Polymers

Information

  • Patent Grant
  • 12187387
  • Patent Number
    12,187,387
  • Date Filed
    Wednesday, August 2, 2023
    a year ago
  • Date Issued
    Tuesday, January 7, 2025
    2 days ago
Abstract
Described herein are polymers and associated methods to occlude structures and malformations of the vasculature with polymers with delayed controlled rates of expansion. Methods of forming such devices are also disclosed.
Description
FIELD

The present invention relates generally to expansile polymers and medical treatment methods using the polymers.


SUMMARY

Described herein generally are expansile polymers such as hydrogels. The polymers can be formed as filaments. Methods of forming these polymers are also described. Further, medical treatment methods using the polymers are described. In some embodiments, when formed as a filament, the filaments described herein possess enough structural strength to not require support members. In other embodiments, the hydrogel filaments require support members. The filaments can also be opacified in order to visualize the filaments using medically relevant imaging techniques.


In one embodiment described herein are expansile devices for implantation in an animal, such as a mammal, such as a human. The expansile devices can comprise an expansile polymer including a reaction product of a polymerization solution including a macromer, a monomer, a first crosslinker, and a second crosslinker. In some embodiments, the second crosslinker is cleavable. In some embodiments, the second cleavable crosslinker imparts a secondary expansion to the expansile polymer.


The expansile devices can include at least one visualization element, which can be metallic powders, gadolinium, superparamagnetic iron oxide particles, barium sulfate, or a combination thereof. In one embodiment, the at least one visualization element is barium sulfate.


The monomer used in the herein described polymers can be pH sensitive and provide a first expansion to the expansile polymer. In other embodiments, the monomer may not be pH sensitive. In other embodiments, a monomer may not be used. In some embodiments, a macromer may be pH sensitive and/or provide expansion characteristics to the polymer. In some embodiments, the macromers and the monomers may have expansion characteristics.


In some embodiments, the first crosslinker can be N,N′-methylenebisacrylamide.


The second cleavable crosslinker can be an acrylate based crosslinker such as a methacrylate based crosslinker. In some embodiments, the second cleavable crosslinker can be an acrylic anhydride based crosslinker. The acrylic anhydride can be a methacrylate based anhydride crosslinker and can have a structure




embedded image



wherein n is 0, 1, 2, 3, 4, or 5. Further, the acrylic anhydride based crosslinker can be synthesized by reaction of a di-acid with methacrylic anhydride.


Methods of forming expansile polymers are also described. Methods can comprise polymerizing a polymer from a polymerization solution comprising a macromer, a monomer, a first crosslinker, and a second cleavable crosslinker. The methods can further include a step of treating said polymer in a non-physiological pH for a predetermined amount of time thereby creating an environmentally responsive hydrogel.


In some embodiments, the non-physiological pH that the polymers are treated in can be basic. In other embodiments, the non-physiological pH can be acidic.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts Scheme 2 showing a cleavable second type of crosslinker included in the hydrogel structure or matrix.





DETAILED DESCRIPTION

Described herein generally are expansile polymers such as hydrogels. The polymers can be formed into virtually any shape or form. In one embodiment, the polymers can be formed as filaments or other elongated structures. The polymers can have tuned rates of expansion and can incorporate a secondary expansion mechanism by including a crosslinker that can cleave upon a particular physiological event and allow expansion to what the polymer would normally expand to without the cleavable crosslinker. In other words, cleavable crosslinks can prevent full expansion or retard expansion until a cleavable event occurs and the polymer can fully expand.


Methods of forming the polymers are also described herein, including methods of making the polymers environmentally responsive and expandable at a predetermined rate for a predetermined amount of time. This expansion rate can be tailored using at least the secondary expansion mechanism by incorporation of a second cleavable crosslinker. Polymer expansion can be further tailored by including different types of cleavable crosslinkers such as a third, fourth, fifth or subsequent cleavable crosslinkers. In other embodiments, expansion can be tailored by using a different density or concentration of cleavable crosslinkers.


The expansile polymers and associated methods are for occluding structures and malformations resulting from one or more cerebral and/or peripheral vascular diseases. The polymers can have delayed and/or controlled rates of expansion. These controlled rates of expansion give surgeons a sufficient amount of time to deliver the polymer through a microcatheter or catheter filled with blood or saline at physiological pH without the need to rush as a result of immediate expansion. For use with a catheter, a polymer filament may be desired. Further, the polymers can include one or more visualization agents, for example, radiopaque elements or fillers to allow visualization during implantation.


Generally, the polymers, e.g., hydrogel filaments, can be deployed within the vasculature using standard practices and microcatheters/catheters to occlude blood flow.


As used herein, the term “environmentally responsive” refers to a material (e.g., a hydrogel or polymer described herein) that is sensitive to changes in environment including but not limited to pH, temperature, and pressure. Many of the expansile materials described herein are environmentally responsive at physiological conditions.


As used herein, the term “non-resorbable” refers to a material (e.g., a hydrogel) that cannot be readily and/or substantially degraded and/or absorbed by bodily tissues.


As used herein, the term “unexpanded” refers to the state at which a hydrogel is substantially not hydrated and, therefore, not expanded. In some embodiments described herein, a hydrogel filament is generally unexpanded prior to implantation into a patient.


As used herein, the term “ethylenically unsaturated” refers to a chemical entity (e.g., a macromer, monomer or polymer) containing at least one carbon-carbon double bond.


In some embodiments, when formed as a filament or other elongated structure, the filaments described herein may not have support members, such as no metal or metallic support members, to aid in supporting the filaments before, during and after implantation. When formed as a filament or other elongated structure, the filaments can possess enough structural column strength to not require support members.


The polymers described when provided as filaments or other elongated structures can have round, square, rectangular, triangular, pentagonal, hexagonal, heptagonal, octagonal, ellipsoidal, rhomboidal, torx, or star-shaped cross-sectional shapes. A filament can be described as having a three dimensional shape such as, but not limited to a thread, string, hair, cylinder, fiber, or the like. The filament can be elongated meaning that its length exceeds its width or diameter by at least 5, 10, 15, 20, 50, 100, 500, 1,000 or more times.


The filaments can be delivered through a catheter or microcatheter using a liquid flush (e.g. saline). The filaments have sufficient column strength to alleviate the need for a metal support member, yet soft and flexible enough to navigate through vasculature. However, in some embodiments, the filaments described herein do not have sufficient column strength to be advanced out of a catheter device by pushing with a metal wire. Here, as described above, a liquid flush, in some cases a pressurized liquid flush, can be used to advance the filaments through and out of a catheter or microcatheter.


The polymers described herein can be formed from polymerization solutions or prepolymer solutions comprising such components as one or more solvent(s), one or more macromer(s), one or more monomer(s), one or more cross-linker(s), one or more visualization agent(s), and one or more initiator(s). Some components are optional. In one embodiment, the hydrogel filaments can include a polymer which can be a reaction product of (i) one or more macromers, (ii) one or more monomers, and/or (iii) two or more different crosslinkers, wherein one of the crosslinkers is a cleavable crosslinker. The polymers can also optionally include one or more pharmaceutical agents. The polymers can also include one or more visualization agents.


A particular combination of monomers/macromers/crosslinkers can provide differing polymeric physical properties. Different polymeric physical properties can include, but are not limited to tensile strength, elasticity, and/or delivery through a microcatheter or catheter.


The solvent's function in the polymerization solution is complete dissolution of all macromers, monomers, cross-linkers, initiators, and/or soluble visualization agents needed to form a particular filament. In other embodiments, the solvent can dissolve substantially all of the macromers, monomers, cross-linkers, initiators, and/or soluble visualization agents needed to form a particular filament. In some embodiments, the visualization agent or agents do not dissolve in the solvent.


If a liquid monomer (e.g. 2-hydroxyethyl methacrylate) is used, a solvent may not be necessary. The solvent, if necessary, is selected based on the solubility of the components of the polymerization solution. Solvents can include isopropanol, ethanol, water, dichloromethane, and acetone. However, any number of solvents can be utilized and a skilled artisan can match a solvent to a particular polymer system.


Solvent concentrations can range from about 20% w/w to about 80% w/w of the polymerization solution. In other embodiments, the solvent ranges from about 40% w/w to about 60% w/w or about 30% w/w to about 50% w/w. In one embodiment, the solvent makes up about 40% w/w of the polymerization solution.


Macromers described herein can include large molecular weight compounds such as polymers having one or more reactive groups. In some embodiments, macromers with solubility in solvents and functional groups amenable to modifications may be used. Polyethers, due to their solubility in a variety of solvents, their availability in a variety of forms, and their available hydroxyl groups, may be used as macromers. Other macromers can include, but are not limited to, poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene oxide).


In other embodiments, a low molecular weight macromer can be used and/or in other embodiments, a branched macromer may be used. A low molecular weight, branched macromer can include at least three reactive moieties per molecule so that a high crosslink density of the finalized polymer can be achieved. Example low molecular weight, branched macromers can include ethoxylated pentaerythritol having four end groups per molecule, and ethoxylated trimethylolpropane having three end groups per molecule.


In still other embodiments, non-polyether polymers with functional groups available for modification, such as polyvinyl alcohol), can also be used as macromers.


Macromers can be present at a concentration of about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, about 30% w/w, about 35% w/w, about 40% w/w, about 45% w/w, about 50% w/w, at least about 10% w/w, between about 10% w/w and about 40% w/w, between about 15% w/w and about 25% w/w, between about 15% w/w and about 50% w/w, or between about 15% w/w and about 30% w/w, of the polymerization solution. In one embodiment, the macromer concentration is about 15% w/w of the polymerization solution.


The molecular weight of the macromer can alter the mechanical properties of the resulting polymer or hydrogel filament. In some embodiments, the alteration of the mechanical properties can be substantial. Smaller molecular weights result in polymers with sufficient column strength to be pushed through microcatheters and catheters when formed as a filament or other elongated structures. Larger molecular weights can result in polymer filaments that can be pushed through microcatheters and catheters with more difficulty. As such, the macromers described herein can have a molecular weight of about 50 g/mole, about 100 g/mole, about 200 g/mole, about 300 g/mole, about 400 g/mole, about 500 g/mole, about 1,000 g/mole, about 1,500 g/mole, about 2,000 g/mole, about 2,500 g/mole, about 3,000 g/mole, about 3,500 g/mole, about 4,000 g/mole, about 4,500 g/mole, about 5,000 g/mole, at least about 50 g/mole, at least about 100 g/mole, between about 50 g/mole and about 5,000 g/mole, between about 100 g/mole and about 5,000 g/mole, between about 1,000 g/mole and about 5,000 g/mole, between about 100 g/mole and about 1,000 g/mole, or between about 500 g/mole and about 1,000 g/mole. In one embodiment, the molecular weight is between about 500 g/mole to about 1,500 g/mole.


The polymerization solutions can include at least one macromer. The macromer can be of low molecular weight, shapeable, multifunctional (e.g. difunctional), ethylenically unsaturated or a combination thereof. At least one of the macromer's roles is to impart the desired mechanical properties and/or structural framework to the herein described polymers. In general, any polymer can function as a macromer. However, polymers with solubility in solvents and functional groups amenable to modifications can also be used. Polyethers, due to their solubility in a variety of solvents, their availability in a variety of forms, and their available hydroxyl groups, can be used. Poly(ethylene glycol), poly(propylene glycol), ethoxylated trimethylol propane, and poly(tetramethylene oxide) can all be suitable for use herein. In another embodiment, a macromer can be poly(ethylene glycol). Poly(ethylene glycol) is preferred because of its solubility in aqueous solutions. Likewise, cross-linked networks of poly(ethylene glycol) swell in aqueous solutions. Non-polyether polymers with functional groups available for modification, such as poly(vinyl alcohol), can also be utilized as macromers. Macromer concentrations can range from about 5% w/w to about 50% w/w, about 10% w/w to about 40% w/w, about 15% w/w to about 30% w/w, or about 16% w/w to about 29% w/w of the polymerization solution. In one embodiment, the macromer concentration is about 19% w/w, about 25% w/w or about 29% w/w of the polymerization solution.


In some embodiments, the macromer is shapeable. Shapeability describes the macromer's relative rigidity and its ability to hold a particular shape. For example, a shapeable macromer according to the present description can be formed using a device such as a mandrel and can hold the resulting shape for implantation.


The molecular weight of the macromer can dramatically change the resulting polymer's mechanical properties. Smaller molecular weights result in polymers when formed as filaments that have sufficient column strength to be pushed through microcatheters and catheters. Larger molecular weights result in polymers that when formed as filaments, can require more effort to be pushed through microcatheters and catheters.


The macromers described herein have a molecular weight ranging from about 100 g/mole to about 100,000 g/mole or about 500 g/mole to about 50,000 g/mole. In one embodiment, molecular weight ranges from about 5,000 g/mole to about 15,000 g/mole. In another embodiment, the molecular weight is about 10,000 g/mole. One embodiment includes poly(ethylene glycol) diacrylamide with a molecular weight of about 10,000 g/mole.


Any functional groups associated with the macromers described can be derivatized. The functional groups of the macromers can be derivatized to impart ethylenically unsaturated moieties allowing free radical polymerization of the hydrogel. Functionalities for free radical polymerization can include acrylates, methacrylates, acrylamides, vinyl groups, and derivatives thereof. Alternatively, other reactive chemistries can be employed to polymerize the hydrogel, for example, nucleophile/N-hydroxysuccinimde esters, nucleophile/halide, vinyl sulfone or maleimide. In one embodiment, a functional group of the macromer is an acrylate.


Biostability (or non restorability) or biodegradation can be imparted to polymers described by altering the synthetic route to derivatize macromer functional groups. If biostability is desired, linkage stability in the physiological environment can be utilized. In one embodiment, a biostable linkage is an amide. The macromer hydroxyl group(s) is converted to an amino group followed by reaction with acryloyl chloride to form an acrylamide group. If biodegradation is desired, linkages susceptible to breakage in a physiological environment can be utilized. In some embodiments, biodegradable linkages can include esters, polyesters, and amino acid sequences degradable by enzymes.


Monomers used to form the herein described polymers can have low molecular weights and/or can contain a single polymerizable group. If present, the monomer(s) can aid in polymerization and impart specific mechanical properties to the resulting polymer. The monomers can be any molecule with a single functionality and conducive to a desired mechanical property.


Specific monomers can include, but are not limited to, t-butyl acrylamide, 2-hydroxyethyl methacrylate, hydroxyl propyl acrylate, hydroxyl butylacrylate, and derivatives thereof. The hydrophobicity and bulky structure of these specific monomers can impart column strength to the resulting polymer.


In some embodiments, a visualization agent can be a monomer and incorporated into the polymeric structure.


Monomers, if present, can be present at a concentration of about 5% w/w, about 10% w/w, about 15% w/w, about 20% w/w, about 25% w/w, about 30% w/w, about 35% w/w, about 40% w/w, about 45% w/w, about 50% w/w, at least about 5% w/w, between about 5% w/w and about 40% w/w, between about 10% w/w and about 50% w/w, between about 5% w/w and about 30% w/w, or between about 5% w/w and about 20% w/w, of the prepolymer solution.


Monomers sensitive to pH can be utilized in the polymers described herein thereby imparting environmental sensitivity to them. The main function of the pH sensitive monomer is to permit control over the polymers rate of expansion. Such monomers must include functionality allowing incorporation into the resulting polymer during polymerization and ionizable moieties, for example, carboxylic acids or amines. Concentrations of pH sensitive monomers in the polymerization solution can range from about 1% to about 12.5%. In some embodiments, pH sensitive monomers can be acrylic acid, methacrylic acid, amino methacrylate, amino methacrylamide, and derivatives and salts thereof. In some embodiments, pH sensitive monomers are not utilized.


Generally, the controlled rate of expansion of the polymers is imparted through the incorporation of ethylenically unsaturated monomers with ionizable functional groups, (e.g. acidic or basic groups). For example, if acrylic acid is incorporated into the cross-linked polymeric network, it can be introduced through a microcatheter filled with blood or saline at physiological pH. The polymer cannot and may not expand until the carboxylic acid groups deprotonate. Conversely, if a basic, amine containing monomer is incorporated into the cross-linked network, the polymer can be introduced through a microcatheter filled with blood or saline at physiological pH. The polymer cannot and will not fully expand until the amine groups are protonated.


In one embodiment, pH-sensitive monomers are incorporated into the polymers to control the rate of expansion to permit delivery through microcatheters and catheters filled with physiological fluids. In one embodiment, ethylenically unsaturated carboxylic acids are incorporated into the polymers. In another embodiment, salts of ethylenically unsaturated carboxylic acids are incorporated into the polymers and subsequently the polymers are incubated in a low pH solution to protonate all the salts of the carboxylic acids. Expansion occurs in a physiological environment as the carboxylic acids deprotonate. In another embodiment, salts of ethylenically unsaturated amines are incorporated into the polymers and subsequently the polymers are incubated in a high pH solution to deprotonate the salts of the amines. Expansion occurs in a physiological environment as the amines protonate. In yet another environment, pH sensitive monomers are not incorporated into the polymers.


Non-pH sensitive monomers can also be used to aid in polymerization of the polymers and impart specific mechanical properties to the polymers. The non-pH sensitive monomers can be any molecule with a single functionality to incorporate into the polymers and/or a structure conducive to the desired mechanical property. The non-pH sensitive monomers can be, for example, hydrophobic thereby imparting column strength to the polymers. Also or in addition, the non-pH sensitive polymers can have a bulky structure further imparting column strength. Internal hydrogen bonding within the non-pH sensitive monomer imparts increasing tensile strength. In some embodiments, non-pH sensitive monomers can be t-butyl acrylamide, 2-hydroxyethyl methacrylate, and derivatives thereof. Concentrations of non-pH sensitive monomers can range from about 0% to about 20% w/w, about 15% w/w, about 12% w/w or about 11% w/w of the polymerization solution.


In one embodiment, depending on the monomers chosen for a particular polymer, significant fluid uptake by the polymer can occur and a large increase in the volume of the polymer can occur in a physiological environment. In another embodiment, monomers chosen allow only a small amount of fluid uptake by the polymer and only a small increase in the volume of the polymer occurs in a physiological environment. In yet another environment, monomers chosen prevent fluid uptake by the polymer and the volume of the polymer remains unchanged in a physiological environment.


Crosslinkers can also be utilized to impart cross-linking of the resulting polymer. A crosslinker can be any molecule with at least two functionalities to incorporate into the resulting polymer. The crosslinker can also be a structure conducive to the desired mechanical property imparted on the finalized polymer.


Crosslinkers can include an ester, a carbonate, a thioester, an anhydride, or a combination thereof. In other embodiments, multiples of each of an ester, a carbonate, anhydrides, and/or a thioester can be included. In one embodiment, a crosslinker can be an anhydride.


Other crosslinkers can include N,N-methylenebisacrylamide and ethylene glycol dimethacrylate.


Cross-linker(s), when used in the described polymers, impart desired mechanical properties. The cross-linker can be any molecule with at least two functionalities to incorporate into the polymers and preferably a structure conducive to the desired mechanical property. In one embodiment, a cross-linker is N,N-methylenebisacrylamide. Concentrations of the cross-linker can be less than about 1% w/w, less than about 0.8% w/w, less than about 0.5% w/w, or less than about 0.1% w/w of the polymerization solution. In one embodiment, the concentration of cross-linker is about 1% w/w.


A second type of crosslinker can also be included in the final polymer. The second type of crosslinker can impart a secondary mechanism of expansion to the hydrogel filaments. This secondary mechanism can be one that increases the swelling size of the hydrogel, but does not impact the initial rate of swelling. In some embodiments, the second type of crosslinker can retard full expansion of the polymer until the crosslinker is cleaved.


Possibilities for a second type of crosslinker can include crosslinkers that can be cleaved or degraded. For example, cleavable linkages include esters, polyesters, and amino acid sequences degradable by enzymes. In other embodiments, the second type of crosslinker can include hydrolyzable moieties such as anhydrides. Anhydrides will begin to cleave as the hydrogel hydrates. However, in some embodiments, the cleavage rate may be slower than that of the initial expansion of the hydrogel resulting from hydration.


Cleavable crosslinkers can include acrylate based crosslinkers such as acrylic anhydride based crosslinkers. These crosslinkers can be synthesized by reaction of a di-acid with methacrylic anhydride. An example synthetic scheme (Scheme 1) is




embedded image



wherein n is 0, 1, 2, 3, 4, or 5.


In some embodiments, the di-acid crosslinker can include ethylene, ethylene glycol, or propylene glycol repeating units to modulate the water solubility and the rate of degradation.


In some embodiments, when an anhydride based crosslinker is used, a resulting polymer can be sensitive to water. Thus, in some embodiments, gelation and purification of the resulting polymer can be performed in the absence of water.


In one embodiment, a first type of crosslinker and a second type of crosslinker can be used in the herein described hydrogels and polymers. In one embodiment, the second crosslinker can be a cleavable crosslinker. For example, as illustrated FIG. 1 in Scheme 2, a cleavable second type of crosslinker is included in the hydrogel structure or matrix.


The second type of crosslinker can incorporate secondary covalent cleavable crosslinks, in addition to a first type of permanent crosslinks, into the backbone. As these secondary covalent cleavable crosslinks are broken the polymer or hydrogel can expand to a larger diameter than the hydrogel would expand without the secondary crosslinkers present. In other words, hydrogels incorporating a second cleavable crosslinker in addition to a first permanent crosslinker can have a first expanded diameter when the hydrogel is swollen and a second, larger diameter when the cleavable crosslinks are broken or cleaved.


In effect, the hydrogel can initially expand to the extents limited by the initial crosslink density imparted by the cleavable crosslinks (e.g., the first diameter), and then subsequent hydrolysis of the cleavable crosslinks can allow the hydrogel to expand to a greater size (e.g., the second diameter).


In further embodiments, a third, fourth, fifth or more different cleavable crosslinkers can be included in a polymer or hydrogel described. Each cleavable crosslinker can have a different length and different degradation time to allow multiple steps of expansion before a final expansion size is achieved.


In some embodiments, the concentration of the second, cleavable type of crosslinker can be about 5% w/w, about 4% w/w, about 3% w/w, about 2% w/w, about 1% w/w, about 0.5% w/w between about 5% w/w and about 1% w/w, between about 2% w/w and about 0.5% w/w, or between about 5% w/w and about 0.5% w/w of the polymerization solution.


The concentration of all the crosslinkers in a polymerization solution can be less than about 10% w/w, less than about 5% w/w, less than about 4% w/w, less than about 3% w/w, less than about 2% w/w, less than about 1% w/w, or less than about 0.5% w/w of the polymerization solution.


In one embodiment, polymerization of the herein described polymers can be initiated using an initiator. An initiator can be azobisisobutyronitrile (AIBN) or a water soluble AIBN derivative. Other initiators useful according to the present description include N,N,N′,N′-tetramethylethylenediamine, ammonium persulfate, benzoyl peroxides, 2,2′-azobis(2-methylpropionamidine)dihydrochloride, and combinations thereof, including azobisisobutyronitriles. The polymerization solution can be polymerized by reduction-oxidation, radiation, heat, or any other method known in the art. Radiation cross-linking of the polymerization solution can be achieved with ultraviolet light or visible light with suitable initiators or ionizing radiation (for example, electron beam or gamma ray) without initiators. Cross-linking can be achieved by application of heat, either by conventionally heating the solution using a heat source such as a heating well, or by application of infrared light to the polymerization solution.


When used in the polymerization solutions described herein, an initiator starts the polymerization of the polymerization solution components. An exemplary initiator includes 2,2′-azobis(2-methylpropionamidine)dihydrochloride. Concentrations of the initiator can be less than about 1% w/w or less than about 0.5% w/w of the polymerization solution.


Visualization agents can also be added to the polymers described herein since metallic support members may not be used in conjunction with the presently described polymers. Generally, in the art, metallic support members aid in the visualization of embolic devices. Here, this may not be the case. The visualization agents impart visibility of the resulting polymers when imaged using a medically relevant imaging technique such as fluoroscopy, computed tomography, or magnetic resonance techniques.


Visualization of the polymers under fluoroscopy can be imparted by the incorporation of solid particles of radiopaque materials such as barium, bismuth, tantalum, platinum, gold, and other heavy nuclei species into the polymers or by the incorporation of iodine molecules polymerized into the polymer structure. In one embodiment, a visualization agent for fluoroscopy can be barium sulfate. Visualization of the polymers under computed tomography imaging can be imparted by incorporation of solid particles of barium or bismuth. Metals visible under fluoroscopy generally result in beam hardening artifacts that preclude the usefulness of computed tomography imaging for medical purposes. In one embodiment, a visualization agent for fluoroscopy can be barium sulfate. Concentrations of barium sulfate rendering the hydrogel filaments visible using fluoroscopic and computed tomography imaging can range from about 30% w/w to about 60% w/w, about 35% w/w to about 50% w/w, or about 39% w/w to about 47% w/w of the polymerization solution.


Visualization of the polymers under magnetic resonance imaging can be imparted by the incorporation of solid particles of superparamagnetic iron oxide or gadolinium molecules polymerized into the polymer structure. In one embodiment, a visualization agent for magnetic resonance is superparamagnetic iron oxide with a particle size of 10 microns. Concentrations of superparamagnetic iron oxide particles to render the polymers visible using magnetic resonance imaging can range from about 0.01% w/w to about 1% w/w, about 0.05% w/w to about 0.5% w/w, or about 0.1% w/w to about 0.6% w/w of the polymerization solution.


In one embodiment, a polymer can be formed from a reaction product of a difunctional, low molecular weight, ethylenically unsaturated, shapeable macromer, an ethylenically unsaturated monomer, a visualization element, a cross-linker, a second cleavable crosslinker that retards expansion of the polymer, and an initiator.


In another embodiment, a polymer can include a difunctional, low molecular weight, ethylenically unsaturated, shapeable macromer, an ethylenically unsaturated monomer, a visualization element, a cross-linker, and a second cleavable crosslinker that retards expansion of the polymer.


The polymers can have many characteristic properties one of which is bending resistance. The polymers when formed as filaments or other elongated structures can generally have a dry bending resistance of about 20 mg to about 200 mg, about 20 mg to about 32 mg or about 100 mg to about 200 mg. In the wet state, the bending resistance lowers drastically to about 2 mg to about 50 mg, about 2 mg to about 5 mg, or about 25 mg to about 50 mg.


Another characteristic is average ultimate tensile strength of the polymers when formed as filaments or other elongated structures. The filaments described herein have an average ultimate tensile strength of about 0.18 lbf to about 0.65 lbf, about 0.18 lbf to about 0.25 lbf, or about 0.52 lbf to about 0.65 lbf.


Methods of preparing the polymers is also described. The polymerization solution is prepared by dissolving the macromer, pH sensitive monomers, non-pH sensitive monomers, cross-linker, cleavable crosslinker, initiator, and soluble visualization agents in the solvent. After dissolution of these components, an insoluble visualization agent can be suspended in the polymerization solution. Mixing of the polymerization solution containing an insoluble visualization agent with a homogenizer aids in suspension of the insoluble visualization agent. The polymerization solution can then be polymerized to provide a polymer. The polymer can be dried.


In some embodiments, to form a filament, before polymerization, the polymerization solution can be injected into tubing with an inner diameter ranging from about 0.001 inches to about 0.075 inches and incubated for several hours in boiling water, for example, at 100° C., and subsequently overnight at 80° C. to complete the polymerization. The immersion in boiling water allows for rapid heat transfer from the water to the polymerization solution contained in the tubing. The selection of the tubing imparts microcatheter or catheter compatibility. For delivery through microcatheters, tubing diameters can range from about 0.006 inches to about 0.025 inches. For delivery through 4 and 5 Fr catheters, tubing can have diameters from about 0.026 inches to about 0.045 inches. In one embodiment, the tubing is made from HYTREL® (DuPont, Wilmington, DE). The HYTREL® tubing can be dissolved in solvents, facilitating removal of the formed polymer from the tubing.


If a filament as described herein is wrapped around a mandrel prior to polymerization of the polymerization solution, the resulting polymer will maintain the shape of the filament around the mandrel or at least retain a memory of the shape. Using this technique, helical, tornado, and complex shapes can be imparted to the hydrogel filament. When the tubing is wrapped around a mandrel, trapezoidal and/or oval tubing can be used. After wrapping around the mandrel, the oval shape of the tubing is rounded and the resulting filament has a round shape.


If HYTREL® tubing is utilized, the filament can be recovered by incubating the tubing in a solution of 25% w/w phenol in chloroform followed by washing in chloroform and ethanol. After the filament has been washed, it is dried, and a dried hydrogel filament is produced. The length of a dried filament can range from about 0.01 cm to about 1,000 cm, about 0.1 cm to about 500 cm, about 0.25 cm to about 250 cm, or about 0.5 cm to about 100 cm. The diameter of a filament can range from about 0.01 inches to about 0.1 inches, about 0.001 inches to about 0.01 inches, or about 0.006 inches to about 0.075 inches. In one embodiment the filament has a diameter less than about 0.05 inches, 0.04 inches, or 0.031 inches.


In some embodiments, the polymer described herein can expand initially, before second crosslinker cleavage to about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, at most about 50%, at most about 40%, or between about 10% and about 50% of the polymers full expansion diameter. Then, after cleavage of the second crosslinker, the polymer described herein can expand to about 50%, about 60%, about 70%, about 80%, about 90%, 100%, at least about 50%, at least about 60%, or between about 50% and 100% of the polymers full expansion diameter.


In some embodiments, the polymers described can be incubated in a low pH or high pH solution to protonate or depronate the pH sensitive monomer incorporated into the polymer as necessary rendering it environmentally responsive. The environmentally responsive polymer can expand to a particular dimension after being subjected to a particular pH environment. However, the cleavable crosslinker can prevent the polymer from expanding to its full expansion parameters until the cleavable crosslinkers have been broken and the polymer is allowed to folly expand.


In some embodiments, the second cleavable crosslinker can add about 60 sec, about 1 min, about 5 min, about 10 min, about 15, min, about 20 min, at least about 1 min, at least about 5 min, or at least about 15 min of time before the polymer is fully expanded.


Example 1

Implantation of a Polymer Filament with a Secondary Expansion Mechanism


A patient is implanted with a polymer filament which is crosslinked with a non-degradable crosslinker and a cleavable crosslinker and a pH sensitive monomer. The polymer filament had been treated in an acidic pH solution and dried to render the filament environmentally responsive.


The filament is delivered through a microcatheter to a vessel occlusion. The filament expands in response to the change in pH. After about 10 min, the filament is 50% expanded. After about 15 min, the filament is about 60% expanded. At about 20 min, the cleavable crosslinking bonds begin to break and after 25 min, the filament is about 95% expanded.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. An expansile polymer, including a reaction product of a polymerization solution including a macromer, a monomer, a first crosslinker, and a second cleavable crosslinker.
  • 2. The expansile polymer of claim 1, wherein the expansile polymer has a full expansion size that includes a primary expansion and a secondary expansion, wherein the secondary expansion is retarded by the second cleavable crosslinker.
  • 3. The expansile polymer of claim 1, further including at least one visualization element.
  • 4. The expansile polymer according to claim 3, wherein the at least one visualization element is selected from metallic powders, gadolinium, superparamagnetic iron oxide particles, barium sulfate, or a combination thereof.
  • 5. The expansile polymer according to claim 1, wherein the monomer is pH sensitive and provides the primary expansion to the expansile polymer.
  • 6. The expansile polymer according to claim 1, wherein the second cleavable crosslinker is an acrylate based crosslinker.
  • 7. The expansile polymer according to claim 6, wherein the acrylate based crosslinker is an acrylic anhydride based crosslinker.
  • 8. The expansile polymer according to claim 7, wherein the acrylic anhydride based crosslinker has a structure
  • 9. The expansile polymer according to claim 7, wherein the acrylic based anhydride crosslinker is synthesized by reaction of a di-acid with methacrylic anhydride.
  • 10. A filament, comprising an expansile polymer including a reaction product of a polymerization solution including a macromer, a monomer, a first crosslinker, and a second cleavable crosslinker.
  • 11. The filament of claim 10, wherein the filament includes no support members.
  • 12. The filament of claim 10, wherein the expansile polymer has a full expansion size that includes a primary expansion and a secondary expansion, wherein the secondary expansion is retarded by the second cleavable crosslinker.
  • 13. The filament of claim 10, further including at least one visualization element.
  • 14. The filament of claim 13, wherein the at least one visualization element is selected from metallic powders, gadolinium, superparamagnetic iron oxide particles, barium sulfate, or a combination thereof.
  • 15. The filament of claim 10, wherein the monomer is pH sensitive and provides the primary expansion to the expansile polymer.
  • 16. The filament of claim 10, wherein the second cleavable crosslinker is an acrylate based crosslinker.
  • 17. The filament of claim 16, wherein the acrylate based crosslinker is an acrylic anhydride based crosslinker.
  • 18. The filament of claim 17, wherein the acrylic anhydride based crosslinker has a structure
  • 19. The filament of claim 17, wherein the acrylic based anhydride crosslinker is synthesized by reaction of a di-acid with methacrylic anhydride.
  • 20. A method of forming an expansile polymer, comprising: polymerizing a polymerization solution comprising a macromer, a monomer, a first crosslinker, and a second cleavable crosslinker.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/499,755, filed Oct. 12, 2021, which is a continuation of U.S. patent application Ser. No. 16/838,730, filed Apr. 2, 2020, issued as U.S. Pat. No. 11,179,492 on Nov. 23, 2021, which is a divisional of U.S. patent application Ser. No. 15/179,212, filed Jun. 10, 2016, issued as U.S. Pat. No. 10,639,396 on May 5, 2020, which claims the benefit of U.S. provisional patent application No. 62/174,425, filed Jun. 11, 2015, the entire disclosure of each of which are incorporated herein by reference.

US Referenced Citations (346)
Number Name Date Kind
3684592 Chang et al. Aug 1972 A
3709842 Stoy et al. Jan 1973 A
3743686 Koch et al. Jul 1973 A
3749085 Wilson et al. Jul 1973 A
4020829 Wilson et al. May 1977 A
4301803 Handa et al. Nov 1981 A
4304232 Michaels Dec 1981 A
4365621 Brundin Dec 1982 A
4402319 Handa et al. Sep 1983 A
4493329 Crawford et al. Jan 1985 A
4509504 Brundin Apr 1985 A
4529739 Scott et al. Jul 1985 A
4551132 Pasztor et al. Nov 1985 A
4663358 Hyon et al. May 1987 A
4795741 Leshchiner et al. Jan 1989 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4932419 de Teledo Jun 1990 A
4951677 Crowley et al. Aug 1990 A
4994069 Ritchart et al. Feb 1991 A
5120349 Stewart et al. Jun 1992 A
5122136 Guglielmi et al. Jun 1992 A
5129180 Stewart Jul 1992 A
5133731 Butler et al. Jul 1992 A
5147646 Graham Sep 1992 A
5154705 Fleischhacker et al. Oct 1992 A
5163952 Froix Nov 1992 A
5165421 Fleischhacker et al. Nov 1992 A
5217484 Marks Jun 1993 A
5226911 Chee et al. Jul 1993 A
5258042 Mehta Nov 1993 A
5304194 Chee et al. Apr 1994 A
5312415 Palermo May 1994 A
5350397 Palermo et al. Sep 1994 A
5354290 Gross Oct 1994 A
5373619 Fleischhacker et al. Dec 1994 A
5382259 Phelps et al. Jan 1995 A
5382260 Dormandy, Jr. et al. Jan 1995 A
5443478 Purdy Aug 1995 A
5447727 Graham Sep 1995 A
5449369 Imran Sep 1995 A
5456693 Conston et al. Oct 1995 A
5469867 Schmitt Nov 1995 A
5476472 Dormandy, Jr. et al. Dec 1995 A
5483022 Mar Jan 1996 A
5508342 Antonucci Apr 1996 A
5522822 Phelps et al. Jun 1996 A
5525334 Ito et al. Jun 1996 A
5536274 Neuss Jul 1996 A
5538512 Zenzon Jul 1996 A
5539071 Steffler Jul 1996 A
5541234 Unger et al. Jul 1996 A
5549624 Mirigian Aug 1996 A
5567435 Hubbell Oct 1996 A
5573520 Schwartz et al. Nov 1996 A
5573994 Kabra et al. Nov 1996 A
5578074 Mirigian Nov 1996 A
5580568 Greff et al. Dec 1996 A
5582610 Grossi et al. Dec 1996 A
5582619 Ken Dec 1996 A
5603991 Kupiecki Feb 1997 A
5607417 Batich et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5612050 Rowe et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5624685 Takahashi et al. Apr 1997 A
5634936 Linden et al. Jun 1997 A
5645558 Horton Jul 1997 A
5651979 Ron et al. Jul 1997 A
5658308 Snyder Aug 1997 A
5667767 Greff et al. Sep 1997 A
5672634 Tseng et al. Sep 1997 A
5677067 Kojima Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5690666 Berenstein et al. Nov 1997 A
5690667 Gia Nov 1997 A
5690671 McGurk et al. Nov 1997 A
5695480 Evans et al. Dec 1997 A
5702361 Evans et al. Dec 1997 A
5718711 Berenstein et al. Feb 1998 A
5725568 Hastings Mar 1998 A
5749894 Engelson May 1998 A
5750585 Park et al. May 1998 A
5752974 Rhee et al. May 1998 A
5755658 Wallace et al. May 1998 A
5766160 Samson et al. Jun 1998 A
5766219 Horton Jun 1998 A
5823198 Jones et al. Oct 1998 A
5827231 Harada Oct 1998 A
5830178 Jones et al. Nov 1998 A
5834118 Rånby Nov 1998 A
5843743 Hubbell et al. Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853418 Ken Dec 1998 A
5853419 Ken et al. Dec 1998 A
5863551 Woerly Jan 1999 A
5883705 Minne et al. Mar 1999 A
5891155 Irie Apr 1999 A
5952232 Rothman Sep 1999 A
5976162 Doan et al. Nov 1999 A
5980514 Kupiecki et al. Nov 1999 A
6004338 Ken et al. Dec 1999 A
6004573 Rathi et al. Dec 1999 A
6013084 Ken et al. Jan 2000 A
6015424 Rosenbluth et al. Jan 2000 A
6017977 Evans et al. Jan 2000 A
6051607 Greff Apr 2000 A
6063100 Diaz et al. May 2000 A
6066149 Samson et al. May 2000 A
6093199 Brown et al. Jul 2000 A
6096034 Kupiecki et al. Aug 2000 A
6103865 Bae et al. Aug 2000 A
6136015 Kurz et al. Oct 2000 A
6146373 Cragg et al. Nov 2000 A
6159165 Ferrera et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6171326 Ferrera et al. Jan 2001 B1
6179857 Diaz et al. Jan 2001 B1
6187024 Boock et al. Feb 2001 B1
6193728 Ken et al. Feb 2001 B1
6201065 Pathak et al. Mar 2001 B1
6224893 Langer May 2001 B1
6231590 Slaikeu et al. May 2001 B1
6238403 Greene, Jr. et al. May 2001 B1
6245090 Gilson et al. Jun 2001 B1
6270748 Annan et al. Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6281263 Evans et al. Aug 2001 B1
6287318 Villar et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6299619 Greene, Jr. et al. Oct 2001 B1
6299627 Eder et al. Oct 2001 B1
6303100 Ricci et al. Oct 2001 B1
6312421 Boock Nov 2001 B1
6333020 Wallace et al. Dec 2001 B1
6335384 Evans et al. Jan 2002 B1
6342202 Evans et al. Jan 2002 B1
6342541 Lombardi Jan 2002 B1
6375880 Cooper Apr 2002 B1
6399886 Avellanet Jun 2002 B1
6423085 Murayama et al. Jul 2002 B1
6425893 Guglielmi et al. Jul 2002 B1
6454738 Tran et al. Sep 2002 B1
6503244 Hayman Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6511472 Hayman et al. Jan 2003 B1
6521431 Kiser Feb 2003 B1
6531111 Whalen et al. Mar 2003 B1
6537569 Cruise et al. Mar 2003 B2
6558367 Cragg et al. May 2003 B1
6565551 Jones et al. May 2003 B1
6569190 Whalen et al. May 2003 B2
6599448 Ehrhard, Jr. et al. Jul 2003 B1
6602261 Greene, Jr. et al. Aug 2003 B2
6605294 Sawhney Aug 2003 B2
6623450 Dutta Sep 2003 B1
6634361 Nikolchev et al. Oct 2003 B1
6645167 Whalen et al. Nov 2003 B1
6684884 Nikolchev et al. Feb 2004 B2
6699222 Jones et al. Mar 2004 B1
6723108 Jones et al. Apr 2004 B1
6756031 Evans et al. Jun 2004 B2
6759028 Wallace et al. Jul 2004 B2
6849081 Sepetka et al. Feb 2005 B2
6860893 Wallace et al. Mar 2005 B2
6878384 Cruise et al. Apr 2005 B2
6887974 Pathak et al. May 2005 B2
6962689 Whalen et al. Nov 2005 B2
6964657 Cragg et al. Nov 2005 B2
7018365 Strauss et al. Mar 2006 B2
7033374 Schaefer et al. Apr 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7070607 Murayama et al. Jul 2006 B2
7083643 Whalen et al. Aug 2006 B2
7138106 Evans et al. Nov 2006 B2
7374568 Whalen et al. May 2008 B2
7422569 Wilson et al. Sep 2008 B2
7459142 Greff Dec 2008 B2
7476648 Tabata et al. Jan 2009 B1
7507229 Hewitt et al. Mar 2009 B2
7507394 Whalen et al. Mar 2009 B2
7625580 Langer Dec 2009 B1
7695484 Wallace et al. Apr 2010 B2
7815835 Stampfl Oct 2010 B2
7976527 Cragg et al. Jul 2011 B2
7988992 Omidian et al. Aug 2011 B2
8066667 Hayman et al. Nov 2011 B2
8172862 Wallace et al. May 2012 B2
8183229 Hahn May 2012 B2
8231890 Cruise et al. Jul 2012 B2
8235941 Hayman et al. Aug 2012 B2
8377091 Cruise et al. Feb 2013 B2
8454649 Cragg et al. Jun 2013 B2
8470035 Cruise et al. Jun 2013 B2
8486046 Hayman et al. Jul 2013 B2
9011884 Constant et al. Apr 2015 B2
9114200 Constant et al. Aug 2015 B2
9259228 Cruise et al. Feb 2016 B2
9381278 Constant et al. Jul 2016 B2
9451963 Cruise et al. Sep 2016 B2
9456823 Constant et al. Oct 2016 B2
9486221 Cruise et al. Nov 2016 B2
9724103 Cruise et al. Aug 2017 B2
9877731 Cruise et al. Jan 2018 B2
10092663 Constant et al. Oct 2018 B2
10124090 Constant et al. Nov 2018 B2
10194915 Cruise et al. Feb 2019 B2
10226258 Cruise et al. Mar 2019 B2
10226533 Cruise et al. Mar 2019 B2
10232089 Constant et al. Mar 2019 B2
10499925 Cruise et al. Dec 2019 B2
10639396 Baldwin May 2020 B2
10946100 Cruise et al. Mar 2021 B2
11160557 Cruise et al. Nov 2021 B2
11179492 Baldwin et al. Nov 2021 B2
11185336 Cruise et al. Nov 2021 B2
11759547 Baldwin Sep 2023 B2
20010023325 Ferrera Sep 2001 A1
20020026234 Li et al. Feb 2002 A1
20020042378 Reich et al. Apr 2002 A1
20020161110 Tanaka Oct 2002 A1
20020169473 Sepetka et al. Nov 2002 A1
20020176880 Cruise Nov 2002 A1
20020177855 Greene, Jr. et al. Nov 2002 A1
20030014075 Rosenbluth et al. Jan 2003 A1
20030021762 Luthra et al. Jan 2003 A1
20030036582 Yamakawa Feb 2003 A1
20030077272 Pathak et al. Apr 2003 A1
20030078339 Kiser Apr 2003 A1
20030086874 Whalen, II et al. May 2003 A1
20030100942 Ken et al. May 2003 A1
20030114553 Karim Jun 2003 A1
20030134032 Chaouk Jul 2003 A1
20030162863 Satoh Aug 2003 A1
20030203991 Schottman et al. Oct 2003 A1
20030211083 Vogel et al. Nov 2003 A1
20030220245 Hubbell et al. Nov 2003 A1
20030232198 Lamberti et al. Dec 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040006534 Schaefer et al. Jan 2004 A1
20040024098 Mather et al. Feb 2004 A1
20040059370 Greene, Jr. Mar 2004 A1
20040091543 Bell et al. May 2004 A1
20040097267 Vallittu May 2004 A1
20040097627 Vallittu May 2004 A1
20040098028 Martinez May 2004 A1
20040115164 Pierce et al. Jun 2004 A1
20040158282 Jones et al. Aug 2004 A1
20040209998 De Vries Oct 2004 A1
20040242713 Ghidoni Dec 2004 A1
20040247867 Chaouk et al. Dec 2004 A1
20050003010 Cohen et al. Jan 2005 A1
20050008610 Schwarz et al. Jan 2005 A1
20050095428 DiCarlo et al. May 2005 A1
20050106119 Brandom et al. May 2005 A1
20050119687 Dacey et al. Jun 2005 A1
20050124721 Arthur Jun 2005 A1
20050143484 Fang et al. Jun 2005 A1
20050171572 Martinez et al. Aug 2005 A1
20050175709 Baty et al. Aug 2005 A1
20050196449 DiCarlo et al. Sep 2005 A1
20050226935 Kamath et al. Oct 2005 A1
20050281883 Daniloff et al. Dec 2005 A1
20060052815 Fitz et al. Mar 2006 A1
20060067883 Krom et al. Mar 2006 A1
20060074370 Zhou Apr 2006 A1
20060116713 Sepetka et al. Jun 2006 A1
20060233854 Seliktar et al. Oct 2006 A1
20060270750 Almen et al. Nov 2006 A1
20070026039 Drumheller et al. Feb 2007 A1
20070097627 Taylor May 2007 A1
20070196454 Stockman et al. Aug 2007 A1
20070202046 Dave Aug 2007 A1
20070208141 Shull et al. Sep 2007 A1
20070224234 Steckel et al. Sep 2007 A1
20070231366 Sawhney et al. Oct 2007 A1
20070237720 Padilla et al. Oct 2007 A1
20070237741 Figuly et al. Oct 2007 A1
20070248567 Pathak et al. Oct 2007 A1
20070254005 Pathak et al. Nov 2007 A1
20070288084 Lee et al. Dec 2007 A1
20070299464 Cruise Dec 2007 A1
20080019921 Zhang Jan 2008 A1
20080038354 Slager et al. Feb 2008 A1
20080039890 Matson et al. Feb 2008 A1
20080114277 Ambrosio et al. May 2008 A1
20080208167 Stankus Aug 2008 A1
20080226741 Richard Sep 2008 A1
20080268250 Hawkett Oct 2008 A1
20080281352 Ingenito et al. Nov 2008 A1
20090041850 Figuly Feb 2009 A1
20090048659 Weber et al. Feb 2009 A1
20090054535 Figuly et al. Feb 2009 A1
20090081275 Rolfes et al. Mar 2009 A1
20090093550 Rolfes et al. Apr 2009 A1
20090098510 Zhang Apr 2009 A1
20090098511 Zhang Apr 2009 A1
20090117033 O'Gara May 2009 A1
20090155326 Mack et al. Jun 2009 A1
20090181068 Dunn Jul 2009 A1
20090221731 Vetrecin et al. Sep 2009 A1
20090224438 Stampfl Sep 2009 A1
20090232869 Greene Sep 2009 A1
20090239962 Dobashi Sep 2009 A1
20090258979 Hawkett Oct 2009 A1
20090259302 Trollsas et al. Oct 2009 A1
20100010159 Belcheva Jan 2010 A1
20100023112 Borck et al. Jan 2010 A1
20100036491 He et al. Feb 2010 A1
20100042067 Koehler Feb 2010 A1
20100048750 Blom Feb 2010 A1
20100086678 Arthur et al. Apr 2010 A1
20100092533 Stopek et al. Apr 2010 A1
20100241160 Murphy Sep 2010 A1
20100247663 Day et al. Sep 2010 A1
20100249913 Datta et al. Sep 2010 A1
20100256777 Dattta et al. Oct 2010 A1
20100303804 Liska et al. Dec 2010 A1
20110008406 Altman et al. Jan 2011 A1
20110008442 Zawko et al. Jan 2011 A1
20110020236 Bohmer et al. Jan 2011 A1
20110027172 Wang et al. Feb 2011 A1
20110091549 Blaskovich et al. Apr 2011 A1
20110182998 Reb et al. Jul 2011 A1
20110184455 Keeley Jul 2011 A1
20110190813 Brownlee et al. Aug 2011 A1
20110202016 Zugates et al. Aug 2011 A1
20120029101 Senda Feb 2012 A1
20120041481 Daniloff et al. Feb 2012 A1
20120083523 Richard et al. Apr 2012 A1
20120114589 Rolfes-Meyering et al. May 2012 A1
20120156164 Park et al. Jun 2012 A1
20120164100 Li et al. Jun 2012 A1
20120184642 Bartling et al. Jul 2012 A1
20120238644 Gong et al. Sep 2012 A1
20120244198 Malmsjo et al. Sep 2012 A1
20130039848 Bradbury et al. Feb 2013 A1
20130045182 Gong et al. Feb 2013 A1
20130060230 Capistron et al. Mar 2013 A1
20130079421 Aviv et al. Mar 2013 A1
20130087736 Baker Apr 2013 A1
20130108574 Chevalier et al. May 2013 A1
20140056806 Vernengo et al. Feb 2014 A1
20140274945 Blaskovich et al. Sep 2014 A1
20140277057 Ortega et al. Sep 2014 A1
20140329932 Baker Nov 2014 A1
20220039802 Cruise et al. Feb 2022 A1
Foreign Referenced Citations (44)
Number Date Country
2551373 Jun 2014 CA
103251596 Aug 2013 CN
102107025 May 2014 CN
809519 Dec 1997 EP
1599258 Aug 2008 EP
1601392 Apr 2009 EP
1991004732 Sep 1990 WO
1991016057 Oct 1991 WO
1994003155 Feb 1994 WO
1997022365 Jun 1997 WO
1997026939 Jul 1997 WO
1997027888 Aug 1997 WO
1998001421 Jan 1998 WO
1998043615 Oct 1998 WO
1998055103 Dec 1998 WO
1999023954 May 1999 WO
1999044538 Sep 1999 WO
1999056783 Nov 1999 WO
1999065401 Dec 1999 WO
2000027445 May 2000 WO
2000038651 Jul 2000 WO
2000074577 Dec 2000 WO
2001068720 Sep 2001 WO
2002005731 Jan 2002 WO
2002096302 Dec 2002 WO
2003043552 May 2003 WO
2005032337 Apr 2005 WO
2007016371 Feb 2007 WO
2007147145 Dec 2007 WO
2000078846 Dec 2008 WO
2009086208 Jul 2009 WO
2010033022 Mar 2010 WO
2011038291 Mar 2011 WO
2011053555 May 2011 WO
2012039602 Mar 2012 WO
2012101455 Aug 2012 WO
2012120138 Sep 2012 WO
2012145431 Oct 2012 WO
2012171478 Dec 2012 WO
2013158781 Oct 2013 WO
2015153996 Oct 2015 WO
2015167751 Nov 2015 WO
2015167752 Nov 2015 WO
2016201250 Dec 2016 WO
Non-Patent Literature Citations (44)
Entry
Ahuja et al., Platinum coil coatings to increase thrombogenicity: a preliminary study in rabbits, AJNR, 14: 794-789 (1993).
Almany, Biomaterials, 26, 2005, 2467-2477, Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
Carelli V. et al., “Silicone microspheres for pH-controlled gastrointestinal drug delivery,” 1999, International Journal of Pharmaceutics, V179, p. 73-83.
Chirila et al., Poly(2-hydroxyethyl metharcrylate) sponges ans implant materials: in vivo and in vitro evaluation of cellular invasion. Biomaterials, 14(1):26-38 (1993).
Constant et al., Preparation, Characterization, and Evaluation of Radiopaque Hydrogel Filaments for Endovascular Embolization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 89B, No. 2, pp. 306-313 (2008).
Edleman et al., Controlled and modulated release of basic fibroblast growth factor. Biomaterials, vol. 12, pp. 619-626 (1991).
Elbert et al., Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules, (2): 430-441 (2001).
European Search Opinion for EP Application No. 10819570 mailed Mar. 31, 2014.
European Search Opinion for EP Application No. 10827370 mailed Apr. 1, 2014.
Graves et al., Endovascular occlusion of the carotid or vertebral artery with temporary proximal flow arrest and mircocoils: clinical results. AJNR Am. J. Neuroradiol., vol. 18, pp. 1201-1206 (1997).
Hoekstra, D., Hyaluronan-modified surfaces for medical devices. Medical Device & Diagnostic Industry, pp. 48-56 (1999).
Hogg et al., Interaction of platelet-derived growth factor with thrombospondin 1. Biochem. J. 326, pp. 709-716 (1997).
Horak et al., Hydrogels in endovascular embolization. II. Clinical use of spherical particles. Biomaterials, 7(6): 467-470 (1986).
Horak et al., New radiopaque polyHEMA-based hydrogel particles. J. Biomed. Matter Res., 34(2): 183-188 (1997).
Huang, et al., “Synthesis and Characterization of Self-Assembling Block Copolymers Containing Adhesive Molecules,” Polymer Preprints, vol. 42, No. 2, 2001, pp. 147-148.
International Search Report mailed on Dec. 17, 2010 for International Patent Application No. PCT/US2010/053972.
International Search Report mailed on Feb. 5, 2009 for International Patent Application No. PCT/US2007/071395.
International Search Report mailed on Aug. 14, 2013 for International PCT Application No. PCT/US2013/037007 filed on Apr. 17, 2013.
International Search Report and Written Opinion mailed on Jun. 29, 2015 for International Application No. PCT/US2015/024289 filed on Apr. 3, 2015.
International Search Report and Written Opinion mailed on Jun. 29, 2015 for International Application No. PCT/US2015/024290 filed on Apr. 3, 2015.
International Search Report and Written Opinion mailed on Jul. 14, 2015 for International Application No. PCT/US2015/024284 filed on Apr. 3, 2015.
Kim, Drug release from pH-sensitive interpenetrating polymer networks hydrogel based on poly (ethylene glycol) Macromer and Poly (acrylic acid) prepared by UV Cured Method, ArchPharmRes, vol. 19(1), 1996, p. 18-22.
Klier, Self Associating Networks of Poly(methacrylic acid g-ethylene glycol) Marcomolecules 1990, vol. 23, 1990, p. 4944-4949.
Larsen et al., Hylan gel composition for percutaneous embolization. Journal of Biomedical Materials Research, vol. 25, Issue 6, pp. 699-710 (1991).
Latchaw et al., Polyvinyl foam embolization of vascular and neoplastic lesions of the head, neck, and spine. Radiology, 131: 669-679 (1979).
Li, Jian et al., Preparation of PEG/Aac copolymerric hydrogel and study of pH-sensitivity. Chemistry World, Issue 1, pp. 20-23 (2005).
Mellott, Michael B. et al., Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials, 22(2001) 929-941.
Murayama et al., Cellular responses of bioabsorbable polymeric material and guglielmi detachable coil in experimental aneurysms. Stroke, pp. 1120-1128 (2002).
Persidis, A., Tissue engineering. Nature Biotechnology, 17, pp. 508-510 (1999).
Schmutz et al., Embolization of cerebral arteriovenous malformations with silk: histopathologic changes and hemorrhagic complications. AJNR Am. J. Neuroradiol., vol. 18, pp. 1233-1237 (1997).
Schoenmakers, The effect of the linker on the hydrolysis rate of drug-linked ester bonds, J. Cont. Rel., 95, 2004, pp. 291-300.
Supplementary European Search Report for EP Application No. 10819570 mailed Mar. 31, 2014.
Supplementary European Search Report for EP Application No. 10827370 mailed Apr. 1, 2014.
Vinuela et al., Guglielmi detachable coil embolization of acute intracranial aneurysm: perioperative anatomical and clinical outcome in 403 patients. J. Neurosurg., vol. 86, pp. 475-482 (1997).
Woerly et al., Intracerebral implantation of hydrogel-coupled adhesion peptides: tissue reaction. Journal of Neural Transplantation & Plasticity, vol. 5, No. 4, pp. 245-255 (1995).
Written Opinion mailed on Aug. 14, 2013 for International PCT Application No. PCT/US2013/037007 filed on Apr. 17, 2013.
Zollikofer et al., A combination of stainless steel coil and compressed ivalon: a new technique for embolization of larger arteries and arteriovenous fistulas. Radiology, 138: 229-231 (1981).
Zollikofer et al., Therapeutic blockade of arteries using compressed invalon. Radiology, 136: 635-640 (1980).
Son et al., Preparation of properties of PEG-modified PHEMA hydrogel and the morphological effect. Macromolecular Research, vol. 14, No. 3, pp. 394-399 (2006).
International Search Report and Written Opinion mailed on Sep. 23, 2016 for International Application No. PCT/US2016/036924 filed on Jun. 10, 2016.
Supplementary European Search Report for EP Application No. 15785350 mailed Nov. 13, 2017.
“Wavy line”, Illustrated Glossary of Organic Chemistry, accessed at http://www.chem.ucla.edu/˜harding/IGOC/W/wavy_line.html on Jul. 21, 2016.
Moysan et al., Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. HAL Archive inserm-00787112 (2013).
Polymer Products. Sigma-Aldrich (2019).
Related Publications (1)
Number Date Country
20230372576 A1 Nov 2023 US
Divisions (1)
Number Date Country
Parent 15179212 Jun 2016 US
Child 16838730 US
Continuations (2)
Number Date Country
Parent 17499755 Oct 2021 US
Child 18229369 US
Parent 16838730 Apr 2020 US
Child 17499755 US