The field of the invention is P-glycoprotein inhibitors, in particular HM30181 mesylate.
The background description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
P-glycoprotein (P-gp) is an ATP dependent efflux pump protein with a wide range of substrate specificity that is found throughout the major genera. Due to its broad distribution and its function it is thought to be a defense mechanism that actively transport toxins out of cells. In humans P-gp can transport substrate compounds from intestinal epithelial cells back into the intestinal lumen, from the blood brain barrier back into adjacent capillaries, from the proximal tubule of the kidney into the urinary filtrate, and from liver cells into the bile ducts.
Unfortunately, a number of drugs utilized in chemotherapy are substrates for P-gp. P-gp activity, therefore, can reduce bioavailability and effectiveness of chemotherapeutic drugs. In such instances administration of P-gp inhibitors can be useful in improving the response to chemotherapy. Accordingly, over the last 30 years a number of pharmaceutically useful P-gp inhibitors (such as amiodarone, clarithromycin, cyclosporin, colchicine, diltiazem, erythromycin, felodipine, ketoconazole, lansoprazole, omeprazole, nifedipine, paroxetine, reserpine, saquinavir, sertraline, quinidine, tamoxifen, verapamil, and duloxetine) have been developed.
HM30181 mesylate is a third generation P-gp inhibitor that has been studied for use with paclitaxel. HM30181 mesylate selectively inhibits P-gp in the intestinal epithelium, improving absorption of orally administered chemotherapeutic drugs without increasing potentially detrimental transport across the blood-brain barrier. The structure of HM30181 mesylate is shown below.
The pharmacokinetics, bioavailability, and incidence of side effects of orally administered HM30181 mesylate are less than optimal, however.
Thus, there is still a need for polymorphisms of HM30181 mesylate that can provide improved absorption, improved pharmacokinetics, and/or reduced side effects upon administration.
The inventive subject matter provides polymorphisms of HM31081 mesylate, methods for their preparation and characterization, and methods for their use.
One embodiment of the inventive concept is a composition that includes a crystalline or partially crystalline form of HM30181 mesylate, where the crystalline or partially crystalline form includes polymorph B, polymorph C, polymorph D, polymorph E, polymorph F, polymorph G, polymorph H, polymorph I, polymorph J, polymorph K, polymorph L, polymorph M, and/or polymorph N. In some of such embodiments the crystalline or partially crystalline form is polymorph B, and has an X-ray diffraction pattern corresponding to
Another embodiment of the inventive concept is a method of inhibiting P-glycoprotein activity, by contacting P-glycoprotein with at least one crystalline or partially crystalline form of HM30181 mesylate as described above in an amount that is effective in inhibiting an activity of P-glycoprotein.
Another embodiment of the inventive concept is a method of treating cancer by administering a chemotherapeutic drug that is a P-glycoprotein substrate to an individual that in need of treatment for cancer and also administering a polymorph of HM30181 mesylate as described above in an amount that is effective to inhibit P-glycoprotein activity in the individual.
Another embodiment of the inventive concept is the use of a polymorph of HM30181 mesylate as described above in preparing a medicament for treating cancer. Such a medicament can also include a chemotherapeutic drug that is a P-glycoprotein substrate.
Another embodiment of the inventive concept is a formulation that includes a polymorph of HM30181 mesylate as described above and a therapeutic drug, where the therapeutic drug is a P-glycoprotein substrate. Such a therapeutic drug can be a chemotherapeutic drug that is used in the treatment of cancer.
Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
The following description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
The inventive subject matter provides a wide range of polymorphisms of HM30181 mesylate and methods for their preparation. The various polymorphisms are shown to be structurally distinct by X-ray diffraction and various physical properties. Polymorphs of HM30181 mesylate with improved pharmacokinetics, reduced incidence of side effects, reduced dosing schedules, etc. can be identified among these by conventional methods (e.g., animal studies, clinical studies, etc.).
One should appreciate that the disclosed techniques provide many advantageous technical effects including improving absorption of chemotherapeutic drugs while maintaining patency of the blood-brain barrier and reducing the incidence of developing drug resistance during cancer treatment.
The following discussion provides many example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
In some embodiments, the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Inventors have identified 1a number of polymorphisms of HM30181 mesylate, including Type A to Type N (see Table 1). Some of the polymorphisms can include metastable solvates. The Inventors believe that one or more of these polymorphs can have improved pharmacokinetics and/or bioavailability relative to prior art formulations of HM30181 mesylate. Inventors believe that such improvements can permit the use of lower doses that reduce or eliminate side effects associated with treatment using prior art formulations of HM30181 mesylate.
A prior art HM30181 mesylate salt monohydrate material (i.e., a starting material) can be synthesized as described in PCT application publication number WO 2005/033097 or U.S. Pat. No. 9,283,218 which are incorporated herein by reference. This starting material was characterized by XRPD, TGA, DSC, and DVS (see below), and was identified as crystalline Type A by XRPD (see
By DSC, HM30181 mesylate Type A displayed an endotherm at 181.41° C. (see
By DVS, HM30181 mesylate Type A was hygroscopic and absorbed 2.26% water from 0-95% RH, with no change in XRPD pattern observed (see
Cyclic DSC to 110° C. of HM30181 mesylate Type A resulted in no XRPD change (see
Solubility of HM30181 mesylate starting material was estimated in solvents (see below), and results are listed in Table 2.
Slurry-based generation and/or screening for HM30181 mesylate polymorphs was performed by preparing slurries of starting material HM30181 mesylate Type A in a variety of solvents and under a variety of conditions as described below. The resulting solids were analyzed by XRPD and identified for physical state. Results are summarized in Table 3 and Table 4.
Slurries of HM30181 mesylate Type A in MeOH generated HM30181 mesylate Type B after 1 week at temperatures of 4° C. to 50° C. (see
Generation and/or screening of HM30181 mesylate polymorphs was also performed by preparing HM30181 mesylate Type A starting material for liquid and solid vapor diffusion as described below. Resulting solids were analyzed by XRPD and identified for physical state. Results are summarized in Table 5, Table 6, and Table 7. Liquid vapor diffusion of MTBE into NMP solution yielded HM30181 mesylate Type D (see
Generation and/or screening of HM30181 mesylate polymorphs by cooling was carried out by treating HM30181 mesylate Type A starting material using gradual or rapid (i.e. crash) cooling as described below. The resulting solids were analyzed by XRPD and identified for physical state. Results are summarized in Table 8. Cooling experiments in acetonitrile and DCM yielded HM30181 mesylate Type C; no significant change was noted on air-drying (see
HM30181 mesylate was also subjected to evaporation methods by treating HM30181 mesylate Type A starting material as described below. The resulting solids were analyzed by XRPD and identified for physical state. Results are shown in Table 9.
Generation and/or screening of HM30181 mesylate polymorphs by treatment with anti-solvents was performed by treating HM30181 mesylate Type A starting material as described below. The resulting solids were analyzed by XRPD and identified for physical state. Results are summarized in Table 10, Table 11, Table 12, and Table 13. Anti-solvent studies in DMSO yielded HM30181 mesylate Type C (see
Large scale studies were performed with HM30181 mesylate Type A starting material on a 200 mg scale as described below. Results are summarized in Table 14. Solids were isolated by vacuum filtration. The wet cakes from filtration from DMA, DMF, and NMP slurries were washed with 1 mL to 2 mL methanol to remove solvents. Solids were then vacuum dried at 80° C. overnight.
At large scale, a slurry of HM30181 mesylate Type A starting material in methanol at ambient conditions generated a mixture of HM30181 mesylate Type B and HM30181 mesylate Type A after 9 days (see
By 1H-NMR, no disproportionation or degradation was detected in HM30181 mesylate Types C, E, F and N polymorphs (see
Characteristics of HM30181 mesylate salt polymorphisms as characterized by XRPD, TGA, DSC, and DVS are summarized below:
Crystalline HM30181 mesylate Type N was obtained after 14-days treatment of HM30181 mesylate Type A starting material as a slurry in methanol at ambient temperature (see
HM30181 mesylate Type C and E forms were further analyzed to determine unit cell dimensions. Unit cell parameters for the Type C polymorph of HM30181 mesylate were calculated using cumulative XRPD spectra, peak identifications for which are shown in Table 15. Notably distinct peaks for HM30181 mesylate Type C are shown in bold and italicized in Table 15. Estimated values of unit cell parameters derived from the Type C polymorph of HM30181 mesylate are shown in Table 16 and are consistent with triclinic P unit cells.
6.4
419.6
0.08
13.7
22.2
8.0
1247.3
0.12
11.0
65.9
Characteristic XRPD peak values for the Type E polymorph are provided in Table 17, where notably distinct peaks are indicated by bolded and italicized numerals. It should be appreciated that these are distinct and different from those of polymorph Type C, indicating that the Type C and Type E polymorphs are distinct and different from one another and that both Type C and Type E polymorphs are distinct and different from the prior art Type A polymorph of HM30181 mesylate.
4.2
458.0
0.15
21.2
43.7
10.4
344.2
0.13
8.5
32.9
10.7
430.1
0.15
8.3
41.1
14.7
685.3
0.26
6.0
65.4
16.8
827.7
0.13
5.3
79.0
21.0
842.3
0.22
4.2
80.4
23.8
272.6
0.26
3.7
26.0
26.6
965.7
0.15
3.3
92.2
27.7
343.3
0.20
3.2
32.8
Unit cell parameters for the Type E polymorph of HM30181 mesylate were calculated using cumulative XRPD spectra. Estimated values of unit cell parameters derived from the Type E polymorph of HM30181 mesylate are shown in Table 18 and are consistent with triclinic P unit cells.
As noted above, HM30181 is an inhibitor of P-glycoprotein, an efflux transport protein that is effective at removing a wide range of therapeutic from cells and forms an important part of the blood brain barrier. While this function is essentially protective, it can adversely impact the use of therapeutic drugs that P-glycoprotein substrates. Examples of drugs that are transported by P-glycoprotein include, but are not limited to, antineoplastic drugs (e.g., docetaxel, etoposide, vincristine), calcium channel blockers (e.g., amlodipine), calcineurin inhibitors (e.g., cyclosporin, tacrolimus), digoxin, macrolide antibiotics (e.g., clarithromycin), and protease inhibitors. Accordingly, HM30181 mesylate can be used to alter the pharmacokinetics of therapeutic drug substrates of P-glycoprotein by reducing efflux of such drugs from the cells of an individual undergoing treatment.
Conventional process for the production of HM30181 provide the Type A polymorph. Inventors have produced and identified a number of other forms of this compound, including Type B, Type C, Type D, Type E, Type F, Type G, Type H, Type I, Type J, Type K, Type L, Type M, and Type N polymorphs of HM30181. As shown above, these are different and distinct from the prior art Type A polymorph and from each other. Inventors believe that these new polymorphs of HM30181 can provide different stabilities and/or pharmacokinetics (e.g., rate of absorption, etc.) than those provided by the prior art Type A polymorph.
Accordingly, another embodiment of the inventive concept is the application of one or more of a Type B, Type C, Type D, Type E, Type F, Type G, Type H, Type I, Type J, Type K, Type L, Type M, and/or Type N polymorph of HM30181 to inhibit P-glycoprotein, and in turn alter the pharmacokinetics of a drug that is a substrate of P-glycoprotein. In some of such embodiments the drug can be a chemotherapeutic drug used in the treatment of cancer.
In such embodiments one or more of a Type B, Type C, Type D, Type E, Type F, Type G, Type H, Type I, Type J, Type K, Type L, Type M, and/or Type N polymorph of HM30181 can be administered in concert with a drug that is a P-glycoprotein substrate to an individual that is in need of treatment for a disease or condition that is responsive to such a drug. In some embodiments a Type B, Type C, Type D, Type E, Type F, Type G, Type H, Type I, Type J, Type K, Type L, Type M, and/or Type N polymorph of HM30181 can be provided as a separate formulation. Alternatively, one or more of a Type B, Type C, Type D, Type E, Type F, Type G, Type H, Type I, Type J, Type K, Type L, Type M, and/or Type N polymorph of HM30181 can be formulated in combination with a drug that is a P-glycoprotein substrate. In a preferred embodiment the disease is cancer, and the drug that is a P-glycoprotein substrate is a chemotherapeutic drug used to treat cancer.
Methods
As noted above, polymorphs of HM30181 mesylate were provided by treatment of a conventional HM30181 mesylate Type A preparation with a variety of solvents, and using a range of techniques. For solubility studies of HM30181 mesylate Type A in a variety of solvents a sample (˜2 mg) of the solid was transferred into a 4-mL glass vial. Solvent was added to the vial in a stepwise fashion, 50 μL per step until 100 μL total volume followed by 100 μL per step until concentration was less than 1.0 mg/mL. Samples were mixed thoroughly after each addition by sonication for 2 minutes and vortexing for 1 minute. Volumes of solvent (V1 and V2) were recorded and used to estimate solubility. Solvents used are summarized below in Table 19.
Screening of polymorphisms of HM30181 mesylate can include preparation of a slurry. Typically, a slurry was prepared by suspending 5 mg to 20 mg of sample in 0.1 mL to 0.5 mL solvent in a 1.5 mL or 3.0 mL glass vial. The suspension a was stirred at target temperature (e.g. 4° C., ambient temperature, 50° C.) at 200 rpm. Solids for X-ray powder diffraction (XRPD) analysis were separated by centrifuging at 14,000 rpm for 5 minutes at ambient temperature. If no solid or gel is obtained, the slurry can be move to a fume hood for evaporation of the solvent.
In some embodiments anti-solvent addition was used. In this method a concentrated stock of compound in solvent is provided and an anti-solvent quickly added to the concentrated solution while stirring to induce precipitation. Solids can be isolated for XRPD analysis using filtration or centrifugation.
In some embodiments reverse anti-solvent addition was used. In this method a concentrated stock of compound in solvent is provided and quickly added to an anti-solvent with stirring to induce precipitation. Solids can be isolated for XRPD analysis using filtration or centrifugation.
In some embodiments slow cooling was used. In this method a concentrated suspension of compound in solvent is provided. This solution was heated to 50° C. and held at 50° C. for at least 30 minutes. The resulting solution or suspension was filtered at 50° C. using a 0.45 micron PTFE filter and the filtrate collected into clean vials. The resulting clear solution was cooled to 5° C. to induce precipitation. Solids were isolated solids for XRPD analysis using filtration or centrifugation.
In some embodiments crash cooling was used. In this method a concentrated suspension of compound in solvent is provided. The suspension was heated to 50° C. and held at 50° C. for at least 30 minutes. The heated solution or suspension was filtered at 50° C. using a 0.45 micron PTFE filter and the filtrate collected into clean vials. The clear solution was cooled to −20° C. to induce precipitation. Solids were isolated for XRPD analysis using filtration or centrifugation.
In some embodiments liquid vapor diffusion was used. In this method a concentrated stock of compound in solvent is provided. This concentrated stock is transferred to an inner vial that is sealed within a larger vial containing anti-solvent. Solids were isolated for XRPD analysis using filtration or centrifugation.
In some embodiments solid vapor diffusion was used. In this method 5-15 mg of sample were weighed into a small (e.g., 3 mL) vial. The vial was placed inside a larger vial (e.g., 20 mL) containing 3- to 4 mL of a volatile solvent. The outer vial was then sealed. This assembly was kept at ambient temperature for 7 days, allowing solvent vapor to interact with the solid, and the resulting product characterized by XRPD.
Unique HM30181 mesylate polymorphisms were characterized by a variety of techniques, including X-ray powder diffraction (XRPD), NMR, and calorimetry. These were performed as follows.
XRPD was performed using a Panalytical X'Pert3™ Powder XRPD and on a Si zero-background holder. The 2θ position was calibrated against a Panalytical™ 640 Si powder standard. Details of XRPD used in the experiments are listed below in Table 20.
Differential Scanning calorimetry (DSC) was performed using a TA Q2000™ DSC from TA Instruments. Temperature was ramped from ambient temperature to desired temperature at a heating rate of 10° C./min using N2 as the purge gas, with pan crimped (see Table 21).
In some studies, a cyclic DSC method was used. In such cycling DSC methods temperature was ramped from ambient to 150° C. at a heating rate of 10° C./min using N2 as the purge gas, then cooled by 10° C. to 25° C. This temperature cycle repeated twice (see Table 22).
Thermogravimetric Analysis (TGA) was performed using a TA Q500™ TGA from TA Instruments. Temperature was ramped from ambient to desired temperature at a heating rate of 10° C./min using N2 as the purge gas, with pan open (see Table 23).
Dynamic Vapor Sorption (DVS) was measured using a SMS (Surface Measurement Systems™) DVS Intrinsic. Parameters for DVS test are listed below in Table 24.
Proton NMR were obtained using a Varian 200M™ NMR in deuterated DMSO (DMSO-d6).
It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refer to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.
This application is a divisional application of U.S. patent application Ser. No. 17/513,448, filed Oct. 28, 2021, which claims the benefit of U.S. Provisional Patent Application No. 63/107,720 filed on Oct. 30, 2020, and Provisional Patent Application No. 63/107,792 filed on Oct. 30, 2020. These and all other referenced extrinsic materials are incorporated herein by reference in their entirety. Where a definition or use of a term in a reference that is incorporated by reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein is deemed to be controlling.
Number | Name | Date | Kind |
---|---|---|---|
9283218 | Kim | Mar 2016 | B2 |
Number | Date | Country |
---|---|---|
2524916 | Nov 2012 | EP |
2007507493 | Mar 2007 | JP |
2013517267 | May 2013 | JP |
2016507489 | Mar 2016 | JP |
2005033097 | Apr 2005 | WO |
2014092489 | Jun 2014 | WO |
2020168144 | Aug 2020 | WO |
2020168144 | Aug 2020 | WO |
2020194175 | Oct 2020 | WO |
Entry |
---|
Finch et al., “P-Glycoprotein and Its Role in Drug-Drug Interactions,” Australian Prescriber, Aug. 2014, pp. 137-139, vol. 37, No. 4. |
Mino R. Caira, “Crystalline Polymorphism of Organic Compounds,” Topics in Current Chemistry, 1998, pp. 163-208, vol. 198. |
Pires et al., “Inhibition of P-Glycoprotein-Mediated Paclitaxel Resistance by Reversibly Linked Quinine Homodimers,” Molecular Pharmacology, Jan. 2009, 17 pages, vol. 75, No. 1. |
International Search Report and Written Opinion in corresponding International Application No. PCT/US2021/057046, dated Feb. 28, 2022, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20240116904 A1 | Apr 2024 | US |
Number | Date | Country | |
---|---|---|---|
63107720 | Oct 2020 | US | |
63107792 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17513448 | Oct 2021 | US |
Child | 18136765 | US |