Polymerization of acrylic esters

Information

  • Patent Grant
  • 4771117
  • Patent Number
    4,771,117
  • Date Filed
    Thursday, April 30, 1987
    37 years ago
  • Date Issued
    Tuesday, September 13, 1988
    36 years ago
Abstract
This invention relates to a process of polymerizing acrylic esters and, more specifically, to initiators which are useful therein.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a process of polymerizing acrylic esters and, more specifically, to initiators which are useful therein.
2. Background
U.S. Pat. Nos. 4,414,372; 4,417,034; 4,508,880; 4,524,196; 4,581,428; 4,588,795; 4,598,161; 4,605,716; 4,622,372; 4,656,233; 4,681,918; and 4,711,942; and commonly assigned U.S. patent application Ser. No. 004,831 filed Jan. 13, 1987, referred to hereinafter as "the aforesaid patents and patent applications", disclose processes for polymerizing an acrylic or maleimide monomer to a "living" polymer in the presence of:
(i) an initiator having at least one initiating site and which is a tetracoordinate organo(Si, Sn or Ge) compound, including such compound having at least one oxygen, nitrogen or sulfur atom attached to the Si, Sn or Ge; and
(ii) a co-catalyst which is a source of fluoride, bifluoride, cyanide or azide ions or a suitable Lewis acid, Lewis base or selected oxyanion. Such polymerization processes have become known in the art as Group Transfer Polymerization (Webster et al., "Group Transfer Polymerization--A New and Versatile Kind of Addition Polymerization", J. Am. Chem. Soc. 105, 5706 (1983)).
Additional details regarding Group Transfer Polymerization can be obtained from the aforesaid patents and patent applications, the disclosures of which are hereby incorporated by reference.
It is an object of this invention to provide additional silicon-containing compounds which are useful as initiators in acrylic ester polymerization. This and other objects will become apparent hereinafter.
DETAILED DESCRIPTION OF THE INVENTION
This invention resides in a polymerization process comprising contacting under polymerizing conditions:
(a) at least one acrylic ester monomer of the formula CH.sub.2 .dbd.C(Y)C(O)OR wherein Y is --H or --CH.sub.3 and R is a hydrocarbyl radical;
(b) a polymerization initiator comprising a tetracoordinate silicon-containing organic compound having at least one initiating site; and
(c) a catalyst which is a source of fluoride, bifluoride or selected oxyanions,
the process characterized in that the initiator is of the formula
(R.sup.a).sub.e (H).sub.f Si(Z.sup.3).sub.g
wherein:
Z.sup.3 is --OR.sup.b, --NR.sup.b R.sup.c, --Z.sup.4 Q.sup.1, --Si(R.sup.d).sub.3 or --Q.sup.2 ;
each R.sup.a, independently, is hydrocarbyl;
R.sup.b is hydrocarbyl or --Si(R.sup.d).sub.h (H).sub.3-h ;
R.sup.c is H, alkyl, alkenyl, alkynyl or aralkyl;
R.sup.d is H or C.sub.1-4 alkyl;
Q.sup.1 is a saturated 5- or 6-membered ring;
Z.sup.4 is O or NR.sup.d ;
Q.sup.2 is 1H-imidazolyl, 4,5-dihydro-1H-imidazolyl (formerly imidazolinyl), 1H-pyrazolyl, or any one of said groups substituted with hydrocarbyl and/or fused to a carbocyclic ring;
each of e and f, independently, is 0 or an integer of 1 to 3;
g is 0 or an integer of 1 to 4;
(e+f+g) is 4; and
h is 1 or 2,
provided, however, when Z.sup.3 is:
(a)--Z.sup.4 Q.sup.1 and Z.sup.4 is NR.sup.d, then g is 1;
(b)--NR.sup.b R.sup.3 wherein R.sup.c is H, then g is 1 or 2;
(c)--NR.sup.b R.sup.c wherein R.sup.c is other than H, then g is 1 and R.sup.b is hydrocarbyl which is n-alkyl, n-alkenyl or n-alkynyl;
(d)--NR.sup.b R.sup.c wherein R.sup.b is hydrocarbyl which is aryl, then R.sup.c is H and g is 1 or 2;
(e)--NR.sup.b R.sup.c and Y in the monomer is --CH.sub.3, then R.sup.b is non-aromatic hydrocarbyl; or
(f)--OR.sup.b wherein R.sup.b is hydrocarbyl, then --OR.sup.b is not attached to an aromatic ring, and
provided, however, when Y in the monomer is:
(a)--CH.sub.3, then Z.sup.4 is 0;
(b)--CH.sub.3 ; Z.sup.3 is --OR.sup.b or --Z.sup.4 Q.sup.1 wherein Z.sup.4 is 0; and f is 0, then e is 3; or
(c)--CH.sub.3 ; Z.sup.3 is --OR.sup.b or --Z.sup.4 Q.sup.1 wherein Z.sup.4 is 0; and f is not 0, then e is 1 or 2, and
provided, however, when Z.sup.3 is other than --Q.sup.2, then the catalyst is the fluoride and/or bifluoride ion from the ammonium compound of the formula (R').sub.j NH.sub.(4-j) X wherein R' is hydrocarbyl, X is fluoride and/or bifluoride, and j is an integer of 2 to 4. Preferably, j is 4 and R' is n-butyl.
Preferably, Q.sup.2 is neither substituted nor fused to a carbocyclic ring; R.sup.a is C.sub.1-4 alkyl; R.sup.b is C.sub.1-4 alkyl; R.sup.c is H or C.sub.1-4 alkyl; R.sup.d is methyl; e is 1 to 3, more preferably 1 or 2; and f is 1 to 3. Most preferably, each of R.sup.a, R.sup.b and R.sup.c is methyl; e is 1 or 2 and f is 1; e is 1 to 3, f is 1 to 3 and g is 0; or e is 1 or 2, f is 2 or 3 and g is 0.
By "a hydrocarbyl radical" or "hydrocarbyl" is meant a monovalent radical containing hydrogen and up to 30 carbon atoms and which may also contain, in addition to carbon and hydrogen atoms, one or more ether oxygen atoms within aliphatic segments thereof, and/or one or more functional substituents that are unreactive under polymerizing conditions.
Suitable catalysts for the polymerization reaction are selected from a source of fluoride or bifluoride ions, or mixture thereof, or a source of oxyanions, said oxyanions being capable of forming a conjugate acid having a pKa measured in water of about 3 to about 8. Among sources of fluoride or bifluoride ions, tetraalkylammonium salts are preferred; most preferred are tetra-n-butylammonium salts.
Acrylic ester monomers which are suitable for use in the practice of this invention are hydrocarbyl methacrylates and acrylates wherein hydrocarbyl is defined for R above. Such monomers include, but are not limited to, the following: methyl methacrylate; ethyl acrylate and methacrylate; butyl acrylate and methacrylate; sorbyl methacrylate and acrylate; 2-ethylhexyl methacrylate; 2-(dimethylamino)ethyl methacrylate and acrylate; 2-methoxyethyl methacrylate and acrylate; 3,3-dimethyloxypropyl acrylate; 3-methacryloxypropyl acrylate and methacrylate; 2-acetoxyethyl methacrylate; p-tolyl methacrylate; 2,2,3,3,4,4,4-heptafluorobutyl acrylate; 4-fluorophenyl acrylate; 2-methacryloxyethyl acrylate and linoleate; glycidyl methacrylate; phenyl acrylate; 2-[(1-propenyl)oxy]ethyl acrylate and methacrylate; 2-(trimethylsiloxy)ethyl methacrylate; allyl acrylate and methacrylate; unsaturated esters of polyols such as ethylene glycol dimethylacrylate and diacrylate; glyceryl triacrylate; triethylene glycol dimethacrylate; 1,4-cyclohexanediol diacrylate; 1,3-propanediol diacrylate; 1,1,1-trimethylolpropane triacrylate, 1,4-benzenediol dimethyacrylate; 3,3,4,4,5,5,6,6,6-nonafluorohexyl acrylate. Alkyl methacrylates and acrylates are preferred; methyl methacrylate and ethyl acrylate are most preferred.
The polymerization reaction ingredients should be free of hydroxylic-containing impurities, such as water, alcohols and carboxylic acids. However, some of the catalysts used in this invention may contain small amounts of water, which usually does not interfere to any extent with the polymerization. Solvents and monomers may be purified by any of a number of methods known to those skilled in the art, such as passage over activated alumina or molecular sieves, or by distillation.
By "polymerizing conditions" is meant that the polymerization is carried out at a temperature in the range of about -20.degree. C. to 150.degree. C., preferably from about 20.degree. to about 120.degree. C., with or without a solvent. A solvent such as tetrahydrofuran (THF) wherein all starting ingredients and products are soluble is preferred. The polymer may be isolated by any convenient means, such as by removal of solvent and excess monomer, if any, in a vacuum oven. The polymerization is preferably carried out under an inert atmosphere, such as nitrogen, to prevent ingress of hydroxylic compounds.
The initiator should be present at a concentration of about 0.1 to 5 mole percent of the monomer to be polymerized, preferably about 0.5 to 3 mole percent. The catalyst should be present at a concentration of about 0.2 to 20 mole percent of the initiator, preferably about 0.5 to 5 mole percent of the initiator.
Since it is believed that one molecule of initiator is necessary for each polymer chain (molecule) formed, the minimum amount of initiator needed will depend on the amount of monomer used and the number average molecular weight of the polymer produced. The molecular weight of the polymer produced is dependent on a number of factors, including but not necessarily limited to, the mode in which the reaction is run (batch, semibatch or continuous), the concentration of the various reactants, and the nature of the catalyst, monomer, solvent (if any) and initiator used. In general, during the reaction the molecular weight of the polymer gradually increases until it reaches a plateau ("steady state") at which point even though more polymer is being produced, the molecular weight does not change appreciably. In some of the embodiments of the invention, it has been found that the polymer molecular weight is inversely proportional to the catalyst concentration. The examples which are a part of this specification illustrate these principles.
As noted above, the polymerization can be carried out in a variety of ways, for example, batch (all ingredients present at the start of the polymerization), semibatch (the monomer is added continuously to all the other ingredients during the polymerization), or continuous (all the ingredients are added continuously). Other variations will be obvious to those skilled in the art. Some of the polymerizations carried out hereunder, mainly depending on the initiator used, may exhibit an "induction period", that is, a time period between the time the reactants are mixed and the time the polymerization begins. This period may be a few seconds to a few hours in length. The rate of polymerization also varies with the particular initiator and monomer used, as indicated above. These variations are illustrated in the examples.
The process of this invention provides an efficient and relatively low cost route to known and widely used polymers.





The following examples are intended to demonstrate, but not limit, the invention. Unless otherwise noted all temperatures are in degrees Centigrade. All solvents and monomers were first purified by passage over Woelm neutral activated alumina. All transfers of reagents were by syringe or other similar anhydrous method. Purified materials were stored and the reactions were carried out under nitrogen. All glassware except thermometers was heated at 155.degree. C. overnight before use. Storage vessels and glassware associated with the reaction vessel were also flamed under nitrogen.
Abbreviations, and their definitions, used in the examples are as follows:
BDMS--bis(dimethylamino)methylsilane
GPC--gel permeation chromatography
Mn--number average molecular weight
Mw--weight average molecular weight
MMA--methyl methacrylate
EA--ethyl acrylate
PEA--poly(ethyl acrylate)
PMMA--poly(methyl methacrylae)
TASHF.sub.2 --a 1M solution of tris(dimethylamino)sulfonium bifluoride in acetonitrile
TBA--tetrabutylammonium
TBAHF.sub.2 --a 1M solution of tetrabutylammonium bifluoride in acetonitrile
TBAF--a 1M solution of tetrabutyammonium fluoride trihydrate in THF
THF--tetrahydrofuran
TMS--trimethylsilyl
TMSI--1-trimethylsilylimidazole
With the exceptions noted below all compounds are commercially available. Silicon compounds (except ethyl orthosilicate) were obtained from Petrarch Systems Inc. of Bristol, Pa. The following compounds were synthesized by the exchange reaction of the corresponding imidazole of pyrazole with hexamethyldisilazane:
1-TMSbenzimidazole
1-TMS-2-methylimidazole
1-TMS-4-methylimidazole
1-TMS-2-ethylimidazole
1-TMS-3,5-dimethylpyrazole
1-TMS-2-phenylimidazoline.
In many of the examples two general procedures, described below, were used. Exceptions to these procedures are noted in the individual examples.
PROCEDURE A
Reactions are carried out in a 250 mL, 3-necked round bottomed flask equipped with a rubber septum, thermometer, nitrogen inlet and magnetic stirring bar (Teflon encapsulated). One hundred mL of THF is added to the flask, and then 0.5 mL of initiator and the catalyst are added. Then 35 mL of MMA is added via syringe (and syringe pump) over 28 min. If the polymerization proceeds an exotherm occurs. There may also be an induction period. The reaction is allowed to stir for an additional 0.5-4 h and then 0.5-1.0 mL of methanol is added to stop further polymerization. A small sample is taken for GPC analysis, and the polymer is isolated by pouring the solution into a tray and putting it into a vacuum oven at 60.degree.-70.degree. to remove volatiles.
PROCEDURE B
A 50 mL Erlenmeyer flask is dried and then flamed with nitrogen with a rubber septum on top. The flask is vented to a nitrogen bubbler via a syringe needle. To the flask is added 20 mL of THF, 5 mL of monomer, the initiator and, finally, the catalyst. The resulting polymerization may or may not have an induction period. If the polymerization is very fast the flask contents may boil and the flask may be cooled briefly in cold water. After a total time of 1-5 h, methanol (0.5 mL) is added to stop the polymerization, a sample is taken for GPC analysis, and the solution is poured into a tared jar. The polymer is isolated by putting the jar in a 60.degree.-70.degree. vacuum oven to remove the volatiles.
EXAMPLES 1-6
These examples illustrate the polymerization of MMA by various substituted silylimidazoles and a silylpyrazole. Procedure A is followed for all except for certain MMA addition times which are: for Example 1, 48 min.; for Example 2, 50 min.; for Example 3, 49 min.; and for Example 5, 53 min. (including a 9 min. induction period). At the start of each polymerization 50 .mu.L of TASHF.sub.2 catalyst was present.
Examples 1 and 5 were heated to approximately 50.degree. with a "heat gun" and two 50 .mu.L portions of TASHF.sub.2 were added to each during the reaction.
Other details of these examples are given in Table I.
TABLE I______________________________________ Initiator (mL, YieldExample (except Ex. 1) PMMA, % Mn Mw______________________________________1 1-TMS-benzimidazole 98 28,000 50,000 (2.4 mmole)2 1-TMS-2-methyl- 100 29,100 58,000 imidazole (0.43)3 1-TMS-2-ethyl- 100 32,200 61,000 imidazole (0.47)4 1-TMS-4-methyl- 100 33,600 83,600 imidazole (0.43)5 1-TMS-2-phenyl- 91 25,600 91,000 imidazoline (0.61)6 1-TMS-3,5-dimethyl- 100 31,000 84,000 pyrazole (0.39)______________________________________
EXAMPLE 7
The polymerization was carried out in the apparatus of Procedure A.
To the 250 mL flask was added 100 mL of THF, 0.39 mL of 1-trimethylsilylpyrazole, 50 .mu.L of TASHF.sub.2 and then, over 29 min., 20 mL of MMA, during which time the temperature rose from 23.5.degree. to 44.degree.. About 2.8 h later a sample (A) was withdrawn for GPC analysis. Then 15 mL of MMA was added over 21 min., during which time the temperature rose from 23.5.degree. to 43.degree.. About 2 h later a sample (B) was withdrawn for analysis and the polymer was isolated by removing volatiles in a 60.degree. vacuum oven. The yield of polymer was 100%.
The two samples yielded the following GPC analyses:
______________________________________ A B______________________________________Mn 23,400 26,900Mw 48,500 68,000______________________________________
EXAMPLES 8-12
These examples were carried out according to procedure A except as noted in Table II. The actual addition time of the MMA was 54 min. In addition the pump was stopped after 5 mL of MMA was added, until the polymerization started; this ranged from 1-9 min. Samples were removed for analysis during the polymerization as noted in Table II and subjected to GPC analysis. The results are given in Table II.
These examples illustrate the effect of varying catalyst and initiator concentrations, as well as the leveling off of the polymer molecular weight as the polymerization proceeds.
TABLE II______________________________________ Example 8.sup.a 9.sup.b 10 11 12______________________________________mL TMSI 0.43 0.43 0.43 0.43 0.22.mu.L TASHF.sub.2 1,000 500 250 100 100after 5 mlMMA addedMn 10,700 18,400 18,000 16,600 23,400Mw 22,400 39,800 45,800 36,800 66,000Mw/Mn 2.09 2.16 2.54 2.21 2.82after 10 mLMMA addedMn 5,220 11,800 18,500 29,700 33,900Mw 13,600 27,000 49,000 67,100 78,000Mw/Mn 2.61 2.29 2.64 2.26 2.30after 20 mLMMA addedMn 5,730 12,700 24,000 34,700 39,300Mw 13,200 24,500 59,000 79,000 85,900Mw/Mn 2.30 1.92 2.08 2.30 2.18after 30 mLMMA addedMn 5,220 13,700 25,300 35,800 38,500Mw 45,900 26,500 50,600 81,500 85,700Mw/Mn 8.79 1.93 2.00 2.28 2.23End of reactionMn 4,950 13,800 24,900 36,900 39,100Mw 45,300 27,000 51,600 81,900 87,800Mw/Mn 9.15 1.96 2.07 2.22 2.25Yield, % 44 93 100 100 100______________________________________ .sup.a Reaction seemed to stop and turn yellow after about 17 mL of MMA added .sup.b Reaction seemed to stop very close to the end of the MMA addition
EXAMPLE 13
Using Procedure A, an MMA polymerization was carried out using 0.5 mL of 1-(t-butyldimethylsilyl)imidazole as initiator and 50 .mu.L of TASHF.sub.2 as catalyst. The 35 mL of MMA was added over 49 min., during which time the temperature rose from 23.degree. to 45.5.degree.. The yield of polymer was 100%. By GPC analysis, Mn is 41,500 and Mw is 92,700.
EXAMPLE 14
Using Procedure A, 0.5 mL of 1-(t-butyldimethylsilyl)imidazole was used as the initiator and 50 .mu.L of TASHF.sub.2 was used as the catalyst to polymerize 27 mL of EA. The EA was added over 38 min., during which time the temperature rose from 22.5.degree. to 32.5.degree.. Judging by the temperature, additional polymerization took place well after the addition was complete. The yield of PEA was 54%. GPC analysis indicated the Mn is 3,950, Mw is 10,200.
EXAMPLE 15
Using Procedure B, 0.1 mL of 1-TMSpyrazole was used as the initiator and 15 .mu.L of TBAF was used as the catalyst to polymerize 5 mL of EA. The reaction was immediate and very exothermic. The yield of PEA was 71%. GPC analysis indicated the Mn is 5,690 and Mw is 11,300.
EXAMPLES 16-20
Using Procedure A, various TBA salts of oxyanions were used to polymerize MMA. The details are shown in Table III. TMSI (0.50 mL) was used as the initiator in each example, and the yield of PMMA in each was 100%.
TABLE III______________________________________ Catalyst.sup.a,MExample (.mu.L) Mn Mw______________________________________16 TBA benzoate 1.0(50.sup.b) 21,600 69,800.sup. 17.sup.c TBA p-cyanobenzoate 52,700 101,000 0.5(200).sup. 18.sup.c TBA m-chlorobenzoate 50,200 93,000 0.5(100.sup.b)19 TBA biacetate 0.5(200) 36,400 85,00020 TBA m-nitrophenolate nm nm 0.5(200)______________________________________ .sup.a All catalysts dissolved in acetonitrile .sup.b An additional 50 .mu.L portion added during polymerization .sup.c Slow reaction; allowed to react overnight nm--not measured
EXAMPLE 21
Using Procedure A, 26.5 mL of MMA was polymerized using 70 mL of TMSI as initiator and 50 .mu.L of TASHF.sub.2 as catalyst, in 100 mL of toluene as the solvent. The MMA was added over 37 min., during which time the temperature rose from 25.degree. to 51.degree.. The yield of PMMA was 90%, and GPC analysis indicated Mn 53,500 and Mw 120,000.
EXAMPLES 22-25
These examples illustrate the effect of varying the catalyst and initiator on molecular weight using BDMS as the initiator. All were carried out via Procedure A and all yields were about 100%.
TABLE IV______________________________________ Example 22 23 24 25______________________________________.mu.L TBAF 100 500 100 100.mu.L BDMS 500 500 1,000 200After 15 mL MMA addedMn 44,600 13,500 nm 59,000Mw 100,000 38,900 nm 118,000After 25 mL MMA addedMn 61,100 19,100 nm 60,800Mw 133,000 54,400 nm 139,000After 35 mL MMA added(end)Mn 67,200 22,100 66,000 78,200Mw 133,000 59,200 123,000 150,000______________________________________ nm--not measured
EXAMPLES 26-32
These examples, the details of which are in Table V, illustrate some of the silylamine initiators which can be used. In these examples, carried out via Procedure B, ethyl acrylate was the monomer, 15 .mu.L of TBAF was the catalyst and 0.10 mL of each initiator, as shown in Table V, was used.
TABLE V______________________________________ Induc-Ex- tion Yieldam- Time, PEA,ple Initiator min. % Mn Mw______________________________________26 BDMS 0 91 17,300 43,10027 dimethylaminotrimethyl- 16 76 21,500 66,400 silane28 bis(n-butylamino)- 1 67 19,400 56,400 dimethylsilane29 diethylaminodimethyl- 0 74 18,600 46,100 silane30 N--TMSaniline 0 63 12,000 31,00031 1-TMSpyrrolidine 6 59 18,300 55,00032 1,1,3,3-tetramethyldi- 0 69 15,200 39,100 silazane______________________________________
EXAMPLE 33
Using Procedure B, MMA was polymerized using 0.1 mL of BDMS as initiator and 15 .mu.L of TBAHF.sub.2 as catalyst. After an induction period of about 7 min. the reaction proceeded slowly, yielding 72% PMMA having an Mn of 68,500 and an Mw of 308,000.
EXAMPLE 34
Using Procedure B, 0.1 mL of diethylaminodimethylsilane was used as the initiator and 15 .mu.L of TBAF was used as the catalyst to polymerize MMA. Reaction was immediate. The resulting PMMA had an Mn of 60,900 and an Mw of 262,000.
EXAMPLES 35-42
These examples illustrate the polymerization of MMA (Examples 35-37) or EA (Examples 38-42) with various alkoxysilanes. Procedure B was used, with 0.10 mL of the initiator and 15 .mu.L of TBAF as the catalyst. Details are given in Table VI.
TABLE VI______________________________________ Induction PolymerExample Initiator Time, min. Yield, % Mn Mw______________________________________35 dimethyl- 0 100 22,000 143,000 ethoxysilane36 trimethyl- >7 >91 27,700 98,100 methoxysilane37 1,1,2,2,-tetra- 0 100 11,000 74,300 methyldi- siloxane.sup. 38.sup.a dimethyldi- >5 78 nm nm ethoxysilane39 methyltri- 4 74 nm nm methoxysilane40 1,1,2,2-tetra- 0 80 nm nm methyldi- siloxane.sup. 41.sup.a tetramethoxy- >4 82 nm nm silane42 trimethyl- 0 57 nm nm methoxysilane______________________________________ .sup.a Allowed to react overnight
EXAMPLE 43
Using Procedure B, 5 mL of MMA was polymerized using 0.1 mL of methyldiethoxysilane as the initiator and 15 .mu.L of 1.0M TBAHF.sub.2 in acetonitrile as the catalyst. The reaction started immediately and was very fast. A yield of 100% of PMMA was obtained, with an Mn of 51,800 and an Mw of 167,000.
EXAMPLES 44-47
These examples illustrate the effect of catalyst level on the polymerization using methyldimethoxy-silane as initiator. The reactions were carried out using Procedure A. In all the reactions 1.0 mL of initiator was used. Yields of PMMA were all 100% except Example 44 which was 91%. Samples were removed during and after the MMA addition and the results are shown in Table VII.
TABLE VII______________________________________ Example 44 45 46 47______________________________________.mu.L TBAHF.sub.2 used 25 50 100 250After 15 mL MMA addedMn 12,000 13,700 11,400 9,390Mw 23,900 27,200 24,400 18,400After 25 mL MMA addedMn 14,300 14,300 13,900 11,800Mw 32,800 29,100 28,100 24,600After 35 mL MMA addedMn 18,400 15,600 15,300 13,300Mw 57,500 33,300 33,300 31,500______________________________________
EXAMPLE 48
Using Procedure A, 35 mL of MMA was polymerized using 0.50 mL of triethylsilane as the initiator and 100 .mu.L of TBAF as the catalyst. The MMA addition was stopped for 10 min. after 15 mL of MMA had been added, until the reaction started (induction period). Samples were removed during the addition and analyzed (below). The yield of PMMA was 100%.
______________________________________mL of MMA added 15 25 35Mn 32,300 23,100 25,400Mw 133,000 97,400 88,000______________________________________
EXAMPLES 49-51
These examples illustrate the use of various silanes as initiators. In each reaction, carried out via Procedure B, 0.1 mL of the initiator and 15 .mu.L of the indicated catalyst (TBAF in Examples 49, 51; TBAHF.sub.2 in Example 50) were used. MMA was the monomer in Examples 49, 50; EA, in Example 51. Details are given in Table VIII.
TABLE VIII______________________________________ PolymerExample Initiator Yield, % Mn Mw______________________________________49 methylphenylsilane 97 27,800 115,00050 n-octadecylsilane 93 42,200 181,00051 methylphenylsilane 82 10,500 23,000______________________________________
EXAMPLE 52
Using Procedure B, 0.10 mL of hexamethyldisilane as initiator and 15 .mu.L of TBAF as catalyst, 5 mL of MMA was polymerized. The reaction had at least a 7 min. induction time and proceeded slowly over about one hour. The yield of PMMA was 92%, having an Mn of 30,300 and an Mw of 194,000.
EXAMPLE 53
Using Procedure B, 0.1 mL of hexamethyldisilane was used as the initiator and 15 .mu.L of TBAF was used as the catalyst to polymerize 5 mL of EA. The reaction was allowed to stand overnight, after which the PEA was isolated. The yield of PEA was 29%, with an Mn of 6,020 and an Mw of 14,700.
Claims
  • 1. Polymerization process comprising contacting under polymerizing conditions:
  • (a) at least one acrylic ester monomer of the formula CH.sub.2 .dbd.C(Y)C(O)OR wherein Y is --H or --CH.sub.3 and R is a hydrocarbyl radical;
  • (b) a polymerization initiator comprising a tetracoordiate silicon-containing organic compound having at least one initiating site; and
  • (c) a catalyst which is a source of fluoride, bifluoride or selected oxyanions,
  • the process characterized in that the initiator is of the formula
  • (R.sup.a).sub.e (H).sub.f Si(Z.sup.3).sub.g
  • wherein:
  • Z.sup.3 is --OR.sup.b, --NR.sup.b R.sup.c, --Z.sup.4 Q.sup.1, --Si(R.sup.d).sub.3 or --Q.sup.2 ;
  • each R.sup.a, independently, is hydrocarbyl;
  • R.sup.b is hydrocarbyl or --Si(R.sup.d).sub.h (H).sub.3-h ;
  • R.sup.c is H, alkyl, alkenyl, alkynyl or aralkyl;
  • R.sup.d is H or C.sub.1-4 alkyl;
  • Q.sup.1 is a saturated 5- or 6-membered ring;
  • Z.sup.4 is O or NR.sup.d ;
  • Q.sup.2 is 1H-imidazolyl, 4,5-dihydro-1H-imidazolyl (formerly imidazolinyl), 1H-pyrazolyl, or any of said groups substituted with hydrocarbyl and/or fused to a carbocyclic ring;
  • each of e and f, independently, is 0 or an integer of 1 to 3;
  • g is 0 or an integer of 1 to 4;
  • (e+f+g) is 4; and
  • h is 1 or 2,
  • provided, however, when Z.sup.3 is:
  • (a)--Z.sup.4 Q.sup.1 and Z.sup.4 is NR.sup.d, then g is 1;
  • (b)--NR.sup.b R.sup.c wherein R.sup.c is H, then g is 1 or 2;
  • (c)--NR.sup.b R.sup.c wherein R.sup.c is other than H, then g is 1 and R.sup.b is hydrocarbyl which is n-alkyl, n-alkenyl or n-alkynyl;
  • (d)--NR.sup.b R.sup.c wherein R.sup.b is hydrocarbyl which is aryl, then R.sup.c is H and g is 1 or 2;
  • (e)--NR.sup.b R.sup.c and Y in the monomer is --CH.sub.3, then R.sup.b is non-aromatic hydrocarbyl; or
  • (f)--OR.sup.b wherein R.sup.b is hydrocarbyl, then --OR.sup.b is not attached to an aromatic ring, and
  • provided, however, when Y in the monomer is:
  • (a)--CH.sub.3, then Z.sup.4 is O;
  • (b)--CH.sub.3, Z.sup.3 is --OR.sup.b or --Z.sup.4 Q.sup.1 wherein Z.sup.4 is O; and f is 0, then e is 3; or
  • (c)--CH.sub.3 ; Z.sup.3 is --OR.sup.b or --Z.sup.4 Q.sup.1 wherein Z.sup.4 is O; and f is not 0, then e is 1 or 2, and
  • provided, however, when Z.sup.3 is other than --Q.sup.2, then the catalyst is the fluoride or bifluoride ion from the ammonium compound of the formula (R').sub.j NH.sub.(4-j) X wherein R' is hydrocarbyl, X is fluoride and/or bifluoride, and j is an integer of 2 to 4.
  • 2. Process of claim 1 wherein each of R.sup.a and R.sup.b, independently, is C.sub.1-4 alkyl.
  • 3. Process of claim 2 wherein each of R.sup.a and R.sup.b is methyl.
  • 4. Process of claim 1 wherein each of R.sup.c and R.sup.d, independently, is H or C.sub.1-4 alkyl.
  • 5. Process of claim 3 wherein each of R.sup.c and R.sup.d is H or methyl.
  • 6. Process of claim 4 wherein each of R.sup.c and R.sup.d is H or methyl.
  • 7. Process of claim 1 wherein each of e and f, independently, is 1 to 3.
  • 8. Process of claim 7 wherein each of e and f is 1 or 2.
  • 9. Process of claim 8 wherein e is 2, f is 1 and R.sup.a is methyl.
  • 10. Process of claim 8 wherein e is 1, f is 1 and R.sup.a is methyl.
  • 11. Process of claim 7 wherein e is 1 or 2 and f is 2 or 3.
  • 12. Process of claim 1 wherein Z.sup.3 is --Q.sup.2.
  • 13. Process of claim 12 wherein Q.sup.2 is unsubstituted or substituted with at least one alkyl or phenyl group.
  • 14. Process of claim 13 wherein e is 3, g is 1 and R.sup.a is methyl.
  • 15. Process of claim 1 wherein Z.sup.3 is --NR.sup.b R.sup.c and each of R.sup.b and R.sup.c, independently, is C.sub.1-4 alkyl.
  • 16. Process of claim 2 wherein Z.sup.3 is --OR.sup.b and g is at least 1.
  • 17. Process of claim 1 wherein R in the monomer is C.sub.1-4 alkyl.
  • 18. Process of claim 1 wherein the initiator concentration is 0.5 to 3 mol% of the monomer concentration.
  • 19. Process of claim 1 wherein the catalyst concentration is 0.5 to 5% of the initiator concentration.
  • 20. Process of claim 19 wherein the catalyst is a source of fluoride or bifluoride ions.
  • 21. Process of claim 1 wherein Z.sup.3 is other than --Q.sup.2 and the catalyst is a tetraalkylammonium fluoride and/or bifluoride.
  • 22. Process of claim 21 wherein alkyl is n-butyl.
  • 23. Process of claim 1 wherein a solvent is employed.
  • 24. Process of claim 1 wherein the temperature is in the range of about 20.degree. to about 120.degree. C.
  • 25. Process of claim 1 wherein R and Y are methyl.
  • 26. Process of claim 1 wherein R is ethyl and Y is H.
  • 27. Process of claim 9 wherein Z.sup.3 is --OR.sup.b or --NR.sup.b R.sup.c and R.sup.b and R.sup.c are methyl.
  • 28. Process of claim 10 wherein Z.sup.3 is --OR.sup.b or --NR.sup.b R.sup.c and R.sup.b and R.sup.c are methyl.
  • 29. Process of claim 1 wherein e is 1 or 2, f is 2 or 3 and g is 0.
  • 30. Process of claim 18 wherein the catalyst concentration is 0.5 to 5% of the initiator concentration.
  • 31. Process of claim 1 wherein Z.sup.3 is --Q.sup.2 and the catalyst is a tetraalkylammonium salt of a selected oxyanion.
US Referenced Citations (12)
Number Name Date Kind
4006247 Panzer et al. Feb 1977
4414372 Farnham et al. Nov 1983
4417034 Webster Nov 1983
4508880 Webster Apr 1985
4524196 Farnham et al. Jun 1986
4581428 Farnham et al. Apr 1986
4588795 Dicker et al. May 1986
4598161 Farnham et al. Jul 1986
4605716 Hertler Aug 1986
4622372 Dicker et al. Nov 1986
4656233 Hertler et al. Apr 1987
4711942 Webster Dec 1987
Foreign Referenced Citations (2)
Number Date Country
60-23405 Feb 1985 JPX
60-76504 May 1985 JPX
Non-Patent Literature Citations (1)
Entry
J. Amer. Chem. Soc., 105, 5706 (1983), Webster et al.