The present invention relates to a polynary metal oxide phosphate which comprises vanadium and optionally at least one further metal, to a process for its preparation and to its use for heterogeneously catalyzed gas phase oxidations, preferably heterogeneously catalyzed gas phase oxidations of a hydrocarbon having at least four carbon atoms.
Heterogeneous catalysts based on vanadyl pyrophosphate (VO)2P2O7 (so-called VPO catalysts) are used in the industrial oxidation of n-butane to maleic anhydride, and also in a series of further oxidation reactions of hydrocarbons.
The vanadyl pyrophosphate catalysts are generally prepared as follows: (1) synthesis of a vanadyl hydrogenphosphate hemihydrate precursor (VOHPO4.½ H2O) from a pentavalent vanadium compound (e.g. V2O5), a penta- or trivalent phosphorus compound (e.g. ortho- and/or pyrophosphoric acid, phosphoric esters or phosphorous acid) and a reducing alcohol (e.g. isobutanol), isolation of the precipitate, drying and optionally shaping (e.g. tableting) and (2) preforming the precursor to vanadyl pyrophosphate ((VO)2P2O7) by calcining. Reference is made, for example, to EP-A 0 520 972 and WO 00/72963.
As a result of the use of an alcohol as a reducing agent, generally several % by weight of organic compounds remain included in the precursor and cannot be removed even by careful washing. In the further catalyst preparation, especially in the calcination, these exert an adverse effect on the catalytic properties of the catalyst. For instance, in the subsequent calcination, the risk exists of evaporation or of thermal decomposition of this included organic compound to form gaseous components which can lead to a pressure rise in the interior of the crystals and hence to destruction of the catalyst structure. This adverse effect is particularly marked in the case of calcination under oxidizing conditions, since the formation of the oxidized by-products, for example carbon monoxide or carbon dioxide, forms a significantly greater amount of gas. Furthermore, the oxidation of these organic compounds forms locally very large amounts of heat which can lead to thermal damage of the catalyst.
Moreover, the included organic compounds also have a significant influence on the adjustment of the local oxidation state of the vanadium. For instance, B. Kubias et al. in Chemie Ingenieur Technik 72 (3), 2000, pages 249-251 demonstrate the reducing effect of organic carbon in anaerobic calcination (under nonoxidizing conditions) of a vanadyl hydrogenphosphate hemihydrate precursor obtained from isobutanolic solution. In the example mentioned, anaerobic calcination afforded a mean oxidation state of the vanadium of 3.1, whereas aerobic calcination (under oxidizing conditions) afforded a mean oxidation state of the vanadium of about 4.
To improve the catalytic performance, it has been proposed to add small amounts of oxides of di-, tri- or tetravalent transition metals, known as promoters, to the vanadyl pyrophosphate (cf. G. J. Hutchings, J. Mater. Chem. 2004, 14, 3385-3395; K. V. Narayana et al., Z. Anorg. Allg. Chem. 2005, 631, 25-30). The mode of action of these promoters is to date substantially unexplained.
The literature to date does not include any information about the existence and the catalytic behavior of monophasic polynary vanadium(IV) phosphates which comprise a di-, tri- or tetravalent transition metal other than vanadium.
A mixed-valency vanadium(III,IV) diphosphate, VIII2(VIVO)(P2O7)2, has already been known for some time and also characterized by crystallographic means; cf. S. W. Johnson et al., Inorg. Chem. 1988, 27, 1646-1648. B. G. Golovkin, V. L. Volkov, Russ. J. Inorg. Chem. 1987, 32, 739-741 discloses a further compound which has likewise been described as the diphosphate V3O4(P2O7); however, there is a complete lack of information on its characterization.
It was an object of the present invention to provide novel polynary vanadium oxide phosphates.
It was a further object of the present invention to provide novel polynary vanadium oxide phosphates with catalytic properties for heterogeneously catalyzed gas phase oxidations.
It was a further object of the present invention to provide novel polynary vanadium oxide phosphates with whose aid the catalytic properties of known heterogeneous catalysts based on vanadyl pyrophosphate can be modified.
Further objects of the invention related to the provision of processes for preparing the novel polynary vanadium oxide phosphates and processes for heterogeneously catalyzed gas phase oxidation.
Accordingly, a polynary metal oxide phosphate of the general formula I
MaV4-aOb(PO4)c
has been found, in which
In this application, the X-ray reflections are reported in the form of the interplanar spacings d [Å] which are independent of the wavelength of the X-radiation used. The wavelength λ of the X-radiation used for diffraction and the diffraction angle θ (in this document, the reflection position used is the peak location of a reflection in the 2θ plot) are linked to one another via the Bragg equation as follows:
2 sin θ=λ/d
where d is the interplanar spacing of the atomic three-dimensional arrangement corresponding to the particular reflection.
The powder X-ray diffractogram of the inventive metal oxide phosphate of the formula I is characterized by the reflections listed above. The reflections generally have the approximate relative intensities (Irel [%]) specified in Table 1. Further, generally less intensive reflections of the powder X-ray diffractogram have not been included in Table 1.
Depending on the crystallinity and the texture of the resulting crystals of the inventive metal oxide phosphate, however, there may be enhancement or attenuation of the intensity of the reflections in the powder X-ray diffractogram. The attenuation may be to such an extent that individual reflections in the powder X-ray diffractogram are no longer detectable.
It is self-evident to the person skilled in the art that mixtures of the inventive metal oxide phosphates with other crystalline compounds have additional reflections. Such mixtures of the metal oxide phosphate with other crystalline compounds can be prepared in a controlled manner by mixing the inventive metal oxide phosphate or can be formed in the preparation of the inventive metal oxide phosphates by incomplete conversion of the starting materials or formation of extraneous phases with different crystal structure.
In a preferred embodiment, in the formula I, a is 0. In other preferred embodiments a is from 0.8 to 1.2.
In formula I, b is preferably from 2.8 to 3.2.
In formula I, c is preferably from 2.8 to 3.2.
In formula I, M is a metal selected from Ti, Zr, Hf, Cr, Fe, Co, Ni, Ru, Rh, Pd, Cu, Zn, B, Al, Ga and In, or combinations of two or more of these metals. M is preferably a metal selected from Ti, Cr and Fe.
Particularly preferred inventive metal oxide phosphates have one of the following formulae:
TiV3O3(PO4)3,
V4O3(PO4)3,
CrV3O3(PO4)3 or
FeV3O3(PO4)3.
The inventive metal oxide phosphates are obtainable in various ways.
Firstly, the inventive metal oxide phosphates can be obtained by a solid-state reaction in a closed system. For this purpose, at least two reactants selected from oxygen compounds of vanadium, phosphorus compounds of vanadium and mixed oxygen-phosphorus compounds of vanadium, elemental vanadium, oxygen compounds of the metal M, phosphorus compounds of the metal M and mixed oxygen-phosphorus compounds of the metal M and elemental metal M are reacted.
In this case, the reactants are generally selected such that (i) they provide the desired stoichiometry of the elements in the formula I and (ii) the sum of the products of valency multiplied by frequency of the elements other than oxygen in the reactants corresponds to the sum of the products of valency multiplied by frequency of the elements other than oxygen in the formula I. The starting compounds may be selected such that all elements other than oxygen therein already possess the valency that they possess in the formula I. Alternatively, the starting compounds can be selected such that some or all elements other than oxygen therein possess a valency different from that which they possess in formula I. As a result of redox reactions, for example a synproportionation, during the solid-state reaction, the elements other than oxygen receive the valency which they possess in the formula I. For example, it is possible to use a combination of equivalent amounts of vanadium(III) and vanadium(V) compounds from which tetravalent vanadium forms in the solid-state reaction.
The solid-state reaction proceeds, for example, according to one of the following equations (1) to (3):
VO2+MPO4+(VO)2P2O7→MIIIVIV3O3(PO4)3 (e.g. M=Cr or Fe) (1)
V2O3+MP2O7+VOPO4→MIIIVIV3O3(PO4)3 (e.g. M=Ti) (2)
0.5 V2O5+0.5 VP+2.5 VOPO4→VIIIVIV3O3(PO4)3 (3)
The starting compounds required, in the form of oxides, phosphates, oxide phosphates, phosphides or the like, are either commercially available or known from the literature or can be synthesized easily by the person skilled in the art in analogy to known preparation methods.
The starting materials are mixed intimately, for example by fine trituration. The solid-state reaction is effected typically at a temperature of at least 500° C., for example from 650 to 1100° C., especially about 800° C. Typical reaction times are, for example, from 24 hours to 10 days. Suitable reaction vessels consist, for example, of quartz glass or corundum.
In order to obtain products with a high crystallinity or single crystals, it is appropriately possible in the solid-state reaction to use a suitable mineralizer, such as iodine or PtCl2.
Alternatively, inventive metal oxide phosphates can be prepared by
To this end, a mixture of suitable sources of the elemental constituents of the metal oxide phosphates is used to obtain a very intimate, preferably finely divided, dry mixture of the desired constituent stoichiometry.
The starting compounds can be mixed intimately in dry or in wet form.
When it is effected in dry form, the starting compounds are appropriately used as finely divided powders and, after the mixing and optionally compaction, subjected to calcination (thermal treatment).
However, preference is given to effecting the intimate mixing in wet form, i.e. in dissolved or suspended form. The starting compounds are typically mixed with one another in the form of an aqueous solution (optionally with use of complexing agents) and/or suspension. Subsequently, the aqueous solution or suspension is dried and, after the drying, calcined.
The drying can be effected by evaporation under reduced pressure, by freeze-drying or by conventional evaporation. However, preference is given to effecting the drying process by spray-drying. The exit temperatures are generally from 70 to 150° C.; the spray-drying can be performed in cocurrent or in countercurrent.
Suitable vanadium sources are, for example, vanadyl sulfate hydrate, vanadyl acetylacetonate, vanadates such as ammonium metavanadate, vanadium oxides, for example divanadium pentoxide (V2O5), vanadium dioxide (VO2) or divanadium trioxide (V2O3), vanadium halides, for example vanadium tetrachloride (VCl4) and vanadyl halides, for example VOCl3. Divanadium pentoxide and ammonium vanadate are preferred vanadium sources.
Useful sources for the metal M include all compounds of the elements which are capable of forming oxides and/or hydroxides when heated (optionally in the presence of molecular oxygen, for example under air). Of course, the starting compounds of this type which are used may also partly or exclusively already be oxides and/or hydroxides of the elemental constituents. Oxides, hydroxides and oxide hydroxides of the metal M are preferred sources of the metal M.
Suitable phosphate sources are compounds comprising phosphate groups or compounds from which phosphate groups form by redox reactions and/or in the course of heating (optionally in the presence of molecular oxygen, for example under air). These include phosphoric acids, especially orthophosphoric acid, pyro- or metaphosphoric acids, phosphorous acid, hypophosphorous acid, phosphates or hydrogenphosphates such as diammonium hydrogenphosphate, and elemental phosphorus, for example white phosphorus. The phosphate source is preferably formed at least partly by phosphorous acid or hypophosphorous acid, optionally in combination with orthophosphoric acid.
When the vanadium sources or sources for the metal M used are compounds in which the vanadium or the metal M has a higher valency than it possesses in the formula I (i.e. than the formal valency of V and any M which is required to obtain electrical neutrality with the O2− and PO43− anions present in formula I), reduction equivalents should preferably be provided in order to convert the vanadium and/or the metal M to the valency state that the vanadium and the metal M possess in the formula I.
The reduction equivalents are provided by a reducing agent which is capable of reducing the higher-valency form of the vanadium or of the metal M. The reduction can be effected in the course of preparation of the dry mixture or in the course of calcination at the latest. Preference is given to preparing the intimate dry mixture under inert gas atmosphere (e.g. N2) in order to ensure better control over the oxidation states.
Preferred reducing agents for this purpose are selected from hypophosphorous acid, phosphorous acid, hydrazine (as the free base or hydrate or in the form of its salts such as hydrazine dihydrochloride, hydrazine sulfate), hydroxylamine (as the free base or in the form of its salts such as hydroxylamine hydrochloride), nitrosylamine, elemental vanadium, elemental phosphorus, borane (including in the form of complex borohydrides such as sodium borohydride) or oxalic acid. Phosphorous acid and/or hypophosphorous acid are preferred reducing agents.
It is self-evident that particular reducing agents such as hypophosphorous acid or phosphorous acid can simultaneously serve as the phosphate source, or elemental vanadium simultaneously serves as the vanadium source.
The dry mixture is treated thermally at temperatures of at least 500° C., preferably from 700 to 1000° C., especially about 800° C. The thermal treatment can be effected under an oxidizing, reducing or inert atmosphere. Useful oxidizing atmosphere includes, for example, air, air enriched with molecular oxygen or air depleted of oxygen. However, preference is given to performing the thermal treatment under inert atmosphere, i.e., for example, under molecular nitrogen and/or noble gas. The thermal treatment is typically effected at standard pressure (1 atm). Of course, the thermal treatment can also be effected under reduced pressure or under elevated pressure.
When the thermal treatment is effected under gaseous atmosphere, the latter may either be stationary or flow. It preferably flows. Overall, the thermal treatment may take up to 24 h or more.
The invention further relates to a gas phase oxidation catalyst which comprises at least one inventive polynary metal oxide phosphate. The metal oxide phosphates may be used as such, for example as powders, or in the form of shaped bodies as heterogeneous catalysts.
Preference is given to effecting the shaping by tableting. For tableting, a tableting assistant is generally added to the powder and mixed intimately.
Tableting assistants are generally catalytically inert and improve the tableting properties of the powder, for example by increasing the lubrication and free flow. Suitable and preferred tableting assistants include graphite or boron nitride. The tableting assistants added generally remain in the activated catalyst.
The powder can also be tableted and subsequently comminuted to spall.
The shaping to shaped bodies can, for example, also be effected by applying at least one inventive metal oxide phosphate or mixtures which comprise at least one inventive metal oxide phosphate to a support body.
The support bodies are preferably chemically inert. In other words, they essentially do not intervene in the course of the catalytic gas phase oxidation which is catalyzed by the inventive metal oxide phosphates.
Useful materials for the support bodies include especially aluminum oxide, silicon dioxide, silicates such as clay, kaolin, steatite, pumice, aluminum silicate and magnesium silicate, silicon carbide, zirconium dioxide and thorium dioxide.
The surface of the support body may either be smooth or rough. Advantageously, the surface of the support body is rough, since an increased surface roughness generally causes an increased adhesion strength of the applied active composition coating.
Moreover, the support material may be porous or nonporous. The support material is appropriately nonporous, i.e. the total volume of the pores is preferably less than 1% by volume, based on the volume of the support body.
The thickness of the catalytically active layer is typically from 10 to 1000 μm, for example from 50 to 700 μm, from 100 to 600 μm or from 150 to 400 μm.
In principle, support bodies with any geometric structure are useful. Their longest dimension is generally from 1 to 10 mm. However, preference is given to employing spheres or cylinders, especially hollow cylinders, as support bodies.
In the simplest manner, the coated catalysts can be prepared by preforming metal oxide phosphate compositions of the general formula (I), converting them to finely divided form and finally applying them to the surface of the support body with the aid of a liquid binder. To this end, the surface of the support body is, in the simplest manner, moistened with the liquid binder, and a layer of the active composition is adhered on the moistened surface by contacting it with the finely divided metal oxide phosphate composition. Finally, the coated support body is dried. Of course, the operation can be repeated to achieve a greater layer thickness.
The inventive metal oxide phosphates may also be used in order to modify the catalytic properties, especially conversion and/or selectivity, of known catalysts, especially based on vanadyl pyrophosphate. To this end, the inventive metal oxide phosphates may be used, for example, as a promoter phase in a catalyst based on vanadyl pyrophosphate. Appropriately, the catalyst then comprises a first phase and a second phase in the form of three-dimensional regions which are delimited from their local environment by a different chemical composition, In this case, the first phase comprises a catalytically active material based on vanadyl pyrophosphate and the second phase at least one inventive polynary metal oxide phosphate. In this case, (i) finely divided particles of the second phase may be dispersed in the first phase, or (ii) the first phase and the second phase may be distributed relative to one another as in a mixture of finely divided first phase and finely divided second phase.
These biphasic catalysts can be prepared, for example, by preparing a vanadyl hydrogenphosphate hemihydrate precursor (VOHPO4.½ H2O), admixing it with preformed particles of the second phase of inventive metal oxide phosphate, shaping the resulting material and calcining it. The vanadyl hydrogenphosphate hemihydrate precursor can be obtained in a manner known per se from a compound of pentavalent vanadium (e.g. V2O5), a compound comprising penta- or trivalent phosphorus (e.g. ortho- and/or pyrophosphoric acid, phosphoric ester or phosphorous acid) and a reducing alcohol (e.g. isobutanol), and isolating the precipitate. Reference is made, for example, to EP-A 0 520 972 and WO 00/72963.
The inventive catalysts whose catalytically active composition comprises at least one above-defined metal oxide phosphate may also be combined with catalysts based on vanadyl pyrophosphate in the form of a structured packing. For instance, a gas stream which comprises a hydrocarbon to be oxidized and molecular oxygen can be passed through a bed of a first gas phase oxidation catalyst placed upstream in flow direction of the gas stream and then through one or more downstream beds of a second or further gas phase oxidation catalysts, in which case the first or second or one of the further beds comprises an inventive catalyst.
The invention further relates to a process for partial gas phase oxidation or ammoxidation, in which a gas stream which comprises a hydrocarbon and molecular oxygen is contacted with an inventive catalyst. In the case of ammoxidation, the gas stream additionally comprises ammonia. In the context of the present invention, ammoxidation is understood to mean a heterogeneously catalyzed process in which methyl-substituted alkenes, arenes and hetarenes are converted to nitrites by reaction with ammonia and oxygen in the presence of transition metal catalysts.
In preferred embodiments, the process for partial gas phase oxidation serves to prepare maleic anhydride, in which case the hydrocarbon used comprises at least four carbon atoms.
In the process according to the invention for partial gas phase oxidation or ammoxidation, generally tube bundle reactors are used. Alternatively, it is also possible to use fluidized bed reactors.
Suitable hydrocarbons are generally aliphatic and aromatic, saturated and unsaturated hydrocarbons having at least four carbon atoms, for example 1,3-butadiene, 1-butene, cis-2-butene, trans-2-butene, n-butane, C4 mixtures, 1,3-pentadiene, 1,4-pentadiene, 1-pentene, cis-2-pentene, trans-2-pentene, n-pentane, cyclopentadiene, dicyclopentadiene, cyclopentene, cyclopentane, C5 mixtures, hexenes, hexanes, cyclohexane and benzene. Preference is given to using 1,3-butadiene, 1-butene, cis-2-butene, trans-2-butene, n-butane, benzene or mixtures thereof.
Particular preference is given to the use of n-butane and n-butane-containing gases and liquids. The n-butane used may stem, for example, from natural gas, from steam crackers or FCC crackers.
The hydrocarbon is generally added under quantitative control, i.e. with constant specification of a defined amount per unit time. The hydrocarbon can be metered in in liquid or gaseous form.
Preference is given to metered addition in liquid form with subsequent evaporation before entry into the reactor.
The oxidizing agents used are oxygen-comprising gases, for example air, synthetic air, a gas enriched with oxygen or else so-called “pure” oxygen, i.e. oxygen stemming, for example, from air fractionation. The oxygen-comprising gas is preferably also added under quantitative control.
The gas to be passed through the reactor generally comprises a hydrocarbon concentration of from 0.5 to 15% by volume and an oxygen concentration of from 8 to 25% by volume. The proportion lacking from 100% by volume is composed of further gases, for example nitrogen, noble gases, carbon monoxide, carbon dioxide, steam, oxygenated hydrocarbons (e.g. methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetic acid, propanol, propionaldehyde, propionic acid, acrolein, crotonaldehyde) and mixtures thereof. In the case of selective oxidation of n-butane, the n-butane content in the total amount of hydrocarbon is preferably more than 90% and more preferably more than 95%.
To ensure a long catalyst lifetime and further increase in conversion, selectivity, yield, catalyst hourly space velocity and space-time yield, a volatile phosphorus compound is preferably added to the gas in the process according to the invention.
At the start, i.e. at the reactor inlet, its concentration is at least 0.2 ppm by volume, i.e. 0.2·10−6 parts by volume of the volatile phosphorus compounds based on the total volume of the gas at the reactor inlet. Preference is given to a content of from 0.2 to 20 ppm by volume, particular preference to a content of from 0.5 to 10 ppm by volume.
Volatile phosphorus compounds are understood to mean all of those phosphorus-comprising compounds which are present in gaseous form under the use conditions in the desired concentration. Examples of suitable volatile phosphorus compounds include phosphines and phosphoric esters. Particular preference is given to the C1- to C4-alkyl phosphates, very particular preference to trimethyl phosphate, triethyl phosphate and tripropyl phosphate, especially triethyl phosphate.
The process according to the invention is performed generally at a temperature of from 300 to 500° C. The temperature mentioned is understood to mean the temperature of the catalyst bed present in the reactor which would be present when the process is executed in the absence of a chemical reaction.
When this temperature is not exactly the same at all points, the term means the numerical average of the temperatures along the reaction zone. In particular, this means that the true temperature present over the catalyst, owing to the exothermicity of the oxidation reaction, may also be outside the range mentioned. Preference is given to performing the process according to the invention at a temperature of from 380 to 460° C., more preferably from 380 to 430° C.
The process according to the invention can be executed at a pressure below standard pressure (for example up to 0.05 MPa abs) or else above standard pressure (for example up to 10 MPa abs). This is understood to mean the pressure present in the reactor unit. Preference is given to a pressure of from 0.1 to 1.0 MPa abs, particular preference to a pressure of from 0.1 to 0.5 MPa abs.
The process according to the invention can be performed in two preferred process variants, the variant with “straight pass” and the variant with “recycling”. In “straight pass”, maleic anhydride and any oxygenated hydrocarbon by-products are removed from the reactor effluent and the remaining gas mixture is discharged and optionally utilized thermally. In the case of “recycling”, maleic anhydride and any oxygenated hydrocarbon by-products are likewise removed from the reactor effluent, the remaining gas mixture which comprises unconverted hydrocarbon is recycled fully or partly to the reactor. A further variant of “recycling” is the removal of the unconverted hydrocarbon and the recycling thereof to the reactor.
In a particularly preferred embodiment for preparation of maleic anhydride, n-butane is used as the starting hydrocarbon and the heterogeneously catalyzed gas phase oxidation is performed in “straight pass” over the inventive catalyst.
The present invention is illustrated in detail by the appended figures and the examples which follow.
For the X-ray diffraction analyses by Guinier technology, an FR-552 camera (from Nonius, Delft) was utilized using image plate film (Y. Amemiya, J. Miyahara, NATURE 1988, 336, 89-90) (CuKα1 radiation, λ=1.54051 Å, α-quartz monochromator, α-SiO2 as the internal standard). See K. Maaβ, R. Glaum, R. Gruehn, Z. anorg. Allg. Chem. 2002, 628, 1663-1672.
All other X-ray diffraction analyses are based on X-ray diffractograms obtained using Cu-Kα radiation (λ=1.54178 Å) as X-radiation (Theta-Theta D-5000 Siemens diffractometer, tube voltage: 40 kV, tube current: 40 mA, aperture V20 (variable), collimator V20 (variable), secondary monochromator aperture (0.1 mm), detector aperture (0.6 mm), measurement interval (2θ): 0.02 [°], measurement time per step: 2.4 s, detector: scintillation counting tube).
A. Preparation of the Metal Oxide Phosphates of the Formula I
First, VO2 was prepared by synproportionation of V2O5 (p.a., Merck Eurolap GmbH, Darmstadt, Germany) and V2O3 (from the reduction of V2O5 with hydrogen at 1073 K [G. Brauer, A. Simon in Handbuch der Präparativen Anorganischen Chemie [Handbook of Preparative Inorganic Chemistry], G. Brauer (ed.), Ford. Enke Verlag, Stuttgart 1981, p. 1419]) in enclosed silica glass ampoules at 1073 K with addition of 80 mg of iodine as a mineralizer. As further reactants VPO4 (R. Glaum, R. Gruehn, Z. Kristallogr. 1992, 198, 41-47) and (VO)2P2O7 were synthesized. The pyrophosphate was obtained by heating VO(HPO4).½ H2O in an argon stream at 1073 K (J. W. Johnson, D. C. Johnston, A, J. Jacobson, J. F. Brody, J. Amer. Chem. Soc. 1984, 106, 8123-8128). Vanadyl hydrogenphosphate hemihydrate had been precipitated beforehand by boiling V2O5 and H3PO4 (85% p.a., Merck Eurolap GmbH, Darmstadt, Germany) in n-butanol under reflux.
Finally, the title compound was obtained by reacting 63.9 mg of VO2, 112.4 mg of VPO4 and 237.0 mg of (VO)2P2O7. To this end, the reactants were triturated finely in an Achat mortar, pressed to a tablet and heated in a closed evacuated silica glass ampoule at 1073 K for five days. Use of a corundum crucible prevented reaction of the tablet with the ampoule wall.
The table which follows reports selected characteristic X-ray reflections, as obtained by evaluating a Guinier image (
By means of DTA, the melting point of the title compound was determined to be 1180 K. Isothermal heating of reactant mixtures of VO2, VPO4 and (VO)2P2O7 just below the melting point of the title compound with addition of a few mg of PtCl2 as a mineralizer led to the formation of black isometric crystals having edge lengths up to 0.2 mm. With reference to single crystal data, the space group F2dd (No. 43) Z=24, a=7.2596(8) Å, b=21.786(2) Å, c=38.904(4) Å was determined.
First, β-CrPO4 was prepared by evaporatively concentrating an aqueous solution of stoichiometric amounts of Cr(NO3)3.9H2O (Sigma Aldrich Laborchemikalien GmbH, Riedel-de Haen Brand, Seelze, Germany) and NH4H2PO4 (p.a., Merck Eurolap GmbH, Darmstadt, Germany) and subsequent heating of the dry residue at 1273 K under air according to the instructions in J.-P. Attfield, P. D. Battle, A. K. Cheetham, J. Solid State Chem. 1985, 57, 357-361.
Thereafter, 45.8 mg of VO2, 81.2 mg of β-CrPO4 and 170 mg of (VO)2P2O7 were triturated finely in an Achat mortar, pressed to a tablet and heated in a closed evacuated silica glass ampoule at 753 K for 24 hours and then at 1073 K for five days.
The table which follows reports selected characteristic X-ray reflections, as obtained by evaluating a Guinier image (
First, FePO4 was prepared by evaporatively concentrating an aqueous solution of stoichiometric amounts of Fe(NO3)3.9H2O (p.a., Merck Eurolap GmbH, Darmstadt, Germany) and NH4H2PO4 (p.a., Merck Eurolap GmbH, Darmstadt, Germany) and subsequently heating the dry residue at 1273 K under air.
Thereafter, 71.0 mg of VO2, 132.9 mg of FePO4 and 263.8 mg of (VO)2P2O7 were triturated finely in an Achat mortar, pressed to a tablet and heated in a closed evacuated silica glass ampoule at 753 K for 24 hours and then at 1000 K for six days.
The table which follows reports selected characteristic X-ray reflections, as obtained by evaluating a Guinier image (
First, TiP2O7 was prepared by thermal degradation of Ti(HPO4)2.H2O at a temperature rising gradually up to 1073 K. Ti(HPO4)2.H2O was prepared by hydrolyzing TiO2 (technical-grade, Sigma Aldrich Laborchemikalien GmbH, Riedel-de Haen Brand, Seelze, Germany) in concentrated phosphoric acid (85% ultrapure, Merck Eurolap GmbH, Darmstadt, Germany) according to the instructions in S. Bruque, Miguel A. G. Aranda, Enrique R. Losilla, Pascual O.- Pastor and P. Maireles-Torres, Inorg. Chem., 1995, 34, 893-899.
To prepare the title compound, 75.9 mg of TiP2O7, 52.3 mg of V2O3 and 55.9 mg of VOPO4 were introduced into a small corundum crucible. This was melted into an evacuated ampoule together with 25 mg of PtCl2 as a mineralizer and heated at 753 K for 24 hours and then at 1000 K for six days.
The table which follows reports selected characteristic X-ray reflections, as obtained by evaluating a Guinier image (
Into a glass reactor purged with flowing nitrogen were introduced 2,5 l of water, 727.5 g of V2O5 [>99%, 8 mol, calculated as V] (GfE Umwelttechnik GmbH, Nuremberg, Germany), 115.3 g of H3PO4 [85%, 1 mol, calculated as P] (Sigma Aldrich, Seelze, Germany) and 820.0 g of H3PO3 [50%, 5 mol, calculated as P] (Sigma Aldrich, Seelze, Germany). The mixture was heated to 90° C. with vigorous stirring and stirred at this temperature for 2 hours. Under a nitrogen atmosphere, the suspension thus prepared was dried by means of a spray drier (Mobile Minor™ 2000, MM, from Niro A/S, Soborg, Denmark, entrance temperature: 330° C., exit temperature: 107° C.). The resulting solid was calcined at 800° C. for two hours in a nitrogen atmosphere in a rotary quartz glass tube with a capacity of 1 l.
The resulting powder had a specific BET surface area of 3.0 m2/g. A powder X-ray diffractogram of the resulting powder was recorded. The following 2θ values with the accompanying intensities I and interplanar spacings d were determined from the powder X-ray diffractogram (
Into a glass reactor purged with flowing nitrogen were introduced 2.5 l of water, 272.8 g of V2O5 [>99%, 3 mol, calculated as V] (GfE Umwelttechnik GmbH, Nuremberg, Germany), 100.0 g of CrO3 [>99%, 1 mol, calculated as Cr] (Sigma Aldrich, Seelze, Germany) and 492.0 g of H3PO3 [50%, 3 mol, calculated as P] (Sigma Aldrich, Seelze, Germany). This mixture was heated to 90° C. with vigorous stirring and stirred at this temperature for 2 hours. Under a nitrogen atmosphere, the suspension thus prepared was dried by means of a spray drier (Mobile Minor™ 2000, MM, from Niro A/S, Soborg, Denmark, entrance temperature: 330° C., exit temperature: 107° C.). The resulting solid was dried at 775° C. for two hours in a nitrogen atmosphere in a rotary quartz tube with a capacity of 1 l.
The resulting powder had a specific BET surface area of 1.0 m2/g. A powder X-ray diffractogram of the resulting powder was recorded. The following 2θ values with their accompanying intensities I and interplanar spacings d was determined from the powder X-ray diffractogram.
Into a glass reactor purged with flowing nitrogen were introduced 6.01 of water, 750.0 g of V2O5 [>99%, 8.25 mol, calculated as V] (GfE Umwelttechnik GmbH, Nuremberg, Germany), 257.1 g of FeOOH [95%, 2.75 mol, calculated as Fe] (Sicopur® Gelb, BASF, Germany) and 475.4 g of H3PO4 [85%, 4.12 mol, calculated as P] (Sigma Aldrich, Seelze, Germany) and 676.2 g of H3PO3 [50%, 4.12 mol, calculated as P] (Sigma Aldrich, Seelze, Germany). This mixture was heated to 90° C. with vigorous stirring and stirred at this temperature for 2 hours. Under a nitrogen atmosphere, the suspension thus prepared was dried by means of a spray drier (Mobile Minor™ 2000, MM, from Niro A/S, Soborg, Denmark, entrance temperature: 330° C., exit temperature: 107° C.). The resulting solid was calcined at 600° C. for two hours and then at 800° C. for two hours in a nitrogen atmosphere in a rotary quartz tube having a capacity of 1 l.
The resulting powder had a specific BET surface area of 0.7 m2/g. A powder X-ray diffractogram of the resulting powder was recorded (
B Catalyst Test of Catalysts A1, A2 and A3 by Means of Selective Oxidation of n-butane or 1-butene in the Gas Phase
Catalysts A1, A2 and A3 were pressed to tablets in a tableting machine and then comminuted to granules (spall) having a diameter in the range from 1.6 to 2.0 mm.
From the bottom upwards, in each case a reactor consisting of a reaction tube with an internal width of 13 mm and a length of 100 cm was charged with a preliminary bed of 5 cm of steatite spheres having a diameter of 2 mm and 85 cm of spall of catalyst A1, A2 or A3. In the tests for the oxidation of 1-butene, the catalyst was blended with 88% by volume (A1), 75% by volume (A2) or 50% by volume (A3) of inert material (steatite spheres). For temperature control, the reaction tube was surrounded by an electrical heating jacket. In addition, the reaction tube comprised an integrated thermoelement with a diameter of 3.17 mm for temperature measurement on the catalyst. In each case from the top downward, a gas mixture of the composition n-butane-air or 1-butene-air (1% by volume in air) was passed through the tube. The gas phase oxidation proceeded at the temperature specified in the table below. Directly downstream of the reactor, gaseous product was withdrawn and analyzed by gas chromatography. The results obtained are as follows:
Selective oxidation of 1-butene
Selective oxidation of n-butane
Definitions:
GHSV (Gas Hourly Space Velocity)=Vinput gas mixture/(Vcatalyst.t)
Conversion X=(nHC,reactor in−nHC,reactor out)/nHC, reactor in
Selectivity S=nMA,reactor out/(nHC,reactor in−nHC,reactor out)
Yield Y=X.S
nMA: amount of maleic anhydride produced [mol]
nHC: amount of hydrocarbon at the reactor inlet or reactor outlet [mol]
Vcatalyst: bed volume of the catalyst [1]
t: unit time [h]
Vinput gas mixture: volume of the input gas mixture normalized to 0° C. and 0.1013 MPa [1 (STP)] (theoretical parameter. When the input gas mixture or a constituent thereof is present in the liquid or solid phase under these conditions, the hypothetical gas volume is calculated via the ideal gas law.)
Number | Date | Country | Kind |
---|---|---|---|
10 2007 012 725.3 | Mar 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/052950 | 3/12/2008 | WO | 00 | 9/15/2009 |