Punt et al. A twin reporter vector for simultaneous analysis of expression signals of divergently transcribed, contiguous genes in filamentous fungi. Gene 104: 119-122, 1991.* |
Balhadere PV, Talbot NJ. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell Sep. 2001;13(9):1987-2004. |
Ikeda K, Nakayashiki H, Takagi M, Tosa Y, Mayama S. Heat shock, copper sulfate and oxidativ stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporth grisea. Mol Genet Genomics 2001;266:318-325. |
Kang S, Lebrun MH, Farrall L, Valent B. Gain of virulence caused by insertion of a Pot transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact 200 May;14(5):671-674. |
Liu ZM, Kolattukudy PE. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachmen J Bacteriol Jun. 1999; 181(11):3571-3577. |
Urban M, Bhargava, T, Hamer JE. An ATP-driven efflux pump is a novel patogenicity factor in rice blast disease. EMBO J Feb. 1, 1999; 18(3):512-521. |
Lauge R, De Wit PJ. Fungal avirulence genes: structure and possible functions. Fungal Genet Biol Aug. 1998;24(3):285-297. |
Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 1996 No. 1;10(21):2696-706. |
Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact Nov.-Dec. 1995;8(6):939-948. |
Lebrun M-H, Chumley F, Valent B. Molecular analysis of spontaneous mutations in Magnaporthe grisea. Fungal Genetics News Letter 1994;41 A:52. |
Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell Nov. 1993;5(11):1575-1590. |
Langin et al., “Influence of biological parameters and gene transfer technique on transformation of Fusarium oxysporum”, Current Genetics (1990) 17:313-319. |
Durand et al., “Transformation of Penicillium roqueforti to phleomycin- and to hygromycin B-resistance”, Current Genetics (1991) 19:149-153. |
Dobinson et al., “The ebb and flow of a fungal genome”, Trends in Microbiology 348, vol. 1 No. 9, Dec. 1993. |
Kachroo et al., “Pot2, an inverted repeat transposon from the rice blast fungus Magnaporthe grisea”, Mol Gen Genet (1994) 245:339-348. |
Daboussi et al., “Transposable elements in the fungal plant pathogen Fusarium oxysporum”, Genetica 93:49-59, 1994. |
Langin et al., “The transposable element impala, a fungal member of the Tc1-mariner superfamily”, Mol Gen Genet (1995) 246:19-28. |
Farman et al., “The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3′ end o an inverted repeat transponson”, Mol Gen Genet (1996) 251:675-681. |
Daboussi, “Fungal transposable elements: generators of diversity and genetic tools”, J. Genet, vol. 75, No. 3, Dec. 1996, pp. 325-339. |
Kachroo et al., “Organisation and molecular analysis of repeated DNA sequences in the rice blast fungus Magnaporthe grisea”, Curr Genet (1997) 31:361-369. |
Hua-Van et al., “Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum”, Mol Gen Genet (1998) 259: 354-362. |
Brown et al., “Insertional mutagensis of pathogenic fungi”, (1998) 390-394; XP-000856194. |