Polyolefin adhesive compositions and articles made therefrom

Information

  • Patent Grant
  • 7700707
  • Patent Number
    7,700,707
  • Date Filed
    Thursday, April 15, 2004
    20 years ago
  • Date Issued
    Tuesday, April 20, 2010
    14 years ago
Abstract
Embodiments of the present invention relate to article comprising 1) a functionalized component, 2) tackifier, and 3) an olefin polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 5 mole % of ethylene having a Dot T-Peel of 1 Newton or more, a branching index (g′) of 0.95 or less measured at the Mz of the polymer; and an Mw of 100,000 or less; where the functional component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.
Description
FIELD OF THE INVENTION

This invention relates to adhesives comprising: 1) functionalized component 2) olefin polymers of C3-40 olefins having a Dot T-Peel of 1 Newton or more, a branching index (g′) of 0.95 or less measured at the z-average molecular weight (Mz) of the polymer, a weight average molecular weight (Mw) of 100,000 or less or a branching index (g′) of 0.98 or less measured at the z-average molecular weight (Mz) of the polymer, a weight average molecular weight (Mw) of 30,000 or less, where the functionalized component is selected from the group consisting of functionalized components, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.


BACKGROUND OF THE INVENTION

There is a need in the art for adhesives that are heat stable and low in color. This invention provides such an adhesive, particular one that provides high and low temperature performance.


SUMMARY OF THE INVENTION

This invention relates to adhesives comprising 1) functionalized component and 2) an olefin polymer comprising one or more C3 to C40 olefins where the olefin polymer has:

    • a) a Dot T-Peel of 1 Newton or more on Kraft paper;


      a branching index (g′) of 0.95 or less measured at the Mz of the polymer;


      a Mw of 10,000 to 100,000; and


      a heat of fusion of 1 to 70 J/g;


      where the functional component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and


      where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.


This invention relates to adhesives comprising 1) functionalized component and 2) an olefin polymer comprising one or more C3 to C40 olefins where the olefin polymer has:

    • a) a Dot T-Peel of 1 Newton or more on Kraft paper;
    • b) a branching index (g′) of 0.98 or less measured at the Mz of the polymer;
    • c) a Mw of 10,000 to 60,000;
    • d) a heat of fusion of 1 to 50 J/g;


      where the functional component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.







DETAILED DESCRIPTION

By “functionalized polymer” is meant that the polymer is contacted with a functional group, and optionally a catalyst, heat, initiator, or free radical source to cause all or part of the functional group to incorporate, graft, bond to, physically attach to, and or chemically attach to the polymer. In addition, “functionalized component” is also defined to include polymer directly polymerized from monomers (or using initiatior having a functional group) where the polymer has a functional group at a chain end.


By “functionalized oligomer” is meant that the oligomer is contacted with a functional group, and optionally a catalyst, heat, initiator, or free radical source to cause all or part of the functional group to incorporate, graft, bond to, physically attach to, and or chemically attach to the oligomer. In addition, “functionalized oligomer” is also defined to include polymer directly oligomerized from monomers (or using initiatior having a functional group) where the oligomer has a functional group at a chain end.


By “functional group” is meant any compound with a weight average molecular weight of 1000 or less that contains a heteroatom and or an unsaturation. Preferably the functional group is a compound containing a heteroatom, such as maleic anhydride. Preferred functional groups include organic acids, organic amides, organic amines, organic esters, organic anhydrides, organic alcohols, organic acid halides (such as acid chlorides, acid bromides, etc.) organic peroxides, and salts thereof.


For purposes of this disclosure, the term oligomer refers to compositions having 2-40 mer units and the term polymer refers to compositions having 41 or more mer units. A mer is defined as a unit of an oligomer or polymer that originally corresponded to the monomer(s) used in the oligomerization or polymerization reaction. For example, the mer of polyethylene would be ethylene.


For purposes of this invention, beta nucleating agents are defined to be materials that cause at least 5% beta crystallization of the crystallization that occurs (Kvalue of 0.05 or more) in the composition as measured by the following procedure:


Determination of beta-form crystal content by X-ray method:


A sample of the adhesive is subjected to X-ray diffraction and a K value is obtained by the following equation:

Kvalue=(Hb1)divided by(Hb1+Ha1,+Ha2+Ha3),

where:


Hb1 is a reflection intensity (height) on (300) plane of beta-form crystal;


Ha1 is a reflection intensity (height) on (110) plane of alpha-form crystal;


Ha2 is a reflection intensity (height) on (040) plane of alpha-form crystal; and


Ha3 is a reflection intensity (height) on (130) plane of alpha-form crystal.


In a preferred embodiment the adhesives prepared herein have a Kvalue of 0.05 or more, preferably 0.10 or more, preferably 0.15 or more, preferably 0.20 or more, preferably 0.25 or more, preferably 0.30 or more, preferably 0.35 or more, preferably 0.40 or more, preferably 0.45 or more, preferably 0.50 or more, preferably 0.55 or more, preferably 0.60 or more, preferably 0.65 or more, preferably 0.70 or more, preferably 0.75 or more, preferably 0.80 or more, preferably 0.85 or more, preferably 0.90 or more, preferably 0.95 or more, preferably 1.0.


For the purposes of this invention and the claims thereto and for ease of reference when a polymer is referred to as comprising an olefin, the olefin present in the polymer is the polymerized form of the olefin. For ease of reference amorphous polypropylene is abbreviated aPP, isotactic polypropylene is abbreviated iPP, syndiotactic polypropylene is abbreviated sPP, semi-crystalline polypropylene is abbreviated scPP, and “-g-” indicates that the components are grafted.


In a preferred embodiment the functionalized component is present at 0.005 to 99 weight %, preferably 0.01 weight % to 99 weight %, preferably 0.05 to 90 weight %, preferably between 0.1 and 75 weight %, more preferably between 0.5 and 60 weight %, more preferably between 1 and 50%, more preferably between 1.5 and 40 weight %, more preferably between 2 and 30%, more preferably between 2 and 20 weight %, more preferably between 2 and 15%, more preferably between 2 and 10%, more preferably between 2 and 5%, based upon the weight of the blend. Preferably the functionalized component is present at 0.005 to 10 weight %, more preferably 0.01 to 10 weight %, based upon the weight of the blend.


In a preferred embodiment, the C3 to C40 Olefin polymer is present in the adhesive blend at 1 to 99.005 weight %, preferably 1 weight % to 99.09 weight %, preferably 10 to 99.05 weight %, preferably between 25 and 99.9 weight %, more preferably between 40 and 99.5 weight %, more preferably between 50 and 99 weight %, more preferably between 60 and 98.5 weight %, more preferably between 70 and 98 wt %, more preferably between 80 and 98 weight %, more preferably between 85 and 98 wt %, more preferably between 90 and 98 wt %, more preferably between 95 and 98%, based upon the weight of the blend.


In a preferred embodiment, this invention relates to adhesives comprising 1) functionalized component and 2) a homopolypropylene or a copolymer of propylene and up to 5 mole % ethylene having:

    • a) an isotactic run length of 1 to 30 (isotactic run length “IRL” is defined to be the percent of mmmm pentad divided by 0.5× percent of mmmr pentad) as determined by Carbon 13 NMR, preferably 3 to 25, more preferably 4 to 20,
    • b) a percent of r dyad of greater than 20%, preferably from 20 to 70% as determined by Carbon 13 NMR, and
    • c) a heat of fusion of 70 J/g or less, preferably 60 J/g or less, more preferably between 1 and 55 J/g, more preferably between 4 and 50 J/g.


In another embodiment this invention relates to adhesives comprising 1) functionalized component and 2) an olefin polymer comprising one or more C3 to C40 olefins, preferably propylene, and, in some embodiments, less than 15 mole % of ethylene (preferably less than 5 mole % ethylene), having:

    • a) a Dot T-Peel between 1 Newton and the 10,000 Newtons on kraft paper;
    • b) a Mz/Mn of 2 to 200; and
    • c) an Mw of X and a g′ of Y (measured at the Mz of the polymer) according to the following Table C:










TABLE C





X (Mw)
Y (g′)







100,000 or less, preferably 80,000 or less, preferably 70,000 or
0.9 or less,


less, more preferably 60,000 or less, more preferably 50,000 or
preferably 0.7 or


less, more preferably 40,000 or less, more preferably 30,000 or
less


less, more preferably 20,000 or less, more preferably 10,000 or
Preferably


less. In some embodiments X is also at least 7000, more
between 0.5-0.9


preferably 10,000, more preferably at least 15,000.


75,000 or less, preferably 70,000 or less, more preferably
0.92 or less,


60,000 or less, more preferably 50,000 or less, more preferably
preferably, 0.6 or


40,000 or less, more preferably 30,000 or less, more preferably
less


20,000 or less, more preferably 10,000 or less. In some
preferably


embodiments A is also at least 1000, preferably at least 2000,
between


more preferably at least 3000, more preferably at least 4000,
0.4-0.6-


more preferably at least 5000, more preferably at least 7000,


more preferably 10,000, more preferably at least 15,000.


50,000 or less, more preferably 40,000 or less, more preferably
0.95 or less,


30,000 or less, more preferably 20,000 or less, more preferably
preferably 0.7 or


10,000 or less. In some embodiments A is also at least 1000,
less


preferably at least 2000, more preferably at least 3000, more
preferably


preferably at least 4000, more preferably at least 5000, more
between


preferably at least 7000, more preferably 10,000, more
0.5-0.7-


preferably at least 15,000.


50,000 or less, preferably 25,000 or less, more preferably
0.98 or less


30,000 or less, more preferably 15,000 or less, more preferably
preferably


10,000 or less. In some embodiments A is also at least 1000,
between 0.7-0.98


preferably at least 2000, more preferably at least 3000, more


preferably at least 4000, more preferably at least 5000, more


preferably at least 7000, more preferably 10,000, more


preferably at least 15,000.










C3 to C40 Olefin Polymers


Preferred olefin polymers (also called “POA's” or “POA polymers”) useful in this invention are those described in U.S. Ser. No. 10/686,951, filed Oct. 15, 2003 and U.S. Ser. No. 10/687,508, filed Oct. 15, 2003, which are incorporated by reference herein. In particular, pages 23 to 91 of U.S. Ser. No. 10/686,951 and pages 22 to 168 of U.S. Ser. No. 10/687,508 provide specific instruction on how to produce the olefin polymers useful herein. In general preferred POA's comprise a polypropylene prepared utilizing two or more catalysts (typically metallocene catalysts), wherein one catalyst is selected as being capable of producing essentially atactic polypropylene (aPP), and the other metallocene catalyst is selected as being capable of producing isotactic polypropylene (iPP) under the polymerization conditions utilized. Preferably, under the polymerization conditions utilized, incorporation of aPP and iPP polymer chains may occur within the in-reactor blend such that an amount of amorphous polypropylene present in the POA polymer is grafted to isotactic polypropylene, represented herein as (aPP-g-IPP) and/or such that an amount of isotactic polypropylene present in the POA polymer is grafted to amorphous polypropylene, represented herein as (iPP-g-aPP).


In another embodiment, when Mw of the POA is between 15,000 and 100,000, then the g′<(10−12 Mw2-10−6 Mw+1.0178).


In a some embodiments the g′ of the POA is 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, measured at the Mz of the polymer.


In another embodiment the POA has a peak melting point (Tm) between 40 and 250° C., or between 60 and 190° C., or between about 60 and 150° C., or between 80 and 130° C. In some embodiments the peak melting point is between 60 and 160° C. In other embodiments the peak melting point is between 124-140° C. In other embodiments the peak melting temperature is between 40-130° C.


In another embodiment the POA has a viscosity (also referred to a Brookfield Viscosity or Melt Viscosity) of 90,000 mPa·sec or less at 190° C. (as measured by ASTM D 3236 at 190° C.; ASTM=American Society for Testing and Materials); or 80,000 or less, or 70,000 or less, or 60,000 or less, or 50,000 or less, or 40,000 or less, or 30,000 or less, or 20,000 or less, or 10,000 or less, or 8,000 or less, or 5000 or less, or 4000 or less, or 3000 or less, or 1500 or less, or between 250 and 6000 mPa·sec, or between 500 and 5500 mPa·sec, or between 500 and 3000 mPa·sec, or between 500 and 1500 mPa·sec, and/or a viscosity of 8000 mPa·sec or less at 160° C. (as measured by ASTM D 3236 at 160° C.); or 7000 or less, or 6000 or less, or 5000 or less, or 4000 or less, or 3000 or less, or 1500 or less, or between 250 and 6000 mPa·sec, or between 500 and 5500 mPa·sec, or between 500 and 3000 mPa·sec, or between 500 and 1500 mPa·sec. In other embodiments the viscosity is 200,000 mPa·sec or less at 190° C., depending on the application. In other embodiments the viscosity is 50,000 mPa·sec or less depending on the applications.


In another embodiment the POA has a heat of fusion of 70 J/g or less, or 60 J/g or less, or 50 J/g or less; or 40 J/g or less, or 30 J/g or less, or 20 J/g or less and greater than zero, or greater than 1 J/g, or greater than 10 J/g, or between 20 and 50 J/g.


In another embodiment the POA also has a Shore A Hardness (as measured by ASTM 2240) of 95 or less, 70 or less, or 60 or less, or 50 or less, or 40 or less or 30 or less, or 20 or less. In other embodiments the Shore A Hardness is 5 or more, 10 or more, or 15 or more. In certain applications, such as packaging, the Shore A Hardness is preferably 50-85. In another embodiment, the polymer has a Shore A hardness of 20-90.


In another embodiment the POA has an Mz/Mn of 2 to 200, preferably 2 to 150, preferably 10 to 100.


In another embodiment the POA has a Shear Adhesion Fail Temperature (SAFT—as measured by ASTM 4498) of 200° C. or less, or of 40 to 150° C., or 60 to 130° C., or 65 to 110° C., or 70-80° C. In certain embodiments SAFT's of 130-140° C. are preferred. In other embodiments, SAFT's of 100-130° C. are preferred. In other embodiments, SAFT's of 110-140° C. are preferred.


In another embodiment the POA also has a Dot T-Peel on Kraft paper of between 1 Newton and 10,000 Newtons, or 3 and 4000 Newtons, or between 5 and 3000 Newtons, or between 10 and 2000 Newtons, or between 15 and 1000 Newtons. Dot T-Peel is determined according to ASTM D 1876, as described below.


In another embodiment the POA has a set time of several days to 1 second, or 60 seconds or less, or 30 seconds or less, or 20 seconds or less, or 15 seconds or less, or 10 seconds or less, or 5 seconds or less, or 4 seconds or less, or 3 seconds or less, or 2 seconds or less, or 1 second or less.


In another embodiment the POA has an Mw/Mn of 2 to 75, or 4 to 60, or 5 to 50, or 6 to 20.


In another embodiment the POA has an Mz of 1,000,000 or less, preferably 15,000 to 1,000,000, or 20,000 to 800,000, or 25,000 to 350,000.


In another embodiment the POA has a strain at break (as measured by ASTM D-1708 at 25° C.) of 50 to 1000%, preferably 80 to 200%. In some other embodiments the strain at break is 100 to 500%.


In another embodiment, the POA has a tensile strength at break (as measured by ASTM D-1708 at 25° C.) of 0.5 MPa or more, alternatively 0.75 MPa or more, alternatively 1.0 MPa or more, alternatively 1.5 MPa or more, alternatively 2.0 MPa or more, alternatively 2.5 MPa or more, alternatively 3.0 MPa or more, alternatively 3.5 MPa or more.


In another embodiment the POA has a crystallization point (Tc) between 20 and 110° C. In some embodiments the Tc is between 70 to 100° C. In other embodiments the Tc is between 30 to 80° C. In other embodiments the Tc is between 20 to 50° C.


In some embodiment the POA has a slope of −0.1 or less, preferably −0.15 or less, more preferably −0.25 or less in the trace of complex viscosity versus temperature as shown in FIG. 1 (as measured by ARES dynamic mechanical spectrometer operating at a frequency of 10 rad/s, with a strain of 20% under a nitrogen atmosphere, and a cooling rate of 10° C./min) over the range of temperatures from Tc+10° C. to Tc+40° C. The slope is defined as a derivative of log (complex viscosity) with respect to temperature.


In another embodiment the POA has a Tc that is at least 10° C. below the Tm, preferably at least 20° C. below the Tm, preferably at least 30° C. below the Tm, more preferably at least 35° C. below the Tm.


In another embodiment some olefin POA's have a melt index ratio (I10/I2) of 6.5 or less, preferably 6.0 or less, preferably 5.5 or less, preferably 5.0 or less, preferably 4.5 or less, preferably between 1 and 6.0. (I10 and I2 are measured according to ASTM 1238 D, 2.16 kg, 190° C.).


In another embodiment some olefin POA's have a melt index (as determined by ASTM 1238 D, 2.16 kg, 190 deg. C.) of 25 dg/min or more, preferably 50 dg/min or more, preferably 100 dg/min or more, more preferably 200 dg/min or more, more preferably 500 dg/mn or more, more preferably 2000 dg/min or more.


In another embodiment the POA has a range of crystallization of 10 to 60° C. wide, preferably 20 to 50° C., preferably 30 to 45° C. in the DSC traces. In DSC traces where there are two or more non-overlapping peaks, then each peak has a range of crystallization of 10 to 60° C. wide, preferably 20 to 50° C., preferably 30 to 45° C. in the DSC traces.


In another embodiment the POA has a molecular weight distribution (Mw/Mn) of at least 2, preferably at least 5, preferably at least 10, even more preferably at least 20.


In another embodiment the POA may have a unimodal, bimodal, or multimodal molecular weight distribution (Mw/Mn) distribution of polymer species as determined by Size Exclusion Chromatography (SEC). By bimodal or multimodal is meant that the SEC trace has more than one peak or inflection points. An inflection point is that point where the second derivative of the curve changes in sign (e.g., from negative to positive or vice versus).


In another embodiment the POA has an Energy of activation of 8 to 15 cal/mol. Energy of activation was calculated using the relationships of complex viscosity and temperature over the region where thermal effects are responsible for viscosity increase (assuming an Arrhenius-like relationship).


In another embodiment the POA's have a cloud point of 200° C. or less, preferably 180° C. or less, preferably 160° C. or less, preferably 120° C. or less, preferably 100° C. or less. Likewise any composition that the POA is part of preferably has a cloud point of 200° C. or less, preferably 180° C. or less, preferably 160° C. or less, preferably 120° C. or less, preferably 100° C. or less.


In another embodiment the POA may also have one or more of the following:

    • a) a peak melting point between 30 and 190° C., or between about 60 and 150° C., or between 80 and 130° C.; and/or
    • b) a viscosity of 8000 mPa·sec or less at 190° C. (as measured by ASTM D 3236 at 190° C.); or 5000 or less, or 4000 or less, or 3000 or less, or 1500 or less, or between 250 and 6000 mPa·sec, or between 500 and 5500 mPa·sec, or between 500 and 3000 mPa·sec, or between 500 and 1500 mPa·sec, or a viscosity of 8000 mPa·sec or less at 160° C. (as measured by ASTM D 3236 at 160° C.); or 7000 or less, or 6000 or less, or 5000 or less, or 4000 or less, or 3000 or less, or 1500 or less, or between 250 and 6000 mPa·sec, or between 500 and 5500 mPa·sec, or between 500 and 3000 mPa·sec, or between 500 and 1500 mPa·sec; and/or
    • c) an Hf (Heat of fusion) of 70 J/g or less, or 60 J/g or less, or 50 J/g or less; or 40 J/g or less, or 30 J/g or less, or 20 J/g or less and greater than zero, or greater than 1 J/g, or greater than 10 J/g, or between 10 and 50 J/g; and or
    • d) a Shore A Hardness (as measured by ASTM 2240) of 90 or less, or 60 or less, or 50 or less, or 40 or less or 30 or less, or 20 or less; and or
    • e) a Shear Adhesion Fail Temperature (SAFT—as measured by ASTM 4498) of 40 to 150° C., or 60 to 130° C., or 65 to 110° C., or 70-80° C.; and or;
    • f) a Dot T-Peel of between 1 Newton and 10,000 Newtons, or 3 and 4000 Newtons, or between 5 and 3000 Newtons, or between 10 and 2000 Newtons, or between 15 and 1000 Newtons; and/or
    • g) a set time of several days to 0.1 second, or 60 seconds or less, or 30 seconds or less, or 20 seconds or less, or 15 seconds or less, or 10 seconds or less, or 5 seconds or less, or 4 seconds or less, or 3 seconds or less, or 2 seconds or less, or 1 second or less; and/or
    • h) an Mw/Mn of greater than 1 to 75, or 2 to 60, or 2 to 50, or 3 to 20; and/or
    • i) an Mz of 500,000 or less, preferably 15,000 to 500,000, or 20,000 to 400,000, or 25,000 to 350,000.


Useful combinations of features include POA's having a Dot T-Peel of between 1 Newton and 10,000 Newtons, or 3 and 4000 Newtons, or between 5 and 3000 Newtons, or between 10 and 2000 Newtons, or between 15 and 1000 Newtons and:


1) an Mw of 30,000 or less, a peak melting point between 60 and 190° C., a Heat of fusion of 1 to 70 J/g, a branching index (g′) of 0.90 or less measured at the Mz of the polymer; and a melt viscosity of 8000 mPa·sec or less at 190° C.; or


2) an Mz of 20,000 to 5,000,000 and a SAFT of 60 to 150° C.; or


3) an Mz/Mn of 2-200 and a set time of 4 seconds or less; or


4) an Hf (heat of fusion) of 20 to 50 J/g, an Mz or 20,000-500,000 and a shore hardness of 50 or less; or


5) an Mw/Mn of greater than 1 to 50, a viscosity of 5000 or less mPa·sec at 190° C.; or


6) an Mw of 50,000 or less, a peak melting point between 60 and 190° C., a heat of fusion of 2 to 70 J/g, a branching index (g′) of 0.70 or less measured at the Mz of the polymer, and a melt viscosity of 8000 mPa·sec or less at 190° C.


In a preferred embodiment, the POA comprises amorphous, crystalline and branch-block molecular structures.


In a preferred embodiment the POA comprises at least 50 weight % propylene, preferably at least 60% propylene, alternatively at least 70% propylene, alternatively at least 80% propylene.


In another embodiment the POA has a glass transition temperature (Tg) as measured by ASTM E 1356 of 5° C. or less, preferably 0° C. or less, alternatively between 0° C. and −40° C., alternatively between −5° C. and −15° C.


In another embodiment the POA has an amorphous content of at least 50%, alternatively at least 60%, alternatively at least 70%, even alternatively between 50 and 99%. Percent amorphous content is determined by subtracting the percent crystallinity from 100. Percent crystallinity content is determined using Differential Scanning Calorimetry measurement according to ASTM E 794-85.


In another embodiment the POA has a crystallinity of 40% or less, alternatively 30% or less, alternatively 20% or less, even alternatively between 10% and 30%. Percent crystallinity content is determined using Differential Scanning Calorimetry measurement according to ASTM E 794-85. In another embodiment, the polymers described herein have a percent crystallinity of between 5 and 40%, alternatively between 10 to 30%.


In another embodiment the POA has a molecular weight distribution (Mw/Mn) of at least 1.5, preferably at least 2, preferably at least 5, preferably at least 10, even alternatively at least 20. In other embodiments the Mw/Mn is 20 or less, 10 or less, even 5 or less. Molecular weight distribution generally depends on the catalysts used and process conditions such as temperature, monomer concentration, catalyst ratio, if multiple catalysts are used, and the presence or absence of hydrogen. Hydrogen may be used at amounts up to 2 weight %, but is preferably used at levels of 50 to 500 ppm.


In another embodiment the POA is found to have at least two molecular weights fractions are present at greater than 2 weight %, preferably greater than 20 weight %, each based upon the weight of the polymer as measured by Gel Permeation Chromatography. The fractions can be identified on the GPC trace by observing two distinct populations of molecular weights. An example would be a GPC trace showing a peak at 20,000 Mw and another peak at 50,000 Mw where the area under the first peak represents more than 2 weight % of the polymer and the area under the second peak represents more than 2 weight % of the polymer.


In another embodiment the POA has 20 weight % or more (based upon the weight of the starting polymer) of hexane room temperature soluble fraction, and 70 weight % or less, preferably 50 weight % or less of Soxhlet boiling heptane insoluble, based upon the weight of the polymer. Soxhlet heptane insoluble refers to one of the fractions obtained when a sample is fractionated using successive solvent extraction technique. The fractionations are carried out in two steps: one involves room temperature solvent extraction, the other soxhlet extraction. In the room temperature solvent extraction, about one gram of polymer is dissolved in 50 ml of solvent (e.g., hexane) to isolate the amorphous or very low molecular weight polymer species. The mixture is stirred at room temperature for about 12 hours. The soluble fraction is separated from the insoluble material using filtration under vacuum. The insoluble material is then subjected to a Soxhlet extraction procedure. This involves the separation of polymer fractions based on their solubility in various solvents having boiling points from just above room temperature to 110° C. The insoluble material from the room temperature solvent extraction is first extracted overnight with a solvent such as hexane and heptane (Soxhlet); the extracted material is recovered by evaporating the solvent and weighing the residue. The insoluble sample is then extracted with a solvent having higher boiling temperature such as heptane and after solvent evaporation, it is weighed. The insoluble and the thimble from the final stage are air-dried in a hood to evaporate most of the solvent, then dried in a nitrogen-purged vacuum oven. The amount of insoluble left in the thimble is then calculated, provided the tare weight of the thimble is known.


In another embodiment, the POA's have a heptane insoluble fraction 70 weight % or less, based upon the weight of the starting polymer, and the heptane insoluble fraction has branching index g′ of 0.9 (preferably 0.7) or less as measured at the Mz of the polymer. In a preferred embodiment the POA's also have at least 20 weight % hexane soluble fraction, based upon the weight of the starting polymer. In another embodiment, the POA's have a heptane insoluble fraction 70 weight % or less, based upon the weight of the starting polymer and a Mz between 20,000 and 5000,000 of the heptane insoluble portion. In a preferred embodiment the POA's also have at least 20 weight % hexane soluble fraction, based upon the weight of the starting polymer. In another embodiment the POA's have a hexane soluble portion of at least 20 weight %, based upon the weight of the starting polymer.


In another embodiment the POA comprises propylene and 15 mole % ethylene or less; preferably 10 mole % ethylene or less, more preferably 9 mole % ethylene or less, more preferably 8 mole % ethylene or less, more preferably 7 mole % ethylene or less, more preferably 6 mole % ethylene or less, more preferably 5 mole % ethylene or less, more preferably 4 mole % ethylene or less, more preferably 3 mole % ethylene or less, more preferably 2 mole % ethylene or less, more preferably 1 mole % ethylene or less.


In another embodiment the POA comprises less than 5 mole % of ethylene, preferably less than 4.5 mole % ethylene, preferably less than 4.0 mole % ethylene, alternatively less than 3.5 mole % ethylene, alternatively less than 3.0 mole % ethylene, alternatively less than 2.5 mole % ethylene, alternatively less than 2.0 mole % ethylene, alternatively less than 1.5 mole % ethylene, alternatively less than 1.0 mole % ethylene, alternatively less than 0.5 mole % ethylene, alternatively less than 0.25 mole % ethylene, alternatively 0 mole % ethylene.


For ease of reference the polymer produced by the second catalyst having at least 20% crystallinity may also be referred to as the “semi-crystalline polymer” and the polymer produced by the first catalyst component having a crystallinity of less than 5% may be referred to as the “amorphous polymer.”


In another embodiment of this invention the POA's have a characteristic three-zone complex viscosity-temperature pattern, as shown in FIG. 1. The temperature dependence of complex viscosity was measured using ARES dynamic mechanical spectrometer operating at a frequency of 10 rad/s, with a strain of 20% under a nitrogen atmosphere, and a cooling rate of 110° C./min. The sample was first molten then gradually cooled down to room temperature while monitoring the build-up in complex viscosity. Above the melting point, which is typical of polymer processing temperature, the complex viscosity is relatively low (Zone I) and increases gradually with decreasing temperature. In zone II, a sharp increase in complex viscosity appears as temperature is dropped. The third zone (Zone III) is the high complex viscosity zone, which appears at lower temperatures corresponding to application (end use) temperatures. In Zone III the complex viscosity is high and varies slightly with further decrease in temperature. Such a complex viscosity profile provides, in hot melt adhesive applications, a desirable combination of long opening time at processing temperatures and fast set time at lower temperatures.


In a preferred embodiment, the POA's have less than 1 mol % ethylene, have at least 2 mol % (CH2)2 units, preferably 4 mol %, preferably 6 mol %, more preferably 8 mol %, more preferably 10 mol %, more preferably 12 mol %, more preferably 15 mol %, more preferably 18 mol %, more preferably 5 mol % as measured by Carbon 13 NMR as described below.


In an another embodiment, the POA's have between 1 and 10 mol % ethylene, have at least 2+X mol % (CH2)2 units, preferably 4+X mol %, preferably 6+X mol %, more preferably 8+X mol %, more preferably 10+X mol %, more preferably 12+X mol %, more preferably 15+X mol %, more preferably 18+X mol %, more preferably 20+X mol %, where X is the mole % of ethylene, and the (CH2)2 units are determined by Carbon 13 NMR as described below.


In a preferred embodiment, the POA's have less than 1 mol % ethylene, have an amorphous component (which is defined to be that portion of the polymer composition that has a crystallinity of less than 5%) which contains at least 3 mol % (CH2)2 units, preferably 4 mol %, preferably 6 mol %, more preferably 8 mol %, more preferably 10 mol %, more preferably 12 mol %, more preferably 15 mol %, more preferably 18 mol %, more preferably 20 mol % as measured by Carbon 13 NMR as described below.


In an another embodiment, the POA's have between 1 and 10 mol % ethylene and have an amorphous component (which is defined to be that portion of the polymer composition that has a crystallinity of less than 20%) which contains at least 3+X mol % (CH2)2 units, preferably 4+X mol %, preferably 6+X mol %, more preferably 8+X mol %, more preferably 10+X mol %, more preferably 12+X mol %, more preferably 15+X mol %, more preferably 18+X mol %, more preferably 20+X mol %, where X is the mole % of ethylene, and the (CH2)2 units are determined by Carbon 13 NMR as described below.


In a preferred embodiment the POA's comprise an olefin homopolymer or copolymer, having less than 5 mol % ethylene, and comprising one or more C3 to C40 alpha olefins. In another preferred embodiment the POA, having less than 5 mol % ethylene, further comprises one or more diolefin comonomers, preferably one or more C4 to C40 diolefins.


In a preferred embodiment the POA is a propylene homopolymer or copolymer. The comonomer is preferably a C4 to C20 linear, branched or cyclic monomer, and in one embodiment is a C4 to C12 linear or branched alpha-olefin, preferably butene, pentene, hexene, heptene, octene, nonene, decene, dodecene, 4-methyl-pentene-1,3-methyl pentene-1,3,5,5-trimethyl-hexene-1, and the like. Ethylene may be present at 5 mol % or less.


In another embodiment the POA is a copolymer of one or more linear or branched C3 to C30 prochiral alpha-olefins or C5 to C30 ring containing olefins or combinations thereof capable of being polymerized by either stereospecific and non-stereospecific catalysts. Prochiral, as used herein, refers to monomers that favor the formation of isotactic or syndiotactic polymer when polymerized using stereospecific catalyst(s).


In a preferred embodiment, the POA may be a polymer of two or more linear, branched, cyclic-containing, or a mixture of these structures. Preferred linear alpha-olefins include C3 to C8 alpha-olefins, more preferably propylene, 1-butene, 1-hexene, and 1-octene, even more preferably propylene or 1-butene. Preferred branched alpha-olefins include 4-methyl-1-pentene, 3-methyl-1-pentene, and 3,5,5-trimethyl-1-hexene, 5-ethyl-1-nonene. Preferred aromatic-group-containing monomers contain up to 30 carbon atoms. Suitable aromatic-group-containing monomers comprise at least one aromatic structure, preferably from one to three, more preferably a phenyl, indenyl, fluorenyl, or naphthyl moiety. The aromatic-group-containing monomer further comprises at least one polymerizable double bond such that after polymerization, the aromatic structure will be pendant from the polymer backbone. The aromatic-group containing monomer may further be substituted with one or more hydrocarbyl groups including but not limited to C1 to C10 alkyl groups. Additionally two adjacent substitutions may be joined to form a ring structure. Preferred aromatic-group-containing monomers contain at least one aromatic structure appended to a polymerizable olefinic moiety. Particularly preferred aromatic monomers include styrene, alpha-methylstyrene, para-alkylstyrenes, vinyltoluenes, vinylnaphthalene, allyl benzene, and indene, especially styrene, paramethyl styrene, 4-phenyl-1-butene and allyl benzene.


Non aromatic cyclic group containing monomers are also preferred. These monomers can contain up to 30 carbon atoms. Suitable non-aromatic cyclic group containing monomers preferably have at least one polymerizable olefinic group that is either pendant on the cyclic structure or is part of the cyclic structure. The cyclic structure may also be further substituted by one or more hydrocarbyl groups such as, but not limited to, C1 to C10 alkyl groups. Preferred non-aromatic cyclic group containing monomers include vinylcyclohexane, vinylcyclohexene, vinylnorbornene, ethylidene norbornene, cyclopentadiene, cyclopentene, cyclohexene, cyclobutene, vinyladamantane and the like.


Preferred diolefin monomers useful in this invention include any hydrocarbon structure, preferably C4 to C30, having at least two unsaturated bonds, wherein at least two of the unsaturated bonds are readily incorporated into a polymer by either a stereospecific or a non-stereospecific catalyst(s). It is further preferred that the diolefin monomers be selected from alpha, omega-diene monomers (i.e. di-vinyl monomers). More preferably, the diolefin monomers are linear di-vinyl monomers, most preferably those containing from 4 to 30 carbon atoms. Examples of preferred dienes include butadiene, pentadiene, hexadiene, heptadiene, octadiene, nonadiene, decadiene, undecadiene, dodecadiene, tridecadiene, tetradecadiene, pentadecadiene, hexadecadiene, heptadecadiene, octadecadiene, nonadecadiene, icosadiene, heneicosadiene, docosadiene, tricosadiene, tetracosadiene, pentacosadiene, hexacosadiene, heptacosadiene, octacosadiene, nonacosadiene, triacontadiene, particularly preferred dienes include 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 1,10-undecadiene, 1,11-dodecadiene, 1,12-tridecadiene, 1,13-tetradecadiene, and low molecular weight polybutadienes (Mw less than 1000 g/mol). Preferred cyclic dienes include cyclopentadiene, vinylnorbornene, norbornadiene, ethylidene norbornene, divinylbenzene, dicyclopentadiene or higher ring containing diolefins with or without substituents at various ring positions.


In a preferred embodiment one or more dienes are present in the POA at up to 10 weight %, preferably at 0.00001 to 1.0 weight %, preferably 0.002 to 0.5 weight %, even more preferably 0.003 to 0.2 weight %, based upon the total weight of the composition. In some embodiments 500 ppm or less of diene is added to the polymerization, preferably 400 ppm or less, preferably or 300 ppm or less. In other embodiments at least 50 ppm of diene is added to the polymerization, or 100 ppm or more, or 150 ppm or more.


In a preferred embodiment the polymer is homo-polypropylene. In another preferred embodiment the POA comprises propylene, less than 5 mol % ethylene, and at least one divinyl comonomer. In another preferred embodiment the POA comprises propylene and at least one divinyl comonomer.


The POA's described herein may be produced by a process comprising:

    • 1) selecting a first catalyst component capable of producing a polymer having a Mw of 100,000 or less and a heat of fusion of 10 J/g or less under the selected reaction conditions;
    • 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 20% or more under the selected reaction conditions; and
    • 3) contacting the catalyst components in the presence of one or more activators with one or more olefins, in a reaction zone.


The POA's described herein may be produced by a process comprising:

    • 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a heat of fusion of 10 J/g or less;
    • 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 20% or more;
    • 3) contacting the catalyst components in the presence of one or more activators with one or more olefins and one or more dienes, in a reaction zone.


The POA's described herein may be produced by a process comprising:

    • 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a heat of fusion of 10 J/g or less, capable of polymerizing macromonomers having reactive termini;
    • 2) selecting a second catalyst component capable of producing macromonomers having reactive termini, an Mw of 100,000 or less and a crystallinity of 20% or more; and
    • 3) contacting the catalyst components in the presence of one or more activators with one or more olefins, and optionally a diolefin in a reaction zone.


The POA's described herein may be produced by a process comprising:

    • 1) selecting a first catalyst component capable of producing a polymer having an Mw of 50,000 or less and a heat of fusion of 10 J/g or less, capable of polymerizing macromonomers having reactive termini;
    • 2) selecting a second catalyst component capable of producing macromonomers having reactive termini, an Mw of 30,000 or less and a crystallinity of 20% or more;
    • 3) contacting the catalyst components in the presence of one or more activators with propylene, and optionally other olefins, in a reaction zone.


The POA's may be produced by a continuous process comprising:

    • 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less, preferably 80,000 or less, preferably 60,000 or less and a crystallinity of 5% or less, preferably 3% or less, more preferably 2% or less, under selected polymerization conditions;
    • 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less, preferably 80,000 or less, preferably 60,000 or less and a crystallinity of 30% or more, preferably 50% or more, more preferably 60% or more at the selected polymerization conditions;
    • 3) contacting, under the selected polymerization conditions, the catalyst components in the presence of one or more activators with one or more C3 to C40 olefins, preferably one or more C3 to C12 olefins, preferably C3 and one or more C4 to C20 comonomers, and, optionally one or more diolefins, preferably a C4 to C20 diene;
    • 4) at a temperature of greater than 100° C., preferably greater than 105° C., more preferably greater than 110° C., more preferably greater than 115° C.;
    • 5) at a residence time of 120 minutes or less, preferably 50 minutes or less, preferably 40 minutes, preferably 30 minutes or less, preferably 25 minutes or less, more preferably 20 minutes or less, more preferably 15 minutes or less, more preferably at 10 minutes or less, more preferably at 5 minutes or less, or alternately between 120 minutes and 60 minutes;
    • 6) wherein the ratio of the first catalyst to the second catalyst is from 1:1 to 50:1, preferably 1:1 to 40:1, more preferably 1:1 to 1:30;
    • 7) wherein the activity of the catalyst components is at least 3 kilograms, preferably at least 50 kilograms, more preferably at least 100 kilograms, more preferably at least 200 kilograms, more preferably, 300 kilograms, more preferably 400 kilograms, more preferably 500 kilograms of polymer per gram of the catalyst mixture; and wherein at least 80%, preferably at least 85%, more preferably at least 90%, more preferably at least 95% of the olefins are converted to polymer.


In another embodiment at least 20% or more of the olefins are converted to polymer, preferably 20% or more, more preferably 60% or more, more preferably 75% or more, more preferably 85% or more, more preferably 95% or more.


In a preferred embodiment the process described above takes place in a solution phase, slurry or bulk phase polymerization process.


By continuous is meant a system that operates (or is intended to operate) without interruption or cessation. For example, a continuous process to produce a polymer would be one where the reactants are continually introduced into one or more reactors and polymer product is continually withdrawn.


In another preferred embodiment, in the process described above the concentrations of the reactants vary by 20% or less in the reaction zone during the residence time, preferably by 15% or less, more preferably by 10% or less. In a preferred embodiment the concentration of the monomer(s) remains constant in the reaction zone during the residence time. Preferably the concentration of the monomer(s) varies by 20% or less, preferably by 15% or less, more preferably by 10% or less, more preferably by 5% or less.


In a preferred embodiment the concentration of the catalyst components remains constant in the reaction zone during the residence time. Preferably the concentration of the monomer(s) varies by 20% or less, preferably by 15% or less, more preferably by 10% or less, more preferably by 5% or less.


In a preferred embodiment the concentration of the activator(s) remains constant in the reaction zone during the residence time. Preferably the concentration of the monomer(s) varies by 20% or less, preferably by 15% or less, more preferably by 10% or less, more preferably by 5% or less.


In another preferred embodiment a third catalyst (or more) may be present in the processes described above. The third catalyst may be any of the catalyst components listed herein. Preferred third catalysts include catalysts that are capable of producing waxes. Other preferred third catalysts may include any catalyst described herein. One may select two or more catalysts to produce various macromonomers having reactive termini, used in combination with a catalyst that can polymerize such macromonomers. One may select two or more catalysts that can polymerize macromonomers and one catalyst that can produce macromonomers with reactive termini. Likewise one could also select three catalysts that produce different polymers under the same reaction conditions. For example one could select a catalyst that produces a somewhat crystalline polymer, one that produces a very crystalline polymer and one that produces an amorphous polymer, any of which may produce macromonomers with reactive termini or polymerize polymers having reactive termini. Similarly one could select two catalysts, one that produces crystalline polymers and one that produces an amorphous polymer, any of which may make macromonomers with reactive termini or polymerize polymers having reactive termini. Likewise one could select a catalyst that produces a somewhat crystalline polymer, one that produces a wax and one that produces an amorphous polymer, any of which may make macromonomers with reactive termini or polymerize polymers having reactive termini.


By reaction zone is meant an area where the activated catalyst and monomers can react.


By macromonomers having reactive termini is meant a polymer having twelve or more carbon atoms (preferably 20 or more, more preferably 30 or more, more preferably between 12 and 8000 carbon atoms) and having a vinyl, vinylidene, vinylene or other terminal group that can be polymerized into a growing polymer chain. By capable of polymerizing macromonomer having reactive termini is meant a catalyst component that can incorporate a macromonomer (which tend to be molecules larger than a typical single monomer such as ethylene or propylene), having reactive termini into a growing polymer chain. Vinyl terminated chains are generally more reactive than vinylene or vinylidene terminated chains.


In a particular embodiment the POA is produced by copolymerizing one or more C3 or higher alpha-olefins and/or one or more di-vinyl monomers, and optionally up to 5 mol % ethylene, in the presence of at least one stereospecific catalyst system and at least one other catalyst system in the same polymerization medium. Preferably, the polymerizations are carried out simultaneously in the presence of both catalysts. The polymer so produced may contain amorphous polymer segments and crystalline polymer segments in which at least some of the segments are linked. Typically the amorphous and the crystalline polymer segments are copolymers of one or more alpha-olefins (optionally including up to 5 mol % ethylene) and/or one or more monomers having at least two olefinically unsaturated bonds. Both of these unsaturated bonds are suitable for and readily incorporated into a growing polymer chain by coordination polymerization using either the first or second catalyst systems independently such that the di-olefin is incorporated into polymer segments produced by both catalysts in the mixed catalyst system according to this invention. In a preferred embodiment these monomers having at least two olefinically unsaturated bonds are di-olefins, preferably di-vinyl monomers. Crosslinking of at least a portion of the mixture of polymer segments is believed to be accomplished during the polymerization of the composition by incorporation of a portion of di-vinyl comonomers into two polymer segments, thus producing a crosslink between those segments.


In another embodiment, POAs containing amorphous and semi-crystalline components may be prepared in a single reactor to yield desired property balance.


In particular, aPP-g-scPP branch structures may be produced in-situ in a continuous solution reactor using mixed catalysts and propylene as the preferred feed. In one embodiment stereospecific bridged bis-indenyl group 4 catalysts can be selected to produce semicrystalline PP macromonomers. (All references to the Periodic Table of the Elements are to the new notation of the Table published in Chemical and Engineering News, 63(5), 27, 1985.) A bridged mono-cyclopentadienyl heteroatom group 4 catalyst can be used to build amorphous PP (aPP) backbone while simultaneously incorporating some of the semi-crystalline macromonomers (scPP). This is believed to produce an aPP-g-scPP structure where the “-g-” indicates that the polymer types are at least partially grafted. By selecting the catalysts, the polymerization reaction conditions, and/or by introducing a diene modifier, the amorphous and crystalline components can be linked together to produce various branch-block structures. To effectively incorporate into a growing chain, a macromonomer with vinyl end group is preferred. Other types of chain end unsaturations (vinylene and vinylidene) can also be used. While not wishing to be bound by theory, branch-block copolymer is believed to comprise an amorphous backbone having crystalline side chains originating from the scPP macromonomers and the sidechains are believed to be polypropylene macromonomers, which can be prepared under solution polymerization conditions with catalysts suitable for preparing either of isotactic or syndiotactic polypropylene.


Any catalyst compound that can produce the desired polymer species (i.e. a polymer having an Mw of 100,000 or less and a heat of fusion of 70 J/g or less, or a polymer having an Mw of 100,000 or less and a crystallinity of 40% or less) may be used in the practice of this invention.


Functionalized Component


Typically, the component to be functionalized is combined with a free radical initiator and a grafting monomer or other functional group (such as maleic acid or maleic anhydride) and is heated to react the monomer with the polymer, copolymer, oligomer, etc to form the functionalized component. Multiple methods exist in the art for functionalizing polymers that may be used with the polymers described here. These include, not are not limited to, selective oxidation, free radical grafting, ozonolysis, epoxidation, and the like.


Preferred functional components have an Mw of 1000 to 20,000, preferably 2000 to 15,000, more preferably 3000 to 10,000.


Examples of suitable functionalized components for use in this invention include, but are not limited to, functionalized olefin polymers, (such as functionalized C2-C40 homopolymers, functionalized C2-C40 copolymers, functionalized higher Mw waxes), functionalized oligomers, (such as functionalized low Mw waxes, functionalized tackifiers), beta nucleating agents and combinations thereof.


Useful functionalized olefin polymers and copolymers useful in this invention include maleated polyethylene, maleated metallocene polyethylene (such as EXACT and EXCEED-available from ExxonMobil Chemical Company in Houston, Tex.—which have been functionalized as described herein), maleated metallocene polypropylene (such as ACHIEVE—available from ExxonMobil Chemical Company in Houston, Tex.—which has been functionalized as described herein), maleated ethylene propylene rubber, maleated polypropylene, maleated ethylene copolymers (such as EXXELOR™ by ExxonMobil Chemical Company in Houston, Tex., particularly EXXELOR VA 1801, 1803, 1840 and EXXELOR PO 1015 and 1020), functionalized polyisobutylene (typically functionalized with maleic anhydride typically to form a succinic anhydride), and the like.


Preferred functionalized waxes useful as functionalized components herein include those modified with an alcohol, an acid, a ketone, an anhydride and the like. Preferred examples include waxes modified by methyl ketone, maleic anhydride or maleic acid. Preferred functionalized waxes useful herein include maleated polypropylene was available from Chusei under the tradename MAPP 40, maleated metallocene waxes (such as TP LICOCENE PP1602 available from Clariant, in Augsburg, Germany); maleated polyethylene waxes and maleted polypropylene waxes available from Eastman Chemical in Kingsport Tenn. under the trade names EPOLENE C-16, EPOLENE C-18, EPOLENE E43, EPOLENE G-3003; maleated polypropylene wax LICOMONT AR 504 available from Clariant; grafted functional polymers available from Dow Chemical Co., under the tradenames AMPLIFY EA 100, AMPLIFY EA 102, AMPLIFY 103, AMPLIFY GR 202, AMPLIFY GR 205, AMPLIFYGR 207, AMPLIFY GR 208, AMPLIFY GR 209, AMPLIFY VA 200; CERAMER maleated ethylene polymers available from Baker Hughes under the tradename CERAMER 1608, CERAMER 1251, CERAMER 67, CERAMER 24; and ethylene methyl acrylate co and terpolymers.


Useful waxes include polypropylene waxes having an Mw weight of 15,000 for less, preferably from 3000 to 10,000 and a crystallinity of 5% or more, preferably 10% or more having a functional group content (preferably maleic anhydride) of up to 10 weight %.


Additional preferred functionalized polymers for use as functional components herein include A-C X596A, A-C X596P, A-C X597A, A-C X597P, A-C X950P, A-C X1221, A-C 395A, A-C 395A, A-C 1302P, A-C 540, A-C 54A, A-C 629, A-C 629A, and A-C 307, A-C 307A available from Honeywell.


Preferred functionalized polymers have crystallinity of at least 5%, preferably at least 10%.


UNILIN long chain alcohols, available from Baker Hughes are also useful as functionalized components herein, particularly UNILIN 350, UNILIN 425, UNILIN 550, and UNILIN 700.


UNICID linear, primary carboxylic acids, available from Baker Hughes are also useful as functionalized components herein, particularly UNICID 350, UNICID 425, UNICID 550, and UNICID 700.


Preferred functionalized hydrocarbon resins that may be used as functionallized components in this invention include those described in WO 03/025084, WO 03/025037, WO 03/025036, and EP 1 295 926 A1 which are incorporated by reference herein.


In a preferred embodiment a hydrocarbon resin is functionalized with an unsaturated acids or anhydrides containing at least one double bond and at least one carbonyl group and used as the functionalized component of this invention. Preferred hydrocarbon resins that can be functionalized are listed below as tackifiers. Representative acids include carboxylic acids, anhydrides, esters and their salts, both metallic and non-metallic. Preferably the organic compound contains an ethylenic unsaturation conjugated with a carbonyl group (—C═O). Examples include maleic, fumaric, acrylic, methacrylic, itaconic, crotonic, alpha.methyl crotonic, and cinnamic acids as well as their anhydrides, esters and salt derivatives. Particularly preferred functional groups include maleic acid and maleic anhydride. Maleic anhydride is particularly preferred. The unsaturated acid or anhydride is preferably present at about 0.1 weight % to about 10 weight %, preferably at about 0.5 weight % to about 7 weight %, even more preferably at about 1 to about 4 weight %, based upon the weight of the hydrocarbon resin and the unsaturated acid or anhydride. In a preferred embodiment the unsaturated acid or anhydried comprises a carboxylic acid or a derivative thereof selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic acid derivatives selected from esters, imides, amides, anhydrides and cyclic acid anhydrides or mixtures thereof.


In some embodiments, however the functionalized component does not comprise functionalized hydrocarbon resins. In some embodiments, functionalized hydrocarbon resin is present at 5 weight % or less, preferably 4 weight % or less, preferably 3 weight % or less, preferably at 2 weight % or less, preferably at 1 weight % or less, preferably at 0.5 weight % or less, preferably at 0.1 weight % or less, preferably at 0.01 weight % or less, preferably at 0.001 weight % or less, based upon the weight of the adhesive. In some preferred embodiments, functionalized hydrocarbon resin is not present in the adhesive.


Preferred beta nucleating agents useful in this invention include: amide compound selected from the group consisting of:


(1) An Amide Compound of the Formula

R2—NHCO—R1—CONH—R3  (1)

wherein R1 is a residue formed by elimination of the two carboxyl groups of a C3-26 saturated or unsaturated aliphatic dicarboxylic acid, a C6-30 saturated or unsaturated alicyclic dicarboxylic acid or a C8-30 aromatic dicarboxylic acid; R2 and R3 are the same or different and each represents a C3-18 cycloalkyl group, a C3-12 cycloalkenyl group, or a substituted or unsubstituted phenyl or cyclohexyl group;


(2) An Amide Compound of the Formula

R9—CONH—R8—NHCO—R10  (2)

wherein R8 is a residue formed by elimination of the two amino groups of a C1-24 saturated or unsaturated aliphatic diamine, a C4-28 alicyclic diamine, a C4-14 heterocyclic diamine or a C6-28 aromatic diamine; R9 and R10 are the same or different and each represents a C3-12 cycloalkyl group, a C3-12 cycloalkenyl group, r or a substituted or unsubstituted phenyl or cyclohexyl group; and


(3) An Amide Compound of the Formula

R16—CONH—R15—CONH—R17  (3)

wherein R15 is a residue formed by elimination of one amino group and one carboxyl group from of a C2-29 saturated or unsaturated aliphatic amino acid, C7-13 saturated or unsaturated alicyclic amino acid or C7-15 aromatic amino acid; R16 and R17 are the same or different and R16 has the same meaning as R9 or R10 in the formula (2) and R17 has the same meaning as R2 or R3 in the formula (1).


Preferred beta nucleating agents useful in this invention include: N,N′-diphenylhexanediamide, N,N′-dicyclohexylterephthalamide, N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide, N,N′-dicyclohexanecabonyl-p-phenylenediamine, N,N′-dibenzoyl-1,5-diaminonaphthalene, N,N′-dibenzoyl-1,4-diaminocyclohexane or N,N′-dicyclohexanecarbonyl-1,4-diaminocyclohexane, N-cyclohexyl-4-(N-cyclohexylcarbonylamino)benzamide, N-phenyl-5-(N-benzoylamino)pentanamide, sorbitol, salicyclic acid, p-hydroxybenzoic acid, zinc 3,5-di-tert-butylsalicyclate, 2-naphthoic acid, phenyl acetic acid, terephthalic acid, anthranilic acid, 3,3-diphenylpropionic, tetra butyl ammonium chloride, naphthalic acid, benzoin, ascorbic acid, adipic acid, tertabutyl benzoate, dodecylbenzenesulfonic acid sodium salt, 4-dodecylbenzenesulfonic acid, 4,4-bis(4-hydroxyphenyl)valeric acid, diphenic acid, 4-isopropylbenzoic acid, Millad 3988tm, neodecanoic acid, abietic acid, sodium benzoate, succinic anhydride, phenol, benzoic acid, benzyl alcohol, benzyl amine, alkyl substituted succinates (preferably C1 to C40 alkyl substituted succinates), substituted di(benzylidene)-D-sorbitols, 1,3:2,4-di(benzylidene)-D-sorbitol, 1,3:2,4-bis(3,4-dimethylbenzylidene)-D-sorbitol, red quinacridone dye,


Preferred beta nucleating agents useful in this invention include the agents listed in U.S. Pat. No. 5,231,126; the single walled carbon nanotubes described in J. Phys. Chem. B. 2002, 106, 5852-5858; Modern Plastics, September 1998, page 82.


Preferred beta nucleating agents useful in this invention include beta-spherulite nucleating agents. U.S. Pat. No. 4,975,469 and the references cited therein, incorporated herein by reference, disclose beta-spherulite nucleating agents such as the gamma-crystalline form of a quinacridone colorant, the bisodium salt of orthophthalic acid, the aluminum salt of 6-quinizarin sulfonic acid and to a lesser degree isophthalic and terephthalic acids. The nucleating agents are typically used in the form of powdered solids. To produce beta-spherulites efficiently the powder particles of the nucleating agent should be less than 5 microns in diameter and preferably no greater than 1 micron in diameter. The preferred beta-spherulite nucleating agent that may be used in the polymeric compositions of this invention is the gamma-crystalline form of a quinacridone colorant. One form of the quinacridone colorant is red quinacridone dye, hereinafter also referred to as “Q-dye”, having the structure shown in U.S. Pat. No. 4,975,469.


In a preferred embodiment the beta nucleating agent is present in the adhesive at up to 5 weight %, preferably 0.0001 to 3 weight %, preferably 0.1 to 2 weight %, preferably at 0.01 to 10 ppm, based upon the weight of the blend.


For more information on beta nucleation and beta nucleating agents, please see pages 137-138 (and the references cited therein) of Propylene Handbook, Edward P. Moore, ed. Hanser publishers, New York, 1996.


The polymers, copolymers, oligomers, etc and blends thereof, may be functionalized for use in the present invention such that functional groups may be grafted onto the polymers, preferably utilizing radical copolymerization of an functional group, also referred to herein as graft copolymerization. The end result being a functionalized polymer, copolymer oligomer, hydrocarbon resin, etc, abbreviated herein as AA-g-XX, wherein AA represents the specific type of polymer, copolymer, oligomer or hydrocarbon resin being functionalized, XX refers to the functional group or compounds with which the polymer was functionalized with, and -g- represents grafting between the two moieties.


Preferred functional groups include any compound with a weight average molecular weight of 1000 or less, preferably 750 or less, that contain one or more a heteroatoms and or one or more unsaturations. Preferably the functional group is a compound containing a heteroatom, such as maleic anhydride. Preferred functional groups include organic acids, organic amides, organic amines, organic esters, organic anhydrides, organic alcohols, organic acid halides (such as acid chlorides, acid bromides, etc.) organic peroxides, and salts thereof.


Examples of preferred functional groups useful in this invention include compounds comprising a carbonyl bond such as carboxylic acids, esters of the unsaturated carboxylic acids, acid anhydrides, di-esters, salts, amides, imides, aromatic vinyl compounds hydrolyzable unsaturated silane compounds and unsaturated halogenated hydrocarbons.


Examples of particularly preferred functional groups useful in this invention include, but are not limited, to maleic anhydride, citraconic anhydride, 2-methyl maleic anhydride, 2-chloromaleic anhydride, 2,3-dimethylmaleic anhydride, bicyclo[2,2,1]-5-heptene-2,3-dicarboxylic anhydride and 4-methyl-4-cyclohexene-1,2-dicarboxylic anhydride, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, crotonic acid, bicyclo(2.2.2)oct-5-ene-2,3-dicarboxylic acid anhydride, 1,2,3,4,5,&g, lo-octahydronaphthalene-2,3-dicarboxylic acid anhydride, 2-oxa-1,3-diketospiro(4.4)non-7-ene, bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic acid anhydride, maleopimaric acid, tetrahydrophtalic anhydride, norborn-5-ene-2,3-dicarboxylic acid anhydride, nadic anhydride, methyl nadic anhydride, himic anhydride, methyl himic anhydride, and x-methyl-bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic acid anhydride (XMNA).


Examples of esters of unsaturated carboxylic acids useful in this invention as functional groups include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate and butyl methacrylate.


Examples of hydrolyzable unsaturated silane compounds useful as functional groups in this invention include radical polymerizable unsaturated group and an alkoxysilyl group or a silyl group in its molecule, such that the compound has a hydrolyzable silyl group bonded to a vinyl group and/or a hydrolyzable silyl group bonded to the vinyl group via an alkylene group, and/or a compound having a hydrolyzable silyl group bonded to an ester or an amide of acrylic acid, methacrylic acid or the like. Examples thereof include vinyltrichlorosilane, vinyltris(beta-methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, gamma-methacryloxypropyltrimethoxysilane monovinylsilane and monoallylsilane.


Examples of unsaturated halogenated hydrocarbons useful as functional groups in this invention include vinyl chloride and vinylidene chloride.


In a preferred embodiment, the functionalized components include propylene, and may be grafted with maleic anhydride (MA), to produce polypropylene copolymer grafted maleic anhydride, wherein the maleic anhydride is covalently bonded to the polymer chain of the polymeric composition. The anhydride functionality grafted onto the polypropylene copolymer may remain as an anhydride, may be oxidized into acid functional groups, and/or may be further reacted by processes known in the art to induce other functional groups such as amides, amines, and the like.


Preferable examples of the radical initiator used in the graft copolymerization include organic peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, t-butylperoxyisopropyl carbonate, di-ti-butyl perphthalate, 2,5-dimethyl-2,5-di(t-butylperoxy)hexene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexene-3, di-t-butyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, dilauryl peroxide and dicumyl peroxide.


The functionalized polymer of the present invention may thus be obtained by heating the polymer and the radical polymerizable functional group in the presence of the radical initiator at, near, or above a decomposition temperature of the radical initiator.


In some embodiments, no particular restriction need be put on the amount of the functional group to be used, accordingly, conventional conditions for functionalizing, for example, an isotactic polypropylene, can be utilized as is in the practice of this invention. Since in some cases the efficiency of the copolymerization is relatively high, the amount of the functional group may be small. In an embodiment, the amount of the functional group to be incorporated into the polymer, copolymer or oligomer is preferably from about 0.001 to 50 wt % functional group with respect to the total weight of the polymer. In an preferred embodiment, the amount of the maleic anhydride to be incorporated into the polymer, copolymer or oligomer is preferably from about 0.001 to 50 wt % MA with respect to the total weight of the polymer.


The radical initiator is preferably used in a ratio of from 0.00001 to 10 wt %, based on the weight of the functional group. The heating temperature depends upon whether or not the reaction is carried out in the presence of a solvent, but it is usually from about 50° C. to 350° C. When the heating temperature is less than 50° C., the reaction may be slow and thus efficiency may be low. When it is more than 350° C., decomposition of the PP copolymer may occur. The functionalized component may be functionalized with an functional group utilizing a solvent based functionalization process and/or utilizing a melt based functionalization process without a solvent.


In the solvent based process, the reaction may be carried out using the polymer in the form of a solution or a slurry having a concentration of from 0.1 to 50 wt % in the presence of a halogenated hydrocarbon compound having 2 to 20 carbon atoms, an aromatic compound, a halogenated aromatic compound, an alkyl substituted aromatic hydrocarbon, a cyclic hydrocarbon, and/or a hydrocarbon compound having 6 to 20 carbon atoms which is stable to the radicals.


In the functionalization process utilizing a melt based functionalization process without a solvent, the reaction may be carried out in the absence of the solvent in a device such as an extruder which can sufficiently produce physical contact between what may be a highly viscous polymer. In the latter case, the reaction is usually effected at a relatively high temperature, as compared with the reaction in the state of the solution.


Other methods for functionalizing polymers that may be used with the polymers described herein include, but are not limited to, selective oxidation, ozonolysis, epoxidation, and the like, both in solution or slurry (i.e., with a solvent), or in a melt (i.e., without a solvent).


The functionalized components may be a single polymer which has been functionalized as described herein. In another embodiment, the functionalized component of the present invention may be a blend of polymers which are functionalized together during a single process. The functionalized components of the present invention may also include a plurality of functionalized components which are combined after being individually functionalized, or any combination thereof.


In the present invention, the graft polymerization (grafting of the polymer) can be carried out in an aqueous medium. In this case a dispersant can be used, and examples of the dispersant include a saponified polyvinyl acetate, modified celluloses such as hydroxyethyl cellulose and hydroxypropyl cellulose, and compounds containing an OH group such as polyacrylic acid and polymethacrylic acid. In addition, compounds which are used in a usual aqueous suspension polymerization can also be widely employed.


The reaction may be carried out by suspending the polymer, the water-insoluble radical polymerizable monomer, the water-insoluble radical initiator and/or the dispersant in water, and then heating the mixture. Here, a ratio of water to the sum of the radical polymerizable monomer (i.e., the functional group) and the PP copolymer is preferably 1:0.1 to 1:200, more preferably 1:1 to 1:100. The heating temperature is such that the half-life of the radical initiator is preferably from 0.1 to 100 hours, more preferably from 0.2 to 10 hours, and it is preferably from 30° to 200° C., more preferably from 40° to 150° C. In the heating step, it is preferred that the mixture is stirred sufficiently so as to become in a suspension state. In this way, the graft polymer (i.e., the functionalized component) may be obtained in granular form.


A weight ratio of the water-insoluble monomer to the polymer may preferably be from 1:01 to 1:10000, and a weight ratio of the radical initiator to the water-insoluble monomer may be from 0.00001 to 0.1. The ratio of the water-insoluble monomer in the functionalized component depends upon its use, but the amount of the monomer may be from 0.1 to 200% by weight based on the weight of the graft copolymer.


The obtained functionalized component preferably contains a desired amount of radical polymerizable functional group units in the range of from 0.1 to 50 wt % based ob the weight of the polymer in compliance with its use or application. When the content of the radical polymerizable functional group units is in excess of 50 wt %, the particular polymer may not exert intrinsic physical properties, and when it is less than the above-mentioned lower limit, the physical properties as the graft copolymer may not be obtained.


Furthermore, a compatibilizing effect within the inventive composition obtained by inclusion of the functionalized component may be influenced by the level of grafting. In an embodiment, the polymer, copolymer, oligomer, etc. may be functionalized (e.g., grafted) to include about 0.001 wt % or greater of the functional group attached and/or incorporated into the polymer backbone. The polymer may also be functionalized grafted to a higher degree. The level of functionalization (e.g., the grafting level) may be less than about 50 wt %, preferably less than about 45 wt %, preferably less than about 40 wt %, preferably less than about 35 wt %, preferably less than about 30 wt %, preferably less than about 25 wt %, preferably less than about 20 wt %, preferably less than about 15 wt %, preferably less than about 10 wt %, preferably less than about 9 wt %, preferably less than about 8 wt %, preferably less than about 7 wt %, preferably less than about 6 wt %, preferably less than about 5 wt %, preferably less than about 4 wt %, preferably less than about 3 wt %, preferably less than about 2 wt %, preferably less than about 1.5 wt %, preferably less than about 1 wt %, preferably less than about 0.5 wt %.


In a preferred embodiment, the blend comprises POA and a functionalized syndiotactic rich C3-C40 homopolymer, still more preferably the composition comprises a copolymer or homopolymer comprising functionalized syndiotactic rich polypropylene (srPP).


For simplicity, syndiotactic rich polymers may also be referred to herein simply as syndiotactic polymers. Syndiotactic polymers suitable for use herein comprise a unique stereochemical structure in which monomeric units having enantiomorphic configuration of the asymmetrical carbon atoms follow each other alternately and regularly in the macromolecular main chain. Examples of syndiotactic polypropylene include those described in U.S. Pat. No. 3,258,455, which were obtained by using a catalyst prepared from titanium trichloride and diethyl aluminum monochloride. U.S. Pat. No. 3,305,538, is directed to vanadium triacetylacetonate or halogenated vanadium compounds in combination with organic aluminum compounds for producing syndiotactic polypropylene. U.S. Pat. No. 3,364,190 is directed to a catalyst system composed of finely divided titanium or vanadium trichloride, aluminum chloride, a trialkyl aluminum and a phosphorus-containing Lewis base for producing syndiotactic polypropylene.


The structure and properties of syndiotactic polypropylene differ significantly from those of isotactic polypropylene. The isotactic structure is typically described as having long sequences of monomer units with the same relative configuration of the tertiary carbon atoms. Using the Fischer projection formula, the stereochemical sequence of isotactic polypropylene is described as follows:


The methyl groups attached to the tertiary carbon atoms of successive monomeric units on the same side of a hypothetical plane through the main chain of the polymer, e.g., the methyl groups are all above or below the plane. Another way of describing the structure is through the use of NMR, wherein an isotactic pentad is . . . mmmmm . . . with each “m” representing a “meso” dyad or successive methyl groups on the same side in the plane. Any deviation or inversion in the structure of the chain lowers the degree of isotacticity and thus the crystallinity of the polymer.


In contrast to the isotactic structure, syndiotactic polymers are those in which long sequences of monomer units have an alternating relative configuration of the tertiary carbon atoms. Using the Fischer projection formula, the structure of a syndiotactic polymer is designated as:




embedded image


The methyl groups attached to the tertiary carbon atoms of successive monomeric units in the chain lie on alternate sides of the plane of the polymer. In NMR nomenclature, this pentad is described as . . . rrrrr . . . in which each “r” represents a “racemic” dyad, i.e., successive methyl groups on alternate side of the plane. The percentage of r dyads in the chain determines the degree of syndiotacticity of the polymer. Syndiotactic polymers may be crystalline and may be similar to isotactic polymers in that they may be insoluble in xylene. This crystallinity distinguishes both syndiotactic and isotactic polymers from atactic polymer, which may be soluble in xylene. Atactic polymer exhibits no regular order of repeating unit configurations in the polymer chain and may thus form a waxy product.


Preparation and Composition of Syndiotactic Polymers


Catalyst capable of producing syndiotactic rich polypropylene include those disclosed in U.S. Pat. Nos. 5,476,914, 6,184,326, 6,245,870, 5,373,059, 5,374,685, and 5,326,824.


In addition to propylene, the syndiotactic enriched polymer may include other alpha olefins within the base polymer, including ethylene (C2) and from C4 to C40. Examples of alpha olefins include butene-1, pentene-1, hexene-1, heptene-1, octene-1, nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, penetdecene-1, hexadecene-1, heptadecene-1, octadecene-1, and branched olefins including 3-methylbutene-1,4-methylepentene-1, and 4,4-dimethylepentene-1. The amount of the other alpha olefins, when present, may be greater than about 0.001% by weight (wt %), based on the total weight of the polymer. Preferably, the amount of the other alpha olefins is greater than or equal to about 0.1 wt %, more preferably greater than or equal to about 1 wt %. The other alpha olefins may also be present in the base polymer about 50 wt % or less. Preferably, the amount of the other alpha olefins is less than or equal to about 20 wt %, more preferably less than or equal to about 10 wt %.


Syndiotactic rich polypropylene, (srPP) polymers, as defined herein, comprise at least about 50% [r] dyads. Preferably at least about 55% [r] dyads, with at least about 60% [r] dyads preferred, with at least about 65% [r] dyads more preferred, with at least about 70% [r] dyads more preferred, with at least about 75% [r] dyads more preferred, with at least about 80% [r] dyads yet more preferred, with at least about 85% [r] dyads still more preferred, with at least about 90% [r] dyads still more preferred, with at least about 95% [r] dyads yet still more preferred.


Syndiotactic rich polypropylene may also comprise less than about 55% [r] dyads. Preferably less than about 60% [r] dyads, with less than about 65% [r] dyads preferred, with less than about 70% [r] dyads more preferred, with less than about 75% [r] dyads more preferred, with less than about 80% [r] dyads more preferred, with less than about 85% [r] dyads yet more preferred, with less than about 90% [r] dyads still more preferred, with less than about 92% [r] dyads still more preferred, with less than about 99% [r] dyads yet still more preferred.


In a preferred embodiment, syndiotactic rich polypropylenes may be defined as polypropylene contating about 58 to 75% [r] dyads, and have no or very low (e.g., less than about 10%) crystallinity.


In a preferred embodiment the blend comprises POA and functionalized srPP. Preferably the srPP is present at 1 to 99 weight %, preferably 2 to 85 weight %, preferably 3 to 50 weight %, more preferably 4 to 40 weight %, based upon the weight of the blend.


In another embodiment, a master batch of the functionalized polymer is prepared. A preferred mixing ratio between the functionalized component and a polymer (such as a POA or other homopolymer or copolymer of an alpha-olefin) is such that the radical polymerizable functional group units, preferably the unsaturated carboxylic acid units in the masterbatch are present in an amount of 0.001 to 50% by weight, based on the total weight of the polymer and the functionalized component. In a preferred embodiment, the functional groups in the functionalized component (preferably functionalized propylene homopolymer or copolymer, preferably srPP), may be about 0.01 wt % or greater, preferably about 0.1 wt % or greater, preferably about 0.5 wt % or greater, preferably about 1 wt % or greater, preferably about 5 wt % or greater, preferably about 10 wt % or greater, preferably about 15 wt % or greater, preferably about 20 wt % or greater, about 30 wt % or greater, preferably about 40 wt % or greater, based on the total weight of the functionalized propylene homopolymer or copolymer. Preferably, the functional group in the functionalized propylene homopolymer or copolymer, preferably srPP, is about 45 wt % or less, preferably about 35 wt % or less, preferably about 25 wt % or less, preferably about 20 wt % or less, preferably about 15 wt % or less, preferably about 10 wt % or less, preferably about 5 wt % or less, preferably about 1 wt % or less, based on the total weight of the functionalized propylene homopolymer or copolymer.


In the process utilized for producing the functionalized propylene homopolymer or copolymer, no particular restriction need be put on a mixing manner, accordingly, the raw materials may be mixed uniformly by means of a Henschel mixer or the like and then may be melted, mixed and molded into pellets by an extruder or the like. It is also possible to utilize a Brabender by which mixing and melting are carried out simultaneously, and after the melting, the material can be directly molded into films, sheets, or the like.


Functionalized Propylene Copolymers


In another embodiment the functionalized component comprises one or more functionalized polypropylene copolymers derived from propylene copolymers having elastic properties. Such preferred functionalized propylene copolymers may be prepared according the procedures in WO 02/36651 which is incorporated by reference here. Likewise the polymers described in WO 03/040202, WO 03/040095, WO 03/040201, WO 03/040233, WO 03/040442 may be functionalized as described herein and used in the practice of this invention. Additionally the polymers described in EP 1,233,191, U.S. Pat. No. 6,525,157 may be functionalized as described herein and used in the practice of this invention.


Preferred propylene copolymers to be functionalized and used herein include those prepared by polymerizing propylene with a C2 or C4-C20 alpha olefin, most preferably propylene and ethylene in the presence of a chiral metallocene catalyst with an activator and optionally a scavenger. The co-monomer used with propylene may be linear or branched. Preferred linear alpha-olefins include ethylene (C2) and C4 to C8 alpha olefins. Examples of preferred α-olefins include ethylene, 1-butene, 1-hexene, and 1-octene, even more preferably ethylene or 1-butene. Preferred branched α-olefins include 4-methyl-1-pentene, 3-methyl-1-pentene, and 3,5,5-trimethyl-1-hexene.


Preferred propylene copolymers to be functionalized and used herein include propylene copolymers may have an average propylene content on a molar basis of from about 68% to about 92%, more preferably from about 75% to about 91%, even more preferably from about 78% to about 88%, most preferably from about 80% to about 88%. The balance of the copolymer may be one or more α-olefins as specified above and optionally minor amounts of one or more diene monomers. Preferably, the polypropylene copolymer comprises ethylene as the comonomer in the range of from about 8 to 32 mole % ethylene, more preferably from about 9 to about 25 mole % ethylene, even more preferably from about 12 to about 22 mole % ethylene and most preferably from about 13 to 20 mole % ethylene.


The use of a chiral metallocene catalyst ensures that the methyl group of the propylene residues have predominantly the same tacticity. Both syndiotactic and isotactic configuration of the propylene are possible though the isotactic polymers are preferred. The tacticity of the propylene residues leads to crystallinity in the polymers. For the polymers of the present invention the low levels of crystallinity in the polypropylene copolymer are derived from isotactic polypropylene obtained by incorporating alpha-olefin co-monomers as described above. Preferred propylene copolymers to be functionalized and used herein include semi-crystalline propylene copolymers preferably having:

    • 1. a heat of fusion from about 0.5 J/g to about 25 J/g, more preferably from about 1 J/g to about 20 J/g, and most preferably from about 1 J/g to about 15 J/g; and/or
    • 2. a crystallinity of about 0.25% to about 15%, more preferably from about 0.5% to about 13%, and most preferably from about 0.5% to about 11% (The crystallinity of the polypropylene copolymer is expressed in terms of percentage of crystallinity. The thermal energy for the highest order of polypropylene is estimated at 189 J/g. That is, 100% crystallinity is equal to 189 J/g.); and/or
    • 3. a single broad melting point or melting transition (A sample of the polypropylene copolymer may show a secondary melting peak or peaks adjacent to a principal peak, yet for the purposes herein, these are considered together as a single melting point or melting transition.); and or
    • 4. a melting point of from about 25° C. to about 75° C., preferably in the range of from about 25° C. to about 65° C., more preferably in the range of from about 30° C. to about 60° C. (The highest of melting transition peaks is considered the melting point.); and/or
    • 5. a weight average molecular weight, prior to functionalization, of 10,000 to 5,000,000 g/cc, preferably 80,000 to 500,000; and/or
    • 6. an MWD (Mw/Mn) between 1.5 to 40.0, more preferably between about 1.8 to 5 and most preferably between 1.8 to 3; and/or
    • 7. a Mooney viscosity ML (1+4)@125° C. less than 100, more preferably less than 75, even more preferably less than 60, most preferably less than 30.


In another embodiment, prior to functionalization, preferred propylene copolymer preferably comprises a random crystallizable copolymer having a narrow compositional distribution. The intermolecular composition distribution of the polymer, may be determined by thermal fractionation in a solvent such as a saturated hydrocarbon e.g., hexane or heptane. This thermal fractionation procedure is described below. By having a narrow compositional distribution, it is meant that approximately 75% by weight and more preferably 85% by weight of the polymer is isolated as one or two adjacent, soluble fraction with the balance of the polymer in immediately preceding or succeeding fractions. Thus in a copolymer having a narrow compositional distribution, each of these fractions may have a composition (wt. % ethylene content) with a difference of no greater than 20% (relative to each other) and more preferably 10% (relative to each other) of the average weight % ethylene content of the polypropylene copolymer.


The length and distribution of stereoregular propylene sequences in preferred polypropylene copolymers is consistent with substantially random statistical copolymerization. It is well known that sequence length and distribution are related to the copolymerization reactivity ratios. By substantially random, we mean copolymer for which the product of the reactivity ratios is generally 2 or less. In stereoblock structures, the average length of polypropylene sequences is greater than that of substantially random copolymers with a similar composition. Prior art polymers with stereoblock structure have a distribution of polypropylene sequences consistent with these blocky structures rather than a random substantially statistical distribution. The reactivity ratios and sequence distribution of the polymer may be determined by 13C NMR, as is discussed in detail below, which locates the ethylene residues in relation to the neighboring propylene residues. To produce a crystallizable copolymer with the required randomness and narrow composition distribution, it is desirable to use (1) a single sited catalyst and (2) a well-mixed, continuous flow stirred tank polymerization reactor which allows only a single polymerization environment for substantially all of the polymer chains of preferred polypropylene copolymers.


Preferred propylene copolymers to be functionalized and used herein are described in detail as the “Second Polymer Component (SPC)” in co-pending U.S. application U.S. Ser. No. 60/133,966, filed May 13, 1999, and U.S. Ser. No. 60/342,854, filed Jun. 29, 1999, and described in further detail as the “Propylene Olefin Copolymer” in U.S. Ser. No. 90/346,460, filed Jul. 1, 1999, which are both fully incorporated by reference herein for purposes of U.S. practice.


IN another preferred embodiment, the polymer to be functionalized comprises propylene, one or more comonomers (such as ethylene, alpha-olefins having 4 to 8 carbon atoms, and styrenes) and optionally one or more α, ω dienes. The amount of diene is preferably no greater than about 10 wt %, more preferably no greater than about 5 wt %. Preferred dienes include those used for vulcanization of ethylene propylene rubbers, preferably ethylidene norbornene, vinyl norbornene, dicyclopentadiene, and 1,4-hexadiene (available from DuPont Chemicals).


In another embodiment, the polypropylene copolymer prior to functionalization may be a blend of discrete polymers. Such blends may include two or more polypropylene-polyethylene copolymers (as described above), two or more polypropylene copolymers (as described above), or at least one of each such polyethylene copolymer and polypropylene copolymer, where each of the components of the polymer blend would individually qualify as a polymer component.


It is understood in the context of the present invention that, in one embodiment, more than one polymer component may be used in a single blend. Each of the polymer components is described above and the number of polymer components in this embodiment is less than three and more preferably, two. In this embodiment of the invention the polymer components differ in the α-olefin content with one being in the range of 7 to 13 mole % olefin while the other is in the range of 14 to 22 mole % olefin. The preferred olefin is ethylene. It is believed that the use of two-polymer components leads to beneficial improvements in the tensile-elongation properties of the blends.


In another embodiment the polymer to be functionalized comprises random copolymers (RCP) and or impact copolymers (ICP) also called heterophasic copolymers or block copolymers. RCPs are usually produced by copolymerizing in a single reactor process propylene with other monomers such as ethylene, butene and higher alpha-olefins, the most common one being ethylene. Typical ethylene content for these copolymers range from 3-4 mole % up to 14-17 mole %. In a preferred embodiment, propylene polymers to be functionalized and used herein have an isotactic index and triad tacticity determined as follows:


Triad Tacticity


The term “tacticity” refers to the stereogenicity in a polymer. For example, the chirality of adjacent monomers can be of either like or opposite configuration. The term “diad” is used to designate two contiguous monomers; three adjacent monomers are called a triad. If the chirality of adjacent monomers is of the same relative configuration, the diad is called isotactic; if opposite in configuration, it is termed syndiotactic. Another way to describe the configurational relationship is to term contiguous pairs of monomers having the same chirality as meso (m) and those of opposite configuration racemic (r).


When three adjacent monomers are of the same configuration, the stereoregularity of the triad is ‘mm’. If two adjacent monomers in a three-monomer sequence have the same chirality and that is different from the relative configuration of the third unit, this triad has ‘mr tacticity. An ‘a’ triad has the middle monomer unit having an opposite configuration from either neighbor. The fraction of each type of triad in the polymer can be determined and when multiplied by 100 indicates the percentage of that type found in the polymer.


As indicated above, the reactivity ratios and sequence distribution of the polymer may be determined by 13C NMR, which locates the ethylene residues in relation to the neighboring propylene residues. The triad tacticity can be determined from a 13C NMR spectrum of the propylene copolymer. The 13C NMR spectrum is measured in the following manner.


To measure the 13C NMR spectrum, 250-350 mg of the copolymer is completely dissolved in deuterated tetrachloroethane in a NMR sample tube (diameter: 10 mm) at 120° C. The measurement is conducted with full proton decoupling using a 90° pulse angle and at least a 15 second delay between pulses.


With respect to measuring the chemical shifts of the resonances, the methyl group of the third unit in a sequence of 5 contiguous propylene units consisting of head-to-tail bonds and having the same relative chirality is set to 21.83 ppm. The chemical shift of other carbon resonances are determined by using the above-mentioned value as a reference. The spectrum relating to the methyl carbon region (17.0-23 ppm) can be classified into the first region (21.1-21.9 ppm), the second region (20.4-21.0 ppm), the third region (19.5-20.4 ppm) and the fourth region (17.0-17.5 ppm). Each peak in the spectrum was assigned with reference to literature source such as the articles in, “Polymer” 30 (1989) 1350 or “Macromolecules”, 17 (1984) 1950 which are frilly incorporated by reference.


In the first region, the signal of the center methyl group in a PPP (mm) triad is located.


In the second region, the signal of the center methyl group in a PPP (mr) triad and the methyl group of a propylene unit whose adjacent units are a propylene unit and an ethylene unit resonates (PPE-methyl group).


In the third region, the signal of the center methyl group in a PPP (a) triad and the methyl group of a propylene unit whose adjacent units are ethylene units resonate (EPE-methyl group).


PPP (mm), PPP (mr) and PPP (a) have the following three-propylene units-chain structure with head-to-tail bonds, respectively. This is shown in the Fischer projection diagrams below.




embedded image


The triad tacticity (mm fraction) of the propylene copolymer can be determined from a 13C-NMR spectrum of the propylene copolymer and the following formula:







mmm  Fraction

=


PPP  (mm)



PPP  (mm)

+

PPP  (mr)

+

PPP  (rr)







The peak areas used in the above calculation are not measured directly from the triad regions in the 13C-NMR spectrum. The intensities of the mr and a triad regions need to have subtracted from them the areas due to EPP and EPE sequencing, respectively. The EPP area can be determined from the signal at 30.8 ppm after subtracting from it one half the area of the sum of the signals between 26 and 27.2 ppm and the signal at 30.1 ppm. The area due to EPE can be determined from the signal at 33.2 ppm.


In addition to the above adjustments to the mr and rr regions for the presence of EPP and EPE, other adjustments need to be made to these regions prior to using the above formula. These adjustments are needed to account for signals present due to non-head-to-tail propylene additions. The area of the mr region may be adjusted by subtracting one half of the area between 34 and 36 ppm and the area of the rr region may be adjusted by subtracting the intensity found between 33.7 and 40.0 ppm. Therefore, by making the above adjustments to the mr and rr regions the signal intensities of the mm, mr and rr triads can be determined and the above formula applied.


Preferred propylene ethylene copolymers useful in this invention have unique propylene tacticity as measured by % meso triad. As shown in detail in U.S. Ser. No. 09/108,772, filed Jul. 1, 1998, fully incorporated herein by reference, the copolymers have a lower % meso triad for any given ethylene content when compared to U.S. Pat. No. 5,504,172. The lower content of % meso triads corresponds to relatively lower crystallinity that translates into better elastomeric properties such as high tensile strength and elongation at break coupled with very good elastic recovery.


In another embodiment, preferred polylefins to be functionalized and used herein include those described in WO 02/083753. Preferably the polyolefins is a copolymer comprising 5 to 25% by weight of ethylene-derived units and 95 to 75% by weight of propylene-derived units, the copolymer having:

    • (a) a melting point of less than 90° C.;
    • (b) a relationship of elasticity to 500% tensile modulus such that

      Elasticity≦0.935M+12,
      • where elasticity is in percent and M is the 500% tensile modulus in MPa; and
    • (c) a relationship of flexural modulus to 500% tensile modulus such that

      Flexural Modulus≦4.2e0.27M+50,
      • where flexural modulus is in MPa and M is the 500% tensile modulus in MPa, here tensile modulus and flexural modulus are determined as stated in WO 02/083753.


The functionalized component may be mixed or blended with (i.e., in combination with, an admixture of, and the like) POA having no graft component, a different graft component, or a similar graft component at a different level of inclusion, and/or the like, to achieve a final adhesive composition with a desired level of adhesion for a particular end use or process.


In an embodiment, in addition to the propylene copolymer, the functinalized component may also include an alpha-olefin homopolymer or copolymer containing no graft component. If desired, the alpha-olefin homopolymers may have various molecular weight characteristics, may be random and/or block copolymers of alpha-olefins themselves. Examples of the alpha-olefin include ethylene and alpha-olefins having 4 to 20 carbon atoms in addition to propylene. The homopolymers and copolymers of these alpha-olefins can be manufactured by various known methods, and may be commercially available under various trade names.


In the process utilized for producing the functionalized components and the final blends, no particular restriction need be put on a mixing manner, accordingly, the raw materials may be mixed uniformly by means of a Henschel mixer or the like and then may be melted, mixed and molded into pellets by an extruder or the like. It is also possible to utilize a Brabender mixer by which mixing and melting are carried out simultaneously, and after the melting, the material can be directly molded into films, sheets, or the like. Thus, the blends described herein may be formed using conventional techniques known in the art such that blending may be accomplished using one or more static mixers, in-line mixers, elbows, orifices, baffles, or any combination thereof.


In a preferred embodiment the POA and the functionallized component are combined in a weight to weight ratio of POA to functionalized component in the range of about 1:1000 to 1000:1. Preferably the weight to weight ratio may be about 1:100, about 1:50, about 1:20, about 1:10, about 1:5, about 1:4, about 1:3, about 1:2, or about 1:1. Alternately, the weight to weight ratio may be about 100:1, about 50:1, about 20:1, about 10:1, about 5:1, about 4:1, about 3:1, or about 2:1.


Formulations


The composition comprising the admixture of components 1 and 2, as produced herein, may be used directly as an adhesive, or may be blended, mixed and/or combined with other components to form an adhesive formulation.


Tackifiers may be used with the compositions of the present invention. Examples of suitable tackifiers, include, but are not limited to, aliphatic hydrocarbon resins, aromatic modified aliphatic hydrocarbon resins, hydrogenated polycyclopentadiene resins, polycyclopentadiene resins, gum rosins, gum rosin esters, wood rosins, wood rosin esters, tall oil rosins, tall oil rosin esters, polyterpenes, aromatic modified polyterpenes, terpene phenolics, aromatic modified hydrogenated polycyclopentadiene resins, hydrogenated aliphatic resin, hydrogenated aliphatic aromatic resins, hydrogenated terpenes and modified terpenes, hydrogenated rosin acids, and hydrogenated rosin esters. In some embodiments the tackifier may be hydrogenated.


In other embodiments, the tackifier may be non-polar. (Non-polar meaning that the tackifier is substantially free of monomers having polar groups. Preferably, the polar groups are not present, however if they are present, they are preferably not present at more that 5 weight %, preferably not more that 2 weight %, even more preferably no more than 0.5 weight %.) In some embodiments the tackifier may have a softening point (Ring and Ball, as measured by ASTM E-28) of 80° C. to 150° C., preferably 100° C. to 130° C. In another embodiment the resins is liquid and has a R and B softening point of between 10 and 70° C. The tackifier, if present in the composition, may comprise about 1 to about 80 weight %, based upon the weight of the composition, more preferably 2 to 40 weight %, even more preferably 3 to 30 weight %.


Preferred hydrocarbon resins for use as tackifiers or modifiers include:

    • 1. Resins such as C5/C6 terpene resins, styrene terpenes, alpha-methyl styrene terpene resins, C9 terpene resins, aromatic modified C5/C6, aromatic modified cyclic resins, aromatic modified dicyclopentadiene based resins or mixtures thereof. Additional preferred resins include those described in WO 91/07472, U.S. Pat. No. 5,571,867, U.S. Pat. No. 5,171,793 and U.S. Pat. No. 4,078,132. Typically these resins are obtained from the cationic polymerization of compositions containing one or more of the following monomers: C5 diolefins (such as 1-3 pentadiene, isoprene, and the like); C5 olefins (such as 2-methylbutenes, cyclopentene, and the like); C6 olefins (such as hexene), C9 vinylaromatics (such as styrene, alpha methyl styrene, vinyltoluene, indene, methyl indene, and the like); cyclics (such as dicyclopentadiene, methyldicyclopentadiene, and the like); and or terpenes (such as limonene, carene, thujone, and the like).
    • 2. Resins obtained by the thermal polymerization of dicyclopentadiene, and/or the thermal polymerization of dimers or oligomers of cyclopentadiene and/or methylcyclopentadiene, optionally with vinylaromatics (such as styrene, alpha-methyl styrene, vinyl toluene, indene, methyl indene, and the like).


The resins obtained after polymerization and separation of unreacted materials, can be hydrogenated if desired. Examples of preferred resins include those described in U.S. Pat. No. 4,078,132; WO 91/07472; U.S. Pat. No. 4,994,516; EP 0 046 344 A; EP 0 082 726 A; and U.S. Pat. No. 5,171,793.


Crosslinking Agents


In another embodiment an adhesive composition comprising polymer product of this invention may further comprises a crosslinking agent. Preferred crosslinking agents include those having functional groups that can react with the acid or anhydride group. Preferred crosslinking agents include alcohols, multiols, amines, diamines and/or triamines. Particular examples of crosslinking agents useful in this invention include polyamines such as ethylenediamine, diethylenetriamine, hexamethylenediamine, diethylaminopropylamine, and/or menthanediamine.


In another embodiment, the composition of this invention comprises one or more phenolic antioxidants. Preferred examples of a phenolic antioxidants include a substituted phenol such as 2,6-di-t-butylphenol in which a hydrogen atom at 2 and/or 6 position is substituted by an alkyl residue. Typical examples of the phenolic antioxidant include 2,6-di-t-butyl-p-cresol, 2,4,6-tri-t-butylphenol, vitamin E, 2-t-butyl-6-(3′-t-butyl-5′-methyl-2′-hydroxybenzyl)-4-methylphenyl acrylate, 2,2′-methylene-bis(4-methyl-6-t-butylphenyl), 2,2′-methylene-bis(4-ethyl-6-t-butyl-phenol), 2,2′-methylene-bis(6-cyclohexyl-4-methylphenol), 1,6-hexanediol-bis([3-(3,5-di-t-butyl[4-hydroxyphenyl])] propionate and pentaerythrityl-tetrakis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)] propionate.


The amount of each of these additives to be added is such that the weight ratio of the additive to the functionalized propylene homopolymer of copolymer is preferably 1/1000to 1/100000, more preferably 1/500 to 1/10000.


To the above-mentioned composition, there can be added a neutralizing agent such as calcium stearate, magnesium hydroxide, aluminum hydroxide or hydrotalcite, and a nucleating agent such as a salt of benzoic acid, sodium-2,2′-methylene-bis(4,6-di-t-butylphenyl) phosphate and benzyl sorbitol, and the like, in addition to the above-mentioned stabilizer.


Additives


In another embodiment, an adhesive composition of this invention further comprises typical additives known in the art such as fillers, antioxidants, adjuvants, adhesion promoters, oils, and/or plasticizers. Preferred fillers include titanium dioxide, calcium carbonate, barium sulfate, silica, silicon dioxide, carbon black, sand, glass beads, mineral aggregates, talc, clay and the like. Preferred antioxidants include phenolic antioxidants, such as Irganox 1010, Irganox, 1076 both available from Ciba-Geigy. Preferred oils include paraffinic or napthenic oils such as Primol 352, or Primol 876 available from ExxonMobil Chemical France, S.A. in Paris, France. Preferred plasticizers include polybutenes, such as Parapol 950 and Parapol 1300 formerly available from ExxonMobil Chemical Company in Houston Tex. Other preferred additives include block, antiblock, pigments, processing aids, UV stabilizers, neutralizers, lubricants, surfactants and/or nucleating agents may also be present in one or more than one layer in the films. Preferred additives include silicon dioxide, titanium dioxide, polydimethylsiloxane, talc, dyes, wax, calcium sterate, carbon black, low molecular weight resins and glass beads. Preferred adhesion promoters include polar acids, polyaminoamides (such as Versamid 115, 125, 140, available from Henkel), urethanes (such as isocyanate/hydroxy terminated polyester systems, e.g. bonding agent TN/Mondur Cb-75 (Miles, Inc.), coupling agents, (such as silane esters (Z-6020 from Dow Corning)), titanate esters (such as Kr-44 available from Kenrich), reactive acrylate monomers (such as sarbox SB-600 from Sartomer), metal acid salts (such as Saret 633 from Sartomer), polyphenylene oxide, oxidized polyolefins, acid modified polyolefins, and anhydride modified polyolefins.


In another embodiment the adhesive composition may be combined with less than 3 wt % anti-oxidant, less than 3 wt % flow improver, less than 10 wt % wax, and or less than 3 wt % crystallization aid.


Other optional components that may be combined with the adhesive composition as disclosed herein include plasticizers, and/or other additives such as oils, surfactants, fillers, color masterbatches, and the like. Preferred plasticizers include mineral oils, polybutenes, phthalates and the like. Particularly preferred plasticizers include phthalates such as di-iso-undecyl phthalate (DIUP), di-iso-nonylphthalate (DINP), dioctylphthalates (DOP) and/or the like. Particularly preferred oils include aliphatic naphthenic oils.


Other optional components that may be combined with the polymer product of this invention are low molecular weight products such as wax, oil or low Mn polymer, (low meaning below Mn of 5000, preferably below 4000, more preferably below 3000, even more preferably below 2500). Preferred waxes include polar or non-polar waxes, polypropylene waxes, polyethylene waxes, and wax modifiers. Preferred waxes include ESCOMER™ 101. Preferred oils include aliphatic napthenic oils, white oils or the like. Preferred low Mn polymers include polymers of lower alpha olefins such as propylene, butene, pentene, hexene and the like. A particularly preferred polymer includes polybutene having an Mn of less than 1000. An example of such a polymer is available under the trade name PARAPOL™ 950 from ExxonMobil Chemical Company. PARAPOL™ 950 is a liquid polybutene polymer having an Mn of 950 and a kinematic viscosity of 220 cSt at 100° C., as measured by ASTM D 445. In some embodiments the polar and non-polar waxes are used together in the same composition.


In some embodiments, however, wax may not be desired and is present at less than 5 weight %, preferably less than 3 weight %, more preferably less than 1 weight %, more preferably less than 0.5 weight %, based upon the weight of the composition.


In another embodiment the composition of this invention may have less than 30 weight % total of any combination of additives described above, preferably less than 25 weight %, preferably less than 20 weight %, preferably less than 15 weight %, preferably less than 10 weight %, preferably less than 5 weight %, based upon the total weight of component 1 and component 2, and the additives.


In another embodiment, the composition of this invention may be blended with elastomers (preferred elastomers include all natural and synthetic rubbers, including those defined in ASTM D1566). In a preferred embodiment, elastomers may be blended with the composition of the present invention to form rubber toughened compositions. In a particularly preferred embodiment, the rubber toughened composition is a two (or more) phase system where the rubber is a discontinuous phase and the inventive composition forms the continuous phase. Examples of preferred elastomers include one or more of the following: ethylene propylene rubber, ethylene propylene diene monomer rubber, neoprene rubber, styrenic block copolymer rubbers (including SI, SIS, SB, SBS, SIBS, SEBS, SEPS, and the like (S is styrene, I is isoprene, B is butadiene, EB is ethylenebutylene, EP is ethylenepropylene), butyl rubber, halobutyl rubber, copolymers of isobutylene and para-alkylstyrene, halogenated copolymers of isobutylene and para-alkylstyrene. This blend may be combined with the tackifiers and/or other additives as described above.


In another embodiment the adhesive composition may be blended with impact copolymers. Impact copolymers are defined to be a blend of isotactic PP and an elastomer such as an ethylene-propylene rubber. In a preferred embodiment the blend is a two (or more) phase system where the impact copolymer is a discontinuous phase and the combination of component 1 and component 2 as described above, is the continuous phase.


In another embodiment the polymer produced by this invention may be blended with ester polymers. In a preferred embodiment the blend is a two (or more) phase system where the polyester is a discontinuous phase and the composition is the continuous phase.


The composition of this invention or formulations thereof may then be applied directly to a substrate or may be sprayed thereon. The composition may be molten, or heated to a semisolid state prior or during application. Spraying is defined to include atomizing, such as producing an even dot pattern, spiral spraying such as Nordson Controlled Fiberization or oscillating a stretched filament like may be done in the ITW Dynafiber/Omega heads or Summit technology from Nordson. The compositions of this invention may also be melt blown. Melt blown techniques are defined to include the methods described in U.S. Pat. No. 5,145,689 or any process where air streams are used to break up filaments of the extrudate and then used to deposit the broken filaments on a substrate. In general, melt blown techniques are processes that use air to spin hot melt adhesive fibers and convey them onto a substrate for bonding. Fibers sizes can easily be controlled from 20-200 microns by changing the melt to air ratio. Few, preferably no, stray fibers are generated due to the inherent stability of adhesive melt blown applicators. Under UV light the bonding appears as a regular, smooth, stretched dot pattern. Atomization is a process that uses air to atomize hot melt adhesive into very small dots and convey them onto a substrate for bonding.


Preferred unsaturated acids or anhydrides include any unsaturated organic compound containing at least one double bond and at least one carbonyl group. Representative acids include carboxylic acids, anhydrides, esters and their salts, both metallic and non-metallic. Preferably the organic compound contains an ethylenic unsaturation conjugated with a carbonyl group (—C═O). Examples include maleic, fumaric, acrylic, methacrylic, itaconic, crotonic, alpha.methyl crotonic, and cinnamic acids as well as their anhydrides, esters and salt derivatives. Particularly preferred functional groups include maleic acid and maleic anhydride. Maleic anhydride is particularly preferred. The unsaturated acid or anhydride is preferably present at about 0.1 weight % to about 10 weight %, preferably at about 0.5 weight % to about 7 weight %, even more preferably at about 1 to about 4 weight %, based upon the weight of the polymer and the unsaturated acid or anhydride. In a preferred embodiment the unsaturated acid or anhydried comprises a carboxylic acid or a derivative thereof selected from the group consisting of unsaturated carboxylic acids, unsaturated carboxylic acid derivatives selected from esters, imides, amides, anhydrides and cyclic acid anhydrides or mixtures thereof.


Tackifiers


In a preferred embodiment, the adhesives of this invention further comprise a tackifier, preferably present at about 1 to about 80 weight %, based upon the weight of the blend, more preferably 2 to 40 weight %, even more preferably 3 to 30 weight %; based upon the weight of the adhesive.


Examples of suitable tackifiers for use in this invention include, but are not limited to, aliphatic hydrocarbon resins, aromatic modified aliphatic hydrocarbon resins, hydrogenated polycyclopentadiene resins, polycyclopentadiene resins, gum rosins, gum rosin esters, wood rosins, wood rosin esters, tall oil rosins, tall oil rosin esters, polyterpenes, aromatic modified polyterpenes, terpene phenolics, aromatic modified hydrogenated polycyclopentadiene resins, hydrogenated aliphatic resin, hydrogenated aliphatic aromatic resins, hydrogenated terpenes and modified terpenes, hydrogenated rosin acids, and hydrogenated rosin esters. In some embodiments the tackifier is hydrogenated.


In an embodiments the tackifier is non-polar. (Non-polar meaning that the tackifier is substantially free of monomers having polar groups. Preferably the polar groups are not present, however if they are preferably they are not present at more that 5 weight %, preferably not more that 2 weight %, even more preferably no more than 0.5 weight %.) In some embodiments the tackifier has a softening point (Ring and Ball, as measured by ASTM E-28) of 80° C. to 150° C., preferably 100° C. to 130° C. In another embodiment the resins is liquid and has a R and B softening point of between 10 and 70° C.


Preferred hydrocarbon resins for use as tackifiers include:

    • 1. Resins such as C5/C6 terpene resins, styrene terpenes, alpha-methyl styrene terpene resins, C9 terpene resins, aromatic modified C5/C6, aromatic modified cyclic resins, aromatic modified dicyclopentadiene based resins or mixtures thereof. Additional preferred resins include those described in WO 91/07472, U.S. Pat. No. 5,571,867, U.S. Pat. No. 5,171,793 and U.S. Pat. No. 4,078,132. Typically these resins are obtained from the cationic polymerization of compositions containing one or more of the following monomers: C5 diolefins (such as 1-3 pentadiene, isoprene, etc); C5 olefins (such as 2-methylbutenes, cyclopentene, etc.); C6 olefins (such as hexene), C9 vinylaromatics (such as styrene, alpha methyl styrene, vinyltoluene, indene, methyl indene, etc.); cyclics (such as dicyclopentadiene, methyldicyclopentadiene, etc.); and or terpenes (such as limonene, carene, etc).
    • 2. Resins obtained by the thermal polymerization of dicyclopentadiene, and/or the thermal polymerization of dimers or oligomers of cyclopentadiene and/or methylcyclopentadiene, optionally with vinylaromatics (such as styrene, alpha-methyl styrene, vinyl toluene, indene, methyl indene).


The hydrocarbon resins (tackifiers) obtained after polymerization and separation of unreacted materials, can be hydrogenated if desired. Examples of preferred resins include those described in U.S. Pat. No. 4,078,132; WO 91/07472; U.S. Pat. No. 4,994,516; EP 0 046 344 A; EP 0 082 726 A; and U.S. Pat. No. 5,171,793.


The Adhesive Blend


The adhesive blends prepared herein may be prepared by any conventional blending means known in the art.


In another embodiment the adhesive composition further comprises a crosslinking agent. Preferred crosslinking agents include those having functional groups that can react with the acid or anhydride group. Preferred crosslinking agents include alcohols, multiols, amines, diamines and/or triamines. Examples of crosslinking agents useful in this invention include polyamines such as ethylenediamine, diethylenetriamine, hexamethylenediamine, diethylaminopropylamine, and/or menthanediamine.


In another embodiment the adhesive composition further comprises typical additives known in the art such as fillers, antioxidants, adjuvants, adhesion promoters, oils, plasticizers, block, antiblock, pigments, dyes, processing aids, UV stabilizers, neutralizers, lubricants, surfactants, nucleating agents, synergists, polymeric additives, defoamers, preservatives, thickeners, rheology modifiers, humectants, fillers and/or water,


Preferred fillers include titanium dioxide, calcium carbonate, barium sulfate, silica, silicon dioxide, carbon black, sand, glass beads, mineral aggregates, talc, clay, and the like.


Preferred antioxidants include phenolic antioxidants, such as Irganox 1010, Irganox, 1076 both available from Ciba-Geigy. Particularly preferred antioxidants include those selected from the group consisting of thioesters, phosphates, hindered phenols, tetrakis(methylene 3-(3′,5′-di-t-butyl-4 hydroxyphenyl)pro-pionate)methane, 2,2′-ethyldenebis (4,6-di-tertiarybutylphenol), 1, 1-3-tris(2-methyl-4-hydroxy-5-t-butylephenyl)butane, 1,3,5-trimethyl2,4,6,tris(3,5-tertbutyl-4-hydroxybenzyl)benzene, dilaurylthiodipropionate, pentaerythritol tetrakis(beta-laurylthiopropionate), alkyl-aryldi- and polyphosphates, thiophosphites, and combinations or derivatives thereof. Particularly preferred plasticizers include di-iso-undecyl phthalate (DIUP), di-iso-nonylphthalate (DINP), dioctylphthalates (DOP), combinations thereof, or derivatives thereof.


Preferred oils include paraffinic or napthenic oils such as Primol 352, or Primol 876 available from ExxonMobil Chemical France, S.A. in Paris, France. Preferred oils also include aliphatic napthenic oils, white oils or the like.


Preferred plasticizers include polybutenes, such as Parapol 950 and Parapol 1300 formerly available from ExxonMobil Chemical Company in Houston Tex., mineral oils, polybutenes, phthalates and the like. Particularly preferred plasticizers include phthalates such as di-iso-undecyl phthalate (DIUP), di-iso-nonylphthalate (DINP), dioctylphthalates (DOP) and the like. Particularly preferred oils include aliphatic naphthenic oils.


Preferred adhesion promoters include polar acids, polyaminoamides (such as Versamid 115, 125, 140, available from Henkel), urethanes (such as isocyanate/hydroxy terminated polyester systems, e.g. bonding agent TN/Mondur Cb-75 (Miles, Inc.), coupling agents, (such as silane esters (Z-6020 from Dow Corning)), titanate esters (such as Kr-44 available from Kenrich), reactive acrylate monomers (such as sarbox SB-600 from Sartomer), metal acid salts (such as Saret 633 from Sartomer), polyphenylene oxide, oxidized polyolefins, acid modified polyolefins, and anhydride modified polyolefins.


In an embodiment the adhesive composition comprises less than 3 wt % anti-oxidant, less than 3 wt % flow improver, less than 10 wt % wax, and or less than 3 wt % crystallization aid.


In another embodiment the adhesive composition comprises low molecular weight products such as wax, oil or low Mn polymer, (low meaning below Mn of 5000, preferably below 4000, more preferably below 3000, even more preferably below 2500). Preferred waxes include polar or non-polar waxes, polypropylene waxes, polyethylene waxes, and wax modifiers. Preferred waxes include ESCOMER™ 101. Particularly preferred waxes are selected from the group consisting of: polar waxes, non-polar waxes, Fischer-Tropsch waxes, oxidized Fischer-Tropsch waxes, hydroxystearamide waxes, functionalized waxes, polypropylene waxes, polyethylene waxes, wax modifiers, amorphous waxes, carnauba waxes, castor oil waxes, microcrystalline waxes, beeswax, carnauba wax, castor wax, spermaceti wax, vegetable wax, candelilla wax, japan wax, ouricury wax, douglas-fir bark wax, rice-bran wax, jojoba wax, bayberry wax, montan wax, peat wax, ozokerite wax, ceresin wax, petroleum wax, paraffin wax, polyethylene wax, chemically modified hydrocarbon wax, substituted amide wax, and combinations and derivatives thereof.


Preferred low Mn polymers include polymers of lower alpha olefins such as propylene, butene, pentene, hexene and the like. A particularly preferred polymer includes polybutene having an Mn of less than 1000. An example of such a polymer is available under the trade name PARAPOL™ 950 from ExxonMobil Chemical Company. PARAPOL™ 950 is a liquid polybutene polymer having an Mn of 950 and a kinematic viscosity of 220 cSt at 100° C., as measured by ASTM D 445. In some embodiments the polar and non-polar waxes are used together in the same composition.


In some embodiments, however, wax may not be desired and is present at less than 5 weight %, preferably less than 3 weight %, more preferably less than 1 weight %, more preferably less than 0.5 weight %, based upon the weight of the composition.


In another embodiment the polymers of this invention have less than 30 weight % total of any combination of additives described above, preferably less than 25 weight %, preferably less than 20 weight %, preferably less than 15 weight %, preferably less than 10 weight %, preferably less than 5 weight %, based upon the weight of the polymer and the additives.


In another embodiment the adhesive compositions of this invention are blended with elastomers (preferred elastomers include all natural and synthetic rubbers, including those defined in ASTM D1566). Examples of preferred elastomers include one or more of the following: ethylene propylene rubber, ethylene propylene diene monomer rubber, neoprene rubber, styrenic block copolymer rubbers (including SI, SIS, SB, SBS, SIBS, SEBS, SEPS, and the like (S is styrene, I is isoprene, B is butadiene, EB is ethylenebutylene, EP is ethylenepropylene), butyl rubber, halobutyl rubber, copolymers of isobutylene and para-alkylstyrene, halogenated copolymers of isobutylene and para-alkylstyrene. This blend may be combined with the tackifiers and/or other additives as described above.


In another embodiment the adhesive composition produced by this invention may be blended with impact copolymers. Impact copolymers are defined to be a blend of isotactic PP and an elastomer such as an ethylene-propylene rubber. In a preferred embodiment the blend is a two (or more) phase system where the impact copolymer is a discontinuous phase and the polymer is a continuous phase.


In another embodiment the adhesive composition produced by this invention may be blended with ester polymers. In a preferred embodiment the blend is a two (or more) phase system where the polyester is a discontinuous phase and the polymer is a continuous phase.


In a preferred embodiment the adhesive composition is combined with metallocene polyethylenes (mPE's) or metallocene polypropylenes (mPP's). The mPE and mPP homopolymers or copolymers are typically produced using mono- or bis-cyclopentadienyl transition metal catalysts in combination with an activator of alumoxane and/or a non-coordinating anion in solution, slurry, high pressure or gas phase. The catalyst and activator may be supported or unsupported and the cyclopentadienyl rings by may substituted or unsubstituted. Several commercial products produced with such catalyst/activator combinations are commercially available from ExxonMobil Chemical Company in Baytown, Tex. under the tradenames EXCEED™, ACHIEVE™ and EXACT™. For more information on the methods and catalysts/activators to produce such mPE homopolymers and copolymers see WO 94/26816; WO 94/03506; EPA 277,003; EPA 277,004; U.S. Pat. No. 5,153,157; U.S. Pat. No. 5,198,401; U.S. Pat. No. 5,240,894; U.S. Pat. No. 5,017,714; CA 1,268,753; U.S. Pat. No. 5,324,800; EPA 129,368; U.S. Pat. No. 5,264,405; EPA 520,732; WO 92 00333; U.S. Pat. No. 5,096,867; U.S. Pat. No. 5,507,475; EPA 426 637; EPA 573 403; EPA 520 732; EPA 495 375; EPA 500 944; EPA 570 982; WO91/09882; WO94/03506 and U.S. Pat. No. 5,055,438.


In another embodiment the adhesive composition are blended with a homopolymer and/or copolymer, including but not limited to, homopolypropylene, propylene copolymerized with up to 50 weight % of ethylene or a C4 to C20 alpha.-olefin, isotactic polypropylene, highly isotactic polypropylene, syndiotactic polypropylene, random copolymer of propylene and ethylene and/or butene and/or hexene, polybutene, ethylene vinyl acetate, low density polyethylene (density 0.915 to less than 0.935 g/cm3) linear low density polyethylene, ultra low density polyethylene (density 0.86 to less than 0.90 g/cm3), very low density polyethylene (density 0.90 to less than 0.915 g/cm3), medium density polyethylene (density 0.935 to less than 0.945 g/cm3), high density polyethylene (density 0.945 to 0.98 g/cm3), ethylene vinyl acetate, ethylene methyl acrylate, copolymers of acrylic acid, polymethylmethacrylate or any other polymers polymerizable by a high-pressure free radical process, polyvinylchloride, polybutene-1, isotactic polybutene, ABS resins, elastomers such as ethylene-propylene rubber (EPR), vulcanized EPR, EPDM, block copolymer elastomers such as SBS, nylons (polyamides), polycarbonates, PET resins, crosslinked polyethylene, copolymers of ethylene and vinyl alcohol (EVOH), polymers of aromatic monomers such as polystyrene, poly-1 esters, high molecular weight polyethylene having a density of 0.94 to 0.98 g/cm3 low molecular weight polyethylene having a density of 0.94 to 0.98 g/cm3, graft copolymers generally, polyacrylonitrile homopolymer or copolymers, thermoplastic polyamides, polyacetal, polyvinylidine fluoride and other fluorinated elastomers, polyethylene glycols and polyisobutylene.


In a preferred embodiment the adhesive composition of this invention is present in the blend (of adhesive composition and one or more polymers) at from 10 to 99 weight %, based upon the weight of the adhesive composition and the polymers in the blend, preferably 20 to 95 weight %, even more preferably at least 30 to 90 weight %, even more preferably at least 40 to 90 weight %, even more preferably at least 50 to 90 weight %, even more preferably at least 60 to 90 weight %, even more preferably at least 70 to 90 weight %.


Properties of the Adhesive Composition


The adhesive compositions prepared herein preferably show substrate fiber tear at −10° C. when the adhesive is applied to 56 pound virgin high performance parerboard stock (available from Inland Paper, Rome Ga.), preferably at least 5%, more preferably at least 10%, more preferably at least 20%, more preferably at least 30%, more preferably at least 40%, more preferably at least 50%, more preferably at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, more preferably 100%.


In another embodiment the adhesive prepared herein has a viscosity (also referred to a Brookfield Viscosity or Melt Viscosity) of 90,000 mPa·sec or less at 190° C. (as measured by ASTM D 3236 at 190° C.; ASTM=American Society for Testing and Materials); or 80,000 or less, or 70,000 or less, or 60,000 or less, or 50,000 or less, or 40,000 or less, or 30,000 or less, or 20,000 or less, or 10,000 or less, or 8,000 or less, or 5000 or less, or 4000 or less, or 3000 or less, or 1500 or less, or between 250 and 6000 mPa·sec, or between 500 and 5500 mPa·sec, or between 500 and 3000 mPa·sec, or between 500 and 1500 mPa·sec, and/or a viscosity of 8000 mPa·sec or less at 160° C. (as measured by ASTM D 3236 at 160° C.); or 7000 or less, or 6000 or less, or 5000 or less, or 4000 or less, or 3000 or less, or 1500 or less, or between 250 and 6000 mPa·sec, or between 500 and 5500 mPa·sec, or between 500 and 3000 mPa·sec, or between 500 and 1500 mPa·sec. In other embodiments the viscosity is 200,000 mPa·sec or less at 190° C., depending on the application. In other embodiments the viscosity is 50,000 mPa·sec or less depending on the applications.


In another embodiment the adhesive composition prepared herein has a heat of fusion of 70 J/g or less, or 60 J/g or less, or 50 J/g or less; or 40 J/g or less, or 30 J/g or less, or 20 J/g or less and greater than zero, or greater than 1 J/g, or greater than 10 J/g, or between 20 and 50 J/g.


In another embodiment the adhesive composition prepared herein also has a Shore A Hardness (as measured by ASTM 2240) of 95 or less, 70 or less, or 60 or less, or 50 or less, or 40 or less or 30 or less, or 20 or less. In other embodiments the Shore A Hardness is 5 or more, 10 or more, or 15 or more. In certain applications, such as packaging, the Shore A Hardness is preferably 50-85. In another embodiment, the polymer has a Shore A hardness of 20-90.


In another embodiment the adhesive composition prepared herein has a Shear Adhesion Fail Temperature (SAFT—as measured by ASTM 4498) of 200° C. or less, or of 40 to 150° C., or 60 to 130° C., or 65 to 110° C., or 70-80° C. In certain embodiments SAFT's of 130-140° C. are preferred. In other embodiments, SAFT's of 100-130° C. are preferred. In other embodiments, SAFT's of 110-140° C. are preferred.


In another embodiment the adhesive composition prepared herein also has a Dot T-Peel on Kraft paper of between 1 Newton and 10,000 Newtons, or 3 and 4000 Newtons, or between 5 and 3000 Newtons, or between 10 and 2000 Newtons, or between 15 and 1000 Newtons. Dot T-Peel is determined according to ASTM D 1876, as described below.


In another embodiment the adhesive composition prepared herein has a set time of several days to 1 second, or 60 seconds or less, or 30 seconds or less, or 20 seconds or less, or 15 seconds or less, or 10 seconds or less, or 5 seconds or less, or 4 seconds or less, or 3 seconds or less, or 2 seconds or less, or 1 second or less.


In another embodiment the adhesive composition prepared herein has a strain at break (as measured by ASTM D-1708 at 25° C.) of 50 to 1000%, preferably 80 to 200%. In some other embodiments the strain at break is 100 to 500%.


In another embodiment, the adhesive composition prepared herein has a tensile strength at break (as measured by ASTM D-1708 at 25° C.) of 0.5 MPa or more, alternatively 0.75 MPa or more, alternatively 1.0 MPa or more, alternatively 1.5 MPa or more, alternatively 2.0 MPa or more, alternatively 2.5 MPa or more, alternatively 3.0 MPa or more, alternatively 3.5 MPa or more.


In another embodiment the adhesive compositions prepared herein have a cloud point of 200° C. or less, preferably 180° C. or less, preferably 160° C. or less, preferably 120° C. or less, preferably 100° C. or less. Likewise any composition that the POA is part of preferably has a cloud point of 200° C. or less, preferably 180° C. or less, preferably 160° C. or less, preferably 120° C. or less, preferably 100° C. or less.


In another embodiment the adhesive compositions prepared herein have a Peel Strength on MYLAR at 25° C. of and a separation speed of 5 cm per minute of 0.05 lb/in or more, preferably 1 lb/in or more, preferably 5 lb/in for more, preferably 10 lb/in or more.


In another embodiment the adhesive compositions prepared herein have a Peel Strength on polypropylene at 25° C. of and a separation speed of 5 cm per minute of 0.05 lb/in or more, preferably 1 lb/in or more, preferably 5 lb/in for more, preferably 10 lb/in or more.


In another embodiment the adhesive compositions prepared herein have a Peel Strength on propylene at −10° C. of and a separation speed of 5 cm per minute of 0.05 lb/in or more, preferably 1 lb/in or more, preferably 5 lb/in for more, preferably 10 lb/in or more.


In another embodiment the adhesive compositions prepared herein have a Peel Strength on acrylic coated freezer paper at −18° C. of and a separation speed of 5 cm per minute 0.05 lb/in or more, preferably 1 lb/in or more, preferably 5 lb/in for more, preferably 10 lb/in or more.


In another embodiment, the adhesive prepared herein has deflection (measured in millimeters) of at least 100% greater than the same adhesive without the functional component (preferably 150% greater, more preferably 200% greater, more preferably 250% greater, more preferably 300% greater, more preferably 350% greater, more preferably 400% greater, more preferably 500% greater, more preferably 600% greater) as measured by the following Three Point Bend procedure:


The adhesive “structure” is placed on top of 2 parallel, cylindrical bars of diameter 5 mm, separated by 33 mm. The long axis of the “structure” is perpendicular to the direction of the bars. The temperature is equilibrated at “T”° C. A third bar is lowered down onto the “structure” in the centre to deflect it downwards. The deflection is measured to the break point of the “structure” or recorded as the maximum deflection of the apparatus. Definitions: “structure” is defined as a rectangular construction of 50 mm long, 6 mm wide and between 400 and 600 microns thick. “T” is chosen to best represent the operating conditions of the adhesive. In this case temperatures of −10° C. and −18° C. are typical values. “structure” preparation:


It is desired to make the “structure” as closely as possible to the method used to prepare the adhesive bond. In this case the adhesive was applied hot at a temperature of 180° C. onto release paper. A firm structure, coated in release paper, applied to the top of the adhesive in order to sandwich it between the two release papers. It was immediately rolled with a 1 kg PSA roller to compress the bond. When the bond is cooled, the adhesive is removed from between the two release papers and carefully cut to the desired dimensions.


For purposes of this invention and the claims thereto, the following tests are used, unless otherwise indicated.


Tensile strength, Tensile strength at break and elongation at break are measured by ASTM D 1708. Elongation at break is also called strain at break or percent elongation.


Peel strength—ASTM D-1876 (also referred to as Peel adhesion at 180° peel angle, 180° peel strength, 180° peel adhesion, T-Peel strength, T-Peel.)


Dynamic Storage modulus also called storage modulus is G′.


Creep resistance ASTM D-2293


Rolling Ball Tack PSTC 6


Hot Shear Strength is determined by suspending a 1000 gram weight from a 25 mm wide strip of MYLAR polyester film coated with the polymer or adhesive formulation which is adhered to a stainless steel plate with a contact area of 12.5 mm×25 mm. The sample is placed in a ventilated oven at 40° C. time is recorded until stress failure occurs.


Probe tack (also called Polyken probe tack) ASTM D 2979


Holding Power—PSTC 7, also called Shear adhesion or Shear strength?.


Density—ASTM D792 at 25° C.


Gardner color ASTM D 1544-68.


SAFT is also called heat resistance.


Tensile Strength Modulus at 100% elongation and Young's Modulus are determined according to ASTM E-1876.


Luminence is the reflectance “Y” in the CIE color coordinates as determined by ASTM D 1925 divided by 100.


Needle penetration is measured by ASTM D5.


Sag is also referred to as creep.


Bond strength is measured by ASTM D3983.


Adhesion to road surface is measured by ASTM D4541.


The adhesives of this invention can be used in any adhesive application, including but not limited to, disposables, packaging, laminates, pressure sensitive adhesives, tapes, labels, wood binding, paper binding, non-wovens, road marking, reflective coatings, and the like.


In a preferred embodiment the adhesives of this invention can be used for disposable diaper and napkin chassis construction, elastic attachment in disposable goods converting, packaging, labeling, bookbinding, woodworking, and other assembly applications. Particularly preferred applications include: baby diaper leg elastic, diaper frontal tape, diaper standing leg cuff, diaper chassis construction, diaper core stabilization, diaper liquid transfer layer, diaper outer cover lamination, diaper elastic cuff lamination, feminine napkin core stabilization, feminine napkin adhesive strip, industrial filtration bonding, industrial filter material lamination, filter mask lamination, surgical gown lamination, surgical drape lamination, and perishable products packaging.


The adhesive compositions described above may be applied to any substrate. Preferred substrates include wood, paper, cardboard, plastic, thermoplastic, rubber, metal, metal foil (such as aluminum foil and tin foil), metallized surfaces, cloth, non-wovens (particularly polypropylene spun bonded fibers or non-wovens), spunbonded fibers, cardboard, stone, plaster, glass (including silicon oxide (SiOx) coatings applied by evaporating silicon oxide onto a film surface), foam, rock, ceramics, films, polymer foams (such as polyurethane foam), substrates coated with inks, dyes, pigments, PVDC and the like or combinations thereof.


Additional preferred substrates include polyethylene, polypropylene, polyacrylates, acrylics, polyethylene terephthalate, or any of the polymers listed above as suitable for blends.


Any of the above substrates, and/or the adhesive composition of this invention, may be corona discharge treated, flame treated, electron beam irradiated, gamma irradiated, microwaved, or silanized before or after the substrate and the adhesive composition are combined.


In preferred embodiments, the blends of this invention are heat stable, by which is meant that the Gardner color of the composition (as determined by ASTM D-1544-68) that has been heat aged (e.g., maintained) at or 180° C. for 48 hours, does not change by more than 7 Gardner units when compared to the Gardner color of the initial composition. Preferably, the Gardner color of the composition after heating above its melting point for 48 hours does not change by more than 6, more preferably 5, still more preferably 4, still more preferably 3, still more preferably 2, still more preferably 1 Gardner color unit, as compared to the initial composition prior to being heated.


It has been discovered that free acid groups present in the composition may result in reduced heat stability. Accordingly, in a preferred embodiment, the amount of free acid groups present in the blend is less than about 1000 ppm, more preferably less than about 500 ppm, still more preferably less than about 100 ppm, based on the total weight of the blend. In yet another preferred embodiment, the composition is essentially free from phosphites, preferably the phosphites are present at 100 ppm or less.


In another embodiment this invention is also useful at low temperatures.


In another embodiment, this invention relates to:


1. An adhesive comprising 1) functionalized component and 2) an olefin polymer comprising 50 weight % or more of an alpha-olefin having 3 to 30 carbon atoms, where the olefin polymer has a Dot T-Peel of 1 N or more on Kraft paper, an Mw of 10,000 to 100,000, a g′ measured at the Mz of 0.95 or less and a heat of fusion of 1 to 70 J/g; where the functionalized component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.


2. An adhesive comprising 1) functionalized component and 2) an olefin polymer comprising 50 weight % or more of one or more alpha-olefins having 3 to 30 carbon atoms, where the olefin polymer has a Dot T-Peel of 1 N or more, an Mw of 10,000 to 60,000, a g′ measured at the Mz of 0.98 or less, and a heat of fusion of 1 to 50 J/g; where the functionalized component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.


3. An adhesive comprising 1) functionalized component and 2) an olefin polymer comprising a homopolypropylene or a copolymer of propylene and up to 5 mole % ethylene having:

    • a) an isotactic run length of 1 to 30,
    • b) a percent of r dyad of greater than 20%, and
    • c) a heat of fusion of 70 J/g or less;


      where the functionalized component is selected from the group consisting of functionalized polymers, functionalized oligomers and beta nucleating agents; and where the Gardner color of the adhesive does not change by more than 7 Gardner units when the adhesive has been heat aged at 180° C. for 48 hours as compared to the Gardner color of the unaged composition.


      4. The adhesive of paragraph 1, 2 or 3 wherein the olefin polymer has a percent crystallinity of between 5 and 40% or less.


      5. The adhesive of any of the above paragraphs wherein the g′ is 0.90 or less.


      6. The adhesive of any of the above paragraphs wherein the g′ is 0.80 or less.


      7. The adhesive of any of the above paragraphs wherein the olefin polymer has a viscosity at 190° C. of 90,000 mPa·s or less.


      8. The adhesive of any of the above paragraphs wherein the olefin polymer has a viscosity at 160° C. of 8,000 mPa·s or less.


      9. The adhesive of any of the above paragraphs wherein the olefin polymer has a heat of fusion greater than 10 J/g.


      10. The adhesive of any of the above paragraphs wherein the olefin polymer has heat of fusion of from 20 to 70 J/g.


      11. The adhesive of any of the above paragraphs wherein the olefin polymer has heat of fusion of from 30 to 60 J/g.


      12. The adhesive of any of the above paragraphs wherein the olefin polymer has a percent crystallinity of 10-30%.


      13. The adhesive of any of the above paragraphs wherein the olefin polymer has tensile strength at break of 0.75 MPa or more.


      14. The adhesive of any of the above paragraphs wherein the olefin polymer has a SAFT of 100-130° C.


      15. The adhesive of any of the above paragraphs wherein the olefin polymer has an Mz/Mn of 2 to 200.


      16. The adhesive of any of the above paragraphs wherein the olefin polymer has a Shore A hardness of 20-90.


      17. The adhesive of any of the above paragraphs wherein the olefin polymer has a Dot T-Peel of between 3 and 10,000 N.


      18. The adhesive of any of the above paragraphs wherein the olefin polymer has a Dot T-Peel of between 10 and 2,000 N.


      19. The adhesive of any of the above paragraphs wherein the olefin polymer has a tensile strength at break of 0.6 MPa or more.


      20. The adhesive of any of the above paragraphs wherein the olefin polymer has a Tg of between 5 and −65° C.


      21. The adhesive of any of the above paragraphs wherein the olefin polymer comprises at least 50 weight % propylene.


      22. The adhesive of any of the above paragraphs wherein the olefin polymer comprises at least 50 weight % propylene and up to 50 weight % of a comonomer selected from the group consisting of ethylene, butene, hexene, octene, decene, dodecene, pentene, heptene, nonene, 4-methyl-pentene-1,3-methyl pentene-1,3,5,5-trimethyl-hexene-1, and 5-ethyl-1-nonene.


      23. The adhesive of any of the above paragraphs wherein the olefin polymer comprises at least 50 weight % propylene and 5 weight % or less of ethylene.


      24. The adhesive of any of the above paragraphs wherein the olefin polymer comprises up to 10 weight % of a diene selected from the group consisting of: butadiene, pentadiene, hexadiene, heptadiene, octadiene, nonadiene, decadiene, undecadiene, dodecadiene, tridecadiene, tetradecadiene, pentadecadiene, hexadecadiene, heptadecadiene, octadecadiene, nonadecadiene, icosadiene, heneicosadiene, docosadiene, tricosadiene, tetracosadiene, pentacosadiene, hexacosadiene, heptacosadiene, octacosadiene, nonacosadiene, triacontadiene, cyclopentadiene, vinylnorbornene, norbornadiene, ethylidene norbornene, divinylbenzene, and dicyclopentadiene.


      25. The adhesive of any of the above paragraphs wherein tackifier is present at 1 to 60 weight %.


      26. The adhesive of any of the above paragraphs wherein tackifier is present and is selected from the group consisting of aliphatic hydrocarbon resins, aromatic modified aliphatic hydrocarbon resins, hydrogenated polycyclopentadiene resins, polycyclopentadiene resins, gum rosins, gum rosin esters, wood rosins, wood rosin esters, tall oil rosins, tall oil rosin esters, polyterpenes, aromatic modified polyterpenes, terpene phenolics, aromatic modified hydrogenated polycyclopentadiene resins, hydrogenated aliphatic resin, hydrogenated aliphatic aromatic resins, hydrogenated terpenes and modified terpenes, hydrogenated rosin acids, hydrogenated rosin esters, derivatives thereof, and combinations thereof.


      27. The adhesive of any of the above paragraphs wherein the adhesive further comprises one or more waxes selected from the group consisting of polar waxes, non-polar waxes, Fischer-Tropsch waxes, oxidized Fischer-Tropsch waxes, hydroxystearamide waxes, polypropylene waxes, polyethylene waxes, wax modifiers, and combinations thereof.


      28. The adhesive of any of the above paragraphs wherein the adhesive further comprises one or more additives selected from the group consisting of plasticizers, oils, stabilizers, antioxidants, pigments, dyestuffs, polymeric additives, defoamers, preservatives, thickeners, rheology modifiers, humectants, fillers and water.


      29. The adhesive of any of the above paragraphs wherein the adhesive further comprises one or more aliphatic naphthenic oils, white oils, combinations thereof, or derivatives thereof.


      30. The adhesive of any of the above paragraphs wherein the adhesive further comprises one or more plasticizers selected from the group consisting of mineral oils, polybutenes, phthalates, and combinations thereof.


      31. The adhesive of any of the above paragraphs wherein the adhesive further comprises one or more plasticizers selected from the group consisting of di-iso-undecyl phthalate, di-iso-nonylphthalate, dioctylphthalates, combinations thereof, or derivatives thereof.


      32. The adhesive of any of the above paragraphs wherein the olefin polymer has a peak melting point between 80 and 140° C.


      33. The adhesive of any of the above paragraphs wherein the olefin polymer has a Tg of 0° C. or less.


      34. The adhesive of any of the above paragraphs wherein the olefin polymer has a melt index of 50 dg/min or more.


      35. The adhesive of any of the above paragraphs wherein the olefin polymer has a set time of 30 seconds or less.


      36. The adhesive of any of the above paragraphs wherein the olefin polymer has a Tc that is at least 10° C. below the Tm.


      37. The adhesive of any of the above paragraphs wherein the olefin polymer has an I10/I2 of 6.5 or less.


      38. The adhesive of any of the above paragraphs wherein the olefin polymer has a range of crystallization of 10 to 60° C. wide.


      39. The adhesive of any of the above paragraphs wherein the functionalized component is present at 0.001 to 50 weight %.


      40. The adhesive of any of the above paragraphs wherein the functionalized component is present at 0.1 to 10 weight %.


      41. The adhesive of any of the above paragraphs wherein the functionalized component comprises functionalized polymer.


      42. The adhesive of any of the above paragraphs wherein the functionalized component comprises functionalized polymer selected from the group consisting of maleated polyethylene, maleated metallocene polyethylene, maleated metallocene polypropylene, maleated ethylene propylene rubber, and functionalized polyisobutylene.


      43. The adhesive of any of the above paragraphs wherein the functionalized component comprises functionalized oligomer.


      44. The adhesive of any of the above paragraphs wherein the functionalized component comprises functionalized hydrocarbon resin.


      45. The adhesive of any of the above paragraphs wherein the functionalized component comprises a beta-nucleating agent.


      46. The adhesive of any of the above paragraphs wherein the functionalized component comprises beta nucleating agent selected from the group consisting of N,N′-diphenylhexanediamide, N,N′-dicyclohexylterephthalamide, N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide, N,N′-dicyclohexanecabonyl-p-phenylenediamine, N,N′-dibenzoyl-1,5-diaminonaphthalene, N,N′-dibenzoyl-1,4-diaminocyclohexane or N,N′-dicyclohexanecarbonyl-1,4-diaminocyclohexane, N-cyclohexyl-4-(N-cyclohexylcarbonylamino)benzamide, N-phenyl-5-(N-benzoylamino)pentanamide, sorbitol, salicyclic acid, p-hydroxybenzoic acid, zinc 3,5-di-tert-butylsalicyclate, 2-naphthoic acid, phenyl acetic acid, terephthalic acid, anthranilic acid, 3,3-diphenylpropionic, tetra butyl ammonium chloride, naphthalic acid, benzoin, ascorbic acid, adipic acid, tertabutyl benzoate, dodecylbenzenesulfonic acid sodium salt, 4-dodecylbenzenesulfonic acid, 4,4-bis(4-hydroxyphenyl)valeric acid, diphenic acid, 4-isopropylbenzoic acid, Millad 3988tm, neodecanoic acid, abietic acid, sodium benzoate, succinic anhydride, phenol, benzoic acid, benzyl alcohol, benzyl amine, alkyl substituted succinates (preferably C1 to C40 alkyl substituted succinates), substituted di(benzylidene)-D-sorbitols, 1,3:2,4-di(benzylidene)-D-sorbitol, 1,3:2,4-bis(3,4-dimethylbenzylidene)-D-sorbitol, red quinacridone dye, gamma-crystalline form of a quinacridone colorant, the bisodium salt of orthophthalic acid, the aluminum salt of 6-quinizarin sulfonic acid, the aluminum salt of isophthalic and the aluminum salt of terephthalic acids.


      47. The adhesive of any of the above paragraphs wherein the functional component comprises a functional group selected from the group consisting of organic acids, organic amides, organic amines, organic esters, organic anhydrides, organic alcohols, organic acid halides, organic peroxides, and salts thereof.


      48. The adhesive of any of the above paragraphs wherein the functional component comprises a functional group selected from the group consisting of carboxylic acids, esters of the unsaturated carboxylic acids, acid anhydrides, di-esters, salts, amides, imides, aromatic vinyl compounds hydrolyzable unsaturated silane compounds and unsaturated halogenated hydrocarbons.


      49. The adhesive of any of the above paragraphs wherein the functional component comprises a functional group selected from the group consisting of maleic anhydride, citraconic anhydride, 2-methyl maleic anhydride, 2-chloromaleic anhydride, 2,3-dimethylmaleic anhydride, bicyclo[2,2,1]-5-heptene-2,3-dicarboxylic anhydride and 4-methyl-4-cyclohexene-1,2-dicarboxylic anhydride, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, crotonic acid, bicyclo(2.2.2)oct-5-ene-2,3-dicarboxylic acid anhydride, 1,2,3,4,5,&g, lo-octahydronaphthalene-2,3-dicarboxylic acid anhydride, 2-oxa-1,3-diketospiro(4.4)non-7-ene, bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic acid anhydride, maleopimaric acid, tetrahydrophtalic anhydride, norborn-5-ene-2,3-dicarboxylic acid anhydride, nadic anhydride, methyl nadic anhydride, himic anhydride, methyl himic anhydride, and x-methyl-bicyclo(2.2.1)hept-5-ene-2,3-dicarboxylic acid anhydride (XMNA).


      50. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic polypropylene.


      51. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic rich polypropylene.


      52. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is polypropylene having a weight average molecular weight of 15,000 or less and a crystallinity of 5% or more.


      53. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is polypropylene having a weight average molecular weight between 3,000 to 15,000 and a crystallinity of 5% or more functionalized with up to 10 weight % of maleic anhydride.


      54. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is polypropylene having:
    • 1) a heat of fusion from about 0.5 J/g to about 25 J/g; and/or
    • 2. a crystallinity of about 0.25% to about 15%; and/or
    • 3) a melting point of from about 25° C. to about 75° C.; and/or
    • 4) a weight average molecular weight, prior to functionalization, of 10,000 to 500,000; and/or
    • 5) an Mw/Mn between 1.8 to 5; and/or
    • 6) a Mooney viscosity ML (1+4)@125° C. less than 100.


      55. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic rich polypropylene having at least 50% [r] dyads.


      56. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic rich polypropylene having at less than or equal to 99% [r] dyads.


      57. The adhesive of any of the above paragraphs wherein the functional component comprises a functional polymer where the polymer of the functional polymer is a random copolymer of propylene and an alpha olefin wherein the propylene copolymer has:
    • a crystallinity of from 0.1 to 50%;


      a propylene content from 68 to 92 mole percent;


      a comonomer content from 8 to 32 mole percent;


      a melting point from 25° C. to 105° C.; and


      a heat of fusion of less than 45 J/g.


      58. A process to make the adhesive of any of the above paragraphs, comprising the steps of contacting the olefin polymer with the functionalized component to produce an admixture.


      59. A tie layer, paint primer, package, article, disposable article, diaper, film, laminate, pressure sensitive adhesive, hot melt adhesive, tape or nonwoven fabric comprising the adhesive of any of the above claims.


      60. The adhesive of any of the above paragraphs wherein the adhesive shows substrate fiber tear at −10° C. when the adhesive is applied to 50 pound corrugated cardboard.


      61. The adhesive of any of the above paragraphs wherein the adhesive shows substrate fiber tear at −10° C. of at least 5% when the adhesive is applied to 50 pound corrugated cardboard.


      62. The adhesive of any of the above paragraphs wherein the adhesive has three point bend deflection at −10° C. of at least 100% greater than the same adhesive without the functional component.


All documents described herein are incorporated by reference herein, including any priority documents and/or testing procedures. As is apparent from the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby.


EXAMPLES
Characterization and Tests

Molecular weights (number average molecular weight (Mn), weight average molecular weight (Mw), and z-average molecular weight (Mz)) were determined using a Waters 150 Size Exclusion Chromatograph (SEC) equipped with a differential refractive index detector (DRI), an online low angle light scattering (LALLS) detector and a viscometer (VIS). The details of the detector calibrations have been described elsewhere [Reference: T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, Macromolecules, Volume 34, Number 19, 6812-6820, (2001)]; attached below are brief descriptions of the components.


The SEC with three Polymer Laboratories PLgel 10 mm Mixed-B columns, a nominal flow rate 0.5 cm3/min, and a nominal injection volume 300 microliters was common to both detector configurations. The various transfer lines, columns and differential refractometer (the DRI detector, used mainly to determine eluting solution concentrations) were contained in an oven maintained at 135° C.


The LALLS detector was the model 2040 dual-angle light scattering photometer (Precision Detector Inc.). Its flow cell, located in the SEC oven, uses a 690 nm diode laser light source and collects scattered light at two angles, 15° and 90°. Only the 15° output was used in these experiments. Its signal was sent to a data acquisition board (National Instruments) that accumulates readings at a rate of 16 per second. The lowest four readings were averaged, and then a proportional signal was sent to the SEC-LALLS-VIS computer. The LALLS detector was placed after the SEC columns, but before the viscometer.


The viscometer was a high temperature Model 150R (Viscotek Corporation). It consists of four capillaries arranged in a Wheatstone bridge configuration with two pressure transducers. One transducer measures the total pressure drop across the detector, and the other, positioned between the two sides of the bridge, measures a differential pressure. The specific viscosity for the solution flowing through the viscometer was calculated from their outputs. The viscometer was inside the SEC oven, positioned after the LALLS detector but before the DRI detector.


Solvent for the SEC experiment was prepared by adding 6 grams of butylated hydroxy toluene (BHT) as an antioxidant to a 4 liter bottle of 1,2,4 Trichlorobenzene (TCB) (Aldrich Reagent grade) and waiting for the BHT to solubilize. The TCB mixture was then filtered through a 0.7 micron glass pre-filter and subsequently through a 0.1 micron Teflon filter. There was an additional online 0.7 micron glass pre-filter/0.22 micron Teflon filter assembly between the high pressure pump and SEC columns. The TCB was then degassed with an online degasser (Phenomenex, Model DG-4000) before entering the SEC.


Polymer solutions were prepared by placing dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160° C. with continuous agitation for about 2 hours. All quantities were measured gravimetrically. The TCB densities used to express the polymer concentration in mass/volume units were 1.463 g/ml at room temperature and 1.324 g/ml at 135° C. The injection concentration ranged from 1.0 to 2.0 mg/ml, with lower concentrations being used for higher molecular weight samples.


Prior to running each sample the DRI detector and the injector were purged. Flow rate in the apparatus was then increased to 0.5 ml/minute, and the DRI was allowed to stabilize for 8-9 hours before injecting the first sample. The argon ion laser was turned on 1 to 1.5 hours before running samples by running the laser in idle mode for 20-30 minutes and then switching to full power in light regulation mode.


The branching index was measured using SEC with an on-line viscometer (SEC-VIS) and are reported as g′ at each molecular weight in the SEC trace. The branching index g′ is defined as:







g


=


η
b


η
l







where ηb is the intrinsic viscosity of the branched polymer and ηl, is the intrinsic viscosity of a linear polymer of the same viscosity-averaged molecular weight (Mv) as the branched polymer. ηl=KMvα, K and α were measured values for linear polymers and should be obtained on the same SEC-DRI-LS-VIS instrument as the one used for branching index measurement. For polypropylene samples presented in this invention, K=0.0002288 and α=0.705 were used. The SEC-DRI-LS-VIS method obviates the need to correct for polydispersities, since the intrinsic viscosity and the molecular weight were measured at individual elution volumes, which arguably contain narrowly dispersed polymer. Linear polymers selected as standards for comparison should be of the same viscosity average molecular weight, monomer content and composition distribution. Linear character for polymer containing C2 to C10 monomers is confirmed by Carbon-13 NMR the method of Randall (Rev. Macromol. Chem. Phys., C29 (2&3), p. 285-297). Linear character for C11 and above monomers is confirmed by GPC analysis using a MALLS detector. For example, for a copolymer of propylene, the NMR should not indicate branching greater than that of the co-monomer (i.e. if the comonmer is butene, branches of greater than two carbons should not be present). For a homopolymer of propylene, the GPC should not show branches of more than one carbon atom. When a linear standard is desired for a polymer where the comomoner is C9 or more, one can refer to T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, Macromolecules, Volume 34, Number 19, 6812-6820, (2001) for protocols on determining standards for those polymers. In the case of syndiotactic polymers, the standard should have a comparable amount of syndiotacticty as measured by Carbon 13 NMR.


Peak melting point (Tm), peak crystallization temperature (Tc), heat of fusion and crystallinity were determined using the following procedure according to ASTM E 794-85. Differential scanning calorimetric (DSC) data was obtained using a TA Instruments model 2920 machine. Samples weighing approximately 7-10 mg were sealed in aluminum sample pans. The DSC data was recorded by first cooling the sample to −50° C. and then gradually heating it to 200° C. at a rate of 10° C./minute. The sample was kept at 200° C. for 5 minutes before a second cooling-heating cycle was applied. Both the first and second cycle thermal events were recorded. Areas under the curves were measured and used to determine the heat of fusion and the degree of crystallinity. The percent crystallinity is calculated using the formula, [area under the curve (Joules/gram)/B (Joules/gram)]*100, where B is the heat of fusion for the homopolymer of the major monomer component. These values for B are to be obtained from the Polymer Handbook, Fourth Edition, published by John Wiley and Sons, New York 1999. A value of 189 J/g (B) was used as the heat of fusion for 100% crystalline polypropylene. For polymers displaying multiple melting or crystallization peaks, the highest melting peak was taken as peak melting point, and the highest crystallization peak was taken as peak crystallization temperature.


The glass transition temperature (Tg) was measured by ASTM E 1356 using a TA Instruments model 2920 machine.


Melt Viscosity (ASTM D-3236) (also called “viscosity”, “Brookfield viscosity”) Melt viscosity profiles were typically measured at temperatures from 120° C. to 190° C. using a Brookfield Thermosel viscometer and a number 27 spindle.


Adhesive Testing


A number of hot melt adhesives were prepared by using the pure polymers or blending the pure polymer, functionalized additives, tackifier, wax, antioxidant, and other ingredients under low shear mixing at elevated temperatures to form fluid melt. The mixing temperature varied from about 130 to about 190° C. Adhesive test specimens were created by bonding the substrates together with a dot of about 0.3 grams of molten adhesive and compressing the bond with a 500-gram weight until cooled to room temperature. The dot size was controlled by the adhesive volume such that in most cases the compressed disk which formed gave a uniform circle just inside the dimensions of the substrates.


Once a construct has been produced it can be subjected to various insults in order to assess the effectiveness of the bond. Once a bond fails to a paper substrate a simple way to quantify the effectiveness is to estimate the area of the adhesive dot that retained paper fibers as the construct failed along the bond line. This estimate was called percent substrate fiber tear. An example of good fiber, after conditioning a sample for 15 hours at −12° C. and attempting to destroy the bond, would be an estimate of 80-100% substrate fiber tear. It is likely that 0% substrate fiber tear under those conditions would signal a loss of adhesion.


Substrate fiber tear: The specimens were prepared using the same procedure as that described above. For low temperature fiber tear test, the bond specimens were placed in a freezer or refrigerator to obtain the desired test temperature. For substrate fiber tear at room temperature, the specimens were aged at ambient conditions. The bonds were separated by hand and a determination made as to the type of failure observed. The amount of substrate fiber tear was expressed in percentage.


Dot T-Peel was determined according to ASTM D 1876, except that the specimen was produced by combining two 1 inch by 3 inch (2.54 cm×7.62 cm) substrate cut outs with a dot of adhesive with a volume that, when compressed under a 500-gram weight occupied about 1 square inch of area (1 inch=2.54 cm). Once made all the specimens were pulled apart in side by side testing at a rate of 2 inches per minute by a machine that records the destructive force of the insult being applied. The maximum force achieved for each sample tested was recorded and averaged, thus producing the average maximum force which is reported as the Dot T-Peel.


Peel Strength (modified ASTM D1876): Substrates (1×3 inches (25×76 mm)) were heat sealed with adhesive film (5 mils (130 μm) thickness) at 135° C. for 1 to 2 seconds and 40 psi (0.28 MPa) pressure. Bond specimens were peeled back in a tensile tester at a constant crosshead speed of 2 in/min (51 mm/min). The average force required to peel the bond (5 specimens) apart is recorded.


Set time is defined as the time it takes for a compressed adhesive substrate construct to fasten together enough to give substrate fiber tear when pulled apart, and thus the bond is sufficiently strong to remove the compression. The bond will likely still strengthen upon further cooling, however, it no longer requires compression. These set times were measured by placing a molten dot of adhesive on to a file folder substrate taped to a flat table. A file folder tab (1 inch by 3 inch (2.5 cm×7.6 cm)) was placed upon the dot 3 seconds later and compressed with a 500 gram weight. The weight was allowed to sit for about 0.5 to about 10 seconds. The construct thus formed was pulled apart to check for a bonding level good enough to produce substrate fiber tear. The set time was recorded as the minimum time required for this good bonding to occur. Standards were used to calibrate the process.


SAFT (modified D4498) measures the ability of a bond to withstand an elevated temperature rising at 10° F. (5.5° C.)/15 min., under a constant force that pulls the bond in the shear mode. Bonds were formed in the manner described above on Kraft paper (1 inch by 3 inch (2.5 cm×7.6 cm)). The test specimens were suspended vertically in an oven at room temperature with a 500-gram load attached to the bottom. The temperatures at which the weight fell was recorded (when the occasional sample reached temperatures above the oven capacity >265° F. (129° C.) it was terminated and averaged in with the other samples at termination temperature).


Shore A hardness was measured according to ASTM D 2240. An air cooled dot of adhesive was subjected to the needle and the deflection was recorded from the scale.


The following materials were used in examples HM1 through HM50 listed in the following tables.














Trade name
Description
Source







Tackifiers




Escorez ® 5637
Hydrogenated aromatic modified resin
ExxonMobil



produced from dicyclopentadiene
Chemical Company



feedstock, exhibiting a ring and ball



softening point of 130° C.


Escorez ® 5690
hydrogenated aromatic modified resin
ExxonMobil



produced from dicyclopentadiene
Chemical Company



feedstock, exhibiting a ring and ball



softening point of 90° C.


Oils


Kadol oil
Refined white mineral oil
Witco


Polymers/Adhesives


Rextac RT 2715
C3/C4 Ziegler Natta APAO
Huntsman, Odessa




Texas


Henkel hot melt 80-
Commercial blend of EVA, tackifier, and
Henkel Corp


8368
wax


Advantra 9250
Commercial blend of C2/C8 metallocene
H.B. Fuller



polymers, tackifiers, and wax


Tite bond wood
Water based adhesive
Home Depot,


glue

Houston, Texas


VM-1000
is a propylene ethylene copolymer (approx.
ExxonMobil




——wt % C2) produced using a metallocene

Chemical Company



catalyst sold as VM-1000


VM-2000
is a propylene ethylene copolymer (approx.
ExxonMobil



14 wt % C2) produced using a metallocene
Chemical Company



catalyst sold as VM-2000


VM-3000
is a propylene ethylene copolymer (approx.
ExxonMobil



11 wt % C2) produced using a metallocene
Chemical Company



catalyst sold as VM-3000







Waxes/Funtionalized additives









AC395A
Oxidized polyethylene with density of 1.0
Honeywell,



g/cc, viscosity of 2500 cP at 150° C. and
Morristown, New



acid number of 45~50 mg/KOH/g.
Jersey


AC 596P
Polypropylene-maleic anhydride
Honeywell,



copolymer with viscosity 189 cps at 190° C.
Morristown, New



and Saponification number of 40
Jersey



mg/KOH/g


AC 597
Polypropylene-maleic anhydride
Honeywell,



copolymer with viscosity 374 cps at 190° C.
Morristown, New



and Saponification number of 80
Jersey



mg/KOH/g


AC X1325
Polypropylene-maleic anhydride
Honeywell,



copolymer with viscosity 1490 cps at 190° C.
Morristown, New



and acid number of 16 mg/KOH/g
Jersey


AC1302P
Ethylene-maleic anhydride copolymer with
Honeywell,



viscosity of 248 cP at 190° C. and
Morristown, New



Saponification number of 5 mg KOH/g
Jersey


PP-grafted maleic
PP-grafted maleic anhydride with averaged
Sigma-Aldrich,


anhydride
Mw of ~9,100, Mn of ~3,900 by GPC,
Product number:



viscosity of 400 cP at 190° C., acid number
42784-5



of 47 mg KOH/g, softening point of 157° C.



(ring and ball) and density of 0.934



g/mL.


MAPP 40
Maleated polypropylene with acid value of
Chusei, Pasadena



45 ~50, viscosity at 190° C. of 400-425
Texas



cP, and softening point of 143~155° C.


Paraflint H-1
Fisher-Tropsch wax, 10 mPa @ 250° F.
Moore and Munger


C80 wax
Fischer Tropsch fractionated
Moore and Munger



polypropylene wax







Antioxidants and other additives









Irganox 1010
Phenolic antioxidant
Ciba-Geigy


Test surfaces


(substrates)


Paperboard 84B
generic poster board clay coated newsprint
Huckster Packaging




and Supply,




Houston, TX


Paperboard 84C
generic corrugated cardboard 200# stock
Huckster Packaging




and Supply,




Houston, TX


Inland paper board
High Performance box board
Inland Paper Board




and Packaging




Company of Rome


Black white fabric
Printed stretch 100% Cotton with a Thread
High Fashion



Count of 17 by 13 per square cm, a more
Fabrics, Houston



loosely woven fabric
Texas


Formica
tabs were made from standard sheet
Lowe's Hardware,



Formica
Houston Texas


Blue fabric
tabs were made from Blue Stock 038C0TP
High Fashion



100% Cotton, Thread Count 21 by 45 per
Fabrics, Houston



square cm with a weight of 0.022 grams
Texas.



per square cm, a tightly woven cotton



fabric


Seton catalog paper
book paper bound by a hot melt process as
Seton Catalog



determined from examination


PET
Polyester (PET), Commonly called Mylar
Several Sources


Kraft paper
Kraft paper
Georgia Pacific,




Atlanta, Georgia


File folder
File folder is a typical manila letter size
Smead Paper, stock



(⅓cut) stock having a minimum of 10%
number 153L, UPC



post consumer recycle paper content
number 10330


PP cast film
An oriented polypropylene cast film made
ExxonMobil



from ESCORENE PP 4772.
Chemical Company









Polymers used for adhesive evaluation in the following examples were produced according to the following procedure. Polymerization was performed in a liquid filled, single-stage continuous reactor using mixed metallocene catalyst systems. The reactor was a 0.5-liter stainless steel autoclave reactor and was equipped with a stirrer, a water-cooling/steam-heating element with a temperature controller, and a pressure controller. Solvents, monomers such as ethylene and propylene, and comonomers (such as butene and hexene), if present, were first purified by passing through a three-column purification system. The purification system consisted of an Oxiclear column (Model #RGP-R1-500 from Labclear) followed by a 5 A and a 3 A molecular sieve columns. Purification columns were regenerated periodically whenever there is evidence of lower activity of polymerization. Both the 3 A and 5 A molecular sieve columns were regenerated in-house under nitrogen at a set temperature of 260° C. and 315° C., respectively. The molecular sieve material was purchased from Aldrich. Oxiclear column was regenerated in the original manufacture.


The solvent, monomers and comonomers were fed into a manifold first. Ethylene from in-house supply was delivered as a gas solubilized in the chilled solvent/monomer mixture in the manifold. The mixture of solvent and monomers were then chilled to about −15° C. by passing through a chiller before fed into the reactor through a single tube. All liquid flow rates were measured using Brooksfield mass flow meters or Micro-Motion Coriolis-type flow meters. Ethylene flow rate was metered through a Brookfield mass flow controller


The catalyst compounds used to produce semi-crystalline polypropylene were rac-dimethylsilylbis(2-methyl-4-phenylindenyl)zirconium dimethyl (obtained from Albemarle) and rac-1,2-ethylene-bis(4,7-dimethylindenyl)hafnium dimethyl (obtained from Boulder Scientific Company).


The catalyst compounds used to produce amorphous polypropylene were, dimethylsilyl(tetramethylcyclopentadienyl)(cyclododecylamido)titanium dimethyl (Obtained from Albemarle) and [di(p-triethylsilylphenyl)methylene](cyclopentadienyl)(3,8-di-t-butylfluorenyl)hafnium dimethyl (Obtained from Albemarle).


The catalysts were preactivated with N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (obtained from Albemarle) at a molar ratio of 1:1 to 1:1.1 in 700 ml of toluene at least 10 minutes prior to the polymerization reaction. The catalyst systems were diluted to a concentration of catalyst ranging from 0.2 to 1.4 mg/ml in toluene. All catalyst solutions were kept in an inert atmosphere with <1.5 ppm water content and fed into reactor by metering pumps. The catalyst solution was used for all polymerization runs carried out in the same day. New batch of catalyst solution was prepared in case that more than 700 ml of catalyst solution was consumed in one day.


In cases of polymerization involving multiple catalyst, each catalyst solution was pumped through separate lines, and then mixed in a manifold, and fed into the reactor through a single line. The connecting tube between the catalyst manifold and reactor inlet was about 1 meter long. The contact of catalyst, solvent and monomers took place in the reactor. Catalyst pumps were calibrated periodically using toluene as the calibrating medium. Catalyst concentration in the feed was controlled through changing the catalyst concentration in catalyst solution and/or changing in the feed rate of catalyst solution. The feed rate of catalyst solution varied in a range of 0.2 to 5 ml/minute.


As an impurity scavenger, 55 ml of tri-iso-butyl aluminum (25 wt. % in toluene, Akzo Noble) was diluted in 22.83 kilogram of hexane. The diluted tri-iso-butyl aluminum solution was stored in a 37.9-liter cylinder under nitrogen blanket. The solution was used for all polymerization runs until about 90% of consumption, and then a new batch was prepared. Feed rates of the tri-iso-butyl aluminum solution varied from polymerization reaction to reaction, ranging from 0 (no scavenger) to 4 ml per minutes.


For polymerization reactions involving alpha, omega-dienes, 1,9-decadiene was diluted to a concentration ranging from 4.8 to 9.5 vol. % in toluene. The diluted solution was then fed into reactor by a metering pump through a comonomer line. The 1,9-decadiene was obtained from Aldrich and was purified by first passing through alumina activated at high temperature under nitrogen, followed by molecular sieve activated at high temperature under nitrogen.


The reactor was first cleaned by continuously pumping solvent (e.g., hexane) and scavenger through the reactor system for at least one hour at a maximum allowed temperature (about 150° C.). After cleaning, the reactor was heated/cooled to the desired temperature using water/steam mixture flowing through the reactor jacket and controlled at a set pressure with controlled solvent flow. Monomers and catalyst solutions were then fed into the reactor when a steady state of operation was reached. An automatic temperature control system was used to control and maintain the reactor at a set temperature. Onset of polymerization activity was determined by observations of a viscous product and lower temperature of water-steam mixture. Once the activity was established and system reached steady state, the reactor was lined out by continuing operating the system under the established condition for a time period of at least five times of mean residence time prior to sample collection. The resulting mixture, containing mostly solvent, polymer and unreacted monomers, was collected in a collection box after the system reached a steady state operation. The collected samples were first air-dried in a hood to evaporate most of the solvent, and then dried in a vacuum oven at a temperature of about 90° C. for about 12 hours. The vacuum oven dried samples were weighed to obtain yields. All the reactions were carried out at a pressure of 2.41 MPa-gauge and in the temperature range of 110 to 130° C.


The detailed experimental conditions and analytical results for polymer samples PP1 through PP9 are presented in Tables 1.









TABLE 1







Detailed polymerization reaction conditions
















Polymer
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8
PP9





Catalyst #1
A
A
A
B
B
B
B
B
B


Catalyst #1
2.09E−06
5.22E−06
6.53E−06
1.32E−06
1.32E−06
2.35E−06
1.77E−06
1.32E−06
8.83E−06


feed rate


(mole/min)


Catalyst#2
C
D
D
D
D
D
D
D
D


Catalyst#2
4.25E−07
7.65E−07
4.74E−07
1.42E−07
1.42E−07
1.44E−07
1.44E−07
1.44E−07
1.44E−07


feed rate


(mole/min)


Propylene feed
14
14
14
14
14
14
14
14
14


rate (g/min)


1,9 decadiene

2.24
0.19








feed rate


(ml/min)


Hexane feed
90
90
90
90
90
90
90
90
90


rate (ml/min)


Polymerization
110
117
115
130
125
127
126
124
122


temperature


(° C.)


Mn (kg/mol)
12.2

17.3
11.3
13






Mw (kg/mol)
30.6

34.5
25.2
31.3






Mz (kg/mol)
84.3

97.1
47.9
59.8






g′ @ Mz


0.75
0.92
0.88






Tc (° C.)
72.3
87.0
88.5
94.1
94.5
75.7
84.5
89.8
93.4


Tm (° C.)
112.1
133.7
136.3
131.8
131.5
117.6
123.3
127.2
130.8


Tg (° C.)
−22.4
−10.7
−12.4
−6.4
−9.3
−7.9
−7.6
−6.4
−6.9


Heat of fusion
23.3
39.5
35.8
48.4
47.3
24.2
34.1
41.9
51.9


(J/g)


Viscosity
1420
518
1040
877
1310
1010
920
1140
1077


@ 190° C. (cp)





Catalysts:


A: dimethylsilyl(tetramethylcyclopentadienyl)(cyclododecylamido)titanium dimethyl


B: di(p-triethylsilylphenyl)methylene](cyclopentadienyl)(3,8-di-t-butylfluorenyl)hafnium dimethyl


C: rac-1,2-ethylene-bis(4,7-dimethylindenyl)hafnium dimethyl


D: rac-dimethylsilyl bis(2-methyl-4-phenylindenyl) zirconium dimethyl






The detailed experimental conditions and analytical results for polymer samples SP1, SP3 through SP6 are presented below. The catalyst used was diphenylmethylene(cyclopentaidenyl)(fluorenyl) hafnium dimethyl and the activator was N,N-dimethylaniliniumtertakis(pentafluorophenyl)borate.












Detailed reaction condition and analytical data












Polymer
SP5
SP4
SP3
SP6
SP1















Polymerization temperature (° C.)
94
107
120
90
110


Catalyst feed rate (mol/mm)
1.75E−06
1.75E−06
1.75E−06
8.76E−07
1.75E−06


Propylene (g/min)
14
14
14
14
14


Hexane feed rate (ml/min)
90
90
90
90
90


Mn (kg/mol)
97.114
42.291
22.663
171.496
23


Mw (kg/mol)
177.094
87.196
45.041
279.851
62


Mz (kg/mol)
287.865
146.844
79.39
423.637
148


Triad mole fraction from C13 NMR


mm
0.1135
0.1333
0.1522
0.0922


mr + rm
0.4352
0.4639
0.4831
0.3992


rr
0.4513
0.4028
0.3646
0.5085


Diad mole fraction from C13 NMR


m
0.3311
0.3653
0.3938
0.2918


r
0.6689
0.6347
0.6062
0.7082









Polymer samples PP10, PP11 and PP12 were produced in two continuous stirred tank reactors in series. The reactors were operated liquid full under a pressure of 3.65 MPa. The temperatures of both reactors were controlled through hot oil circulation in the reactor jacket. The residence time of the feed in each reactor was 45 minutes. Conversion of propylene to polymer product was about 91%. Propylene feed at the rate of 3.63 kg/hour was combined with hexane at 7.71 kg/hour to form 11.34 kg/hour of reactor feed solution. Tri-n-octyl aluminum (TNOA) as a 3 wt. % solution in hexane (obtained from Albemarle) was introduced into this stream at the rate of 0.272 gram/hour (active basis). Catalyst and activator entered the reactor from a separate port. The catalyst solution consisted of a mixture of di(p-triethylsilylphenyl)methylene](cyclopentadienyl)(3,8-di-t-butylfluorenyl)hafnium dimethyl (catalyst B) and rac-dimethylsilyl bis(2-methyl-4-phenylindenyl)zirconium dimethyl (catalyst D). The catalyst solution was prepared by dissolving the catalyst mixture in toluene to form a 0.5 wt-% solution. The activator feed stream was made up of a 0.2 wt-% solution of N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate in toluene. Both the catalysts and activator were obtained from Albemarle. The catalyst and activator feed lines were configured to mix in line immediately upstream of the first reactor, with an estimated contact time of 2˜4 minutes. The catalyst and activator feed rates were 0.04 gram/hour and 0.1 gram/hour (active basis) respectively. Molten polymer was recovered from solution via two flash stages, each with a preheater. The first stage (20 psig) polymer contained about 2% solvent and the second stage (50 torr vacuum) incorporated about 800 ppm volatile. Water was injected into the second stage flash (devolatilizer) feed to quench residual catalyst and aid with solvent stripping. The properties of the polymer and the reaction conditions are summarized in the table below.












Detailed polymerization condition for samples PP10 to PP12










Polymer
PP10
PP11
PP12













Catalyst B in catalyst mixture (mol. %)
93
86
86


Polymerization temperature in leading
134
130
131


reactor (° C.)


Polymerization temperature in trailing

131
131


reactor (° C.)


Scavenger concentration in feed (wppm)
24
24.5
24.5


Catalyst concentration in feed (wppm)
4.1
4.1
4.1


Activator concentration in feed (wppm)
73.5
73.5
73.5


Propylene concentration in feed (wt. %)
28
28.6
28.6


Conversion (%)
91




quench water (gram/hour)

2.72
2.72


Viscosity @ 190° C. (cP)
1105
1600
1522


Shore A hardness
80




Mw (kg/mol)
32.5
41.1
40.6


Mn (kg/mol)
13.2
19.6
20.7


Mz (kg/mol)
62.8
76
72.5


g′ @ Mz
0.85
0.82



Tc (° C.)
74.8
77.8
68.6


Tm (° C.)
133
132
132


Heat of fusion (J/g)
30.6
28.7
29.5









The following polymers were maleated and used as a modifier for adhesion enhancement. The functionalization was carried out by dissolving 120 g of polymer in toluene (polymer concentration is about 20 wt. %) and then combining with 15 wt. % (based on polymer) of maleic anhydride (“MA”) and 2.5 wet % of 2,5-dimethyl-2,5-di(t-butylperoxyl)hexene. The reaction temperature was maintained at 139° C. for 4 hours. The method described by M. Sclavons et al. (Polymer, 41 (2000), page 1989) was used to determine the MA content of the maleated polymers. Briefly, about 0.5 gram of polymer was dissolved in 150 ml of toluene at the boiling temperature. A potentiometric titration with tetra-butylammonium hydroxide using bromothymol blue as the color indicator was performed on the heated solution in which the polymer did not precipitate during the titration. The molecular weight and MA content of the maleated polymers are listed below.
















Modifier #
SP6-g-MA
SP4-g-MA
SP3-g-MA
PP12-g-MA


Polymer
SP6
SP4
SP3
PP12



















Mn (kg/mol)
60
23
17
12


Mw (kg/mol)
135
44
33
36.5


Mz (kg/mol)
263
71
55
64.7


MA. (wt. %)
1.12
1
1.92
1.41









The following polymers were maleated and used as a modifier for adhesion enhancement. The maleation was carried out by following the procedure described in WO 02/36651.












TABLE 5





Modifier #
VM-3000-g-MA
VM-2000-g-MA
EP3-g-MA


Polymer
VM-3 000
VM-2000
EP-3


















Mn (kg/mol)
17
16
36


Mw (kg/mol)
74
66
63


Mz (kg/mol)
116
103
89


MA (wt. %)
1.92
1.98



Ethylene
10.7
14.4
10


content (wt. %)









A number of hot melt adhesives were prepared by using the polymers or blending the polymer, functionalized additives, tackifier, wax, antioxidant, and other ingredients under low shear mixing at elevated temperatures to form fluid melt. The mixing temperature varies from about 130 to about 190° C. As examples, The tables below list the detailed formulation and the properties of blends. All the adhesion tests were conducted at ambient condition unless otherwise noted. The formulations are in weight percent.












Adhesion tests on various substrates













Formulation
HM1
HM2
HM3
HM4
HM5
HM6





Polymer/adhesive
REXTAC
REXTAC
PP10
PP10
PP10
Tite Bond



2715
2715



Wood








Glue


Polymer (wt. %)
100 
91 
100 
91 
91 
100 


Paraflint H-1 (wt. %)
0
0
0
0
3
0


Escorez 5637 (wt. %)
0
3
0
3
3
0


MAPP 40 (wt. %)
0
0
0
0
3
0


AC 1302P (wt. %)
0
6
0
6
0
0


Shore “A” hardness
26 
22 
53 
56 
53 



Set time (sec)
 6+
 6+
 6+
  2.5
3



Viscosity @ 190° C.
1730  
1422  
1340  
1090  
1020  



(cps)







Adhesion (Dot T-peel) and failure types













Mylar (PET) aged 4
cf, 3.896
cf, 5.366
ss, af,
ss, af,
ss, cf,
af, cf,


days


1.087
1.488
4.629
0.1517


Seton catalog paper
sf, 1.113
sf, 1.337
sf, 1.091
sf, 1.131
sf, 0.8797
sf, 0.944


aged 4 days


Blue fabric to
cf, 5.457
cf, 5.608
cf, 5.401
cf, 5.974
cf, 8.232
cf, 20.79


Formica aged 4 days


Black white fabric to
cf, 3.001
cf, 4.210
cf, 3.681
cf, 4.066
cf, 5.874
ss, cf,


Formica aged 4 days





18.92


PP cast film
4.643 cf
cf, 6.56
cf, af, ab,
cf, af,
cf, af,
would not


laminate aged 4 days


7.233
3.587
3.140
dry


Kraft paper aged 4
cf, ab, af,
cf, ab, af,
2.064
1.763
1.84 
2.713


days
1.79
1.885







Averaged fiber tear on Inland paper board (overnight)













@ 5° C. (%)
94
88
5
3
89



@ −12° C. (%)
46
60
62
13
99






cf—cohesive failure;


af—adhesive failure;


ab—adhesive break


sf—substrate failure;


ss—slip stick,


6+—longer than 6 seconds






REXTAC RT 2715 is a copolymer of propylene, butene and ethylene having about 67.5 mole percent propylene, about 30.5 mole percent butene and about 2 mole percent ethylene produced by Huntsman, Company. The copolymer has about 11 mole percent BB dyads, 40 mole percent PB dyads and about 49 mole percent PP dyads. The melting point is 76° C. with a melting range form 23 to 124° C. the Tg is −22° C., the crystallinity is about 7 percent, the enthalpy is 11 J/g by DSC. The Mn is 6630 the Mw is 51200 and the Mz 166,700 by GPC. Mw/Mn is 7.7.












Adhesion tests on substrate fiber tear (Dot T-peel)















Formulation
HM7
HM8
HM9
HM10
HM11
HM12
HM13
HM14





Polymer
PP6
PP6
PP7
PP7
PP8
PP8
PP9
PP9


Polymer (wt. %)
99
  90.1
99
  90.1
99
  90.1
99
  90.1


Escorez 5637
 0
 3
 0
 3
 0
 3
 0
 3


(wt. %)


Irganox 1010
 1
 1
 1
 1
 1
 1
 1
 1


(wt. %)


AC 1302P
 0
 6
 0
 6
 0
 6
 0
 6


(wt. %)


Shore A
65
61
82
83
93
88
92
95


hardness


Set time (sec)
 3
  2.5
 6
  1.5
 4
  1.5
  3.5
  1.5


Viscosity @ 190°
1193 
1066 
1027 
 927.5
1320 
1130 
1192 
1027 


C. (cps)


SAFT (° F.)
229 
229 
250 
249 
264 
263 
>270 
254 


Paperboard 84C
100 
100 
95
88
20
86
 3
 0


overnight (%)


File folder
100 
100 
100 
100 
100 
100 
100 
100 


overnight (%)


Paperboard 84C
 98/
 98/
 91/
 30/
 97/
 93/
 69/
 77/


overnight (%):
99
98
96
99
96
98
89
95


5° C./−12° C.


File folder
100/ 
100/ 
100/ 
100/ 
 98/
 98/
 90/
 95/


overnight (%):
98
90
100 
100 
99
96
89
82


5° C./−12° C.



















Adhesion tests on substrate fiber tear and failure types (Dot T-peel)















Formulation
HM15
HM16
HM17
HM18
HM19
HM20
HM21
HM22


















PP11 (wt. %)
77.5
77.5
77.5
77.5
77.5
79.6
81.6



C80 wax
8.2
8.2
8.2
8.2
8.2
8.5
8.7


Escorez 5690
8.6
8.6
8.6
8.6
8.6
8.8
9.0


Irganox 1010
0.7
0.7
0.7
0.7
0.7
0.7
0.7


AC 596P (wt. %)
5


AC 597 (wt. %)

5



2.5


AC X1325 (wt. %)


5


MAPP 40 (wt. %)



5


AC 1302P (wt. %)




5


Advantra 9250







100


(wt. %)


Set time (sec)
2
2.5
3
2.5
2.5
2.5
3~3.5
1.5


Shore A hardness
73
71
76
71
68
68
64
89







Substrate fiber tear at low temperatures (%)















Paperboard 84C
100
98
100
91
79
98
99
98


@ −10° C.


Paperboard 84C
96
96
98
100
100
100
99
98


@ −30° C.


Inland Paper
93
96
90
89
0, ab, af
8
0, ab, af
90


Board @ −10° C.


Inland Paper
10
91
37
90
40
24
0, ab, af
80


Board @ −30° C.







Substrate fiber tear at ambient condition















Inland paper board
100
99
100
100
99
100
99
98


Paperboard 84C
100
100
100
100
100
99
100
100





ab—adhesive break,


af—adhesive failure
















Adhesion tests of substrate fiber tear (Dot-T peel)













Formulation
HM23
HM24
HM25
HM26
HM27
HM28





PP3 (wt. %)
100 
 82.2
  81.3
  77.2
  73.6
  70.3


PP1 (wt. %)
 0
0
 0
 0
   4.7
 9


Paraflint H-1
 0
  9.9
   5.2
 5
   4.7
   4.5


(wt. %)


Escorez 5637
 0
  6.9
   7.3
   6.9
   6.6
   6.3


(wt. %)


Irganox 1010
 0
1
 1
 1
 1
   0.9


(wt. %)


PP-grafted
 0
0
   5.2
 5
   4.7
   4.5


maleic


anhydride


(wt. %)


Sigma-Aldrich


Kaydol oil
 0
0
 0
 5
   4.7
   4.5


(wt. %)


Shore A
75
80 
 80
 67
 64
 73


hardness


Set time (sec)
 6+
1
1.5 to 2
 2
   2.5
   2.5


Viscosity @
1040 
763 
  772.5
681
640
  761.7


190° C.


(cps)


SAFT (° F.)

233 






Paperboard
67
0
100
100
100
100


84C overnight


(%)


File folder
100 
0
100
100
100
100


overnight (%)


Paperboard
 50/
 0/
  90/
  98/
  98/
 100/


84C overnight

0
 95
 98
 99
100


(%): 5° C./


−12° C.


File folder
100/ 
 0/
 100/
 100/
 100/
 100/


overnight (%):

0
100
100
100
100


5° C./−12° C.



















Adhesion tests on substrate fiber tear (Dot-T peel)

















Formulation
HM29
HM30
HM31
HM32
HM33
HM34
HM35
HM36
HM37
HM38




















PP2
71.6
67.2
74.8
70.3
82.2
77.2
78.3
73.6
74.8
70.3


PP1
8.6
8.6
4.5
4.5
5.0
5
9.4
9.4
9
9


Paraflint H-1
4.3
4.3
4.5
4.5
5.0
5
4.7
4.7
4.5
4.5


(wt. %)


Escorez 5637
6.0
6.0
6.3
6.3
6.9
6.9
6.6
6.6
6.3
6.3


(wt %)


Irganox 1010
0.9
0.9
0.9
0.9
1.0
1
0.9
0.9
0.9
0.9


(wt. %)


MAPP 40 (wt. %)
0.0
4.3
0.0
4.5
0.0
5
0
4.7
0
4.5


Kaydol oil
8.6
8.6
9.0
9.0
0.0
0
0
0
4.5
4.5


(wt. %)


Shore A
65
65
67
77
84
84
80
83
72
77


hardness


Set time (sec)
3
2.5
3
1.5
2
1.5
2.5
2
3
1.5


Viscosity @ 190°
344
332
332.5
401.6
460.2
477.5
488
528
380
487.5


C. (cps)


SAFT (F)

263

263

270

270

268







Substrate fiber tear (%)

















Paperboard 84C
3.4
100
0
100
0
100
30
100
0
100


overnight (%)


File folder
70
100
65
100
90
100
60
100
60
100


overnight (%)


Paperboard 84B
100
100
100
100
100
100
100
100
100
100


overnight (%)


Paperboard 84C
0
100
0
100
0
100
0
100
0
100


overnight at 5° C.


(%)


File folder
0
100
20
100
100
100
30
100
100
100


overnight @ 5°


C. (%)


Paperboard 84B
100
100
67
100
100
100
100
100
100
100


overnight at 5° C.


(%)



















Adhesion tests of substrate fiber tear (Dot-T peel)











Formulation
HM39
HM40
HM41
HM42














PP4
82.2
99
0
0


PP5
0
0
82.2
99


Paraflint H-1 (wt. %)
5
0
5
0


Escorez 5637 (wt. %)
6.9
0
7
0


Irganox 1010 (wt. %)
1
1
1
1


MAPP 40 (wt. %)
5
0
5
0


Shore A hardness
85
82
88
88


Set time (sec)
2
6+
2
6+


Viscosity @ 190 ° C. (cps)
737.1
1070
937.5
1275


Paperboard 84C overnight (%)
100
0
100
0


File folder overnight (%)
0
100
100
100


Paperboard 84C overnight (%):
83/100
63/95
98/95
80/100


5° C./−12° C.


File folder overnight (%):
65/95
70/50
90/90
80/100


5° C./−12° C.



















Adhesion tests of substrate fiber tear (Dot T-peel)















Formulation
HM43
HM44
HM45
HM46
HM47
HM48
HM49
HM50





PP3
100
  86.5
  81.3
  82.2
  77.2
  78.3
  73.6
 0


Paraflint H-1
 0
   5.2
   5.2
 5
 5
   4.7
   4.7
 0


(wt. %)


Escorez 5637
 0
   7.3
   7.3
   6.9
   6.9
   6.6
   6.6
 0


(wt. %)


Irganox 1010
 0
 1
 1
 1
 1
   0.9
   0.9
 0


(wt. %)


MAPP 40 (wt. %)
 0
 0
   5.2
 0
 5
 0
   4.7
 0


Kaydol oil (wt. %)
 0
 0
 0
   4.95
 5
   9.4
   9.4
 0


Henkel hot melt







100


80-8368 (wt. %)


Shore A hardness
 75
 72
 72
 66
 76
 64
 64
 82


Set time (sec)
  6+
 2
   1.5
 2
   1.5
   2.5
   1.5
 1


Viscosity @ 190°
1040 

765

731

508
  717.5


C. (cps)


SAFT (° F.)


268

268

263
177


Paperboard 84C
 67
100
100
 34
100
 34
100
100


overnight (%)


File folder
100
100
100
100
100
100
100
100


overnight (%)


Paperboard 84B
100
100
100
100
100
100
100
100


overnight (%)


Paperboard 84C
  50/
  60/
  94/
  34/
  97/
  24/
 100/
 100/


overnight (%): 5°


100

 97

 67
100


C./−12° C.


File folder
 100/
 100/
 100/
 100/
  0/
 100/
 100/
 100/


overnight (%): 5°


 25

 70

 88
100


C./−12° C.



















Adhesion tests of substrate fiber tear (Dot T-peel)












Formulation
HM51
HM52
HM53
HM54
HM55















Polymer
80
75
75
75
75


PP12 (wt.


%)


Escorez
10
10
10
10
10


5690 (wt.


%)


C80 Wax
10
10
10
10
10


(wt. %)


Irganox 1010
0.7
0.7
0.7
0.7
0.7


(wt. %)


Modifier

SP6-g-MA
SP4-g-MA
SP3-g-MA
PP12-g-MA


Modifier

5
5
5
5


(wt. %)


Viscosity at
1650
3090
2350
1990


170° C.


(cps)


Set time
3
3.5
3.5
3
3.5


(sec)


Shore A
83/63
86/67
81/68
85/66
81/71


hardness







Percent of fiber tear on Inland paperboard












@ 25° C.
96
100
99
98
94


@ −8° C.
0
58
43
18
43


@ −30° C.
13
75
48
1
68



















Adhesion tests of substrate fiber tear (Dot T-peel)















Formulation
HM56
HM57
HM58
HM59
HM60
HM61
HM62
HM63


















Polymer PP12
80
75
75
75
77
75
75
75


(wt. %)


Escorez 5690
10
10
10
10
10
10
10
10


(wt. %)


C80 Wax (wt. %)
10
10
10
10
10
10
10
10


Irganox 1010
0.7
0.7
0.7
0.7
0.7
0.7
0.7
0.7


(wt. %)


Modifier

VM-
VM-
VM-
VM-
VM-3000-
VM-2000-
EP-3-g-




1000
3000
2000
2000
g-MA
g-MA
MA


Modifier (wt. %)

5
5
5
3
5
5
5


Viscosity at
1650
2020
2590
2700
1800
2120
2250
2040


170° C. (cps)


Set time (sec)
3
4
3
4
4
3.5
2.5
4


Shore A
83/63
87/68
93/71
75/58
76/60
88/71
88/65
78/61


hardness







Percent of fiber tear on Inland paperboard at various temperatures















@ 25° C.
96
99
95
98
99
99
99
99


@ −8° C.
0
0
55
38
0
3
65
28


@ −30° C.
13
3
4
30
0
8
80
30









In the following examples, the olefin polymer of the present invention are, labeled either as aPP-iPP's or POA's, and are propylene homopolymers prepared with two metallocene catalysts as described above. As an example of the mixed catalyst systems for preparing this type of polymer, one catalyst, di(p-triethylsilylphenyl)methylene(cyclopentadienyl)(3,8-di-t-butylfluorenyl)hafnium dimethyl, produces atactic polypropylene, aPP whereas the second catalyst, rac-dimethylsilyl bis(2-methyl-4-phenylindenyl)zirconium dimethyl, produces isotactic polypropylene, iPP.


In the examples, polymerization temperature was changed to vary the molecular weight of the polymer. Under some polymerization conditions, crosslinking of aPP and iPP polymer chains occurs so that a small amount of aPP-g-iPP is present. Several of these propylene-based polymers used in this work are described in the table below, where η is the Brookfield viscosity measured according to ASTM D3236. The heat of fusion (ΔHf) value of each polymer can be considered as a measure of crystallinity. The heat of fusion for crystalline PP is 207 J/g. The heat of fusion value of each aPP-iPP in the table below divided by 207 J/g is the degree of crystallinity. Therefore, aPP-iPP-1, -2 and -3 have similar degrees of crystallinity, whereas aPP-iPP-4, -5 and -6 are less crystalline. The gw′ is the weight-average branching coefficient. A lower gw′ suggests a higher concentration and/or higher level of aPP-g-iPP in the aPP-iPP polymer.


Functionalized srPPs


Syndiotactic rich polymers were produced according to the general procedures described above. The catalysts used was diphenylmethylene(cyclopentadienyl)(fluorenyl)hafnium dimethyl, the activator used was N,N-dimethylaniliniumtetrakis(pentafluorophenyl)borate. The polymerization for srPP-1 was 110° C., and for srPP2 was run at 120° C., both in hexane. The polymers have % [r] dyads ˜58-75. Each srPP polymer has very low degree of crystallinity and is almost amorphous.


The functionalized srPP's used in this study are shown the table below where srPP-i represents the precursor polymer of the MA-srPP-i, Amide-srPP-i or Acid-srPP-i. It is interesting to note that, after functionalization, molecular weights were decreased in all cases. To compare the performance of functionalized srPP-1's to their non-functionalized counterparts, the lowest molecular weight srPP-3 polymer was used as a control. Even though srPP-3 has molecular weights (Mn, Mn and Mz) approximately two times higher than the functionalized srPP-1's we choose srPP-3 as the control because its molecular weights are closer to the functionalized components.


In an example, functionalization of the polymers was carried out by dissolving 120 g of polymer in toluene (polymer concentration: 20 wt %). Fifteen wt % maleic anhydride based on srPP was used. The radical initiator, 2,5-dimethyl-2,5-di(t-butylperoxyl)hexane, was 2.5 wt % based on srPP. The reaction temperature was 139° C. and the reaction time was 4 hr.


POLYLETS® MAPP 40, available from CHUSEI, are shown below. This commercially available MAPP-40 has a higher MA content but a higher degree of crystallinity than the MA-srPP polymers used in this study.












Characterization of Propylene-Based Polymers.













aPP-iPP-
1
2
3
4
5
6





Catalyst #1
B
B
B
B
B
B


Catalyst #2
D
D
D
D
D
D


Tc, ° C.
88
90
92
80
78
68


Tm, ° C.
127
138
141
139
132
136


Tg, ° C.
−6
−5
−4


−6


ΔHu, J/g
37
38
38
32
29
22


Viscosity at


190° C. η, cp
1900
4000
11000
2400
1600
1500


Mn/1000
13.0
15.2
20.4

19.6
13.1


Mw/1000
37.6
45.2
55.0

41.1
29.3


Mz/1000
64.0
81.0
94.6

76.0
62.6


g1w
0.93
0.95
0.93

0.88
0.99



















Characterization of srPP's.














Polymer
Rxn Temp., ° C.
Catalyst
Mn/103
Mw/103
Mz/103
g1w
Wt % FG*

















srPP-1
110
E4
23
62
148
1.08
0


srPP-3
120
E4
17
43
80
0.98
0


srPP-4
107
E4
34
86
177
1.05
0


srPP-5
94
E4
74
188
385
1.11
0


srPP-6
90
ED4
128
311
606
1.19
0


srPP-1-g-MA


8
20
38

3.20


srPP-3-g-MA


17
33
55

1.92


srPP-4-g-MA


23
44
71

1.00


srPP-5-g-MA


29
68
116

1.00


srPP-6 -g-MA


60
135
263

1.12


srPP-1-g-amide


~8
~20
~38

~1.00


srPP-1-g-acid


~8
~20
~38

~1.00


MAPP-40


3.7
9.8
18

5.24





*Functional Group


E4 is a combination of diphenylmethylene(cyclopentadienyl)(fluorenyl)hafnium dimethyl and N,N-dimethyl aniliniumtetrkis(pentafluorphenyl) borate
















Molecular Weight Change of srPP After Maleation.
















Polymer
Trxn, ° C.
Catalyst
Mn/103
Mw/103
Mz/103
Mw/Mn
ΔMw/Mw
g1w
Wt % MA



















srPP-3
120
E4
17
43
80
2.53

0.98
0


srPP-3-g-MA


17
33
55
1.94
0.23

1.92


srPP-4
107
E4
34
86
177
2.53

1.05
0


srPP-4-g-MA


23
44
71
1.91
0.49

1.00


srPP-5
94
E4
74
188
385
2.54

1.11
0


srPP-5-g-MA


29
68
116
2.34
0.64

1.00


srPP-6
90
E4
128
311
606
2.43

1.19
0


srPP-6-g-MA


60
135
263
2.25
0.57

1.12



















Adhesion to Mylar for Compositions without Tackifier.










T-Peel, lb/in
Failure Mode













aPP-iPP-1
0.03
AF


aPP-iPP-1 + 20 Wt % srPP-3
0.10
AF


aPP-iPP-1 + 20 Wt % MAPP-40
0.19
CF


aPP-iPP-1 + 20 Wt % srPP-1-g-amide
0.10
AF


aPP-iPP-1 + 20 Wt % srPP-1-g-MA
0.48
AF


aPP-iPP-2
0.03≡P1
AF/CF


aPP-iPP-2 + 20 Wt % srPP-3
0.04
AF


aPP-iPP-2 + 20 Wt % MAPP-40
0.20
CF


aPP-iPP-2 + 20 Wt % srPP-1-g-acid
0.05
AF


aPP-iPP-2 + 20 Wt % srPP-1-g-amide
0.08
CF


aPP-iPP-2 + 20 Wt % srPP-1-g-MA
1.21~40P1
AF


aPP-iPP-2 + 20 Wt % srPP-3-g-MA
1.83
CF/AF


aPP-iPP-2 + 20 Wt % srPP-4-g-MA
2.12
AF


aPP-iPP-2 + 20 Wt % srPP-5-g-MA
6.28~200P1
CF/AF


aPP-iPP-2 + 20 Wt % srPP-6-g-MA
4.58
AF


aPP-iPP-3
0.001
AF


aPP-iPP-3 + 20 Wt % srPP-3
0.02
AF


aPP-iPP-3 + 20 Wt % MAPP-40
0.32
CF


aPP-iPP-3 + 20 Wt % srPP-1-g-amide
0.09
AF


aPP-iPP-3 + 20 Wt % srPP-1-g-MA
0.40
AF



















Adhesion to Mylar for Compositions with Tackifier


(aPP-iPP/E-53 80/Polymer Modifier = 72/8/20 Wt. Ratio)










T-Peel, lb/in
Failure Mode













aPP-iPP-2/E-5380 (9 to 1 Wt. Ratio)
0.04 ≡ P2
AF


aPP-iPP-2/E-5380/srPP-3
0.04
AF


aPP-iPP-2/E-5380/MAPP-40
0.14
CF


aPP-iPP-2/E-5380/srPP-1-g-acid
0.06
AF


aPP-iPP-2/E-5380/srPP-1-g-amide
0.22
AF


aPP-iPP-2/E-5380/srPP-1-g-MA
2.15~50 P2
CF/AF


aPP-iPP-2/E-5380/srPP-3-g-MA
2.56
CF


aPP-iPP-2/E-5380/srPP-4
0.05
AF


aPP-iPP-2/E-5380/srPP-4-g-MA
5.83
CF


aPP-iPP-2/E-5380/srPP-5
0.13
AF


aPP-iPP-2/E-5380/srPP-5-g-MA
12.02
AF/CF


aPP-iPP-2/E-5380/srPP-6
0.02
AF


aPP-iPP-2/E-5380/srPP-6-g-MA
13.77~350 P2
CF





E-5380 is ESCOREZ 5380 ™ a hydrogenated dicyclopentadien based hydrocarbon resin having a Ring and Ball softening point of about 85° C. available form ExxonMobil Chemical Co. ion Houston Texas.
















Bonding to Mylar and iPP of Modified POA's.












T-Peel

T-Peel




to

to



Mylar,
Failure
iPP,
Failure



lb/in
Mode
lb/in
Mode















aPP-iPP-2/MAPP-40
0.20
CF
2.90
CF


aPP-iPP-2/E-5380/MAPP-40
0.14
CF
2.87
CF


aPP-iPP-2/E-5380
0.04
AF
3.09
CF


aPP-iPP-2/E-5380/srPP-3
0.09
AF
>10.31
Sub-


Broken



strate


aPP-iPP-2/E-5380/SrPP-1-g-MA
2.15
CF/AF
>8.53
Sub-


Broken



strate



















Bonding to Mylar and iPP of MAPP-40 and MA-srPP's.












T-Peel to
Failure
T-Peel to
Failure



Mylar, lb/in
Mode
iPP, lb/in
Mode















MAPP-40
0.005
AF
3.65
CF


MA-srPP-3
6.60
CF
5.72
CF


SrPP-4-g-MA
8.13
CF
7.80
CF


MA-srPP-5
1.66
AF
11.17
CF


SrPP-6-g-MA
2.59
AF
>5.96
Substrate


Broken



















POA's Modified by Tackifier and Wax.










Formulated PP-1
Formulated PP-2















aPP-iPP-4
79.4




aPP-iPP-5

81.6



E2203 (Tg = 47° C.)
13.4




E5690 (Tg = 45° C.)

9.02



Paraflint C80
6.7
8.68



Irganox 1010
0.50
0.69



T-Peel to Mylar, lb/in
0.23
0.45



Failure Mode
AF
CF




















Adhesion to Mylar for Compositions Based on aPP-iPP-6


(aPP-iPP/E-5380/Polymer Modifier = 72/8/20 Wt. Ratio)










T-Peel, lb/in
Failure Mode













aPP-iPP-6
0.07
CF


aPP-iPP-6/E-5380 (9 to 1 Wt. Ratio)
0.19
CF


aPP-iPP-6/E-5380/SrPP-3-g-MA
4.32
CF


aPP-iPP-6/E-5380/SrPP-4-g-MA
6.94
CF


aPP-iPP-6/E-5380/SrPP-5-g-MA
11.1
CF


aPP-iPP-6/E-5380/MA-srPP-6
12.0
CF









The blends of the olefin polymer with each functionalized component were mixed thoroughly and homogeneously in the thermal cell of a Brookfield viscometer equipped with an electrically driven stirrer at 180° C. After mix, the blends were degassed in a vacuum oven (continuously purged by nitrogen) at 180° C. and subsequently cooled down to 25° C. Each adhesive sample composition was then molded into a thin sheet of material with thickness about 0.4 mm using a molding temperature of 180° C. and a molding time of 10 seconds. For the preparation of the T-peel specimens, this thin sheet of adhesive sample was laminated between two pieces of Mylar substrate (3-mil thickness) in a positive pressure, Teflon-coated mold. The bonding temperature was 180° C. and the bonding time was 10 seconds. The laminate was then cut into ½″=1.3 cm wide specimens. All the T-peel measurements were performed at room temperature and at a separation speed of 2 inches per minute=850 micrometers per second (μm/s).


As the data shows, the functionalized srPP provide a benefit to the T-peel strengths to Mylar of these compositions. Clearly, functional groups improve adhesion of propylene-based polymer to Mylar with the MA group showing the better results. Also, viscosity (or molecular weight) of the propylene-based polymer will affect adhesion, with the medium molecular weight polymer.


As the examples also show, the compositions of the present invention provide enhanced adhesion to both polar and non-polar substrates. They can be applied to various areas, such as adhesives, tie layers, and the like. The examples are directed to the bonding of paper cardboard for packaging hot melt adhesive (HMA) applications. As above, the inventive formulations were prepared by blending component 1, the aPP-iPP polymer and a functionalized polyolefin (such as MA-srPP with other ingredients, such as tackifier, wax, antioxidant, plasticizer oil, liquid resin tackifier, and the like) under low or high shear mixing at elevated temperatures to form a fluid melt. Mixing temperatures varied from about 130° C. to about 190° C.

Claims
  • 1. An adhesive comprising 1) functionalized component and 2) an olefin polymer comprising: 50 weight % or more of an alpha-olefin having 3 to 30 carbon atoms, andat least 50 ppm of a diene selected from the group consisting of: butadiene, pentadiene, hexadiene, heptadiene, octadiene, nonadiene, decadiene, undecadiene, dodecadiene, tridecadiene, tetradecadiene, pentadecadiene, hexadecadiene, heptadecadiene, octadecadiene, nonadecadiene, icosadiene, heneicosadiene, docosadiene, tricosadiene, tetracosadiene, pentacosadiene, hexacosadiene, heptacosadiene, octacosadiene, nonacosadiene, triacontadiene, cyclopentadiene, vinylnorbornene, norbornadiene, ethylidene norbornene, divinylbenzene, and dicyclopentadiene,
  • 2. The adhesive of claim 1, wherein the functionalized component comprises functionalized polymer selected from the group consisting of maleated polyethylene, maleated metallocene polyethylene, maleated metallocene polypropylene, maleated ethylene propylene rubber, and functionalized polyisobutylene.
  • 3. The adhesive of claim 1, wherein the functionalized component comprises functionalized oligomer.
  • 4. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic polypropylene.
  • 5. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic rich polypropylene.
  • 6. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is polypropylene having a weight average molecular weight between 3,000 to 15,000 and a crystallinity of 5% or more functionalized with up to 10 weight % of maleic anhydride.
  • 7. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is polypropylene having: 1) a heat of fusion from about 0.5 J/g to about 25 J/g; and/or2) a crystallinity of about 0.25% to about 15%; and/or3) a melting point of from about 25° C. to about 75° C.; and/or4) a weight average molecular weight, prior to functionalization, of 10,000 to 500,000; and/or5) an Mw/Mn between 1.8 to 5; and/or6) a Mooney viscosity ML (1+4)@125° C. less than 100.
  • 8. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic rich polypropylene having at least 50% [r] dyads.
  • 9. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is syndiotactic rich polypropylene having at less than or equal to 99% [r] dyads.
  • 10. The adhesive of claim 1, wherein the functional component comprises a functional polymer where the polymer of the functional polymer is a random copolymer of propylene and an alpha olefin wherein the propylene copolymer has: a crystallinity of from 0.1 to 50%;a propylene content from 68 to 92 mole percent;a comonomer content from 8 to 32 mole percent;a melting point from 25° C. to 105° C.; anda heat of fusion of less than 45 J/g.
Parent Case Info

This application is a continuation-in-part of U.S. Ser. No. 10/686,951, filed Oct. 15, 2003 which claims priority from U.S. Ser. No. 60/418,482, filed Oct. 15, 2002 and U.S. Ser. No. 60/460,714, filed Apr. 4, 2003. This application is also a continuation-in-part of U.S. Ser. No. 10/687,508, filed Oct. 15, 2003 now U.S. Pat. No. 7,294,681 which claims priority from U.S. Ser. No. 60/418,482, filed Oct. 15, 2002 and U.S. Ser. No. 60/460,714, filed Apr. 4, 2003. This application is related to: 1) U.S. Ser. No. 60/199,093 filed on Apr. 21, 2000, 2) U.S. Ser. No. 60/171,715 filed Dec. 21, 1999, 3) U.S. Ser. No. 09/745,394 filed Dec. 21, 2000, 4) U.S. Ser. No. 09/746,332 filed Dec. 21, 2000, and 5) WO 01/81493 published Nov. 1, 2001.

US Referenced Citations (891)
Number Name Date Kind
1953104 Hale-Church et al. Apr 1934 A
3483276 Mahlman Dec 1969 A
3821143 Cluff et al. Jun 1974 A
3927166 Tomoda et al. Dec 1975 A
3954697 McConnell et al. May 1976 A
4178272 Meyer, Jr. et al. Dec 1979 A
4205021 Morita et al. May 1980 A
4210570 Trotter et al. Jul 1980 A
4217428 McConnell et al. Aug 1980 A
4361628 Krueger et al. Nov 1982 A
4476283 Andersen Oct 1984 A
4496698 Adriaans et al. Jan 1985 A
4510286 Liu Apr 1985 A
4525469 Ueda et al. Jun 1985 A
4547552 Toyota et al. Oct 1985 A
4600648 Yazaki et al. Jul 1986 A
4668752 Tominari et al. May 1987 A
4668753 Kashiwa et al. May 1987 A
4668834 Rim et al. May 1987 A
4673719 Kioka et al. Jun 1987 A
4675247 Kitamura et al. Jun 1987 A
4701432 Welborn, Jr. Oct 1987 A
4719260 Stuart, Jr. et al. Jan 1988 A
4725506 Nagano Feb 1988 A
4737548 Kojima et al. Apr 1988 A
4751121 Kuhnel et al. Jun 1988 A
4774144 Jachec et al. Sep 1988 A
4794096 Ewen Dec 1988 A
4822688 Nogues Apr 1989 A
4826939 Stuart, Jr. May 1989 A
4837271 Brindopke Jun 1989 A
4849487 Kaminsky et al. Jul 1989 A
4866023 Ritter et al. Sep 1989 A
4882406 Cozewith et al. Nov 1989 A
4892851 Ewen et al. Jan 1990 A
4897452 Berrer et al. Jan 1990 A
4929509 Godfrey May 1990 A
4935474 Ewen et al. Jun 1990 A
4937299 Ewen et al. Jun 1990 A
4939202 Maletsky et al. Jul 1990 A
4939217 Stricklen Jul 1990 A
4942096 Abe et al. Jul 1990 A
4950720 Randall, Jr. et al. Aug 1990 A
4960820 Hwo Oct 1990 A
4975403 Ewen Dec 1990 A
4981760 Naito et al. Jan 1991 A
5008356 Ishimaru et al. Apr 1991 A
5021257 Foster et al. Jun 1991 A
5035283 Brücher et al. Jul 1991 A
5036034 Ewen Jul 1991 A
5039614 Dekmezian et al. Aug 1991 A
5041251 McCoskey et al. Aug 1991 A
5047485 DeNicola, Jr. Sep 1991 A
5077129 Schinkel et al. Dec 1991 A
5089319 Bothe Feb 1992 A
5091352 Kioka et al. Feb 1992 A
5096743 Schoenbeck Mar 1992 A
5100963 Lin Mar 1992 A
5108680 Menting et al. Apr 1992 A
5114897 Schell, Jr. et al. May 1992 A
5115030 Tanuka et al. May 1992 A
5116881 Park et al. May 1992 A
5118566 Wilhelm et al. Jun 1992 A
5132157 Asanuma et al. Jul 1992 A
5147696 Lansbury et al. Sep 1992 A
5149579 Park et al. Sep 1992 A
5151474 Lange et al. Sep 1992 A
5152946 Gillette Oct 1992 A
5155080 Elder et al. Oct 1992 A
5155160 Yeh et al. Oct 1992 A
5155184 Laurent et al. Oct 1992 A
5171799 Kioka et al. Dec 1992 A
5175051 Schloegl et al. Dec 1992 A
5185398 Kehr et al. Feb 1993 A
5202361 Zimmerman et al. Apr 1993 A
5204037 Fujii Apr 1993 A
5209971 Babu et al. May 1993 A
5212247 Asanuma et al. May 1993 A
5216095 Dolle et al. Jun 1993 A
5218046 Audureau et al. Jun 1993 A
5218071 Tsutsui et al. Jun 1993 A
5219903 Fujii et al. Jun 1993 A
5219913 Tomomatsu et al. Jun 1993 A
5219968 Shiomura et al. Jun 1993 A
5225500 Elder et al. Jul 1993 A
5231126 Shi et al. Jul 1993 A
5232992 Asanuma et al. Aug 1993 A
5236649 Hall et al. Aug 1993 A
5236962 Govoni et al. Aug 1993 A
5244996 Kawasaki et al. Sep 1993 A
5246779 Heimberg et al. Sep 1993 A
5252659 Koizumi et al. Oct 1993 A
5271976 Kondo et al. Dec 1993 A
5272236 Lai et al. Dec 1993 A
5278216 Asanuma et al. Jan 1994 A
5278220 Vermeire et al. Jan 1994 A
5286564 Cecchin et al. Feb 1994 A
5292561 Peiffer et al. Mar 1994 A
5300361 Vowinkel et al. Apr 1994 A
5308817 Reddy et al. May 1994 A
5310584 Jacoby et al. May 1994 A
5314956 Asanuma et al. May 1994 A
5317036 Brady, III et al. May 1994 A
5317070 Brant et al. May 1994 A
5326824 Asanuma et al. Jul 1994 A
5332707 Karayannis et al. Jul 1994 A
5334677 Razavi et al. Aug 1994 A
5336746 Tsutsui et al. Aug 1994 A
5346773 Simoens Sep 1994 A
5350817 Winter et al. Sep 1994 A
5354619 Babu Oct 1994 A
5359102 Inoue et al. Oct 1994 A
5367022 Kiang et al. Nov 1994 A
5368919 Robeson Nov 1994 A
5369196 Matsumoto et al. Nov 1994 A
5373059 Asanuma et al. Dec 1994 A
5374685 Asanuma et al. Dec 1994 A
5374700 Tsutsui et al. Dec 1994 A
5403667 Simoens Apr 1995 A
5410003 Bai Apr 1995 A
5412020 Yamamoto et al. May 1995 A
5414027 DeNicola, Jr. et al. May 1995 A
5416228 Ewen et al. May 1995 A
5430070 Kono Jul 1995 A
5434115 Yamada et al. Jul 1995 A
5439994 Inoue et al. Aug 1995 A
5441807 Brandt et al. Aug 1995 A
5455111 Velasquez Urey Oct 1995 A
5455300 Smith Oct 1995 A
5455305 Galambos Oct 1995 A
5459217 Todo et al. Oct 1995 A
5459218 Palackal et al. Oct 1995 A
5464905 Tsutsui et al. Nov 1995 A
5468440 McAlpin et al. Nov 1995 A
5468560 McPherson et al. Nov 1995 A
5468807 Tsurutani et al. Nov 1995 A
5475075 Brant et al. Dec 1995 A
5476911 Morini et al. Dec 1995 A
5478646 Asanuma et al. Dec 1995 A
5478891 Lakshmanan et al. Dec 1995 A
5480848 Geerts Jan 1996 A
5480942 Addeo et al. Jan 1996 A
5483002 Seelert et al. Jan 1996 A
5500284 Burgin et al. Mar 1996 A
5504171 Etherton et al. Apr 1996 A
5504172 Imuta et al. Apr 1996 A
5512612 Brown et al. Apr 1996 A
5514460 Surman et al. May 1996 A
5516583 Zhang et al. May 1996 A
5516848 Canich et al. May 1996 A
5519091 Tsutsui et al. May 1996 A
5521251 Satoh et al. May 1996 A
5525689 Tsutsui et al. Jun 1996 A
5527846 Christell et al. Jun 1996 A
5529843 Dries et al. Jun 1996 A
5529850 Morini et al. Jun 1996 A
5529943 Hong et al. Jun 1996 A
5530054 Tse et al. Jun 1996 A
5532396 Winter et al. Jul 1996 A
5534473 Welch et al. Jul 1996 A
5534595 Asanuma et al. Jul 1996 A
5536773 Yamada et al. Jul 1996 A
5539056 Yang et al. Jul 1996 A
5539066 Winter et al. Jul 1996 A
5541260 Pelliconi et al. Jul 1996 A
5541262 Brichta et al. Jul 1996 A
5543373 Winter et al. Aug 1996 A
5547766 Gobran Aug 1996 A
5548007 Asanuma et al. Aug 1996 A
5548008 Asanuma et al. Aug 1996 A
5548014 Tse et al. Aug 1996 A
5552489 Merrill et al. Sep 1996 A
5554668 Scheve et al. Sep 1996 A
5556920 Tanaka et al. Sep 1996 A
5559165 Paul Sep 1996 A
5565533 Galimberti et al. Oct 1996 A
5565534 Aulbach et al. Oct 1996 A
5571613 Schuhmann et al. Nov 1996 A
5574082 Keller et al. Nov 1996 A
5576259 Hasegawa et al. Nov 1996 A
5576260 Winter et al. Nov 1996 A
5578743 Ho et al. Nov 1996 A
5579913 Yamada et al. Dec 1996 A
5585448 Resconi et al. Dec 1996 A
5585508 Küber et al. Dec 1996 A
5587501 Winter et al. Dec 1996 A
5591785 Scheve et al. Jan 1997 A
5591817 Asanuma et al. Jan 1997 A
5594074 Hwo et al. Jan 1997 A
5594078 Welch et al. Jan 1997 A
5594080 Waymouth et al. Jan 1997 A
5594172 Shimohara Jan 1997 A
5595827 Yamada et al. Jan 1997 A
5596052 Resconi et al. Jan 1997 A
5599881 Xie Feb 1997 A
5599885 Kawasaki et al. Feb 1997 A
5602223 Sasaki et al. Feb 1997 A
5605969 Tsutsui et al. Feb 1997 A
5610254 Saguna et al. Mar 1997 A
5612428 Winter et al. Mar 1997 A
5618369 Peiffer et al. Apr 1997 A
5618883 Plamthottam et al. Apr 1997 A
5621046 Iwanami et al. Apr 1997 A
5622760 Leiss Apr 1997 A
5629254 Fukuoka et al. May 1997 A
5631202 Ewen May 1997 A
5633010 Chen May 1997 A
5633018 Stouffer et al. May 1997 A
5639842 Tsutsui et al. Jun 1997 A
5641848 Giacobbe et al. Jun 1997 A
5643846 Reddy et al. Jul 1997 A
5648428 Reddy et al. Jul 1997 A
5652308 Merrill et al. Jul 1997 A
5658997 Fukuoka et al. Aug 1997 A
5661096 Winter et al. Aug 1997 A
5663232 Seppanen et al. Sep 1997 A
5663249 Ewen Sep 1997 A
5665469 Brandt et al. Sep 1997 A
5667902 Brew et al. Sep 1997 A
5670436 Herrmann et al. Sep 1997 A
5672668 Winter et al. Sep 1997 A
5677068 Ghirardo et al. Oct 1997 A
5683818 Bolvari Nov 1997 A
5684099 Watanabe et al. Nov 1997 A
5686533 Gahleitner et al. Nov 1997 A
5693730 Küber et al. Dec 1997 A
5693836 Winter et al. Dec 1997 A
5696045 Winter et al. Dec 1997 A
5696049 Ikeyama et al. Dec 1997 A
5698651 Kawasaki et al. Dec 1997 A
5700886 Winter et al. Dec 1997 A
5700895 Kanda et al. Dec 1997 A
5703172 Watanabe et al. Dec 1997 A
5703180 Tsutsui et al. Dec 1997 A
5705565 Hughes et al. Jan 1998 A
5705568 Gahleitner et al. Jan 1998 A
5705579 Hawley et al. Jan 1998 A
5705584 Fukuoka et al. Jan 1998 A
5709937 Adams et al. Jan 1998 A
5710223 Fukuoka et al. Jan 1998 A
5712323 Braga et al. Jan 1998 A
5714256 DeLucia et al. Feb 1998 A
5714426 Tsutsui et al. Feb 1998 A
5714427 Winter et al. Feb 1998 A
5716570 Peiffer et al. Feb 1998 A
5716698 Schreck et al. Feb 1998 A
5719235 Zandona Feb 1998 A
5719241 Razavi et al. Feb 1998 A
5723546 Sustic Mar 1998 A
5723640 Fukuoka et al. Mar 1998 A
5731362 Scheve et al. Mar 1998 A
5739220 Shamshoum et al. Apr 1998 A
5739225 Tazaki et al. Apr 1998 A
5739366 Imuta et al. Apr 1998 A
5741563 Mehta et al. Apr 1998 A
5741565 Coosemans et al. Apr 1998 A
5741868 Winter et al. Apr 1998 A
5747160 Pinoca et al. May 1998 A
5747405 Little et al. May 1998 A
5747620 Machida et al. May 1998 A
5747621 Resconi et al. May 1998 A
5753769 Ueda et al. May 1998 A
5753771 Xie May 1998 A
5756141 Chen et al. May 1998 A
5756169 Peiffer et al. May 1998 A
5756614 Chien et al. May 1998 A
5759469 Asanuma et al. Jun 1998 A
5760028 Jadhav et al. Jun 1998 A
5763349 Zandona Jun 1998 A
5763516 Godfrey Jun 1998 A
5767031 Shamshoum et al. Jun 1998 A
5767032 Hokkanen et al. Jun 1998 A
5767033 Imuta et al. Jun 1998 A
5767300 Aulbach et al. Jun 1998 A
5773129 Wakamatsu et al. Jun 1998 A
5773142 Murschall et al. Jun 1998 A
5773516 Huffer et al. Jun 1998 A
5773544 Christell et al. Jun 1998 A
5776851 Küber et al. Jul 1998 A
5777055 Peiffer et al. Jul 1998 A
5780168 Satoh et al. Jul 1998 A
5792549 Wilkie Aug 1998 A
5795941 Cree et al. Aug 1998 A
5795946 Agarwal et al. Aug 1998 A
5798175 Tynan, Jr. et al. Aug 1998 A
5804304 Williams et al. Sep 1998 A
5804524 Reddy et al. Sep 1998 A
5804623 Hoffmann et al. Sep 1998 A
5804665 Watanabe et al. Sep 1998 A
5807948 Sugane et al. Sep 1998 A
5817590 Hasegawa et al. Oct 1998 A
5817725 Zandona Oct 1998 A
5824753 Naganuma et al. Oct 1998 A
5827252 Werenicz et al. Oct 1998 A
5834393 Jacobsen et al. Nov 1998 A
5834538 deHullu et al. Nov 1998 A
5834562 Silvestri et al. Nov 1998 A
5840783 Momchilovich et al. Nov 1998 A
5840815 Tsutsui et al. Nov 1998 A
5843577 Ouhadi et al. Dec 1998 A
5844037 Lundgard et al. Dec 1998 A
5846558 Mielsen et al. Dec 1998 A
5846654 Modrak Dec 1998 A
5846896 Ewen Dec 1998 A
5846918 Meijer et al. Dec 1998 A
5847059 Shamshoum et al. Dec 1998 A
5849409 Pinoca et al. Dec 1998 A
5851610 Ristey et al. Dec 1998 A
5852100 Sadatoshi et al. Dec 1998 A
5852116 Cree et al. Dec 1998 A
5854354 Ueda et al. Dec 1998 A
5856400 Matsumura et al. Jan 1999 A
5856406 Silvis et al. Jan 1999 A
5858293 Yoo Jan 1999 A
5859088 Peterson et al. Jan 1999 A
5861211 Thakkar et al. Jan 1999 A
5861474 Weller et al. Jan 1999 A
5863665 Kale et al. Jan 1999 A
5863994 DeNicola, Jr. et al. Jan 1999 A
5866663 Brookhart et al. Feb 1999 A
5867316 Carlson et al. Feb 1999 A
5869555 Simmons et al. Feb 1999 A
5874505 Saito et al. Feb 1999 A
5874513 Watanabe et al. Feb 1999 A
5876855 Wong et al. Mar 1999 A
5880056 Tsutsui et al. Mar 1999 A
5880241 Brookhart et al. Mar 1999 A
5880323 Brookhart, III et al. Mar 1999 A
5882774 Jonza et al. Mar 1999 A
5882782 Tsubone Mar 1999 A
5883204 Spencer et al. Mar 1999 A
5883205 Tsutsui et al. Mar 1999 A
5886123 Resconi et al. Mar 1999 A
5886224 Brookhart et al. Mar 1999 A
5888607 Seth et al. Mar 1999 A
5888636 Asanuma et al. Mar 1999 A
5891946 Nohara et al. Apr 1999 A
5891963 Brookhart et al. Apr 1999 A
5891976 Costa et al. Apr 1999 A
5900294 Murschall et al. May 1999 A
5902848 Burgin et al. May 1999 A
5910136 Hetzler et al. Jun 1999 A
5910362 Aratake et al. Jun 1999 A
5911023 Risch et al. Jun 1999 A
5914079 Peiffer et al. Jun 1999 A
5914376 Herrmann et al. Jun 1999 A
5916974 Song et al. Jun 1999 A
5916988 Tsutsui et al. Jun 1999 A
5916989 Brookhart, III et al. Jun 1999 A
5916990 Yanagihara et al. Jun 1999 A
5919864 Watanabe et al. Jul 1999 A
5919983 Rosen et al. Jul 1999 A
5922823 Sagane et al. Jul 1999 A
5932157 Dries et al. Aug 1999 A
5936051 Santi et al. Aug 1999 A
5936053 Fukuoka et al. Aug 1999 A
5942451 Daponte et al. Aug 1999 A
5942569 Simmons et al. Aug 1999 A
5942586 Herrmann et al. Aug 1999 A
5945496 Resconi et al. Aug 1999 A
5947944 Hetzler et al. Sep 1999 A
5959046 Imuta et al. Sep 1999 A
5961782 Luu et al. Oct 1999 A
5969070 Waymouth et al. Oct 1999 A
5969217 Rhodes Oct 1999 A
5972490 Crighton et al. Oct 1999 A
5973078 Pinoca et al. Oct 1999 A
5973084 Suga et al. Oct 1999 A
5977251 Kao et al. Nov 1999 A
5977260 Ciaccia et al. Nov 1999 A
5983604 Wilfong et al. Nov 1999 A
5985193 Harrinton et al. Nov 1999 A
5985426 Wilkie Nov 1999 A
5986024 Wilson, Jr. Nov 1999 A
5986651 Reber et al. Nov 1999 A
5990331 Winter et al. Nov 1999 A
5994437 Lebez et al. Nov 1999 A
5997981 McCormack et al. Dec 1999 A
5998547 Hohner Dec 1999 A
6002033 Razawi et al. Dec 1999 A
6004897 Imuta et al. Dec 1999 A
6005049 Rebhan et al. Dec 1999 A
6008262 McKay et al. Dec 1999 A
6017842 Rosen et al. Jan 2000 A
6028152 Winter et al. Feb 2000 A
6033514 Davis et al. Mar 2000 A
6034164 Elspass et al. Mar 2000 A
6034165 Tomomatsu et al. Mar 2000 A
6034259 Brookhart et al. Mar 2000 A
6040348 Delaite et al. Mar 2000 A
6040407 Ishida et al. Mar 2000 A
6040469 Riedel et al. Mar 2000 A
6042930 Kelch et al. Mar 2000 A
6045922 Janssen et al. Apr 2000 A
6046273 Syed Apr 2000 A
6048942 Buehler et al. Apr 2000 A
6054542 Kojoh et al. Apr 2000 A
6054544 Finlayson et al. Apr 2000 A
6057413 Ima et al. May 2000 A
6060139 Peiffer et al. May 2000 A
6060561 Wolfschwenger et al. May 2000 A
6060584 Neely et al. May 2000 A
6063482 Peiffer et al. May 2000 A
6063483 Peiffer et al. May 2000 A
6063838 Patnode et al. May 2000 A
6069213 Nemzek et al. May 2000 A
6071598 Peiffer et al. Jun 2000 A
6077907 Raetzsch et al. Jun 2000 A
6080818 Thakker et al. Jun 2000 A
6084010 Baetzold et al. Jul 2000 A
6084041 Andtsjo et al. Jul 2000 A
6084048 Hozumi et al. Jul 2000 A
6086982 Peiffer et al. Jul 2000 A
6087459 Miro et al. Jul 2000 A
6090325 Wheat et al. Jul 2000 A
6090903 Kataoka et al. Jul 2000 A
6096843 Saito et al. Aug 2000 A
6100351 Sun et al. Aug 2000 A
6100353 Lynch et al. Aug 2000 A
6107422 Wang et al. Aug 2000 A
6107430 Dubois et al. Aug 2000 A
6107431 Resconi et al. Aug 2000 A
6110986 Nozawa et al. Aug 2000 A
6113996 Amon et al. Sep 2000 A
6114261 Strelow et al. Sep 2000 A
6114457 Markel et al. Sep 2000 A
6114477 Merrill et al. Sep 2000 A
6117962 Weng et al. Sep 2000 A
6121185 Rosen et al. Sep 2000 A
6121377 Chien Sep 2000 A
6121393 Kioka et al. Sep 2000 A
6121401 Yamamoto et al. Sep 2000 A
6121402 Machida et al. Sep 2000 A
6124231 Fritze et al. Sep 2000 A
6124400 Chien Sep 2000 A
6127484 Cribbs et al. Oct 2000 A
6140439 Brookhart et al. Oct 2000 A
6143683 Shamshoum et al. Nov 2000 A
6143825 Beren et al. Nov 2000 A
6143844 Hokkanen et al. Nov 2000 A
6143846 Herrmann et al. Nov 2000 A
6147174 Holtcamp et al. Nov 2000 A
6147180 Markel et al. Nov 2000 A
6150481 Winter et al. Nov 2000 A
6153549 Hubscher et al. Nov 2000 A
6156844 Hashimoto et al. Dec 2000 A
6156846 Tsuruoka et al. Dec 2000 A
6159888 Welch et al. Dec 2000 A
6162871 Watanabe et al. Dec 2000 A
6166161 Mullins et al. Dec 2000 A
6174930 Agarwal et al. Jan 2001 B1
6174946 Rubenacker et al. Jan 2001 B1
6174974 Starzewski et al. Jan 2001 B1
6177190 Gehlsen et al. Jan 2001 B1
6177377 Chien Jan 2001 B1
6177526 Fritze Jan 2001 B1
6177527 Sishta et al. Jan 2001 B1
6180229 Becker et al. Jan 2001 B1
6180732 Ewen Jan 2001 B1
6184327 Weng et al. Feb 2001 B1
6190760 Nagai et al. Feb 2001 B1
6191241 Starzewski et al. Feb 2001 B1
6197910 Weng et al. Mar 2001 B1
6207606 Lue et al. Mar 2001 B1
6207746 Uchida et al. Mar 2001 B1
6207748 Tse et al. Mar 2001 B1
6207750 Lin et al. Mar 2001 B1
6207773 Ting et al. Mar 2001 B1
6210764 Hayes Apr 2001 B1
6211110 Santi et al. Apr 2001 B1
6214447 Nakagawa et al. Apr 2001 B1
6214948 Zandona Apr 2001 B1
6214949 Reddy et al. Apr 2001 B1
6214952 Sadatoshi et al. Apr 2001 B1
6218457 Fralich et al. Apr 2001 B1
6218488 Schiggino et al. Apr 2001 B1
6218493 Johnson et al. Apr 2001 B1
6221802 Costa et al. Apr 2001 B1
6221981 Jung et al. Apr 2001 B1
6225411 Dang et al. May 2001 B1
6225432 Weng et al. May 2001 B1
6228948 Flaris et al. May 2001 B1
6238732 Cameron et al. May 2001 B1
6245856 Kaufman et al. Jun 2001 B1
6248829 Fischer et al. Jun 2001 B1
6248832 Peacock Jun 2001 B1
6248845 Loveday et al. Jun 2001 B1
6251997 Imai et al. Jun 2001 B1
6251998 Medsker et al. Jun 2001 B1
6255246 Devore et al. Jul 2001 B1
6255395 Klosiewicz Jul 2001 B1
6255414 Ittel et al. Jul 2001 B1
6255425 Asanuma et al. Jul 2001 B1
6255426 Lue et al. Jul 2001 B1
6258903 Mawson et al. Jul 2001 B1
6262203 Chien et al. Jul 2001 B1
6265512 Siedle et al. Jul 2001 B1
6268062 DeMeuse Jul 2001 B1
6268445 McAdon et al. Jul 2001 B1
6268453 Köppl et al. Jul 2001 B1
6271164 Fritze et al. Aug 2001 B1
6271310 Okayama et al. Aug 2001 B1
6271323 Loveday et al. Aug 2001 B1
6274678 Shinozaki et al. Aug 2001 B1
6277479 Campbell et al. Aug 2001 B1
6277934 Kondoh et al. Aug 2001 B1
6281289 Maugans et al. Aug 2001 B1
6284814 Gupta Sep 2001 B1
6284820 Braga et al. Sep 2001 B1
6284857 Shinozaki et al. Sep 2001 B1
6287658 Cosentino et al. Sep 2001 B1
6287705 Seta et al. Sep 2001 B1
6288189 Brown et al. Sep 2001 B1
6291063 Shah et al. Sep 2001 B1
6294611 Takayanagi et al. Sep 2001 B1
6294632 Shiraishi et al. Sep 2001 B1
6297301 Erderly et al. Oct 2001 B1
6300398 Jialanella et al. Oct 2001 B1
6300419 Sehanobish et al. Oct 2001 B1
6300451 Mehta et al. Oct 2001 B1
6303696 Ushioda et al. Oct 2001 B1
6306970 Dang et al. Oct 2001 B1
6310140 Raetzsch et al. Oct 2001 B1
6310163 Brookhart et al. Oct 2001 B1
6313184 Sasaki et al. Nov 2001 B1
6319979 Dubois et al. Nov 2001 B1
6319991 Okayama et al. Nov 2001 B1
6319998 Cozewith et al. Nov 2001 B1
6323151 Siedle et al. Nov 2001 B1
6323284 Peacock Nov 2001 B1
6323286 Kuramochi et al. Nov 2001 B1
6325956 Chaudhary et al. Dec 2001 B2
6326426 Ellul Dec 2001 B1
6326427 Birnbrich et al. Dec 2001 B1
6326432 Fujita et al. Dec 2001 B1
6326444 Lynch et al. Dec 2001 B2
6329313 Fritze et al. Dec 2001 B1
6329454 Krabbenborg Dec 2001 B1
6329468 Wang Dec 2001 B1
6331590 Herrmann et al. Dec 2001 B1
6331595 Mitchell et al. Dec 2001 B1
6339109 Day et al. Jan 2002 B1
6339136 Huikku et al. Jan 2002 B1
6340703 Kelly Jan 2002 B1
6340730 Murray et al. Jan 2002 B1
6342574 Weng et al. Jan 2002 B1
6346580 Fujita et al. Feb 2002 B1
6348272 Haveaux et al. Feb 2002 B1
6350791 Feichtmeier et al. Feb 2002 B1
6350828 Takaoka et al. Feb 2002 B1
6350829 Lynch et al. Feb 2002 B1
6350830 Göres et al. Feb 2002 B1
6352948 Pike et al. Mar 2002 B1
6355747 Rausch et al. Mar 2002 B1
6359077 Avgousti et al. Mar 2002 B1
6359095 Winter et al. Mar 2002 B1
6362125 Shamshoum et al. Mar 2002 B1
6365763 Winter et al. Apr 2002 B1
6365779 Devore et al. Apr 2002 B2
6368708 Brown et al. Apr 2002 B1
6369175 Ewen Apr 2002 B1
6369176 Laughner et al. Apr 2002 B1
6376410 Burkhardt et al. Apr 2002 B1
6376416 Hirakawa et al. Apr 2002 B1
6380327 Teasley Apr 2002 B1
6391974 Ogawa et al. May 2002 B1
6395831 Pelliconi et al. May 2002 B1
6399531 Job et al. Jun 2002 B1
6403677 Walker Jun 2002 B1
6403708 Moriya et al. Jun 2002 B2
6403855 Mertens Jun 2002 B1
6407168 Sugita et al. Jun 2002 B1
6407177 Shamshoum et al. Jun 2002 B1
6407189 Herrmann Jun 2002 B1
6413899 Dolle et al. Jul 2002 B1
6416699 Gownder et al. Jul 2002 B1
6417240 Park Jul 2002 B1
6417242 Hughes et al. Jul 2002 B1
6417275 Takayanagi et al. Jul 2002 B2
6420516 Tau et al. Jul 2002 B1
6423793 Weng et al. Jul 2002 B1
6423800 Musgrave Jul 2002 B1
6426026 Avgousti et al. Jul 2002 B1
6429274 Siedle et al. Aug 2002 B1
6430898 Remmers et al. Aug 2002 B1
6433087 Ebner et al. Aug 2002 B1
6441094 Cecchin et al. Aug 2002 B1
6444301 Davidson et al. Sep 2002 B1
6448301 Gaddam et al. Sep 2002 B1
6448302 Dawson et al. Sep 2002 B1
6448358 Siedle et al. Sep 2002 B2
6455614 Jackson et al. Sep 2002 B1
6455630 Rigosi et al. Sep 2002 B1
6455634 Khandpur et al. Sep 2002 B1
6455643 Harlin et al. Sep 2002 B1
6458877 Ahmed et al. Oct 2002 B1
6465558 Scheibelhoffer et al. Oct 2002 B2
6469110 Harlin et al. Oct 2002 B1
6472473 Ansems et al. Oct 2002 B1
6472477 Kanzaki et al. Oct 2002 B2
6476135 Bugada et al. Nov 2002 B1
6482907 Wang et al. Nov 2002 B1
6486246 Vion Nov 2002 B1
6489426 Kawamoto et al. Dec 2002 B1
6492465 Burkhardt et al. Dec 2002 B1
6495646 Arthur et al. Dec 2002 B1
6500540 Langohr et al. Dec 2002 B1
6503993 Huovinen et al. Jan 2003 B1
6506839 Nishihara et al. Jan 2003 B1
6506847 Song Jan 2003 B1
6509107 Ding et al. Jan 2003 B2
6509288 Dorer et al. Jan 2003 B1
6511755 Mochizuki et al. Jan 2003 B1
6512019 Agarwal et al. Jan 2003 B1
6512050 Kanamori et al. Jan 2003 B2
6515086 Razavi Feb 2003 B1
6518327 Dang et al. Feb 2003 B1
6518386 Resconi et al. Feb 2003 B1
6521675 Wu et al. Feb 2003 B1
6521693 Saito et al. Feb 2003 B2
6525157 Cozewith et al. Feb 2003 B2
6528448 Jensen et al. Mar 2003 B1
6534608 Peterson et al. Mar 2003 B2
6537478 Grasmeder et al. Mar 2003 B1
6537652 Kochem et al. Mar 2003 B1
6545072 Tamura et al. Apr 2003 B2
6545099 Shinozaki et al. Apr 2003 B2
6545108 Moody et al. Apr 2003 B1
6548579 Reski et al. Apr 2003 B2
6551955 Diefenbach Apr 2003 B1
6555643 Rieger Apr 2003 B1
6559211 Zhao et al. May 2003 B2
6562886 Minami et al. May 2003 B1
6562914 Andtsjo et al. May 2003 B1
6569915 Jackson et al. May 2003 B1
6569934 Noel, III May 2003 B2
6569945 Bugada et al. May 2003 B2
6569965 Markel et al. May 2003 B2
6573344 Hawley et al. Jun 2003 B1
6573350 Markel et al. Jun 2003 B1
6573352 Tatsumi et al. Jun 2003 B1
6576306 Mehta et al. Jun 2003 B2
6576712 Feldstein et al. Jun 2003 B2
6582828 Kaschel Jun 2003 B1
6583076 Pekrul et al. Jun 2003 B1
6583209 Mehta et al. Jun 2003 B2
6583254 Tsuji et al. Jun 2003 B2
6586531 Washiyama et al. Jul 2003 B2
6586536 Kelley Jul 2003 B1
6590006 Park et al. Jul 2003 B2
6593407 Haner et al. Jul 2003 B2
6593442 Bidell et al. Jul 2003 B2
6596198 Semen Jul 2003 B1
6596814 Kim et al. Jul 2003 B2
6599985 Fujii et al. Jul 2003 B2
6602598 Simpson et al. Aug 2003 B1
6610785 Cecchin et al. Aug 2003 B1
6613381 Bredahl et al. Sep 2003 B1
6613816 Mahdi et al. Sep 2003 B2
6620888 Resconi et al. Sep 2003 B2
6620892 Bertin et al. Sep 2003 B1
6624253 Nakamura et al. Sep 2003 B2
6630559 Shinozaki et al. Oct 2003 B2
6632885 Morizono et al. Oct 2003 B2
6635715 Datta et al. Oct 2003 B1
6635733 Yahata et al. Oct 2003 B2
6639018 Yunoki et al. Oct 2003 B2
6646019 Perez et al. Nov 2003 B2
6646051 Demain Nov 2003 B1
6649685 Saito et al. Nov 2003 B2
6653385 Wang et al. Nov 2003 B2
6657009 Zhou Dec 2003 B2
6657025 Blackmon et al. Dec 2003 B2
6660805 Righettini et al. Dec 2003 B1
6664306 Gaddam et al. Dec 2003 B2
6664309 Svenningsen et al. Dec 2003 B2
6673870 Owens et al. Jan 2004 B2
6677403 Abe Jan 2004 B1
6686433 Miro et al. Feb 2004 B1
6703457 Van Baar et al. Mar 2004 B2
6709734 Higashi et al. Mar 2004 B2
6710134 Demain Mar 2004 B2
6713573 Wenzel et al. Mar 2004 B2
6723769 Miller et al. Apr 2004 B2
6727332 Demain Apr 2004 B2
6730742 Demain May 2004 B1
6734253 Krabbenborg et al. May 2004 B2
6734270 Minami et al. May 2004 B1
6747103 Vestberg et al. Jun 2004 B1
6747114 Karandinos et al. Jun 2004 B2
6750288 Pradel Jun 2004 B2
6756098 Zhou et al. Jun 2004 B2
6756463 Sugano et al. Jun 2004 B2
6758994 Gownder et al. Jul 2004 B2
6759475 Sakai et al. Jul 2004 B2
6759500 Dolle et al. Jul 2004 B1
6770355 Minami et al. Aug 2004 B1
6770714 Ommundsen et al. Aug 2004 B2
6774069 Zhou et al. Aug 2004 B2
6777067 Speith-Herfurth et al. Aug 2004 B1
6777476 Jeong et al. Aug 2004 B2
6777497 Kanzaki et al. Aug 2004 B2
6780936 Agarwal et al. Aug 2004 B1
6784250 Kijima Aug 2004 B2
6784252 Ramanathan et al. Aug 2004 B2
6784269 Lin et al. Aug 2004 B2
6790922 Rieger Sep 2004 B2
6797371 Gehlsen et al. Sep 2004 B1
6797774 Kijima Sep 2004 B2
6800669 Thoen et al. Oct 2004 B2
6800681 Ohkawa et al. Oct 2004 B2
6800700 Sun Oct 2004 B2
6800703 Reinking et al. Oct 2004 B1
6800706 Kanamaru et al. Oct 2004 B1
6800710 Pelliconi et al. Oct 2004 B2
6811886 Speith-Herfurth et al. Nov 2004 B1
6815490 Seelert et al. Nov 2004 B2
6815496 Tasaka et al. Nov 2004 B2
6818698 Kashikar Nov 2004 B1
6824721 Albe et al. Nov 2004 B2
6825276 Forte et al. Nov 2004 B2
6825280 Hayakawa et al. Nov 2004 B1
6825292 Reid Nov 2004 B2
6828022 Bisleri et al. Dec 2004 B2
6833180 Kodemura Dec 2004 B1
6833404 Quinn et al. Dec 2004 B2
6841620 Ansems et al. Jan 2005 B2
6844078 Su et al. Jan 2005 B2
6855406 Takayasu et al. Feb 2005 B2
6855411 Su et al. Feb 2005 B2
6855424 Thomas et al. Feb 2005 B1
6855656 Hosaka et al. Feb 2005 B2
6855777 McLoughlin et al. Feb 2005 B2
6858667 Flerlage et al. Feb 2005 B1
6858676 Johoji et al. Feb 2005 B1
6858695 Schmidt, Jr. et al. Feb 2005 B2
6858700 Dahl et al. Feb 2005 B2
6861472 Adedeji et al. Mar 2005 B2
6863989 Dyatlov et al. Mar 2005 B1
6867252 Tomomatsu et al. Mar 2005 B1
6867253 Chen Mar 2005 B1
6872790 Ewen Mar 2005 B2
6875816 DeGroot et al. Apr 2005 B2
6878327 Cooper et al. Apr 2005 B2
6878756 Cinelli et al. Apr 2005 B2
6881793 Sheldon et al. Apr 2005 B2
6884846 Pradel Apr 2005 B2
6884851 Gauthy Apr 2005 B2
6887941 Zhou May 2005 B2
6887943 Onoe et al. May 2005 B2
6890661 Pradel May 2005 B2
6897261 Machida et al. May 2005 B1
6905760 Mukohara et al. Jun 2005 B1
6913834 Kanamaru et al. Jul 2005 B2
6914085 Delaite et al. Jul 2005 B2
6916892 Tharappel et al. Jul 2005 B2
6924041 Lee et al. Aug 2005 B2
6924342 Stevens et al. Aug 2005 B2
6951683 Blackwell Oct 2005 B2
6951900 Blanchard et al. Oct 2005 B2
6964986 Bachon et al. Nov 2005 B2
6984680 Quinn Jan 2006 B2
6992121 Peters et al. Jan 2006 B1
6992128 Busch et al. Jan 2006 B2
6992146 McLoughlin et al. Jan 2006 B2
6994763 Austin Feb 2006 B2
6994915 Pelliconi et al. Feb 2006 B2
6998431 Albe Feb 2006 B2
7008990 Raether et al. Mar 2006 B2
7019078 Collina et al. Mar 2006 B1
7022763 Matsugi et al. Apr 2006 B2
7022795 Huffer et al. Apr 2006 B1
7022796 Blackmon et al. Apr 2006 B2
7026055 Hanyu et al. Apr 2006 B2
7026421 Appleyard et al. Apr 2006 B2
7038000 Vestberg et al. May 2006 B2
7041381 Rasp et al. May 2006 B1
7056991 Tharappel et al. Jun 2006 B2
7060754 Stevens et al. Jun 2006 B2
7064160 Zanka et al. Jun 2006 B2
7064163 Shida Jun 2006 B2
7067196 Pradel et al. Jun 2006 B2
7067585 Wang et al. Jun 2006 B2
7078468 Thorman Jul 2006 B2
7081299 Richeson Jul 2006 B2
7081493 Kawai et al. Jul 2006 B2
7087314 Forte et al. Aug 2006 B2
7091277 Rydin et al. Aug 2006 B2
7094463 Haas et al. Aug 2006 B2
7094820 Zhao et al. Aug 2006 B2
7101622 Chang et al. Sep 2006 B2
7101926 McMichael et al. Sep 2006 B2
7101929 Zah et al. Sep 2006 B2
7105604 Shimizu et al. Sep 2006 B2
7105609 Datta et al. Sep 2006 B2
7109265 Kucera et al. Sep 2006 B2
7109269 Stevens et al. Sep 2006 B2
7112642 Meesters et al. Sep 2006 B2
7115694 Shimizu et al. Oct 2006 B2
7119154 Coates et al. Oct 2006 B2
7122584 Moriya et al. Oct 2006 B2
7122604 Onoe et al. Oct 2006 B2
7125924 Credali et al. Oct 2006 B2
7129292 Kristen et al. Oct 2006 B1
7138173 Wheatley et al. Nov 2006 B2
7141182 Walters et al. Nov 2006 B2
7141300 Yamamoto et al. Nov 2006 B2
7144542 Holzer et al. Dec 2006 B2
7144925 Burgun et al. Dec 2006 B2
7144939 Dotson et al. Dec 2006 B2
7144959 Kitahara Dec 2006 B2
7148305 Stevens et al. Dec 2006 B2
7153906 Akiyama et al. Dec 2006 B2
7160949 Ota et al. Jan 2007 B2
7160950 Mori et al. Jan 2007 B2
7169727 Thorman Jan 2007 B2
7169827 Debras et al. Jan 2007 B2
7169866 Ostoja Starzewski et al. Jan 2007 B2
7169871 Morini et al. Jan 2007 B2
7173099 Minami Feb 2007 B1
7175906 Longmoore Feb 2007 B2
7183364 Sita Feb 2007 B2
7186312 Bolte et al. Mar 2007 B1
7189788 Machida et al. Mar 2007 B2
7192902 Brinen et al. Mar 2007 B2
7193003 Oi et al. Mar 2007 B2
7193013 Machida et al. Mar 2007 B2
7199204 Haner et al. Apr 2007 B2
7201815 Muvundamina Apr 2007 B2
7202296 Muylem et al. Apr 2007 B2
7208436 Dall'Occo et al. Apr 2007 B2
7208552 Komoto et al. Apr 2007 B2
7211537 Fujita et al. May 2007 B2
7214745 Arai et al. May 2007 B2
7217455 Valdez May 2007 B2
7217766 Datta et al. May 2007 B2
7226880 Potnis Jun 2007 B2
7226974 Nishihara Jun 2007 B2
7229687 Kinning et al. Jun 2007 B2
7232872 Shaffer et al. Jun 2007 B2
7235191 Schmidt et al. Jun 2007 B2
7235610 Fujino et al. Jun 2007 B2
7235618 Lin et al. Jun 2007 B2
7238759 Stevens et al. Jul 2007 B2
7238846 Janssen et al. Jul 2007 B2
7241844 Bouhelal Jul 2007 B2
7247675 Thomas et al. Jul 2007 B2
7250211 Minami et al. Jul 2007 B1
7250470 Stevens et al. Jul 2007 B2
7250471 Stevens et al. Jul 2007 B2
7253234 Mori et al. Aug 2007 B2
7262251 Kanderski et al. Aug 2007 B2
7268185 Shimojo et al. Sep 2007 B2
20010004662 Bidell et al. Jun 2001 A1
20010007896 Agarwal et al. Jul 2001 A1
20010016639 Agarwal et al. Aug 2001 A1
20010031843 Whiteker et al. Oct 2001 A1
20010034299 Terry et al. Oct 2001 A1
20010044505 Ford et al. Nov 2001 A1
20010044515 Siedel et al. Nov 2001 A1
20010047064 Sun Nov 2001 A1
20010053837 Agarwal et al. Dec 2001 A1
20020010077 Lue et al. Jan 2002 A1
20020013440 Agarwal et al. Jan 2002 A1
20020016254 Whiteker et al. Feb 2002 A1
20020040114 Loveday et al. Apr 2002 A1
20020045054 Uhara et al. Apr 2002 A1
20020049135 Moody et al. Apr 2002 A1
20020061945 Oates et al. May 2002 A1
20020064653 Ladika et al. May 2002 A1
20020065192 Mackenzie et al. May 2002 A1
20020086955 Kendrick Jul 2002 A1
20020123538 Zhou et al. Sep 2002 A1
20020124956 Zhou Sep 2002 A1
20020132923 Langohr et al. Sep 2002 A1
20030078350 Weng et al. Apr 2003 A1
20030096896 Wang et al. May 2003 A1
20040023037 Baumert et al. Feb 2004 A1
20040034170 Brant Feb 2004 A1
20040039117 Kijima Feb 2004 A1
20040048984 Weng et al. Mar 2004 A1
20040127614 Jiang et al. Jul 2004 A1
20040138392 Jiang et al. Jul 2004 A1
20040220320 Abhari et al. Nov 2004 A1
20040220336 Abhari et al. Nov 2004 A1
20040220359 Abhari et al. Nov 2004 A1
20050020778 DeGroot et al. Jan 2005 A1
20050065286 DeGroot et al. Mar 2005 A1
20050187350 Stevens et al. Aug 2005 A1
20050187351 Stevens et al. Aug 2005 A1
20060025535 Onoe et al. Feb 2006 A1
Foreign Referenced Citations (314)
Number Date Country
2157806 Mar 1997 CA
2407183 Apr 2003 CA
2316614 Oct 1973 DE
19960411 Jul 2001 DE
19963585 Jul 2001 DE
0 033 220 Aug 1981 EP
0 930 320 Oct 1983 EP
0 115 434 Aug 1984 EP
0 263 718 Apr 1988 EP
0 248 708 Oct 1988 EP
0 284 707 Oct 1988 EP
0 319 043 Jun 1989 EP
0 366 411 May 1990 EP
0 387 691 Sep 1990 EP
0 486 293 Sep 1991 EP
0 459 264 Dec 1991 EP
0 513 808 Nov 1992 EP
0 515 132 Nov 1992 EP
0 524 624 Jan 1993 EP
0375730 Jan 1993 EP
0 530 908 Mar 1993 EP
0 536 104 Apr 1993 EP
0 417 428 Sep 1993 EP
0 577 581 Jan 1994 EP
0 363 029 Aug 1994 EP
0 612 768 Aug 1994 EP
0 310 734 Nov 1994 EP
0 647 246 Nov 1994 EP
0 648 801 Apr 1995 EP
0 653 433 May 1995 EP
0 666 267 Aug 1995 EP
0 557 718 Oct 1995 EP
0 516 019 Dec 1995 EP
0 564 596 Feb 1996 EP
0 695 765 Feb 1996 EP
0 516 018 Mar 1996 EP
0 700 937 Mar 1996 EP
0 593 083 May 1996 EP
0 718 359 Jun 1996 EP
0 719 829 Jul 1996 EP
0 553 757 Sep 1996 EP
0 733 652 Sep 1996 EP
0 652 905 Oct 1996 EP
0 747 430 Dec 1996 EP
0 749 989 Dec 1996 EP
0 773 238 May 1997 EP
0 773 239 May 1997 EP
0 791 607 May 1997 EP
0 643 100 Jul 1997 EP
0 527 221 Sep 1997 EP
0 598 628 Sep 1997 EP
0 620 257 Sep 1997 EP
0 803 559 Oct 1997 EP
0 812 854 Dec 1997 EP
0 700 934 Jan 1998 EP
0 661 300 Mar 1998 EP
0 832 924 Apr 1998 EP
0 646 604 May 1998 EP
0 841 349 May 1998 EP
0 842 955 May 1998 EP
0 527 589 Jun 1998 EP
0 563 917 Jun 1998 EP
0 613 908 Jul 1998 EP
0 948 432 Jul 1998 EP
0 958 318 Jul 1998 EP
0 857 735 Aug 1998 EP
0 958 313 Aug 1998 EP
0 958 314 Aug 1998 EP
0 958 324 Aug 1998 EP
0 864 593 Sep 1998 EP
0 500 944 Oct 1998 EP
0 573 120 Nov 1998 EP
0 879 849 Nov 1998 EP
0 977 666 Nov 1998 EP
0 977 808 Nov 1998 EP
0 788 521 Dec 1998 EP
0 882 731 Dec 1998 EP
0 889 089 Jan 1999 EP
0 584 609 Mar 1999 EP
0 627 447 Apr 1999 EP
0 685 498 May 1999 EP
0 696 303 Jun 1999 EP
0 922 653 Jun 1999 EP
1 040 140 Jun 1999 EP
1 040 146 Jun 1999 EP
1 044 225 Jun 1999 EP
0 608 054 Jul 1999 EP
1 049 730 Jul 1999 EP
0 827 526 Aug 1999 EP
0 747 403 Sep 1999 EP
0 950 667 Oct 1999 EP
0 953 581 Nov 1999 EP
0 602 716 Dec 1999 EP
0 423 101 Jan 2000 EP
0 974 601 Jan 2000 EP
0 909 284 Feb 2000 EP
0 731 729 Mar 2000 EP
0 909 283 Mar 2000 EP
0 985 677 Mar 2000 EP
0 719 797 Apr 2000 EP
0 719 802 May 2000 EP
0 769 505 May 2000 EP
1 141 051 Jun 2000 EP
0 586 168 Jul 2000 EP
0889912 Jul 2000 EP
1 031 580 Aug 2000 EP
1023339 Aug 2000 EP
0 889 911 Nov 2000 EP
1 050 558 Nov 2000 EP
0 654 476 Jan 2001 EP
1 077 244 Feb 2001 EP
0 702 030 Mar 2001 EP
1 081 203 Mar 2001 EP
1 081 204 Mar 2001 EP
0 882 069 Apr 2001 EP
0 882 076 Apr 2001 EP
1 238 035 Apr 2001 EP
0 351 392 May 2001 EP
0 882 077 May 2001 EP
1 095 944 May 2001 EP
1 095 951 May 2001 EP
1 100 854 May 2001 EP
0 824 113 Jun 2001 EP
1 237 963 Jun 2001 EP
1 252 231 Jul 2001 EP
0 619 325 Aug 2001 EP
1 023 379 Aug 2001 EP
0 886 656 Sep 2001 EP
1 144 533 Oct 2001 EP
0 963 382 Nov 2001 EP
1 153 944 Nov 2001 EP
0 645 401 Dec 2001 EP
0 707 010 Dec 2001 EP
0 747 402 Dec 2001 EP
0 821 748 Dec 2001 EP
0 891 381 Dec 2001 EP
1 118 637 Dec 2001 EP
1 066 330 Feb 2002 EP
1 181 979 Feb 2002 EP
0 659 757 Mar 2002 EP
1 197 500 Apr 2002 EP
1 089 878 May 2002 EP
1 231 236 Aug 2002 EP
0 868 498 Jan 2003 EP
1 295 925 Mar 2003 EP
1 295 926 Mar 2003 EP
1 165 622 Apr 2003 EP
1377613 Jan 2004 EP
1412398 Apr 2004 EP
1723184 Nov 2006 EP
1727836 Dec 2006 EP
1396054 Apr 1965 FR
1582841 Oct 1969 FR
2323846 Mar 1997 GB
51114438 Oct 1976 JP
56072033 Jun 1981 JP
56109213 Aug 1981 JP
57030774 Feb 1982 JP
57076041 May 1982 JP
58049736 Mar 1983 JP
59159843 Sep 1984 JP
59217709 Dec 1984 JP
60011538 Jan 1985 JP
01054010 Mar 1989 JP
0 208 6676 Mar 1990 JP
08336937 Dec 1996 JP
11115127 Apr 1999 JP
99349634 Dec 1999 JP
8912828 Dec 1989 WO
9012839 Nov 1990 WO
WO 9107472 May 1991 WO
WO 9220644 Nov 1992 WO
WO 9404625 Mar 1994 WO
9407930 Apr 1994 WO
9412193 Jun 1994 WO
9413715 Jun 1994 WO
9425498 Nov 1994 WO
9425526 Nov 1994 WO
9506556 Mar 1995 WO
WO 9510575 Apr 1995 WO
9524449 Sep 1995 WO
9532242 Nov 1995 WO
9612744 May 1996 WO
9613531 May 1996 WO
9623010 Aug 1996 WO
9623751 Aug 1996 WO
9626967 Sep 1996 WO
9627622 Sep 1996 WO
9629460 Sep 1996 WO
9637568 Nov 1996 WO
9704271 Feb 1997 WO
9710300 Mar 1997 WO
9712919 Apr 1997 WO
WO 9720872 Jun 1997 WO
9723577 Jul 1997 WO
9726287 Jul 1997 WO
9729138 Aug 1997 WO
9733921 Sep 1997 WO
9749738 Dec 1997 WO
9802467 Jan 1998 WO
9802471 Jan 1998 WO
9803603 Jan 1998 WO
9809996 Mar 1998 WO
9823690 Jun 1998 WO
9823699 Jun 1998 WO
9829249 Jul 1998 WO
9832784 Jul 1998 WO
9833860 Aug 1998 WO
9834965 Aug 1998 WO
9834970 Aug 1998 WO
9834971 Aug 1998 WO
9834985 Aug 1998 WO
9838374 Sep 1998 WO
9841574 Sep 1998 WO
9842780 Oct 1998 WO
9846694 Oct 1998 WO
9849229 Nov 1998 WO
9852686 Nov 1998 WO
9857998 Dec 1998 WO
WO 9901481 Jan 1999 WO
9905152 Feb 1999 WO
9910425 Mar 1999 WO
9914046 Mar 1999 WO
9914047 Mar 1999 WO
9914262 Mar 1999 WO
9919394 Apr 1999 WO
9920664 Apr 1999 WO
9920694 Apr 1999 WO
9920701 Apr 1999 WO
9924516 May 1999 WO
9929742 Jun 1999 WO
9929743 Jun 1999 WO
9929749 Jun 1999 WO
9932272 Jul 1999 WO
9932288 Jul 1999 WO
9932525 Jul 1999 WO
9937711 Jul 1999 WO
9946348 Sep 1999 WO
9954421 Oct 1999 WO
9960060 Nov 1999 WO
9961487 Dec 1999 WO
9965949 Dec 1999 WO
9967094 Dec 1999 WO
0000565 Jan 2000 WO
0001745 Jan 2000 WO
0023483 Apr 2000 WO
0029655 May 2000 WO
0037514 Jun 2000 WO
0044799 Aug 2000 WO
0047592 Aug 2000 WO
0050466 Aug 2000 WO
0050475 Aug 2000 WO
0058320 Oct 2000 WO
0059721 Oct 2000 WO
0069869 Nov 2000 WO
0069963 Nov 2000 WO
0075198 Dec 2000 WO
0100257 Jan 2001 WO
0100691 Jan 2001 WO
0102444 Jan 2001 WO
WO 0100693 Jan 2001 WO
0109200 Feb 2001 WO
0114429 Mar 2001 WO
0116189 Mar 2001 WO
0118109 Mar 2001 WO
0119609 Mar 2001 WO
0123396 Apr 2001 WO
0125296 Apr 2001 WO
0127213 Apr 2001 WO
0129096 Apr 2001 WO
0132721 May 2001 WO
0134665 May 2001 WO
0140325 Jun 2001 WO
0142322 Jun 2001 WO
0142323 Jun 2001 WO
0142350 Jun 2001 WO
0144309 Jun 2001 WO
0146274 Jun 2001 WO
0146277 Jun 2001 WO
0146278 Jun 2001 WO
0148029 Jul 2001 WO
0148034 Jul 2001 WO
0148036 Jul 2001 WO
0148037 Jul 2001 WO
0148038 Jul 2001 WO
0170878 Sep 2001 WO
0174745 Oct 2001 WO
0177193 Oct 2001 WO
0181493 Nov 2001 WO
0183498 Nov 2001 WO
0183571 Nov 2001 WO
0198374 Dec 2001 WO
0198380 Dec 2001 WO
0198381 Dec 2001 WO
WO 0196490 Dec 2001 WO
WO 0220644 Mar 2002 WO
0235956 May 2002 WO
0236651 May 2002 WO
02053668 Jul 2002 WO
02053669 Jul 2002 WO
WO 02051931 Jul 2002 WO
02074817 Sep 2002 WO
WO 02070572 Sep 2002 WO
WO 03033612 Apr 2003 WO
WO 03091289 Nov 2003 WO
WO 2001220336 Feb 2004 WO
WO 2001127614 Apr 2004 WO
2004037872 May 2004 WO
2004046214 Jun 2004 WO
2005023889 Mar 2005 WO
2005035598 Apr 2005 WO
2005087864 Sep 2005 WO
2005095473 Oct 2005 WO
2007002435 Jan 2007 WO
Related Publications (1)
Number Date Country
20040249046 A1 Dec 2004 US
Provisional Applications (2)
Number Date Country
60460714 Apr 2003 US
60418482 Oct 2002 US
Continuation in Parts (2)
Number Date Country
Parent 10686951 Oct 2003 US
Child 10825348 US
Parent 10687508 Oct 2003 US
Child 10686951 US