Hawley's Condensed Chemical Dictionary, 11th Ed., (1987), p. 909.* |
Allcock, H. R., “Synthesis of poly[(amino acid alkyl ester) phosphazenes],” Macromolecules, 10, 824-830 (1977). |
Allcock, H. R., et al., “Hydrolysis pathways for aminophosphazanes,” Inorg. Chem., 21, 515-521 (1982). |
Allcock, H. R., and T.J. Fuller, “Synthesis and Hydrolysis of Hexakis(imidazolyl)cyclotriphosphazene,” J. Am. Chem. Soc., 103, 2250-. |
Allcock, H.R., et al., “Phosphonitrilic Compounds. XV. High Molecular Weight Poly[bix(amino)phosphazenes] and Mixed-Substituent Poly(aminophosphazenes),” Inorg. Chem. 11, (1972). |
Allcock, H.R., et al., “Synthesis of Sugar-Substituted Cyclic and Polymeric Phosphazenes and Their Oxidation, Reduction, and Acetylation Reactions,” Macromolecules 16, 715 (1983). |
Allcock, H.R., et al., “Polyphosphazenes with Etheric Side Groups: Prospective Biomedical and Solid Electrolyte Polymers,” Macromolecules 19, 1508 (1986). |
Allcock, H.R., et al. “Amphiphilic polyphosphazenes as membrane materials: influence of side group on radiation cross-linking,” Biomaterials, 19, 500 (1988). |
Allcock, H.R., et al., “Glyceryl Polyphosphazenes: Synthesis, Properties, and Hydrolysis,” Macromolecules 21, 1980 (1988). |
Allcock, H.R., et al., “An Ionically Cross-Linkable Polyphosphazene: Poly[bis(carboxylatophenoxy)phosphazene] and Its Hydrogels and Membranes,” Macromolecu les 22, 75 (1989). |
Cima, Linda, et al. “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech., Eng., 113, 143-151 (1991). |
Coombes, A.D.A. and J.D. Heckman, “Gel Casting of Resorbable Polymers: Processing and Applications,” Biomaterials, 13(4), 217-224 (1992). |
Eggli, P.S., et al., “Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits”, Clin. Orthop., 232, 127-138 (1987). |
Elgendy, H.M., et al. “Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: An approach towards the development of a bone-bioerodible polymer composite material,” Biomaterials, 14, 263-269 (1993). |
Frame, J.W., “Hydroxyapatite as a biomaterial for alveolar ridge augmentation,” Int. J. Oral Maxillofacial Surgery, 16, 642-55 (1987). |
Friedlaender, G.E., “Current Concepts Review: Bone Grafts,” Journal of Bone and Joint Surgery, 69A(5), 786-790 (1987). |
Gilding, D.K., and A.M. Reed, “Biodegradable polymers for use in surgery: Polyglycolic acid/polylactic acid homo- and copolymers,” Polymer 20, 1459-1464 (1979). |
Grolleman, et al., J. Controlled Release 3, 143 (1986). |
Hollinger, J.O., “Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).” J. Biomed. Mater. Res. 17, 71-82 (1983). |
Hollinger, J.O., and G.C. Battisone, “Biodegradable bone repair materials: Synthetic polymers and ceramics,” Clin. Orthop., 207, 290-305 (1986). |
Jarcho, M. “Calcium Phosphate Ceramics as Hard Tissue Prosthetics,” Clinical Orthopedics and Related Research, 157, 259-78 (1981). |
Klatwitter, et al., “Application of porous ceramics for the attachment of load bearing orthopedic applications” J. Biomed. Mater. Res. Symp., 2, 161 (1971). |
Kulkarni, R.K., et al., “Biodegradable Poly(lactic acid) Polymers,” J. Biomedical Materials Research, 5, 169-81 (1971). |
Laurencin, Cato T., et al. “Use of polyphosphazenes for skeletal tissue regeneration,” J. Biom. Mater. Res., 27 (1993). |
Laurencin, Cato T., et al., “Controlled release using a new bioerodible polyphosphazene matrix system,” J. Biomedical Mat. Res., 21 1231-1246 (1987). |
Mikos, et al., “Prevascularization of biodegradable polymer scaffolds for hepatocyte transplantation”, Proc. ACS Div. of Polymer. Mater., 66, 33 (1992). |
Ohgushi, H., et al., “Repair of bone defects with marrow cells and porous ceramics,” Acta Orthop. Scand. 60 334-339 (1989). |
Parsons, et al.“Osteoconductive Composite Grouts for Orthopedic Use,” Annals N.Y. Academy of Sciences, 523, 190-207 (1988). |
Potin, P. and R. De Jaeger, “Polyphosphazenes: Synthesis, structures, properties, applications,” Eur. Polym. J., 27, 341-348 (1991). |
Shimazaki, K. and V. Mooney, “Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute,” J. Orthop. Res. 3 301-310 (1985). |
Vacanti, Charles A., et al, “Synthetic polymers seeded with chrondrocytes provide a template for new cartilage formation,” Plast. Reconstr. Surg., 88, 753-759 (1991). |
van Blitterswijk, C.A., et al. “Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic,” Biomaterials 7 137-143 (1986). |
Wade, C.W.R., et al. “Biocompatibility of eight poly(organophosphazenes),” in Organomet. Polym., C.E. Carraher, J.E. Sheats and C.U. Pitman, Jr., Eds., Academic Press, New York, 1978, pp. 283-288. |
White and Shors, “Biomaterial aspects of Interpore 200 porous hydroxyapatite”. Dental Clinical of N. Amer., 30, 49-67 (1986). |