Claims
- 1. A method for preparing polymers of ethylene and copolymers of ethylene and alpha olefins or diolefins, said method comprising effecting the polymerization in the presence of a supported catalyst comprising the supported reaction product of at least one metallocene of a metal of Group 4b of the Periodic Table and an alumoxane, the aluminum to transition metal molar ratio being in the range of 100:1 to 1:1, said product being formed in the presence of the support, said support being a porous inorganic metal oxide of Group 2a, 3a, 4a, or 4b metal, and wherein the metallocene is employed in the amount of about 0.001 to about 10 millimoles per gram of support.
- 2. The method of claim 1 wherein the support is silica.
- 3. The method of claim 1 wherein the metallocene is selected from titanium and zirconium metallocenes and mixtures thereof.
- 4. The method of claim 1 wherein the alumoxane is methyl alumoxane.
- 5. The method of claim 1 wherein the molar ratio is in the range of 50:1 to 5:1.
- 6. The method of claim 1 wherein the metallocene is represented by the formulas
- (I) (Cp).sub.m MR.sub.n X.sub.q,
- (II) (C.sub.5 R'.sub.k).sub.g R".sub.s (C.sub.5 R'.sub.k)MQ.sub.3-g and
- (III) R".sub.s (C.sub.5 R'.sub.k).sub.2 MQ'
- wherein Cp is a cyclopentadienyl ring, M is a group 4b transition metal, R is a hydrocarbyl group or hydrocarboxy having from 1 to 20 carbon atoms, X is a halogen, m=1-3, n=0-3, q=0-3 and the sum of m+n+q is equal to the oxidation state of M, (C.sub.5 R'.sub.k) is a cyclopentadienyl or a substituted cyclopentadienyl; each R' is the same or different and is hydrogen or a hydrocarbyl radical selected from alkyl, alkenyl aryl, alkylaryl or arylalky radicals containing from 1 to 20 carbon atoms, or two carbon atoms are joined together to form a C.sub.4 -C.sub.6 ring, R" is a C.sub.1 -C.sub.4 alkylene radical, a dialkyl germanium or silicon or an alkyl phosphine or amine radical bridging two (C.sub.5 R'.sub.k) rings; Q is a hydrocarbyl radical selected from aryl, alkyl, alkenyl, alkylaryl, or arylalkyl radicals having from 1-20 carbon atoms, hydrocarboxy radical having from 1-20 carbon atoms or halogen and can be the same or different from each other; Q' is an alkylidiene radical having from 1 to about 20 carbon atoms; s is 0 or 1; g is 0, 1, or 2; s is 0 when g is 0; k is 4 when s is 1 and k is 5 when s is 0.
- 7. The method of claim 6 wherein the metallocene is selected from bis(cyclopentadienyl) zirconium dichloride, bis(cyclopentadienyl) zirconium methyl chloride, bis(cyclopentadienyl) zirconium dimethyl, bis(methylcyclopentadienyl) zirconium dichloride, bis(methylcyclopentadienyl) zirconium dimethyl, bis(pentamethylcyclopentadienyl) zirconium dichloride, bis(pentamethylcyclopentadienyl) zirconium dichloride, bis(pentamethylcyclopentadienyl)zirconium methyl chloride, bis(pentamethylcyclopentadienyl) zirconium dimethyl, bis(n-butyl-cyclopentadienyl)zirconium dichloride, bis(n-butylcyclopentadienyl) zirconium methyl chloride, bis(n-butyl-cyclopentadienyl) zirconium dimethyl, bis(cyclopentadienyl) titanium diphenyl, bis(cyclopentadienyl) titanium dichloride, bis(cyclopentadienyl) titanium methyl chloride, bis(cyclopentadienyl) titanium dimethyl, bis(methylcyclopentadienyl) titanium diphenyl, bis(methylcyclopentadienyl) titanium dichloride, bis(methylcyclopentadienyl)titanium diphenyl, bis(methylcyclopentadienyl)titanium methyl chloride, bis(methylcyclo-pentadienyl) titanium dimethyl, bis(pentamethylcyclopentadienyl) titanium dichloride, bis(pentamethylcyclopentadienyl) titanium diphenyl, bis(pentamethylcyclopentadienyl) titanium methyl chloride, bis (pentamethylcyclopentadienyl) titanium dimethyl, bis (n-butyl-cyclopentadienyl) titanium diphenyl, bis(n-butyl-cyclopentadienyl) titanium dichloride and mixtures thereof.
- 8. A method for preparing polymers of ethylene and copolymers of ethylene and alpha-olefins as diolefins, said method comprising effecting the polymerization in the presence of a supported catalyst comprising the supported reaction product of at least one metallocene of a metal of Group 4b of the Periodic Table and an alumoxane, the aluminum to transition metal molar ratio being in the range of 100:1 to 1:1, said catalyst being prepared by a method comprising adding to a slurry of the support which is a porous inorganic metal oxide of a Group 2a, 3a, 4a, or 4b metal, in an inert hydrocarbon solvent, an alumoxane in an inert hydrocarbon solvent and a metallocene in an amount of from about 0.00I to about 10 millimoles of said metallocene per gram of support.
- 9. The method in accordance with claim 8 wherein the alumoxane is added to the support material prior to the metallocene.
- 10. The method in accordance with claim 8 wherein the metallocene is added to the support prior to the alumoxane.
- 11. The method in accordance with claim 8 wherein the metallocene and alumoxane are added to the support slurry simultaneously.
- 12. The method in accordance with claim 8 wherein the metallocene is selected from bis(cyclopentadienyl) zirconium dichloride, bis(cyclopentadienyl) zirconium methyl chloride, bis(cyclopentadienyl) zirconium dimethyl, bis(methylcyclopentadienyl) zirconium dichloride, bis(methylcyclopentadienyl) zirconium methyl chloride, bis (methylcyclopentadienyl) zirconium dimethyl, bis(pentamethylcyclopentadienyl) zirconium dichloride, bis(pentamethylcyclopentadienyl) zirconium methyl chloride, bis(pentamethylcyclopentadienyl) zirconium dimethyl, bis (n-butylcyclopentadienyl) zirconium dichloride, bis(n-butylcyclopentadienyl) zirconium methyl chloride, bis(n-butyl-cyclopentadienyl) zirconium dimethyl, bis(n-butylcyclopentadienyl) titanium diphenyl, bis(cyclopentadienyl) titanium dichloride, bis(cyclopentadienyl) titanium methyl chloride, bis(cyclopentadienyl) titanium dimethyl, bis(methylcyclopentadienyl) titanium diphenyl, bis(methylcyclopentadienyl) titanium dichloride, bis(methylcyclopentadienyl) titanium diphenyl, bis(methylcyclopentadienyl) titanium methyl chloride, bis(methylcyclopentadienyl) titanium dimethyl, bis(pentamethylcyclopentadienyl) titanium dichloride, bis(pentamethylcyclopentadienyl) titanium diphenyl, bis(pentamethylcyclopentadienyl) titanium methyl chloride, bis(pentamethylcyclopentadienyl) titanium dimethyl, bis(n-butyl-cyclopenta-dienyl) titanium diphenyl, bis(n-butyl-cyclopentadienyl) titanium dichloride, the alumoxane is methyl alumoxane and the support is silica.
- 13. The method is accordance with claim 8 wherein the metallocene is one of bis(cyclopentadienyl) zirconium dichloride, bis(n-butyl-cyclopentadienyl) zirconium dichloride and mixtures thereof.
- 14. The method in accordance with claim 8 wherein the metallocene is bis(n-butyl-cyclopentadienyl) zirconium dichloride.
Parent Case Info
This application is a division of application Ser. No. 170,485, filed Mar. 18, 1988 and now U.S. Pat. No. 4,808,561, which in turn is a continuation of application Ser. No. 747,615 filed Jun. 21, 1985 and now abandoned.
US Referenced Citations (8)
Foreign Referenced Citations (2)
Number |
Date |
Country |
2608863 |
Sep 1973 |
DEX |
1108610 |
May 1986 |
JPX |
Non-Patent Literature Citations (4)
Entry |
Kaminsky, Preparation of Special Polyolefins from Soluble Zirconium Compounds with Alumoxane as Catalyst, pp. 293-304, Elsevier (1986). |
Kaminsky, Polymerization and Copolymerization with a Highly Active, Soluble Ziegler-Natta Catalyst, pp. 225-244, 8/17/81, Midland Micromolecular Inst. |
Sinn et al, Living Polymers on Polymerization with Exremely Productive Ziegler Catalysts, Agnew, Chem. Int. Ed., Engl. (1980), No. 5, p. 392. |
Giannetti, Homogeneous Ziegler-Natta Catalysis II Ethylene Polymerization by II B Transition Metal Complexes/Alumoxane, (1985), pp. 2117-2133. |
Divisions (1)
|
Number |
Date |
Country |
Parent |
170485 |
Mar 1988 |
|
Continuations (1)
|
Number |
Date |
Country |
Parent |
747615 |
Jun 1985 |
|