This application claims priority of EP 06 009 202, which is hereby incorporated by reference in its entirety.
The invention relates to polymorphous crystal modifications of a DPP-IV inhibitor, the preparation thereof and the use thereof for preparing a medicament.
The enzyme DPP-IV, also known by the name CD26, is a serine protease which promotes the cleaving of dipeptides in proteins with a proline or alanine group at the N-terminal end. DPP-IV inhibitors thereby influence the plasma level of bioactive peptides including the peptide GLP-1. Compounds of this type are useful for the prevention or treatment of illnesses or conditions which are associated with an increased DPP-IV activity or which can be prevented or alleviated by reducing the DPP-IV activity, particularly type I or type II diabetes mellitus, prediabetes, or reduced glucose tolerance.
WO 2004/018468 describes DPP-IV inhibitors with valuable pharmacological properties. One example of the inhibitors disclosed therein is 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine.
Within the scope of the present invention it has been found that 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine may take on various polymorphous crystal modifications and that the compound prepared in WO 2004/018468 is present at ambient temperature as a mixture of two enantiotropic polymorphs. The temperature at which the two polymorphs transform into one another is 25±15° C. (see
The pure high temperature form (polymorph A), which can be obtained by heating the mixture to temperatures >40° C., melts at 206±3° C. In the X-ray powder diagram (see
Anhydrous polymorph A may be prepared by
The low temperature form (polymorph B) is obtained by cooling to temperatures <10° C. In the X-ray powder diagram (see
Anhydrous polymorph B may be prepared by
Another polymorph (polymorph C) shows characteristic reflections in the X-ray powder diagram (see
Polymorph C is obtained if
Another polymorph (polymorph D) melts at 150±3° C. This polymorph is obtained if polymorph C is heated to a temperature of 30-100° C. or dried at this temperature.
Finally, there is also polymorph E, which melts at a temperature of 175±3° C. Anhydrous polymorph E is formed if polymorph D is melted. On further heating, polymorph E crystallises out of the melt.
The polymorphs thus obtained may be used in the same way as the mixture of the two polymorphs A and B described in WO 2004/018468 for preparing a pharmaceutical composition which is suitable for treating patients with type I and type II diabetes mellitus, prediabetes or reduced glucose tolerance, with rheumatoid arthritis, obesity, or calcitonin-induced osteoporosis, as well as patients in whom an allograft transplant has been carried out. These medicaments contain in addition to one or more inert carriers at least 0.1% to 0.5%, preferably at least 0.5% to 1.5% and particularly preferably at least 1% to 3% of one of the polymorphs A, B, or C.
The following Examples are intended to illustrate the invention in more detail.
Crude 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine is refluxed with 5 times as much absolute ethanol and the hot solution is filtered clear through activated charcoal. After the filtrate has been cooled to 20° C. and crystallisation has set in, the solution is diluted to double the volume with tert.-butylmethylether. Then the suspension is cooled to 2° C., stirred for 2 hours, suction filtered and dried in the vacuum dryer at 45° C.
Polymorph A melts at 206±3° C. In the DSC diagram another slightly endothermic signal can be seen at approx. 25° C. This is a fully reversible solid-solid phase transition between the two enantiotropic crystal modifications A and B. The form A is the thermodynamically stable modification above this transformation temperature, w| form B is the thermodynamically stable modification below this transformation temperature.
Polymorph B is obtained by cooling form A from Example 1 to temperatures <10° C.
Crude 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine (26 kg) is refluxed with 157 l methanol, combined with 1.3 kg of activated charcoal and after 30 minutes' stirring the mixture is filtered and rinsed with 26 l methanol. 122 l of methanol are distilled off from the filtrate, then the residue is cooled to 45-55° C. 52 l of tert.-butylmethylether are added to the residue over 30 minutes. Then the mixture is stirred for another 60 minutes at 45-55° C. Crystallisation takes place within this time. A further 78 l tert. butylmethylether are added to the suspension over 30 minutes and then it is stirred again for a further 60 minutes at 45-55° C. It is diluted to four times the volume. The suspension is slowly cooled to 15-25° C. and stirred overnight at this temperature. After the suspension has been cooled to 0-5° C. the crystals are suction filtered, washed with 2 batches tert.-butylmethylether and dried at 70° C. in the vacuum dryer.
Polymorph D is obtained if polymorph C from Example 3 is heated to a temperature of 30-100° C. or dried at this temperature.
Anhydrous polymorph E is obtained if polymorph D is melted. On further heating, polymorph E crystallises out of the melt.
In the DSC diagram of form C a whole range of signals can be observed. The strongest signal is the melting point of the anhydrous form A at approx. 206° C., which is produced in the DSC experiment. Before the melting point a number of other endothermic and exothermic signals can be observed. Thus, for example, a very broad and weak endothermic signal can be seen between 30 and 100° C., which correlates with the main loss of weight in thermogravimetry (TR). A TG/IR coupling experiment provides the information that only water escapes from the sample in this temperature range.
An X-ray powder diagram taken of a sample maintained at a temperature of 100° C. shows different X-ray reflections from the starting material, suggesting that form C is a hydrate phase with stoichiometry somewhere in the region of a hemihydrate or monohydrate. The temperature-controlled sample is another anhydrous modification D, which only stable under anhydrous conditions. The D form melts at approx. 150° C. Another anhydrous crystal modification E crystallises from the melt, and when heated further melts at approx. 175° C. Finally, form A crystallises from the melt of form E. Form E is also a metastable crystal modification which occurs only at high temperatures.
Number | Date | Country | Kind |
---|---|---|---|
06009202 | May 2006 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | 16662406 | Oct 2019 | US |
Child | 17363441 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16373971 | Apr 2019 | US |
Child | 16662406 | US | |
Parent | 15725426 | Oct 2017 | US |
Child | 16373971 | US | |
Parent | 15285871 | Oct 2016 | US |
Child | 15725426 | US | |
Parent | 14994578 | Jan 2016 | US |
Child | 15285871 | US | |
Parent | 14462654 | Aug 2014 | US |
Child | 14994578 | US | |
Parent | 13563767 | Aug 2012 | US |
Child | 14462654 | US | |
Parent | 11744700 | May 2007 | US |
Child | 13563767 | US |