a polar compound to a liquid crystal composition, and then warming the resulting composition to a temperature higher than the maximum temperature thereof to dissolve the polar compound. Second, the method includes a step of injecting the composition into a liquid crystal display device. Third, the method includes a step of irradiating the composition with polarized ultraviolet light while warming the liquid crystal composition to a temperature higher than the maximum temperature thereof. The polar compound causes the photo-Fries rearrangement by linearly polarized light, and simultaneously polymerization thereof also progresses. A polymer formed of the polar compound is formed as the thin film on the substrate and immobilized thereon. The compound is aligned in a fixed direction at a molecular level, and therefore the thin film has the function as the liquid crystal alignment film. A liquid crystal display device having no alignment film such as polyimide can be produced by the method described above.
In the procedure, the polar compound is unevenly distributed on the substrate because the polar group interacts with the surface of the substrate. If the polar compound is unevenly distributed, an amount of addition of the compound can be suppressed in comparison with the compound having no polar group. The polar compound aligns the liquid crystal molecules by irradiation with polarized ultraviolet light, and simultaneously the polymerizable compound is polymerized by ultraviolet light, and therefore a polymer maintaining the alignment is formed. The alignment of the liquid crystal molecules is additionally stabilized by an effect of the polymer, and therefore the response time in the device is shortened. The image persistence is caused due to poor operation of the liquid crystal molecules, and therefore the persistence is also simultaneously improved by the effect of the polymer. In particular, compound (1) of the invention is a polymerizable polar compound, and therefore aligns liquid crystal molecules, and also is copolymerized with any other polymerizable compound. Thus, the polar compound is no longer leaked into the liquid crystal composition, and therefore the liquid crystal display device having a large voltage holding ratio can be obtained.
Hereinafter, the invention will be described in greater detail by way of Examples (including Synthesis Examples and Use Examples of devices). However, the invention is not limited by the Examples. The invention includes a mixture of a composition in Use Example 1 and a composition in Use Example 2. The invention also includes a mixture prepared by mixing at least two compositions in each Use Example.
Compound (1) was prepared according to procedures shown in Example. Unless otherwise specified, a reaction was performed under a nitrogen atmosphere. Compound (1) was prepared according to procedures shown in Example 1 or the like. The thus prepared compound was identified by methods such as an NMR analysis. Characteristics of compound (1), the liquid crystal compound, the composition and the device were measured by methods described below.
NMR analysis: For measurement, DRX-500 made by Bruker BioSpin Corporation was used. In 1H-NMR measurement, a sample was dissolved in a deuterated solvent such as CDCl3, and measurement was carried out under conditions of room temperature, 500 MHz and 16 times of accumulation. Tetramethylsilane was used as an internal standard. In 19F-NMR measurement, CFCl3 was used as an internal standard, and measurement was carried out under conditions of 24 times of accumulation. In explaining nuclear magnetic resonance spectra obtained, s, d, t, q, quin, sex and m stand for a singlet, a doublet, a triplet, a quartet, a quintet, a sextet and a multiplet, and br being broad, respectively.
Gas chromatographic analysis: For measurement, GC-2010 Gas Chromatograph made by Shimadzu Corporation was used. As a column, a capillary column DB-1 (length 60 m, bore 0.25 mm, film thickness 0.25 μm) made by Agilent Technologies, Inc. was used. As a carrier gas, helium (1 mL/minute) was used. A temperature of a sample vaporizing chamber and a temperature of a detector (FID) part were set to 300° C. and 300° C., respectively. A sample was dissolved in acetone and prepared to be a 1 weight % solution, and then 1 microliter of the solution obtained was injected into the sample vaporizing chamber. As a recorder, GC Solution System made by Shimadzu Corporation or the like was used.
HPLC analysis: For measurement, Prominence (LC-20AD; SPD-20A) made by Shimadzu Corporation was used. As a column, YMC-Pack ODS-A (length 150 mm, bore 4.6 mm, particle diameter 5 μm) made by YMC Co., Ltd. was used. As an eluate, acetonitrile and water were appropriately mixed and used. As a detector, a UV detector, an RI detector, a CORONA detector or the like was appropriately used. When the UV detector was used, a detection wavelength was set to 254 nanometers. A sample was dissolved in acetonitrile and prepared to be a 0.1 weight % solution, and then 1 microliter of the solution was introduced into a sample chamber. As a recorder, C-R7Aplus made by Shimadzu Corporation was used.
Ultraviolet-visible spectrophotometry: For measurement, PharmaSpec UV-1700 made by Shimadzu Corporation was used. A detection wavelength was adjusted in the range of 190 nanometers to 700 nanometers. A sample was dissolved in acetonitrile and prepared to be a 0.01 mmol/L solution, and measurement was carried out by putting the solution in a quartz cell (optical path length: 1 cm).
Sample for measurement: Upon measuring phase structure and a transition temperature (a clearing point, a melting point, a polymerization starting temperature or the like), the compound itself was used as a sample.
Measuring method: Measurement of characteristics was carried out by the methods described below. Most of the measuring methods are applied as described in the Standard of the Japan Electronics and Information Technology Industries Association (JEITA) (JEITA EIAJ ED-2521B) discussed and established by JEITA, or modified thereon. No thin film transistor (TFT) was attached to a TN device used for measurement.
A sample was placed on a hot plate in a melting point apparatus (FP-52 Hot Stage made by Mettler-Toledo International Inc.) equipped with a polarizing microscope. A state of phase and a change thereof were observed with the polarizing microscope while the sample was heated at a rate of 3° C. per minute, and a kind of the phase was specified.
For measurement, a differential scanning calorimeter, Diamond DSC System, made by PerkinElmer, Inc., or a high sensitivity differential scanning calorimeter, X-DSC7000, made by SSI NanoTechnology Inc. was used. A sample was heated and then cooled at a rate of 3° C. per minute, and a starting point of an endothermic peak or an exothermic peak caused by a phase change of the sample was determined by extrapolation, whereby a transition temperature was determined. A melting point and a polymerization starting temperature of a compound were also measured using the apparatus. Temperature at which a compound undergoes transition from a solid to a liquid crystal phase such as the smectic phase and the nematic phase may be occasionally abbreviated as “minimum temperature of the liquid crystal phase.” Temperature at which the compound undergoes transition from the liquid crystal phase to liquid may be occasionally abbreviated as “clearing point.”
A crystal was expressed as C. When the kind of crystals were distinguishable, each of the crystals was expressed as C1 or C2. The smectic phase or the nematic phase was expressed as S or N. In the smectic phase, when smectic A phase, smectic B phase, smectic C phase or smectic F phase was distinguishable, the phases were expressed as SA, SB, SC or SF, respectively. A liquid (isotropic) was expressed as I. A transition temperature was expressed as “C 50.0 N 100.0 I,” for example. The expression indicates that a transition temperature from the crystals to the nematic phase is 50.0° C., and a transition temperature from the nematic phase to the liquid is 100.0° C.
A sample was placed on a hot plate in a melting point apparatus equipped with a polarizing microscope, and heated at a rate of 1° C. per minute. Temperature when part of the sample began to change from a nematic phase to an isotropic liquid was measured. A maximum temperature of the nematic phase may be occasionally abbreviated as “maximum temperature.” When the sample was a mixture of compound (1) and the base liquid crystal, the maximum temperature was expressed in terms of a symbol TNI. When the sample was a mixture of compound (1) and a compound such as components B, C and D, the maximum temperature was expressed in terms of a symbol NI.
Samples each having a nematic phase were kept in freezers at temperatures of 0° C., −10° C., −20° C., −30° C. and −40° C. for 10 days, and then liquid crystal phases were observed. For example, when the sample maintained the nematic phase at −20° C. and changed to crystals or a smectic phase at −30° C., TC was expressed as TC≤−20° C. A minimum temperature of the nematic phase may be occasionally abbreviated as “minimum temperature.”
(5) Viscosity (Bulk Viscosity; η; Measured at 20° C.; mPa·s)
For measurement, a cone-plate (E type) rotational viscometer made by Tokyo Keiki Inc. was used.
Measurement was carried out by an Abbe refractometer with a polarizing plate mounted on an ocular, using light at a wavelength of 589 nanometers. A surface of a main prism was rubbed in one direction, and then a sample was added dropwise onto the main prism. A refractive index (n∥) was measured when a direction of polarized light was parallel to a direction of rubbing. A refractive index (n⊥) was measured when the direction of polarized light was perpendicular to the direction of rubbing. A value of optical anisotropy (Δn) was calculated from an equation: Δn=n∥−n⊥.
Into a vessel equipped with electrodes, 1.0 milliliter of sample was injected. A direct current voltage (10 V) was applied to the vessel, and a direct current after 10 seconds was measured. Specific resistance was calculated from the following equation: (specific resistance)={(voltage)×(electric capacity of a vessel)}/{(direct current)×(dielectric constant of vacuum)}.
The measuring method of the characteristics may be different between a sample having positive dielectric anisotropy and a sample having negative dielectric anisotropy. When the dielectric anisotropy was positive, the measuring methods were described in sections (8a) to (12a). When the dielectric anisotropy was negative, the measuring methods were described in sections (8b) to (12b).
(8a) Viscosity (Rotational Viscosity; γ1; Measured at 25° C.; mPa·s)
Positive dielectric anisotropy: Measurement was carried out according to a method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, p. 37 (1995). A sample was put in a TN device in which a twist angle was 0 degrees and a distance (cell gap) between two glass substrates was 5 micrometers. Voltage was applied stepwise to the device in the range of 16 V to 19.5 V at an increment of 0.5 V. After a period of 0.2 second with no voltage application, voltage was repeatedly applied under conditions of only one rectangular wave (rectangular pulse; 0.2 second) and no voltage application (2 seconds). A peak current and a peak time of transient current generated by the applied voltage were measured. A value of rotational viscosity was obtained from the measured values and calculation equation (8) described on page 40 of the paper presented by M. Imai et al. A value of dielectric anisotropy required for the calculation was determined using the device by which the rotational viscosity was measured and by a method described below.
(8b) Viscosity (Rotational Viscosity; γ1; Measured at 25° C.; mPa·s)
Negative dielectric anisotropy: Measurement was carried out according to a method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, p. 37 (1995). A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 20 micrometers. Voltage was applied stepwise to the device in the range of 39 V to 50 V at an increment of 1 V. After a period of 0.2 second with no voltage application, voltage was repeatedly applied under conditions of only one rectangular wave (rectangular pulse; 0.2 second) and no voltage application (2 seconds). A peak current and a peak time of transient current generated by the applied voltage were measured. A value of rotational viscosity was obtained from the measured values and calculation equation (8) described on page 40 of the paper presented by M. Imai et al. In dielectric anisotropy required for the calculation, a value measured according to items of dielectric anisotropy described below was used.
Positive dielectric anisotropy: A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 micrometers and a twist angle was 80 degrees. Sine waves (10 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (ε∥) of liquid crystal molecules in a major axis direction was measured. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (ε⊥) of liquid crystal molecules in a minor axis direction was measured. A value of dielectric anisotropy was calculated from an equation: Δε=ε∥−ε⊥.
Negative dielectric anisotropy: A value of dielectric anisotropy was calculated from an equation: Δε=ε∥−ε⊥. A dielectric constant (ε∥ and ε⊥) was measured as described below.
(1) Measurement of dielectric constant (ε∥): an ethanol (20 mL) solution of octadecyltriethoxysilane (0.16 mL) was applied to a well-cleaned glass substrate. After rotating the glass substrate with a spinner, the glass substrate was heated at 150° C. for 1 hour. A sample was put in a VA device in which a distance (cell gap) between two glass substrates was 4 micrometers, and the device was sealed with an ultraviolet-curable adhesive. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (ε∥) of liquid crystal molecules in a major axis direction was measured.
(2) Measurement of dielectric constant (ε⊥): a polyimide solution was applied to a well-cleaned glass substrate. After calcining the glass substrate, rubbing treatment was applied to the alignment film obtained. A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 micrometers and a twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, a dielectric constant (ε⊥) of liquid crystal molecules in a minor axis direction was measured.
(10a) Elastic constant (K; measured at 25° C.; pN)
Positive dielectric anisotropy: For measurement, HP4284A LCR Meter made by Yokogawa-Hewlett-Packard Co. was used. A sample was put in a horizontal alignment device in which a distance (cell gap) between two glass substrates was 20 micrometers. An electric charge of 0 V to 20 V was applied to the device, and electrostatic capacity and applied voltage were measured. The measured values of electrostatic capacity (C) and applied voltage (V) were fitted to equation (2.98) and equation (2.101) on page 75 of “Liquid Crystal Device Handbook” (Ekisho Debaisu Handobukku in Japanese; Nikkan Kogyo Shimbun, Ltd.), and values of K11 and K33 were obtained from equation (2.99). Next, K22 was calculated using the previously determined values of K11 and K33 in equation (3.18) on page 171. Elastic constant K was expressed in terms of a mean value of the thus determined K11, K22 and K33.
(10b) Elastic Constant (K11 and K33; Measured at 25° C.; pN)
Negative dielectric anisotropy: For measurement, Elastic Constant Measurement System Model EC-1 made by TOYO Corporation was used. A sample was put in a vertical alignment device in which a distance (cell gap) between two glass substrates was 20 micrometers. An electric charge of 20 V to 0 V was applied to the device, and electrostatic capacity and applied voltage were measured. Values of electrostatic capacity (C) and applied voltage (V) were fitted to equation (2.98) and equation (2.101) on page 75 of “Liquid Crystal Device Handbook” (Ekisho Debaisu Handobukku in Japanese; Nikkan Kogyo Shimbun, Ltd.), and a value of elastic constant was obtained from equation (2.100).
Positive dielectric anisotropy: For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A sample was put in a normally white mode TN device in which a distance (cell gap) between two glass substrates was 0.45/Δn (μm) and a twist angle was 80 degrees. A voltage (32 Hz, rectangular waves) to be applied to the device was stepwise increased from 0 V to 10 V at an increment of 0.02 V. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. A voltage-transmittance curve was prepared, in which the maximum amount of light corresponds to 100% transmittance and the minimum amount of light corresponds to 0% transmittance. A threshold voltage is expressed in terms of voltage at 90% transmittance.
Negative dielectric anisotropy: For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used.
A light source was a halogen lamp. A sample was put in a normally black mode VA device in which a distance (cell gap) between two glass substrates was 4 micrometers and a rubbing direction was anti-parallel, and the device was sealed with an ultraviolet-curable adhesive. A voltage (60 Hz, rectangular waves) to be applied to the device was stepwise increased from 0 V to 20 V at an increment of 0.02 V. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. A voltage-transmittance curve was prepared, in which the maximum amount of light corresponds to 100% transmittance and the minimum amount of light corresponds to 0% transmittance. A threshold voltage is expressed in terms of voltage at 10% transmittance.
Positive dielectric anisotropy: For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A low-pass filter was set to 5 kHz. A sample was put in a normally white mode TN device in which a distance (cell gap) between two glass substrates was 5.0 micrometers and a twist angle was 80 degrees. A voltage (rectangular waves; 60 Hz, 5 V, 0.5 second) was applied to the device. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. The maximum amount of light corresponds to 100% transmittance, and the minimum amount of light corresponds to 0% transmittance. A rise time (τr; millisecond) was expressed in terms of time required for a change from 90% transmittance to 10% transmittance. A fall time (τf; millisecond) was expressed in terms of time required for a change from 10% transmittance to 90% transmittance. A response time was expressed by a sum of the rise time and the fall time thus determined.
Negative dielectric anisotropy: For measurement, an LCD-5100 luminance meter made by Otsuka Electronics Co., Ltd. was used. A light source was a halogen lamp. A low-pass filter was set to 5 kHz. A sample was put in a normally black mode PVA device in which a distance (cell gap) between two glass substrates was 3.2 micrometers, and a rubbing direction was anti-parallel. The device was sealed with an ultraviolet-curable adhesive. The device was applied with a voltage of a little exceeding a threshold voltage for 1 minute, and then was irradiated with ultraviolet light of 23.5 mW/cm2 for 8 minutes, while applying a voltage of 5.6 V. A voltage (rectangular waves; 60 Hz, 10 V, 0.5 second) was applied to the device. On the occasion, the device was irradiated with light from a direction perpendicular to the device, and an amount of light transmitted through the device was measured. The maximum amount of light corresponds to 100% transmittance, and the minimum amount of light corresponds to 0% transmittance. A response time was expressed in terms of time required for a change from 90% transmittance to 10% transmittance (fall time; millisecond).
Solmix (registered trademark) A-11 is a mixture of ethanol (85.5%), methanol (13.4%) and isopropanol (1.1%), and was purchased from Japan Alcohol Trading Co., Ltd.
Compound (T-1) (30 g), 3,4-dihydro-2H-pyran (23.3 g), pyridinium p-toluenesulfonate (PPTS) (5.80 g) and dichloromethane (300 mL) were put in a reaction vessel, and the resulting mixture was stirred at 50° C. for 10 hours. After an insoluble matter was filtered off, the reaction mixture was poured into water, and an aqueous layer was subjected to extraction with dichloromethane. An organic layer was washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (heptane:ethyl acetate=2:1 in a volume ratio) to obtain compound (T-2) (39.5 g; 80%).
Compound (T-2) (39.5 g), THF (400 mL), methanol (100 mL) and water (400 mL) were put in a reaction vessel, and the resulting mixture was cooled to 0° C. Thereto, lithium hydroxide monohydrate (15.4 g) was added, and the resulting mixture was stirred for 12 hours while returning to room temperature. The reaction mixture was poured into water, and 6 N hydrochloric acid (60 mL) was slowly added to be acidified, and an aqueous layer was subjected to extraction with ethyl acetate. An organic layer was washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure to obtain compound (T-3) (32.6 g; 95%).
Compound (T-4) (10 g), compound (T-3) (12.2 g), DMAP (0.80 g) and dichloromethane (100 mL) were put in a reaction vessel, and the resulting mixture was cooled to 0° C. Thereto, DCC (13.48 g) was added, and the resulting mixture was stirred for 12 hours while returning to room temperature. After an insoluble matter was filtered off, the reaction mixture was poured into water, and an aqueous layer was subjected to extraction with dichloromethane. An organic layer was washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate:toluene=1:9 in a volume ratio) to obtain compound (T-5) (8 g; 38%).
Compound (T-5) (4 g), potassium carbonate (5.16 g), 4,4′-biphenyldiol (4.63 g) and DMF (100 mL) were put in a reaction vessel, and the resulting mixture was stirred at 60° C. for 2 hours. The reaction mixture was poured into water, and an aqueous layer was subjected to extraction with ethyl acetate. An organic layer was washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate:toluene=1:3 in a volume ratio) to obtain compound (T-6) (6.00 g; 100%).
Compound (T-6) (6 g), compound (T-7) (9.04 g), DMAP (0.34 g) and dichloromethane (100 mL) were put in a reaction vessel, and the resulting mixture was cooled to 0° C. Thereto, DCC (6.39 g) was added, and the resulting mixture was stirred for 12 hours while returning to room temperature. After an insoluble matter was filtered off, the reaction mixture was poured into water, and an aqueous layer was subjected to extraction with dichloromethane. An organic layer was washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (ethyl acetate:toluene=1:5 in a volume ratio) to obtain compound (T-8) (10 g; 100%).
Compound (T-8) (3 g), pyridinium p-toluenesulfonate (PPTS) (2.15 g), THF (50 mL) and methanol (50 mL) were put in a reaction vessel, and the resulting mixture was stirred at 50° C. for 5 hours. After an insoluble matter was filtered off, the reaction mixture was poured into water, and an aqueous layer was subjected to extraction with ethyl acetate. An organic layer was washed with water, and dried over anhydrous magnesium sulfate. The resulting solution was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (toluene:ethyl acetate=2:1 in a volume ratio) to obtain compound (No. 164) (2 g; 75%).
An NMR analysis value of the resulting compound (No. 164) was as described below.
1H-NMR: chemical shift δ (ppm; CDCl3): 8.15 (d, 2H), 7.58 (d, 2H), 7.50 (d, 2H), 7.25 (d, 2H), 6.97 (d, 2H), 6.96 (d, 2H), 6.41 (d, 1H), 6.26 (s, 1H), 6.13 (dd, 1H), 5.84 (s, 1H), 5.83 (d, 1H), 4.34 (d, 2H), 4.28 (t, 2H), 4.18 (t, 2H), 4.05 (t, 2H), 4.05 (t, 2H), 2.30 (t, 1H), 1.95-1.87 (m, 4H), 1.84 (quint, 2H), 1.73 (quint, 2H), 1.58-1.48 (m, 4H).
Physical properties of compound (No. 164) were as described below.
Transition temperature (° C.): C 88.95 N, Polymerization starting temperature (° C.): 123.02.
Compound (No. 165) (4.9 g) was obtained by using compound (T-9) in place of 4,4′-biphenyldiol in Example 1.
An NMR analysis value of the resulting compound (No. 165) was as described below.
1H-NMR: chemical shift δ (ppm; CDCl3): 8.17 (d, 2H), 7.50 (d, 2H), 7.43 (s, 1H), 7.40 (d, 1H), 7.17 (d, 1H), 6.98 (d, 2H), 6.95 (d, 2H), 6.41 (d, 1H), 6.26 (s, 1H), 6.13 (dd, 1H), 5.84 (s, 1H), 5.82 (d, 1H), 4.34 (d, 2H), 4.29 (t, 2H), 4.18 (t, 2H), 4.05 (t, 2H), 4.04 (t, 2H), 2.27 (s, 3H), 2.24 (t, 1H), 1.95-1.87 (m, 4H), 1.85 (quint, 2H), 1.73 (quint, 2H), 1.58-1.48 (m, 4H).
Physical properties of compound (No. 165) were as described below.
Transition temperature (° C.): C 66.1 N 106.3 I, Polymerization starting temperature (° C.): 134.
Compound (No. 216) (6.1 g) was obtained by using compound (T-10) in place of 4,4′-biphenyldiol, and (T-11) in place of (T-4) in Example 1.
An NMR analysis value of the resulting compound (No. 216) was as described below.
1H-NMR: chemical shift δ (ppm; CDCl3): 8.17 (d, 2H), 7.64 (dd, 2H), 7.30 (s, 1H), 7.16 (d, 1H), 7.04 (s, 1H), 6.98 (d, 2H), 6.90 (d, 1H), 6.41 (d, 1H), 6.26 (s, 1H), 6.13 (dd, 1H), 5.84 (s, 1H), 5.82 (d, 1H), 4.43 (t, 2H), 4.34 (d, 2H), 4.18 (t, 2H), 4.14 (t, 2H), 4.05 (t, 2H), 3.92 (q, 1H), 2.26 (t, 1H), 2.23 (quint, 2H), 1.85 (quint, 2H), 1.73 (quint, 2H), 1.58-1.45 (m, 4H), 1.51 (d, 3H).
Physical properties of compound (No. 216) were as described below.
Transition temperature (° C.): C 84.6 N 95.3 I, Polymerization starting temperature (° C.): 176.6.
(No. 303) (1.7 g) was prepared according to the following scheme. The compound can be easily synthesized according to the Synthesis Examples with reference to the Synthesis Examples described above for details.
An NMR analysis value of the resulting compound (No. 303) was as described below.
1H-NMR: chemical shift δ (ppm; CDCl3): 8.17 (d, 2H), 8.17 (d, 2H), 7.64 (dd, 2H), 7.30 (s, 1H), 7.16 (d, 1H), 7.04 (s, 1H), 6.98 (d, 2H), 6.90 (d, 1H), 6.41 (d, 1H), 6.26 (s, 1H), 6.13 (dd, 1H), 5.84 (s, 1H), 5.82 (d, 1H), 4.43 (t, 2H), 4.34 (d, 2H), 4.18 (t, 2H), 4.14 (t, 2H), 4.05 (t, 2H), 3.92 (q, 1H), 2.26 (t, 1H), 2.23 (quint, 2H), 1.85 (quint, 2H), 1.73 (quint, 2H), 1.58-1.45 (m, 4H), 1.51 (d, 3H).
Physical properties of compound (No. 303) were as described below.
Transition temperature (° C.): C 84.6 N 95.3 I, Polymerization starting temperature (° C.): 176.6.
Compounds (No. 1) to (No. 588) described below were prepared according to the synthesis methods described in Synthesis Examples.
The compounds in Use Examples were represented using symbols according to definitions in Table 3 described below. In Table 3, the configuration of 1,4-cyclohexylene is trans. A parenthesized number next to a symbolized compound corresponds to the number of the compound. A symbol (-) means any other liquid crystal compound. A proportion (percentage) of the liquid crystal compound is expressed in terms of weight percent (% by weight) based on the weight of the liquid crystal composition. Values of the characteristics of the composition were summarized in a last part.
A composition to which an alignment control monomer was added was injected into a device having no alignment film. After the device was irradiated with linearly polarized light, alignment of liquid crystal molecules in the device was confirmed. First, a raw material will be described. The raw material was appropriately selected from a composition such as compositions (M1) to (M41), and an alignment control monomer such as compounds (No. 1) to (No. 588). The compositions are as described below.
NI=73.2° C.; Tc<−20° C.; Δn=0.133; Δε=4.0; Vth=2.18 V; η=22.6 mPa·s.
NI=82.8° C.; Tc<−30° C.; Δn=0.118; Δε=−4.4; Vth=2.13 V; η=22.5 mPa·s.
NI=78.1° C.; Tc<−30° C.; Δn=0.107; Δε=−3.2; Vth=2.02 V; η=15.9 mPa·s.
NI=88.5° C.; Tc<−30° C.; Δn=0.108; 6, Δε=−3.8; Vth=2.25 V; η=24.6 mPa·s; VHR-1=99.1%; VHR-2=98.2%; VHR-3=97.8%.
NI=81.1° C.; Tc<−30° C.; Δn=0.119; Δε=−4.5; Vth=1.69 V; η=31.4 mPa·s.
NI=98.8° C.; Tc<−30° C.; Δn=0.111; Δε=−3.2; Vth=2.47 V; η=23.9 mPa·s.
NI=77.5° C.; Tc<−30° C.; Δn=0.084; Δε=−2.6; Vth=2.43 V; η=22.8 mPa·s.
NI=70.6° C.; Tc<−20° C.; Δn=0.129; Δε=−4.3; Vth=1.69 V; η=27.0 mPa·s.
NI=93.0° C.; Tc<−30° C.; Δn=0.123; Δε=−4.0; Vth=2.27 V; η=29.6 mPa·s.
NI=87.6° C.; Tc<−30° C.; Δn=0.126; Δε=−4.5; Vth=2.21 V; η=25.3 mPa·s.
NI=93.0° C.; Tc<−20° C.; Δn=0.124; Δε=−4.5; Vth=2.22 V; η=25.0 mPa·s.
NI=76.4° C.; Tc<−30° C.; Δn=0.104; Δε=−3.2; Vth=2.06 V; η=15.6 mPa·s.
NI=78.3° C.; Tc<−20° C.; Δn=0.103; Δε=−3.2; Vth=2.17 V; η=17.7 mPa·s.
NI=81.2° C.; Tc<−20° C.; Δn=0.107; Δε=−3.2; Vth=2.11 V; η=15.5 mPa·s.
NI=88.7° C.; Tc<−30° C.; Δn=0.115; Δε=−1.9; Vth=2.82 V; η=17.3 mPa·s.
NI=89.9° C.; Tc<−20° C.; Δn=0.122; Δε=−4.2; Vth=2.16 V; η=23.4 mPa·s.
NI=77.1° C.; Tc<−20° C.; Δn=0.101; Δε=−3.0; Vth=2.04 V; η=13.9 mPa·s.
NI=75.9° C.; Tc<−20° C.; Δn=0.114; Δε=−3.9; Vth=2.20 V; η=24.7 mPa·s.
NI=80.8° C.; Tc<−20° C.; Δn=0.108; Δε=−3.8; Vth=2.02 V; η=19.8 mPa·s.
NI=85.3° C.; Tc<−20° C.; Δn=0.109; Δε=−3.6; Vth=2.06 V; η=20.9 mPa·s.
NI=87.5° C.; Tc<−20° C.; Δn=0.100; Δε=−3.4; Vth=2.25 V; η=16.6 mPa·s.
NI=79.8° C.; Tc<−30° C.; Δn=0.106; Δε=8.5; Vth=1.45 V; η=11.6 mPa·s; γ1=60.0 mPa·s.
NI=71.2° C.; Tc<−20° C.; Δn=0.099; Δε=6.1; Vth=1.74 V; η=13.2 mPa·s; γ1=59.3 mPa·s.
NI=78.5° C.; Tc<−20° C.; Δn=0.095; Δε=3.4; Vth=1.50 V; η=8.4 mPa·s; γ1=54.2 mPa·s.
NI=90.3° C.; Tc<−20° C.; Δn=0.089; Δε=5.5; Vth=1.65 V; η=13.6 mPa·s; γl=60.1 mPa·s.
NI=78.3° C.; Tc<−20° C.; Δn=0.107; Δε=7.0; Vth=1.55 V; η=11.6 mPa·s; γ1=55.6 mPa·s.
NI=80.4° C.; Tc<−20° C.; Δn=0.106; Δε=5.8; Vth=1.40 V; η=11.6 mPa·s; γ1=61.0 mPa·s.
NI=78.4° C.; Tc<−20° C.; Δn=0.094; Δε=5.6; Vth=1.45 V; η=11.5 mPa·s; γ1=61.7 mPa·s.
NI=80.0° C.; Tc<−20° C.; Δn=0.101; Δε=4.6; Vth=1.71 V; η=11.0 mPa·s; γ1=47.2 mPa·s.
NI=78.6° C.; Tc<−20° C.; Δn=0.088; Δε=5.6; Vth=1.85 V; η=13.9 mPa·s; γ1=66.9 mPa·s.
NI=82.9° C.; Tc<−20° C.; Δn=0.093; Δε=6.9; Vth=1.50 V; η=16.3 mPa·s; γ1=65.2 mPa·s.
NI=79.6° C.; Tc<−20° C.; Δn=0.111; Δε=4.7; Vth=1.86 V; η=9.7 mPa·s; γ1=49.9 mPa·s.
NI=83.0° C.; Tc<−20° C.; Δn=0.086; Δε=3.8; Vth=1.94 V; η=7.5 mPa·s; γ1=51.5 mPa·s.
NI=81.9° C.; Tc<−20° C.; Δn=0.109; Δε=4.8; Vth=1.75 V; η=13.3 mPa·s; γ1=57.4 mPa·s.
NI=78.2° C.; Tc<−20° C.; Δn=0.101; Δε=6.7; Vth=1.45 V; η=17.8 mPa·s; γ1=67.8 mPa·s.
NI=77.6° C.; Tc<−20° C.; Δn=0.109; Δε=10.6; Vth=1.34 V; η=22.6 mPa·s; γ1=92.4 mPa·s.
NI=85.2° C.; Tc<−20° C.; Δn=0.102; Δε=4.1; γ1=43.0 mPa·s.
NI=85.8° C.; Tc<−20° C.; Δn=0.115; Δε=4.2; γ1=41.4 mPa·s.
NI=78.4° C.; Tc<−20° C.; Δn=0.094; Δε=5.6; Vth=1.45 V; η=11.5 mPa·s; γ1=61.7 mPa·s.
NI=79.3° C.; Tc<−20° C.; Δn=0.099; Δε=5.0; Vth=1.64 V; η=10.4 mPa·s; γ1=44.7 mPa·s.
NI=79.7° C.; Tc<−20° C.; Δn=0.091; Δε=5.7; Vth=1.83 V; η=14.9 mPa·s; γ1=69.3 mPa·s.
To composition (M1), compound (No. 164) was added at a proportion of 0.1% by weight as a first additive, and compound (AO-1) in which R40 is n-heptyl was added at a proportion of 150 ppm as an antioxidant. The resulting mixture was injected into an IPS device having no alignment film at 90° C. (equal to or higher than a maximum temperature of a nematic phase). The IPS device was irradiated with linearly polarized ultraviolet light (313 nm, 2.0 J/cm2) from a direction normal to the device while heating the device at 90° C. to obtain a device subjected to alignment treatment. The resulting device was set on a polarizing microscope in which a polarizer and an analyzer were arranged perpendicularly to each other to be parallel to a polarization axis of linearly polarized light in the device. The device was irradiated with light from below, and presence or absence of light leakage was observed. A case where no light passed through the device was judged to be “Good” in alignment. A case where light passing through the device was observed was expressed by “Poor.” No light leakage was observed in the present Example 1, and therefore alignment was good.
As shown in Table 4 described below, compositions (M1) to (M41) were used, compound (AO-1) in which R40 is n-heptyl was added at a proportion of 150 ppm as an antioxidant, and a first additive was mixed thereto at a proportion of 0.1% by weight as described in the following table. Operation was performed in the same manner as in Use Example 1 except for the operation described above. When presence or absence of light leakage was observed in the same manner as in Use Example 1, no light leakage was observed, and therefore alignment was good.
As shown in Table 5 described below, compound (A-1-1-1) or (A-1-3-1) in which both polymerizable groups are an acrylate group, or compound (Formula 2) in which both polymerizable groups are a methacrylate group, as described in Patent literature No. 2, was added to each of compositions (M1) to (M41) at a proportion of 0.1% by weight. The resulting mixture was injected into an IPS device having no alignment film. When operation was performed in the same manner as in Use Example 1 except for injecting the mixture, and presence or absence of light leakage was observed in the same manner as in Use Example 1, light leakage was observed in all cases, and therefore alignment was poor.
In Use Examples 1 to 589, a kind and an amount of compositions or alignment control monomers and a heating temperature during polarization exposure were changed, and no light leakage was observed. The results indicate that alignment is good even if the device has no alignment film of polyimide or the like, and all liquid crystal molecules are arranged in a fixed direction. On the other hand, in Comparative Examples 1 to 123, light leakage was observed, indicating that the liquid crystal compound was not aligned. From the results described above, the compounds of the present application are known to be able to form a thin film in which the liquid crystal composition can be aligned by addition with a concentration lower than the comparative compounds. Accordingly, if the liquid crystal composition of the invention is used, a liquid crystal display device having characteristics such as a wide temperature range in which the device can be used, a short response time, a high voltage holding ratio, low threshold voltage, a large contrast ratio and a long service life can be obtained. Further, a liquid crystal display device having a liquid crystal composition satisfying at least one of characteristics such as a high maximum temperature of a nematic phase, a low minimum temperature of the nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light and high stability to heat can be obtained.
A liquid crystal composition of the invention can be used in a liquid crystal monitor, a liquid crystal television and so forth.
Number | Date | Country | Kind |
---|---|---|---|
2017-147948 | Jul 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/025547 | 7/5/2018 | WO | 00 |