POLYPEPTIDES, COMPOSITIONS, AND THEIR USE TO TREAT OR LIMIT DEVELOPMENT OF AN INFECTION

Information

  • Patent Application
  • 20240277831
  • Publication Number
    20240277831
  • Date Filed
    February 12, 2021
    3 years ago
  • Date Published
    August 22, 2024
    2 months ago
Abstract
Disclosed herein are polypeptides comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS:1-84, 138-146, and 167-184, nanoparticles thereof, related nanoparticle compositions, and their use to treat or limit development of an infection.
Description
SEQUENCE LISTING STATEMENT

A computer readable form of the Sequence Listing is filed with this application by electronic submission and is incorporated into this application by reference in its entirety. The Sequence Listing is contained in the file created on Feb. 22, 2024, having the file name “20-1008-WO—US_amended.txt” and is 1,118,061 bytes in size.


BACKGROUND

The recent emergence of a previously unknown virus in Wuhan, China has resulted in the ongoing COVID-19 pandemic that has caused more than 18,700,000 infections and 700,000 fatalities as of Aug. 6, 2020 (WHO). Rapid viral isolation and sequencing revealed by January 2020 that the newly emerged zoonotic pathogen was a coronavirus closely related to SARS-CoV and was therefore named SARS-CoV-2. SARS-CoV-2 is believed to have originated in bats based on the isolation of the closely related RaTG13 virus from Rhinolophus affinis and the identification of the RmYN02 genome sequence in metagenomics analyses of Rhinolophus malayanus, both from Yunnan, China.


SUMMARY

In one aspect, the disclosure provides polypeptides comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS: 1-84, 138-146, and 167-184, wherein X1 is absent or is an amino acid linker, and wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent. In various specific embodiments, the polypeptides comprise the amino acid sequence selected from the group consisting of SEQ ID NOS:1-12 and 142-151, comprise the amino acid sequence selected from the group consisting of SEQ ID NOS: 1-8, or comprise the amino acid sequence selected from the group consisting of SEQ ID NOS: 1 or 5. In another embodiment, the disclosure provides nanoparticles comprising a plurality of such polypeptides.


In another aspect, the disclosure provides nanoparticles, comprising:

    • (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first proteins; and,
    • (b) a plurality of second assemblies, each second assembly comprising a plurality of second proteins;
      • wherein the amino acid sequence of the first protein differs from the sequence of the second protein; wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form the nanoparticle; and wherein the nanoparticle displays on its surface an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, present in the at least one second protein. In one embodiment, the second proteins comprises an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS:85-124 or 185-193, or consisting of SEQ ID NOS: 85-88, wherein X1 for at least one second protein comprises an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, X2 is absent or an amino acid linker, and residues in parentheses are optional. In another embodiment, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to a Spike (S) protein extracellular domain (ECD) amino acid sequence, an S1 subunit amino acid sequence, an S2 subunit amino acid sequence, an S1 receptor binding domain (RBD) amino acid sequence, and/or an N-terminal domain (NTD) amino acid sequence, from SARS-CoV-2, or a variant or homolog thereof. In a further embodiment, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NO:125-137. In a further embodiment, the first protein comprises an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent.


In various other aspects, the disclosure provides compositions comprising a plurality of nanoparticles disclosed herein, nucleic acid molecules, such as mRNA, encoding the polypeptide disclosed herein, expression vectors comprising the nucleic acid molecules disclosed herein operatively linked to a suitable control sequence, cells comprising the polypeptide, the nanoparticle, the composition, the nucleic acid, and/or the expression vector disclosed herein, and pharmaceutical compositions, kits, and vaccines comprising the polypeptide, the nanoparticle, the composition, the nucleic acid, the expression vector, and/or the cell disclosed herein.


In another aspect, the disclosure provides methods to treat or limit development of a SARS-CoV-2 infection, comprising administering to a subject in need thereof an amount effective to treat or limit development of the infection the polypeptide, nanoparticle, composition, nucleic acid, pharmaceutical composition, or vaccine disclosed herein.





DESCRIPTION OF THE FIGURES


FIG. 1 (A-H). Design, In Vitro Assembly, and Characterization of SARS-CoV-2 RBD Nanoparticle Immunogens (A) Molecular surface representation of the SARS-CoV-2 S-2P trimer in the prefusion conformation (PDB 6VYB). Each protomer is colored distinctly, and N-linked glycans are rendered dark blue (the glycan at position N343 was modeled based on PDB 6WPS and the receptor-binding motif (RBM) was modeled from PDB 6MOJ). The single open RBD is boxed. (B) Molecular surface representation of the SARS-CoV-2 S RBD, including the N-linked glycans at positions 331 and 343. The ACE2 receptor-binding site or RBM is indicated with a black outline. (C) Structural models of the trimeric RBD-I53-50A (RBD in light blue and I53-50A in light gray) and pentameric I53-50B (orange) components. Upon mixing in vitro, 20 trimeric and 12 pentameric components assemble to form nanoparticle immunogens with icosahedral symmetry. Each nanoparticle displays 60 copies of the RBD. (D) Structural model of the RBD-12GS-I53-50 nanoparticle immunogen. Although a single orientation of the displayed RBD antigen and 12-residue linker are shown for simplicity, these regions are expected to be flexible relative to the I53-50 nanoparticle scaffold. (E) Dynamic light scattering (DLS) of the RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles compared to unmodified I53-50 nanoparticles. (F) Representative electron micrographs of negatively stained RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles. The samples were imaged after one freeze/thaw cycle. Scale bars, 100 nm. (G) Hydrogen/Deuterium-exchange mass spectrometry of monomeric RBD versus trimeric RBD-8GS-I53-50A component, represented here as a butterfly plot, confirms preservation of the RBD conformation, including at epitopes recognized by known neutralizing Abs. In the plot, each point along the horizontal sequence axis represents a peptide where deuterium uptake was monitored from 3 seconds to 20 hours. Error bars shown on the butterfly plot indicate standard deviations from two experimental replicates. The difference plot below demonstrates that monomeric RBD and RBD-8GS-I53-50A are virtually identical in local structural ordering across the RBD. (H) Pie charts summarizing the glycan populations present at the N-linked glycosylation sites N331 and N343 in five protein samples: monomeric RBD, S-2P trimer, and RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50A trimeric components. The majority of the complex glycans at both sites were fucosylated; minor populations of afucosylated glycans are set off by dashed lines. Oligo, oligomannose.



FIG. 2 (A-B). Antigenic Characterization of SARS-CoV-2 RBD-I53-50 Nanoparticle Immunogens (A) Bio-layer interferometry of immobilized mACE2-Fc, CR3022 mAb, and S309 mAb binding to RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles displaying the RBD antigen at 50% or 100% valency. The monomeric SARS-CoV-2 RBD was included in each experiment as a reference. (B) The binding signal at 880 s, near the end of the association phase, is plotted for each experiment in panel (A) to enable comparison of the binding signal obtained from each nanoparticle.



FIG. 3 (A-E). Physical and Antigenic Stability of RBD Nanoparticle Immunogens and S-2P Trimer (A) Chemical denaturation by guanidine hydrochloride. The ratio of intrinsic tryptophan fluorescence emission at 350/320 nm was used to monitor protein tertiary structure. Major transitions are indicated by shaded regions. Representative data from one of three independent experiments are shown. (B) Summary of SDS-PAGE and nsEM stability data over four weeks. SDS-PAGE showed no detectable degradation in any sample. nsEM revealed substantial unfolding of the S-2P trimer at 2-8° C. after three days incubation, and at 22-27° C. after four weeks. N/A, not assessed. (C) Summary of antigenicity data over four weeks. The antigens were analyzed for mACE2-Fc (solid lines) and CR3022 mAb (dashed lines) binding by bio-layer interferometry after storage at the various temperatures. The plotted value represents the amplitude of the signal near the end of the association phase normalized to the corresponding <−70° C. sample at each time point. (D) Summary of UV/vis stability data over four weeks. The ratio of absorbance at 320/280 nm is plotted as a measure of particulate scattering. Only the S-2P trimer and the RBD-12GS-I53-50 nanoparticle showed any increase in scattering, and only at ambient temperature. (E) DLS of the RBD-12GS-I53-50 nanoparticle indicated a monodisperse species with no detectable aggregate at all temperatures and time points. The data in panels B-E is from a four-week real-time stability study that was performed once.



FIG. 4 (A-D). RBD-I53-50 Nanoparticle Immunogens Elicit Potent Antibody Responses in BALB/c and Human Immune Repertoire Mice (A-B) Post-prime (week 2) (A) and post-boost (week 5) (B) anti-S binding titers in BALB/c mice, measured by ELISA. Each symbol represents an individual animal, and the geometric mean from each group is indicated by a horizontal line. The dotted line represents the lower limit of detection of the assay. 8GS, RBD-8GS-I53-50; 12GS, RBD-12GS-I53-50; 16GS, RBD-16GS-I53-50; HCS, human convalescent sera. The inset depicts the study timeline. The immunization experiment was repeated twice and representative data are shown. (C-D) Post-prime (week 2) (C) and post-boost (week 5) (D) anti-S binding titers in Kymab Darwin™ mice, which are transgenic for the non-rearranged human antibody variable and constant region germline repertoire, measured by ELISA and plotted as in (A). The inset depicts the study timeline. The immunization experiment was performed once.



FIG. 5 (A-H). RBD-I53-50 Nanoparticle Immunogens Elicit Potent and Protective Neutralizing Antibody Responses (A-B) Serum pseudovirus neutralizing titers post-prime (A) or post-boost (B) from mice immunized with monomeric RBD, S-2P trimer, or RBD-I53-50 nanoparticles. Each circle represents the reciprocal IC50 of an individual animal. The geometric mean from each group is indicated by a horizontal line. Limit of detection shown as a gray dotted line. The animal experiment was performed twice, and representative data from duplicate measurements are shown. (C-D) Serum live virus neutralizing titers post-prime (C) or post-boost (D) from mice immunized as described in (A). (E-F) Serum pseudovirus neutralizing titers from Kymab Darwin™ mice post-prime (E) and post-boost (F), immunized as described in (A). The animal experiment was performed once, and the neutralization assays were performed at least in duplicate. (G-H) Seven weeks post-boost, eight BALB/c mice per group were challenged with SARS-CoV-2 MA. Two days post-challenge, viral titers in lung tissue (G) and nasal turbinates (H) were assessed. Limit of detection depicted as a gray dotted line.



FIG. 6 (A-J). RBD Nanoparticle Vaccines Elicit Robust B Cell Responses and Antibodies Targeting Multiple Epitopes in Mice and a Nonhuman Primate (A-B) Number of (A) RBD+B cells (B220+CD3−CD138−) and (B) RBD+GC precursors and B cells (CD38+/−GL7+) detected across each immunization group. (C-D) Frequency of (C) RBD+GC precursors and B cells (CD38+/−GL7+) and (D) IgD+, IgM+, or class-switched (IgM−IgD−; swIg+) RBD+GC precursors and B cells. (A-D) N=6 across two experiments for each group. Statistical significance was determined by one-way ANOVA, and Tukey's multiple comparisons tests were performed for any group with a p-value less than 0.05. Significance is indicated with stars: * p<0.05, **** p<0.0001. (E) Ratio post-boost (week 5) of S-2P ELISA binding titer (FIG. 4D) to pseudovirus neutralization titers (FIG. 5F) in Kymab Darwin™ mice. The ratio is the [GMT (EC50) of five mice]:[the GMT (IC50) of five mice] or the EC50:1C50 of all HCS tested. A lower value signifies a higher quality response. (F) Ratio post-boost (week 5) of S-2P ELISA binding titer (FIG. 4B) to either pseudovirus (FIG. 5B) or live virus (FIG. 5D) neutralization titers in BALB/c mice. The ratio is the [GMT (EC50) of ten mice]:[the GMT (IC50) of ten mice] or the EC50:IC50 of all HCS tested. (G) SARS-CoV-2 RBD with monomeric ACE2, CR3022 Fab, and S309 Fab bound. (H-J) Determination of vaccine-elicited Ab epitope specificity by competition BLI. A dilution series of polyclonal NHP Fabs was pre-incubated with RBD on the BLI tip. The polyclonal Fab concentration was maintained with the addition of competitor to each dilution point. The 1:3 dilution series of polyclonal Fabs is represented from dark to light, with a dark gray line representing competitor loaded to apo-RBD (no competition). Competition with (H) 200 nM ACE2, (I) 400 nM CR3022, or (J) 20 nM S309.



FIG. 7 (A-E). Additional characterization of RBD Nanoparticle Immunogens. (A) Size exclusion chromatography of RBD-I53-50 nanoparticles, unmodified I53-50 nanoparticle, and trimeric RBD-I53-50A components on a Superose™ 6 Increase 10/300 GL. (B) SDS-PAGE of SEC-purified RBD-I53-50 nanoparticles under reducing and non-reducing conditions before and after one freeze/thaw cycle. (C) Dynamic light scattering of RBD-I53-50 nanoparticles before and after one freeze/thaw cycle indicates monodisperse nanoparticles with a lack of detectable aggregates in each sample. (D) Hydrogen/Deuterium-exchange mass spectrometry, represented here as heatmaps, reveals the structural accessibility and dynamics on RBD (PDB 6W41). Color codes indicate deuterium uptake levels. Monomeric RBD and RBD-8GS-I53-50A have indistinguishable uptake patterns, and are presented in a single heatmap at each time point. (E) Top, bar graphs reveal similar glycan profiles at the N-linked glycosylation sites N331 and N343 in five protein samples: monomeric RBD, S-2P trimer, and RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50A trimeric components. Bottom, comprehensive glycan profiling on other N-linked glycosylation sites besides N331 and N343 that are found in the S-2P trimer. The axis of each bar graph is scaled to 0-80%. M9 to M5, oligomannose with 9 to 5 mannose residues, are colored dark gray. Hybrid and FHybrid, hybrid types with or without fucosylation are gray. Subtypes in complex type, shown in light gray, are classified based on antennae number and fucosylation.



FIG. 8 (A-B). Determination of hACE2 and CR3022 Fab Affinities by Bio-layer Interferometry. (A) Analysis of monomeric hACE2 binding to immobilized monomeric RBD and trimeric RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50A components. (B) Analysis of CR3022 Fab binding to immobilized monomeric RBD and trimeric RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50A components. Affinity constants (Table 5) were determined by global fitting of the kinetic data from six analyte concentrations to a 1:1 binding model.



FIG. 9 (A-D). Characterization of Partial Valency RBD Nanoparticles (A) Representative electron micrographs of negatively stained RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles displaying the RBD at 50% valency. The samples were imaged after one freeze/thaw cycle. Scale bars, 100 nm. (B) SDS-PAGE of purified RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles displaying the RBD at 50% valency. Both RBD-bearing and unmodified I53-50A subunits are visible on the gels. (C) Dynamic light scattering (DLS) of 50% valency RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles both before and after freeze/thaw. No aggregates or unassembled components were observed. (D) UV/vis absorption spectra of 50% valency RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles. Turbidity in the samples is low, as indicated by the low absorbance at 320 nm.



FIG. 10 (A-E). Day 28 Stability Data. (A) SDS-PAGE of purified monomeric RBD, S-2P trimer, RBD-I53-50A components and RBD-12GS-I53-50 nanoparticle in reducing and non-reducing conditions. No degradation of any immunogen was observed after a four-week incubation at any temperature analyzed. (B) Analysis of mACE2-Fc and CR3022 IgG binding to monomeric RBD, RBD-I53-50A trimeric components, and RBD-12GS-I53-50 nanoparticle by BLI after a four-week incubation at three temperatures. Monomeric RBD was used as a reference standard in nanoparticle component and nanoparticle BLI experiments. The RBD-12GS-I53-50 nanoparticle lost minimal binding at the higher temperatures after four weeks; the remaining antigens did not lose any mACE2-Fc or CR3022 IgG binding over the course of the study. (C) UV/vis spectroscopy showed minimal absorbance in the near-UV, suggesting a lack of aggregation/particulates after a four week-incubation at three temperatures, with the exception of S-2P trimer, which gained significant absorbance around 320 nm at ambient temperature. RBD-12GS-I53-50 nanoparticle samples at 22-27° C. at several earlier time points exhibited similar peaks near 320 nm (see Supplementary Item 2). (D) nsEM of RBD-12GS-I53-50 nanoparticle (top) and S-2P trimer (bottom) after a four-week incubation at three temperatures. Intact monodisperse nanoparticles were observed at all temperatures, with no observed degradation or aggregation. The S-2P trimer remained well folded in the <−70 and 22-27° C. samples, but was unfolded in samples incubated at 2-8° C. Scale bars: RBD-12GS-I53-50, 100 nm; S-2P, 50 nm. (E) DLS of the RBD-12GS-I53-50 nanoparticle after a four-week incubation at three temperatures. No aggregation was observed at any temperature.



FIG. 11. Subclasses of vaccine-elicited Abs and anti-scaffold antibody titers. Levels of vaccine-elicited IgG specific to the (top) trimeric I53-50A component, (middle) pentameric I53-50B component, and (bottom) assembled I53-50 nanoparticle two weeks post-prime (left) and post-boost (right) in BALB/c mice.



FIG. 12 (A-D). B Cell Gating Strategy and Durability of the Vaccine-Elicited Immune Response. (A) Representative gating strategy for evaluating RBD-specific B cells, germinal center (GC) precursors and B cells (CD38+/−GL7+), and B cell isotypes. Top row, gating strategy for measuring numbers of live, non-doublet B cells. These cells were further analyzed as depicted in the middle and bottom rows. Middle row, representative data from a mouse immunized with the monomeric RBD formulated with AddaVax™. RBD+CD38+/−GL7+ cells that did not bind decoys were counted as antigen-specific GC precursors and B cells. Bottom row, representative data from a mouse immunized with the RBD-12GS-I53-50 nanoparticle formulated with AddaVax™. GC precursors and B cells were further analyzed to characterize B cell receptor isotypes. (B-C) Levels of (B)S-specific IgG and (C) pseudovirus neutralization in sera collected 20 (RBD-16GS-I53-50) or 24 (monomeric RBD, S-2P, RBD-8GS-I53-50, and RBD-12GS-I53-50) weeks post-boost. Sera were collected from the two animals from each group that were not challenged with MA-SARS-CoV-2. (D) Numbers of S-2P-specific Ab secreting cells in the bone marrow of BALB/c mice immunized with either S-2P trimer or RBD-16GS-I53-50 nanoparticle, measured by ELISpot. Cells were harvested 17 weeks post-boost (see panel B inset). The animal experiment was performed once. Statistical significance was determined by two-tailed unpaired t test. *, p=0.02.





DETAILED DESCRIPTION

All references cited are herein incorporated by reference in their entirety. Within this application, unless otherwise stated, the techniques utilized may be found in any of several well-known references such as: Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, CA), “Guide to Protein Purification” in Methods in Enzymology (M. P. Deutshcer, ed., (1990) Academic Press, Inc.); PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA), Culture of Animal Cells: A Manual of Basic Technique, 2nd Ed. (R. I. Freshney. 1987. Liss, Inc. New York, NY), Gene Transfer and Expression Protocols, pp. 109-128, ed. E. J. Murray, The Humana Press Inc., Clifton, N.J.), and the Ambion 1998 Catalog (Ambion, Austin, TX).


As used herein, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise.


As used herein, “about” means+/−5% of the recited parameter.


As used herein, the amino acid residues are abbreviated as follows: alanine (Ala; A), asparagine (Asn; N), aspartic acid (Asp; D), arginine (Arg; R), cysteine (Cys; C), glutamic acid (Glu; E), glutamine (Gln; Q), glycine (Gly; G), histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), and valine (Val; V).


All embodiments of any aspect of the disclosure can be used in combination, unless the context clearly dictates otherwise.


Unless the context clearly requires otherwise, throughout the description and the claims, the words ‘comprise’, ‘comprising’, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”. Words using the singular or plural number also include the plural and singular number, respectively. Additionally, the words “herein,” “above,” and “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of the application.


In a first aspect, the disclosure provides polypeptides comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS: 1-84, 138-146, and 167-184, wherein X1 is absent or is an amino acid linker, and wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent.


As shown in the examples that follow, the polypeptides of this aspect can be used to generated self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2. The nanoparticle vaccines induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease.


The amino acid sequence of exemplary polypeptides of this aspect of the disclosure are provided below.











TABLE 1





Protein
Protein
Expressed sequence (optional residues in parentheses;


name
type
X1 is optional linker)







SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I53-50A
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I53-
fusion
YQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEEL


50A*-
protein
FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAII


16GS-

GAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLG


he-

HTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVK


His

GTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 1)




(mgilpspgmpallslvsllsvllmgcva)RFPNITNLCPFGEVFNATRFASVYAWNRK




RISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQT




GKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQ




AGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST(G




GSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFA




GGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHL




DEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNV




KFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(SEQ




ID NO: 2)




RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK




LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV




GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG




YQPYRVVVLSFELLHAPATVCGPKKST((X1)KMEELFKKHKIVAVLRANSVEEAIEKA




VAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFI




VSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKG




PFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(SEQ ID NO: 3




(mgilpspgmpallslvsllsvllmgcva)RFPNITNLCPFGEVFNATRFASVYAWNRK




RISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQT




GKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQ




AGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST(X




1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVL




KEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTEL




VKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVG




VGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 4)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAA




R)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVL




KEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTEL




VKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVG




VGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 5)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAV




AVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV




SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGP




FPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(SEQ ID NO: 6)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)KMEELFKKHKIVAVLRANSVEEAI




EKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGA




EFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKA




MKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRG




ATE (SEQ ID NO: 7)




mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYAW




NRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP




GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTE




IYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS




T(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAVA




VFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVS




PHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPF




PNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




((SEQ ID NO: 8)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAV




AVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV




SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGP




FPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(GGSHHHHHHHH) (SEQ ID NO: 9)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAA




R)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVL




KEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTEL




VKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVG




VGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 10)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKA




LSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMT




PTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGV




LAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH)




(SEQ ID NO: 11 - - -)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)KMEELFKKHKIVAVLRANSVEEAI




EKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGA




EFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKA




MKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRG




ATE(GGSHHHHHHHH) (SEQ ID NO: 12 - - -)





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I53-50A
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I53-
fusion
YQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARKMEELFKKHKIVA


50A*-
protein
VLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSV


8GS-

EQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFP


he-

GEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVRE


His

KAKAFVEKIRGATE SEQ ID NO: 13)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




STGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLI




EITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQ




FAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTG




GVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHH




H) (SEQ ID NO: 14)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARKMEELFKKH




KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGT




VTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTIL




KLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPD




EVREKAKAFVEKIRGATE (SEQ ID NO: 15)




ETGTRFPNITNLCPFGEVEFATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARKMEELFKKH




KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGT




VTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTIL




KLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPD




EVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 16)




RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK




LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV




GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG




YQPYRVVVLSFELLHAPATVCGPKKST( )KMEELFKKHKIVAVLRANSVEEAIEKAVA




VFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVS




PHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPF




PNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(SEQ ID NO: 17)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKA




LSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMT




PTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGV




LAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) 




(SEQ ID NO: 18)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST




(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALS




VLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPT




ELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLA




VGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 19)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST




(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALS




VLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPT




ELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLA




VGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 20)





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I53-50A
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I53-
fusion
YQPYRVVVLSFELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARKMEELFKKH


50A*-
protein
KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGT


12GS-

VTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTIL


he-

KLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPD


His

EVREKAKAFVEKIRGATE (SEQ ID NO: 21)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




STGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGG




VHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDE




EISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKF




VPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHH




HHHHH) (SEQ ID NO: 22)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARKMEEL




FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAII




GAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLG




HTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVK




GTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 23)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARKMEEL




FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAII




GAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLG




HTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVK




GTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 24)




RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK




LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV




GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG




YQPYRVVVLSFELLHAPATVCGPKKST(X1)KMEELFKKHKIVAVLRANSVEEAIEKAV




AVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV




SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGP




FPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(SEQ ID NO: 25)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKA




LSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMT




PTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGV




LAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID




NO: 26)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST




(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALS




VLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPT




ELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLA




VGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 27)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST 




(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALS




VLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPT




ELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLA




VGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 28)





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I53-50A
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


TEV-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


FO-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


I53-

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


50A*-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


12GS-

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN


he-

GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN


His

TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstf




lgGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGG




VHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDE




EISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKF




VPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE SEQ ID




NO: 29)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVINDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKgsgrenl




yfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSGSEKAAKAEEAAR




KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKE




KGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVK




AMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVG




SALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 30)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflgGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAV




FAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSP




HLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPEP




NVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(SEQ ID NO: 31)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflgGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAV




FAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSP




HLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFP




NVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GG




SHHHHHHHH) (SEQ ID NO: 32)




QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG




TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC




EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR




EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL




TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV




EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV




LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP




DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG




FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN




GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN




TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstf




lg(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKA




LSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMT




PTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGV




LAVGVGSALVKGTPDEVREKAKAFVEKIRGATE SEQ ID NO: 33)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNENGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVINDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKgsgrenl




yfqggggsgyipeaprdgqayvrkdgewvllstflg(X1)KMEELFKKHKIVAVLRANS




VEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKA




VESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGP




QFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFV




EKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 34)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflg(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADT




VIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMP




GVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWF




KAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID NO: 35)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflg(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADT




VIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMP




GVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWF




KAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH)




(SEQ ID NO: 36)





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I53-50A
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


I53-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


50A*-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


12GS-

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


he-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


His

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN




GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN




TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIKGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRAN




SVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARK




AVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVG




PQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAF




VEKIRGATE (SEQ ID NO: 37)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVEFATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKGSGSGGS





GGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFT





VPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEK




GVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLD




NVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH)




(SEQ ID NO: 38)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAV




LRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE




QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPG




EVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREK




AKAFVEKIRGATE (SEQ ID NO: 39)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAV




LRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE




QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPG




EVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREK




AKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 40)




QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG




TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC




EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR




EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL




TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV




EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV




LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP




DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG




FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN




GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN




TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIK(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHL




IEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEIS




QFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPT




GGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID




NO: 41)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNENGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVINDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK(X1)KME




ELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGA




IIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMK




LGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSAL




VKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 42)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIK( )KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGG




VHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDE




EISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKF




VPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ 




ID NO: 43)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIK( )KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGG




VHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDE




ISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFV




EPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHH




HHHHH) (SEQ ID NO: 44)





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I3-01
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I3-
fusion
YQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARMEELFKEHKIVAV


01*-
protein
LRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVE


secOp

QAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPG


t-

EVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEK


8GS-

AKAFVEKIEGATE (SEQ ID NO: 45)


he-

(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA


His

WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




STGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIE




ITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQF




AKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGG




VNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH)




(SEQ ID NO: 46)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARMEELFKEHK




IVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTV




TSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILK




LFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVE




VAEKAKAFVEKIEGATE (SEQ ID NO: 47)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARMEELFKEHK




IVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTV




TSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILK




LFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVE




VAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 48)




RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK




LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV




GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG




YQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKKKALA




VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS




PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPF




PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE




(SEQ ID NO: 49)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKEL




SFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTP




TELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQ




AVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID 




NO: 50)




ETGTREPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKK




KALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAE




FIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAM




KGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGA




TE (SEQ ID NO: 51)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKK




KALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAE




FIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAM




KGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGA




TE(GGSHHHHHHHH) (SEQ ID NO: 52)





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I3-01
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I3-
fusion
YQPYRVVVLSFELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARMEELFKEHK


01*-
protein
IVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTV


secOp

TSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILK


t-

LFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVE


12GS-

VAEKAKAFVEKIEGATE (SEQ ID NO: 53)


he-

(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA


His

WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




STGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVFLGGV




DLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEE




ISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFV




PTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHH




HHHH) (SEQ ID NO: 54)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARMEELF




KEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIG




AGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGH




TILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEG




TPVEVAEKAKAFVEKIEGATE (SEQ ID NO: 55)




ETGTRFPNITNLCPFGEVFNATREASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARMEELF




KEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIG




AGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGH




TILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEG




TPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 56)




RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK




LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV




GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG




YQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKKKALA




VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS




PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPE




PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE




(SEQ ID NO: 57)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKEL




SFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTP




TELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQ




AVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID 




NO: 58)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKK




KALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAE




FIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAM




KGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGA




TE (SEQ ID NO: 59)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKK




KALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAE




FIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAM




KGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGA




TE(GGSHHHHHHHH) (SEQ ID NO: 60)





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
COV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I3-01
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I3-
fusion
YQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARMEELF


01*-
protein
KEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIG


secOp

AGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGH


t-

TILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEG


16GS-

TPVEVAEKAKAFVEKIEGATE (SEQ ID NO: 61)


he-

(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA


His

WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSEVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




STGGSGGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVE




LGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPH




LDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPN




VKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGS




HHHHHHHH) (SEQ ID NO: 62)




ETGTREPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARM




EELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMG




AIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAM




KLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEA




LNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID NO: 63)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARM




EELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMG




AIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAM




KLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEA




LNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 64)




RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK




LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV




GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG




YQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKKKALA




VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS




PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPE




PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE




(SEQ ID NO: 65)




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKEL




SFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTP




TELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQ




AVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID 




NO: 66)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKK




KALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAE




FIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAM




KGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGA




TE (SEQ ID NO: 67)




ETGTRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGV




SPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL




DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT




NGVGYQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKK




KALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAE




FIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAM




KGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGA




TE(GGSHHHHHHHH) (SEQ ID NO: 68)





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I3-01
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


TEV-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


FO-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


I3-

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


01*-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


secOp

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN


t-

GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN


12GS-

TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC


he-

DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS


His

VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGEIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstf




lgGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVFLGGV




DLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEE




ISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFV




PTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 69)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKgsgrenl




yfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSGSEKAAKAEEAAR




MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEM




GAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKA




MKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGE




ALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 70)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflgGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVE




LGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPH




LDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPN




VKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE




(SEQ ID NO: 71)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflgGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVF




LGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPH




LDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPN




VKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGS




HHHHHHHH) (SEQ ID NO: 72)




QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG




TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC




EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR




EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL




TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV




EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV




LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP




DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG




FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN




GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN




TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstf




lg(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKEL




SFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTP




TELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQ




AVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID NO: 73)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDICF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVINDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKgsgrenl




yfqggggsgyipeaprdgqayvrkdgewvllstflg(X1)MEELFKEHKIVAVLRANSV




EEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAV




ESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQ




FVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVE




KIEGATE(GGSHHHHHHHH) (SEQ ID NO: 74)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflg(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTV




IKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPG




VMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFE




AGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID NO: 75)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKgsgrenlyfqggggsgyipeaprdgqayvrkdgewvl




lstflg(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTV




IKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPG




VMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFE




AGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID




NO: 76)





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


COV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I3-01
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


I3-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


01*-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


secOp

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


t-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


12GS-

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN


he-

GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN


His

TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIKGSGSGGSGGSGSEKAAKAEEAARKMEELFKEHKIVAVLRAN




SVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQARE




AVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVG




PQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAF




VEKIEGATE (SEQ ID NO: 77)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKINDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKGSGSGGS





GGSGSEKAAKAEEAARKMEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFT





VPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEE




GVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLD




NVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH)




(SEQ ID NO: 78)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKGSGSGGSGGSGSEKAAKAEEAARKMEELFKEHKIVAV




LRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVE




QAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPG




EVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEK




AKAFVEKIEGATE (SEQ ID NO: 79)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIKGSGSGGSGGSGSEKAAKAEEAARKMEELFKEHKIVAV




LRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVE




QAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPG




EVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEK




AKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 80)




QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG




TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC




EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR




EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL




TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV




EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV




LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP




DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG




FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN




GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN




TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIK(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLI




EITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQ




FAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTG




GVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 81)




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCE




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVEVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK(X1)MEE




LFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAI




IGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKL




GHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALN




EGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 82)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIK(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGG




VDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDE




EISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKF




VPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ 




ID NO: 83)




ETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAI




HVSGTNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV




IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF




KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALH




RSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLK




SFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA




DYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYN




YKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCN




GVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




FNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVIT




PGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN




SYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTN




FTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDK




NTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIK




QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAAL




QIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVN




QNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQL




IRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQ




EKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVI




GIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEV




AKNLNESLIDLQELGKYEQYIK(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGG




VDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDE




EISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKF




VPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHH




HHHHH) (SEQ ID NO: 84)





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I53-50A
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I53-
fusion
YQPYRVVVLSFELLHAPATVCGPKKST(X1)KMEELFKKHKIVAVLRANSVEEAIEKAV


50A*-
protein
AVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV


12GS-

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGP


he-

FPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE


His

SEQ ID NO: 167




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFA




GGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHL




DEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNV




KFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSH




HHHHHHH) SEQ ID NO: 168





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I53-50A
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I53-
fusion
YQPYRVVVLSFELLHAPATVCGPKKST(X1)KMEELFKKHKIVAVLRANSVEEAIEKAV


50A*-
protein
AVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV


16GS-

SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGP


he-

FPNVKFVPTGGVNLDNVAEWEKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE


His

SEQ ID NO: 169




(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA




WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAV




AVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV




SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGP




FPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(GGSHHHHHHHH) SEQ ID NO: 170





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I53-50A
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


TEV-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


FO-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


I53-

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


50A*-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


12GS-

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN


he-

GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN


His

TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIK(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHL




IEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEIS




QFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPT




GGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE SEQ ID




NO: 171




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCE




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK(gsgren




lyfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSGSEKAAKAEEAA




R)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVL




KEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTEL




VKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVG




VGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) SEQ ID NO: 172





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I53-50A
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


I53-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


50A*-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


12GS-

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


he-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


His

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN




GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN




TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIK(X1)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHL




IEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEIS




QFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPT




GGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE SEQ ID




NO: 173




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKINDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK(GSGSGG




SGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEIT




FTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAK




EKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVN




LDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH)




SEQ ID NO: 174





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I3-01
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I3-
fusion
YQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKKKALA


01*-
protein
VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS


secOp

PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPF


t-

PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE


8GS-

SEQ ID NO: 175


he-

(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA


His

WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GGSGGSGSEKAAKAEEAAR)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDL




IEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEIS




QFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPT




GGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHH




HH) SEQ ID NO: 176





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I3-01
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I3-
fusion
YQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKKKALA


01*-
protein
VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS


secOp

PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPF


t-

PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE


12GS-

SEQ ID NO: 177


he-

(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA


His

WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GSGSGGSGGSGSEKAAKAEEAAR)MEELFKEHKIVAVLRANSVEEAKKKALAVELG




GVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLD




EEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVK




FVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHH




HHHHHH) SEQ ID NO: 178





SARS-
SARS-
RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK


CoV-2
CoV-2-
LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKV


RBD-
I3-01
GGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVG


I3-
fusion
YQPYRVVVLSFELLHAPATVCGPKKST(X1)MEELFKEHKIVAVLRANSVEEAKKKALA


01*-
protein
VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS


secOp

PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPF


t-

PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE


16GS-

SEQ ID NO: 179


he-

(mgilpspgmpallslvsllsvllmgcvaetgt)RFPNITNLCPFGEVFNATRFASVYA


His

WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIA




PGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDIST




EIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK




ST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)MEELFKEHKIVAVLRANSVEEAKKKALA




VFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVS




PHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPF




PNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(G




GSHHHHHHHH) SEQ ID NO: 180





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I3-01
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


TEV-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


FO-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


I3-

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


01*-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


secop

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN


t-

GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN


12GS-

TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC


he-

DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS


His

VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPF




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIK(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLI




EITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQ




FAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTG




GVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE SEQ ID




NO: 181




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCE




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK(gsgren




lyfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSGSEKAAKAEEAA




R)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVIKELSFLK




EMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELV




KAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGV




GEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH) SEQ ID NO: 182





SARS-
SARS-
QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


CoV-2
CoV-2-
TNGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVC


2PSGA
I3-01
EFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLR


G-S-
fusion
EFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYL


I3-
protein
TPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTV


01*-

EKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSV


secOp

LYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP


t-

DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG


12GS-

FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFN


he-

GLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN


His

TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYEC




DIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS




VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQE




VFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGD




CLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPE




AMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQ




ALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAA




EIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNF




TTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN




NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNL




NESLIDLQELGKYEQYIK(X1)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLI




EITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQ




FAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTG




GVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE SEQ ID




NO: 183




(mgilpspgmpallslvsllsvllmgcvaetgt)QCVNLTTRTQLPPAYTNSFTRGVYY




PDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTFK




SNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESE




FRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRD




LPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRT




FLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNIT




NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF




TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNY




LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRV




VVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDI




ADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQ




LTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV




ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDS




TECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQI




LPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPL




LTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLI




ANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILS




RLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVD




FCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT




HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNH




TSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK(GSGSGG




SGGSGSEKAAKAEEAAR)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITE




TVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKE




EGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVNL




DNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHHHHH)




SEQ ID NO: 184










>HexaPro-12GS-He-I5350A*-His:


(MFVFLVLLPLVSSQC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGT


NGTKRFDNPVLPFNDGVYFASTFKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKN


NKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSAL


EPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSE


TKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSAS


FSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGN


YNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPAT


VCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI


TPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICAS


YQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTE


CSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLF


NKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPF


PMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAI


SSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYH


LMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS


GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLI


DLQELGKYEQ(GSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEI


TFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTE


LVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVRE


KAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 138)





>HexaPro-FO-12GS-He-I5350A*-His:


(MFVFLVLLPLVSSQC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGT


NGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKN


NKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSAL


EPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSE


TKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSAS


FSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGN


YNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPAT


VCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI


TPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICAS


YQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTE


CSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLF


NKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPF


PMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAI


SSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYH


LMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS


GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLI


DLQELGKYEQ(GS)(GYIPEAPRDGQAYVRKDGEWVLLSTFL)(GSGSGGSGGSGSEKAAKAEEAAR)KMEELFK


KHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESG


AEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG


VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID


NO: 139)





>HexaPro-delHR2-12GS-He-I5350A*-His:


(MFVFLVLLPLVSS)QC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


TNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHK


NNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSA


LEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLS


ETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSA


SFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGG


NYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPA


TVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSV


ITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICA


SYQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDST


ECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLL


FNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIP


FPMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGA


ISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGY


HLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFV


SGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHT(GSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIV


AVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIV


SPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDN


VAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 140)





>HexaPro-delHR2-FO-12GS-He-I5350A*-His:


(MFVFLVLLPLVSS)QC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSG


TNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHK


NNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSA


LEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLS


ETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSA


SFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGG


NYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPA


TVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSV


ITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICA


SYQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDST


ECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLL


FNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIP


FPMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGA


ISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGY


HLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFV


SGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHT(GS)(GYIPEAPRDGQAYVRKDGEWVLLSTFL)(GSG


SGGSGGSGSEKAAKAEEAAR)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKAL


SVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKL


FPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE


(GGSHHHHHHHH) (SEQ ID NO: 141)





RBD-noRpk-50A Variants


>SARS-COV-2 RBD_N501Y_16GS-he-I53-50A*-His (UK):


(MGILPSPGMPALLSLVSLLSVLLMGCVAETGT)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNC


VADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF


TGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGF


QPTYGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEEL


FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE


QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVK


AMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSH


HHHHHHH) (SEQ ID NO: 142)





>SARS-COV-2 RBD_K417N_E484K_N501Y_16GS-he-I53-50A*-His (S.Africa)


(MGILPSPGMPALLSLVSLLSVLLMGCVAETGT)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNC


VADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDF


TGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGF


QPTYGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEEL


FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE


QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVK


AMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSH


HHHHHHH) (SEQ ID NO: 143)





>SARS-COV-2_RBD-noRpk_16GS_I53-50A*_Brazil-ver_K417T_E484K_N501Y


(Brazil):


(MGILPSPGMPALLSLVSLLSVLLMGCVAETGT)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNC


VADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDF


TGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGF


QPTYGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEEL


FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE


QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVK


AMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSH


HHHHHHH) (SEQ ID NO: 144)





>SARS-COV-2_RBD-noRpk_16GS_I53-50A*_E484K:


(MGILPSPGMPALLSLVSLLSVLLMGCVAETGT)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNC


VADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF


TGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGF


QPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEEL


FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE


QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVK


AMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSH


HHHHHHH) (SEQ ID NO: 145)





>SARS-COV-2_RBD-noRpk_16GS_I53-50A*_L452R:


(MGILPSPGMPALLSLVSLLSVLLMGCVAETGT)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNC


VADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDF


TGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGF


QPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEEL


FKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVE


QARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVK


AMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSH


HHHHHHH) (SEQ ID NO: 146)





>SARS-COV-2 RBD_N501Y_16GS-he-I53-50A*-His (UK):


(MGILPSPGMPALLSLVSLLSVLLMGCVA)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADY


SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV


IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTY


GVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKH


KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARK


AVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKG


PFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHH


HHH) (SEQ ID NO: 147)





>SARS-COV-2 RBD_K417N_E484K_N501Y_16GS-he-I53-50A*-His (S.Africa)


(MGILPSPGMPALLSLVSLLSVLLMGCVA)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADY


SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFTGCV


IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTY


GVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKH


KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARK


AVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKG


PFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHH


HHH) (SEQ ID NO: 148)





>SARS-COV-2_RBD-noRpk_16GS_I53-50A*_Brazil-ver_K417T_E484K_N501Y


(Brazil):


(MGILPSPGMPALLSLVSLLSVLLMGCVA)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADY


SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFTGCV


IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTY


GVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKH


KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARK


AVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKG


PFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHH


HHH) (SEQ ID NO: 149)





>SARS-COV-2_RBD-noRpk_16GS_I53-50A*_E484K:


(MGILPSPGMPALLSLVSLLSVLLMGCVA)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADY


SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV


IAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGFNCYFPLQSYGFQPTN


GVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKH


KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARK


AVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKG


PFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHH


HHH) (SEQ ID NO: 150)





>SARS-COV-2_RBD-noRpk_16GS_I53-50A*_L452R:


(MGILPSPGMPALLSLVSLLSVLLMGCVA)RFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADY


SVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCV


IAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTN


GVGYQPYRVVVLSFELLHAPATVCGPKKST(GGSGGSGSGGSGGSGSEKAAKAEEAAR)KMEELFKKH


KIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARK


AVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKG


PFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHHH


HHH) (SEQ ID NO: 151)









In various embodiments, the polypeptide comprises the amino acid sequence selected from the group consisting of SEQ ID NOS:1-12 and 142-151. In various other embodiments, the polypeptides comprises an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS: 1-8, or the group consisting of SEQ ID NOS: 1-4, SEQ ID NOS: 5-8, or the group consisting of SEQ ID NOS: 1 and 5, provided as exemplary embodiments in the examples that follow.


As used throughout the present application, the term “polypeptide” is used in its broadest sense to refer to a sequence of subunit D- or L-amino acids, including canonical and non-canonical amino acids. The polypeptides described herein may be chemically synthesized or recombinantly expressed. The polypeptides may be linked to other compounds to promote an increased half-life in vivo, such as by PEGylation, HESylation, PASylation, glycosylation, or may be produced as an Fc-fusion or in deimmunized variants. Such linkage can be covalent or non-covalent as is understood by those of skill in the art.


In a second aspect, the disclosure provides nanoparticles comprising a plurality of polypeptides according to any embodiment or combination of embodiments of the first aspect of the disclosure. In this aspect, a plurality (2, 3, 4, 5, 10. 20, 25, 50, 60, 100, or more) polypeptides of the first aspect of the disclosure are present in any suitable nanoparticle. Nanoparticles of any embodiment or aspect of this disclosure can be of any suitable size for an intended use, including but not limited to about 10 nm to about 100 nm in diameter.


In a third aspect, the disclosure provides nanoparticles, comprising:

    • (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first proteins; and,
    • (b) a plurality of second assemblies, each second assembly comprising a plurality of second proteins;
    • wherein the amino acid sequence of the first protein differs from the sequence of the second protein;
    • wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form the nanoparticle; and, wherein the nanoparticle displays on its surface an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, present in the at least one second protein.


In this aspect, the nanoparticle forms a three-dimensional structure formed by the non-covalent interaction of the first and second assemblies. A plurality (2, 3, 4, 5, 6, or more) of first polypeptides self-assemble to form a first assembly, and a plurality (2, 3, 4, 5, 6, or more) of second polypeptides self-assemble to form a second assembly. Non-covalent interaction of the individual self-assembling proteins results in self-assembly of the first protein into first assemblies, and self-assembly of the second proteins into second assemblies. A plurality of these first and second assemblies then self-assemble non-covalently via interfaces to produce the nanoparticles. The number of first polypeptides in the first assemblies may be the same or different than the number of second polypeptides in the second assemblies. Nanoparticles of this disclosure can have any shape and/or symmetry suitable for an intended use, including, but not limited to, tetrahedral, octahedral, icosahedral, dodecahedral, and truncated forms thereof. In one exemplary embodiment, each first assembly is pentameric and each second assembly is trimeric.


Assembly of the first and second assemblies into nanoparticles is not random, but is dictated by non-covalent interactions (e.g., hydrogen bonds, electrostatic, Van der Waals, hydrophobic, etc.) between the various assemblies (i.e., the cumulative effect of interactions between first assemblies, interactions between second assemblies, and interactions between first and second assemblies). Consequently, nanoparticles of this disclosure comprise symmetrically repeated, non-natural, non-covalent, protein-protein interfaces that orient the first and second assemblies into a nanoparticle having a highly ordered structure. While the formation of nanoparticles is due to non-covalent interactions of the first and second assemblies, in some embodiments, once formed, nanoparticles may be stabilized by covalent linking between proteins in the first assemblies and the second assemblies. Any suitable covalent linkage may be used, including but not limited to disulfide bonds and isopeptide linkages.


First proteins and second proteins suitable for producing assemblies of this disclosure may be of any suitable length for a given nanoparticle. First proteins and second proteins may be between 30 and 250 amino acids in length.


In one embodiment, the second proteins comprise an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS:85-124 or 185-193 (Table 2), wherein X1 for at least one second protein comprises an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, X2 is absent or an amino acid linker, and residues in parentheses are optional. The optional residues may be present, or some (i.e.: 1, 2, 3, 4, 5, 6, or more) or all of the optional residues may be absent.











TABLE 2





Protein
Protein



name
type
Expressed sequence (optional residues in parentheses)







SARS-
SARS-COV-
X1-


CoV-2
2-I53-50A
GGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKA


RB
fusion
VAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVES


D-I53-
protein
GAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVV


50A*-

GPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVR


16GS-he-

EKAKAFVEKIRGATE (SEQ ID NO: 85)


His

X1-




(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV




IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID




NO : 86)




X1-




GGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKA




VAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVES




GAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVV




GPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVR




EKAKAFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 87)




X1-




(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV




IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAFFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHH




HHHH) (SEQ ID NO: 88)





SARS-
SARS-COV-
X1-


CoV-2
2-I53-50A

GGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGV



RB
fusion
HLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSP


D-I53-
protein
HLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAM


50A*-

KGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVE


8GS-he-

KIRGATE (SEQ ID NO: 89)


His

X1-





(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV





IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID




NO: 90)




X1-





GGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGV





HLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSP




HLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAM




KGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVE




KIRGATE(GGSHHHHHHHH) (SEQ ID NO: 91)




X1-





(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV





IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHH




HHHH) (SEQ ID NO: 92)





SARS-
SARS-COV-
X1-


CoV-2
2-I53-50A

GSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVE



RB
fusion
AGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEF


D-I53-
protein
IVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQF


50A*-

VKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAK


12GS-he-

AFVEKIRGATE (SEQ ID NO: 93)


His

X1-





(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV





IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID




NO: 94)




X1-





GSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVE





AGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEF




IVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQF




VKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAK




AFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 95)




X1-





(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVGAGGVHLIEITFTVPDADTV





IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHH




HHHH) (SEQ ID NO: 96)





SARS-
SARS-COV-
X1-


CoV-2
2-I53-50A

gsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSG



2 PSGAG-
fusion

SEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITF



S-TEV-
protein
TVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEIS


FO-I53-

QFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPEPNV


50A*-

KFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE


12GS-he-

(SEQ ID NO: 97)


His

X1-


(+


(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV



foldon)

IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID




NO: 98)




X1-





gsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSG






SEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITE





TVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEIS




QFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNV




KFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE




(GGSHHHHHHHH) (SEQ ID NO: 99)




X1-





(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV





IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHHH




HHHH) (SEQ ID NO: 100)





SARS-
SARS-COV-
X1-


CoV-2
2-I53-50A

GSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVE



2 PSGAG-
fusion
AGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEF


S-I53-
protein
IVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQF


50A*-

VKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAK


12GS-he-

AFVEKIRGATE (SEQ ID NO: 101)


His

X1-


(−


(X2)KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTV



foldon)

IKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGV




FYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGV




NLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE (SEQ ID




NO: 102)




X1-





GSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVE





AGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEF




IVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQF




VKAMKGPFPNVKFVPTGGVNLDNVAEWEKAGVLAVGVGSALVKGTPDEVREKAK




AFVEKIRGATE(GGSHHHHHHHH) (SEQ ID NO: 103)




X1-





(X2)RKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADT





VIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKG




VFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGG




VNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE(GGSHHH




HHHHH) (SEQ ID NO: 104)





SARS-
SARS-COV-
X1-


CoV-2
2-I3-01

GGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVD



RB
fusion
LIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPH


D-I3-
protein
LDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMK


01*-

GPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEK


secOpt-

IEGATE (SEQ ID NO: 105)


8GS-he-

X1-


His


(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVF




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 106)




X1-





GGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVELGGVD





LIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPH




LDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMK




GPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEK




IEGATE(GGSHHHHHHHH) (SEQ ID NO: 107)




X1-





(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHH




HHH) (SEQ ID NO: 108)





SARS-
SARS-COV-
X1-


CoV-2
2-13-01

GSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVEL



RB
fusion
GGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFI


D-I3-
protein
VSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFV


01* -

EAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKA


secOpt-

FVEKIEGATE (SEQ ID NO: 109)


12GS-he-

X1-


His


(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 110)




X1-





GSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVEL





GGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFI




VSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFV




EAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKA




FVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 111)




X1-





(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVELGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHH




HHH) (SEQ ID NO: 112)





SARS-
SARS-COV-
X1-


CoV-2
2-I3-01

GGSGGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKAL



RB
fusion
AVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESG


D-I3-
protein
AEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVG


01*-

PQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAE


secOpt-

KAKAFVEKIEGATE (SEQ ID NO: 113)


16GS-he-

X1-


His


(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 114)




X1-





GGSGGSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKAL





AVFLGGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESG




AEFIVSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVG




PQFVEAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAE




KAKAFVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 115)




X1-





(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHH




HHH) (SEQ ID NO: 116)





SARS-
SARS-COV-
X1-


CoV-2
2-I3-01

gsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSG



2P
fusion

SEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVELGGVDLIEITFT



SGAG-S-
protein
VPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQ


TEV-FO-

FAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPEPNVK


I3-01*-

FVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE


secOpt-

(SEQ ID NO : 117)


12GS-he-

X1-


His


(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI



(+

KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE


foldon)

YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 118)




X1-





gsgrenlyfqggggsgyipeaprdgqayvrkdgewvllstflgGSGSGGSGGSG






SEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVELGGVDLIEITFT





VPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQ




FAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVK




FVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE




(GGSHHHHHHHH) (SEQ ID NO: 119)




X1-





(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVFLGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHH




HHH) (SEQ ID NO: 120)





SARS-
SARS-COV-
X1-


CoV-2
2-I3-01

GSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVEL



2 PSGAG-
fusion
GGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFI


S-I3-
protein
VSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFV


01*-

EAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKA


secOpt-

FVEKIEGATE (SEQ ID NO: 121)


12GS-he-

X1-


His


(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVELGGVDLIEITFTVPDADTVI



(−

KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE


foldon)

YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE (SEQ ID




NO: 122)




X1-





GSGSGGSGGSGSEKAAKAEEAARMEELFKEHKIVAVLRANSVEEAKKKALAVEL





GGVDLIEITFTVPDADTVIKELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFI




VSPHLDEEISQFAKEEGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFV




EAMKGPFPNVKFVPTGGVNLDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKA




FVEKIEGATE(GGSHHHHHHHH) (SEQ ID NO: 123)




X1-





(X2)MEELFKEHKIVAVLRANSVEEAKKKALAVELGGVDLIEITFTVPDADTVI





KELSFLKEMGAIIGAGTVTSVEQAREAVESGAEFIVSPHLDEEISQFAKEEGVE




YMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVEAMKGPFPNVKFVPTGGVN




LDNVAEWFEAGVQAVGVGEALNEGTPVEVAEKAKAFVEKIEGATE(GGSHHHHH




HHH) (SEQ ID NO: 124)





I53_dn5A
Degreased
(METDTLLLWVLLLWVPGSTGDYKDE)KKYDGSKLRIGILHARENAEIILALVL


W16E
nanoparticle
GALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGVL



protein
IKGSTMHFEYICDSTTHQLMKLNFELGIPVIFGVLTCLTDEQAEARAGLIEGKM




HNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 185)





I53_dn5A
Degreased
(METDTLLLWVLLLWVPGSTGDYKDE)KKYDGSKLRIGILHARWNAEIILALVL


L29N
nanoparticle
GANKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGVL



protein
IKGSTMHFEYICDSTTHQLMKLNFELGIPVIFGVLTCLTDEQAEARAGLIEGKM




HNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 186)





I53_dn5A
Degreased
(METDTLLLWVLLLWVPGSTGDYKDE)KKYDGSKLRIGILHARWNAEIILALVL


‘mut101’
nanoparticle
GALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGVL


[T116N/
protein
IKGSTMHFEYICDSTTHQLMKLNFELGIPVIFGVLNCDKDEQAEARAGLIEGKM


L118D 1

HNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID


T119K

NO: 187)





I53_dn5A
Degreased
(METDTLLLWVLLLWVPGSTGDYKDE)KKYDGSKLRIGILHARWNAEIILALVL


T116N
nanoparticle
GALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGVL



protein
IKGSTMHFEYICDSTTHQLMKLNFELGIPVIFGVLNCLTDEQAEARAGLIEGKM




HNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 188)





I53_dn5A
Degreased
(METDTLLLWVLLLWVPGSTGDYKDE)KKYDGSKLRIGILHARWNAEIILALVL


L118D
nanoparticle
GALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGVL



protein
IKGSTMHFEYICDSTTHQLMKLNFELGIPVIFGVLTCDTDEQAEARAGLIEGKM




HNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 189)





I53_dn5A
Degreased
(METDTLLLWVLLLWVPGSTGDYKDE)KKYDGSKLRIGILHARWNAEIILALVL


T119K
nanoparticle
GALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGVL



protein
IKGSTMHFEYICDSTTHQLMKLNFELGIPVIFGVLTCLKDEQAEARAGLIEGKM




HNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 190)





I53_
Degreased
(METDTLLLWVLLLWVPGSTGDYKDEMG)KYDGSKLRIGILHARGNAEIILALV


dn5A.1
nanoparticle
LGALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGV



protein
LIRGSTPHFDYIADSTTHQLMKLNFELGIPVIFGVITADTDEQAEARAGLIEGK




MHNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 191)





I53_
Degreased
(METDTLLLWVLLLWVPGSTGDYKDEMG)KYDGSKLRIGILHARENAEIILALV


dn5A.1
nanoparticle
LGALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGV


W16E
protein
LIRGSTPHEDYIADSTTHQLMKLNFELGIPVIFGVITADTDEQAEARAGLIEGK




MHNHGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID




NO: 192)





I53_
Degreased
(METDTLLLWVLLLWVPGSTGDYKDEMG)KYDGSKLRIGILHARGNAEIILELV


dn5A.2
nanoparticle
LGALKRLQEFGVKRENIIIETVPGSFELPYGSKLFVEKQKRLGKPLDAIIPIGV



protein
LIRGSTAHFDYIADSTTHQLMKLNFELGIPVIFGVLTTESDEQAEERAGTKAGN




HGEDWGAAAVEMATKEN(LEGSEQKLISEEDLHHHHHH) (SEQ ID NO: 193)









In various embodiments of this third aspect, the second proteins comprise an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS:85-88. In various other embodiments, the polypeptides comprise the amino acid sequence selected from the group consisting of SEQ ID NOS: 85-88, or the group consisting of SEQ ID NOS:85-86, or SEQ ID NOS: 85, provided as exemplary embodiments in the examples that follow.


The nanoparticles of this third aspect display on their surface an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, present in the at least one second protein. In one embodiment, the immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof is present as fusion protein with at least one second protein; it can be present on a single second protein in the nanoparticle (present in a single copy on the nanoparticle), or present in a plurality of second proteins present in the nanoparticle. In various embodiments, the SARS-CoV-2 antigen or a variant or homolog thereof is present in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins in the nanoparticle.


In these fusion proteins, the second protein may be joined directly to the SARS-CoV-2 antigen or a variant or homolog thereof, or the second protein and the SARS-CoV-2 antigen or a variant or homolog thereof may be joined using a linker. As used throughout this disclosure, a linker is a short (e.g., 2-30) amino acid sequence used to covalently join two polypeptides. Any suitable linker sequence may be used, including but not limited to those disclosed herein.


Any suitable SARS-CoV-2 antigen or a variant or homolog thereof may be used. In one embodiment of this third aspect, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to a Spike (S) protein extracellular domain (ECD) amino acid sequence, an S1 subunit amino acid sequence, an S2 subunit amino acid sequence, an Si receptor binding domain (RBD) amino acid sequence, and/or an N-terminal domain (NTD) amino acid sequence, from SARS-CoV-2, or a variant or homolog thereof.


In various further embodiments, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NO:125-137.










SEQ ID NO: 125



RFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNV






YADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKSNLKP





FERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKST





(RBD)





SEQ ID NO: 126



ETGTRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLC






FTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKS





NLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGP





KKST(RBD)





SEQ ID NO: 127



QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDN






PVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNN





KSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLP





QGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTI





TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNERVQPTESIVRFPNITNLCPFGEVENATRFASVYAW





NRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADY





NYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCY





FPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNK





KFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIH





ADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSVASQSII





AYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCT





QLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLENKVTLA





DAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIP





FAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQ





LSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECV





LGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTH





WFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDI





SGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK (Spike (S) protein extracellular





domain (ECD))





SEQ ID NO: 128



(ETGT) QCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGING






TKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGV





YYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPIN





LVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKY





NENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNERVQPTESIVRFPNITNLCPFGEVENATRE





ASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQT





GKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGV





EGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNENGLTGTGV





LTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTE





VPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSV





ASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQ





YGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLF





NKVTLADAGFIKQYGDCLGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAG





AALQIPFAMQMAYRENGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQAL





NTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAAT





KMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVE





VSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPD





VDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIK (Spike (S) protein





extracellular domain (ECD), including N-terminal linker related to signal





peptide in parentheses, which may be present or absent)





(SEQ ID NO: 129)



MGILPSPGMPALLSLVSLLSVLLMGCVAETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLH






STQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPENDGVYFASTEKSNIIRGWIFGTTLDSKTQSL





LIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGN





FKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGD





SSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNERVQ





PTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLND





LCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLER





KSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVC





GPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFG





GVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYE





CDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPV





SMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDF





GGFNFSQILPDPSKPSKRSFIEDLLENKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLL





TDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRENGIGVTQNVLYENQKLIANQFNSAIGK





IQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRL





QSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVP





AQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTV





YDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGK





YEQYIK mu phosphatase signal peptide, and the ETGT is left over as a





remnant after signal peptide cleavage





(SEQ ID NO: 130)



(MFVFLVLLPLVSSQC)VNLTTRTQLPPAYTNSFTRGVYYPDKVERSSVLHSTQDLFLPFFSNVTWFHAIHVSGT






NGTKRFDNPVLPENDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKN





NKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGESAL





EPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSE





TKCTLKSFTVEKGIYQTSNERVQPTESIVREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSAS





FSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDETGCVIAWNSNNLDSKVGGN





YNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPAT





VCGPKKSTNLVKNKCVNENENGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI





TPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICAS





YQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTE





CSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGENFSQILPDPSKPSKRSPIEDLLE





NKVTLADAGFIKQYGDCLGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPF





PMQMAYRENGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAI





SSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYH





LMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS





GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLI





DLQELGKYEQ





(SEQ ID NO: 131)



(MFVFLVLLPLVSSQC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGT






NGTKRFDNPVLPENDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKN





NKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGESAL





EPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSE





TKCTLKSFTVEKGIYQTSNERVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSAS





FSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDETGCVIAWNSNNLDSKVGGN





YNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPAT





VCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVI





TPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICAS





YQTQTNSPGSASSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTE





CSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLE





NKVTLADAGFIKQYGDCLGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPF





PMQMAYRENGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAI





SSVLNDILSRLDPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYH





LMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVS





GNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHT





(SEQ ID NO: 132)



(QC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVLPF






NDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYS





SANNCTFEYVSQPFLMDLEGKQGNEKNLREFVEKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINIT





RFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSETVEKG





IYQTSNFRVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK





LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKSNL





KPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKN





KCVNFNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVL





YQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASS





VASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCT





QLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGENFSQILPDPSKPSKRSPIEDLLENKVTLADAGFIKQ





YGDCLGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRENGIGV





TQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDP





PEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVV





FLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNT





VYD PLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQ





(SEQ ID NO: 133)



(QC)VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVLPF






NDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYS





SANNCTFEYVSQPFLMDLEGKQGNEKNLREFVEKNIDGYFKIYSKHTPINLVRDLPQGESALEPLVDLPIGINIT





RFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKG





IYQTSNFRVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTK





LNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKSNL





KPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKN





KCVNFNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVL





YQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASS





VASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCT





QLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGENESQILPDPSKPSKRSPIEDLLENKVTLADAGFIKQ





YGDCLGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRENGIGV





TQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDP





PEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVV





FLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNT





VYDPLQPELDSFKEELDKYFKNHT





(SEQ ID NO: 134)



VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVLPENDGV






YFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANN





CTFEYVSQPFLMDLEGKQGNEKNLREFVEKNIDGYFKIYSKHTPINLVRDLPQGESALEPLVDLPIGINITRFQT





LLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQT





SNFRVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDL





CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFE





RDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN





FNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDV





NCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQ





SIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNR





ALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGENFSQILPDPSKPSKRSPIEDLLENKVTLADAGFIKQYGDC





LGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRENGIGVTQNV





LYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAE





VQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHV





TYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP





LQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQ





(SEQ ID NO: 135)



VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPENDGV






YFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANN





CTFEYVSQPFLMDLEGKQGNEKNLREFVEKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQT





LLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQT





SNFRVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTEKCYGVSPTKLNDL





CFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKSNLKPFE





RDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN





FNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDV





NCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSASSVASQ





SIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNR





ALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGENFSQILPDPSKPSKRSPIEDLLENKVTLADAGFIKQYGDC





LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRENGIGVTQNV





LYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAE





VQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHV





TYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP





LQPELDSFKEELDKYFKNHT





(SEQ ID NO: 136)



ETCTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVL






PFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRV





YSSANNCTFEYVSQPFLMDLEGKQGNEKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGIN





ITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSFTVE





KGIYQTSNFRVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTEKCYGVSP





TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKS





NLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLV





KNKCVNFNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVA





VLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSA





SSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSF





CTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSPIEDLLENKVTLADAGFI





KQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRENGI





GVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRL





DPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHG





VVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN





NTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQ





(SEQ ID NO: 137)



ETCTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKREDNPVL






PFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRV





YSSANNCTFEYVSQPFLMDLEGKQGNEKNLREFVEKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGIN





ITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTELLKYNENGTITDAVDCALDPLSETKCTLKSFTVE





KGIYQTSNERVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTEKCYGVSP





TKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKS





NLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLV





KNKCVNFNFNGLTGTGVLTESNKKELPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVA





VLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPGSA





SSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSF





CTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGENFSQILPDPSKPSKRSPIEDLLENKVTLADAGFI





KQYGDCLGDIAARDLICAQKENGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGPALQIPFPMQMAYRENGI





GVTQNVLYENQKLIANQFNSAIGKIQDSLSSTPSALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRL





DPPEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHG





VVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVN





NTVYDPLQPELDSFKEELDKYFKNHT






In one specific embodiment, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125, the SARS-CoV-2 RBD provided as exemplary embodiments in the examples that follow. In various embodiments, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise mutations at 1, 2, 3, 4, 5, 6, 7, or all 8 positions relative to SEQ ID NO:125 selected from the group consisting of K90N, K90T, G119S, Y126F, T151I, E157K, E157A, S167P, N174Y, and L 125R, including but not limited to mutations comprising one of the following naturally occurring mutations or combinations of mutations:

    • N174Y (UK variant);
    • K90N/E157K/N174Y (South African variant);
    • K90N or T/E157K/N174Y (Brazil variant); or
    • L125R (LA variant).


The amino acid residue numbering of these naturally occurring variants is based on their position within SEQ ID NO:125, while they are generally described based on their residue number in the Spike protein (i.e.: K417 in spike=K90 in RBD; G446 in spike=G119 in RBD; L452 in spike=L125 in RBD; Y453 in spike=Y126 in RBD; T478 in spike =T151 in RBD; E484 in spike=E157 in RBD; S494 in spike=S167 in RBD; N501 in spike=N174 in RBD).


In various further embodiments, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise mutations at 1, 2, 3, 4, 5, 6, 7, or all 8 positions relative to SEQ ID NO:130 selected from the group consisting ofL18F, T20N, P26S, deletion of residues 69-70, D80A, D138Y, R190S, D215G, K417N, K417T, G446S, L452R, Y453F, T4781, E484K, S494P, N501Y, A570D, D614G, H655Y, P681H, A701V, T716L including but not limited to mutations comprising one of the following naturally occurring mutations or combinations of mutations:

    • N501Y, optionally further including 1, 2, 3, 4, or 5 of deletion of one or both of residues 69-70, A570D, D614G, P681H, and/or T716L (UK variant);
    • K417N/E484K/N501Y, optionally further including 1, 2, 3, 4, or 5 of L18F, D80A, D215G, D614G, and/or A701V (South African variant);
    • K417N or T/E484K/N501Y, optionally further including 1, 2, 3, 4, or 5 ofL18F, T20N, P26S, D138Y, R190S, D614G, and/or H655Y (Brazil variant); or
    • L452R (LA variant).


As will be understood by those of skill in the art, when X1 comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125 (or any other disclosed antigen), it may include additional amino acids at the amino- or carboxy-terminus. Thus, for example, when X1 comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125, X1 may comprise the amino acid sequence of SEQ ID NO:126, which includes additional amino acids at its N-terminus relative to SEQ ID NO:125.


In a further embodiment, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise 1, 2, 3, or all 4 mutations relative to SEQ ID NO:125 selected from the group consisting of K90N, K90T, E157K, and N174Y.


The plurality of second assemblies may in total comprise a single SARS-CoV-2 antigen, or may comprise 2 or more different SARS-CoV-2 antigen. In one embodiment, the plurality of second assemblies in total comprises 2, 3, 4, 5, 6, 7, 8, or more different SARS-CoV-2 antigens. In one exemplary such embodiment, the plurality of second assemblies in total comprise 2, 3, 4, 5, 6, 7, 8, or more polypeptides comprising the amino acid sequence of any one of SEQ ID NOS: 1-84.


In one embodiment, X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises the amino acid sequence of SEQ ID NO:125. In another embodiment, X1 in 100% of the second proteins comprises the amino acid sequence of SEQ ID NO:125, and all second proteins are identical.


In a further embodiment, all second assemblies comprise at least one second protein comprising the amino acid sequence of any one of SEQ ID NOS: 1-84. In another embodiment, all second proteins comprise the amino acid sequence of any one of SEQ ID NOS: 1-84.


The nanoparticles comprise a plurality of identical first proteins. In one embodiment, the first protein comprises an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or some (i.e.: 1, 2, 3, 4, 5, 6, or more) or all of the optional residues may be absent. In a specific embodiment, the first protein comprises an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:155.

















Identified interface
Surface residues not


Name
Amino Acid Sequence
residues
near interface







I53-50B
(M)NQHSHKDYETVRIAVVRARW
I53-50B: 
I53-50B: 


SEQ ID NO: 152
HAEIVDACVSAFEAAMADIGGDR
24,28,36,124, 125, 127,
6, 7, 8, 9, 10, 11, 13, 18, 20,



FAVDVEDVPGAYEIPLHARTLAE
12 8, 129,
21, 34, 38, 39, 40, 43, 44,



TGRYGAVLGTAFVVNGGIYRHEF
131, 132, 133, 135, 139
48, 51, 63, 67, 70, 87, 101,



VASAVIDGMMNVQLSTGVPVLSA

105, 118, 143, 147, 152, 153,



VLTPHRYRDSDAHTLLFLALFAV

154



KGMEAARACVEILAAREKIAA







I53-50B.1
(M)NQHSHKDHETVRIAVVRARW
I53-50B: 
I53-50B: 


SEQ ID NO: 153
HAEIVDACVSAFEAAMRDIGGDR
24,28,36,124,125, 127,
6, 7, 8, 9, 10, 11, 13, 18, 20,



FAVDVFDVPGAYEIPLHARTLAE
128, 129, 131, 132, 133,
21, 34, 38, 39, 40, 43, 44,



TGRYGAVLGTAFVVNGGIYRHEF
135, 139
48, 51, 63, 67, 70, 87, 101,



VASAVIDGMMNVQLDTGVPVLSA

105, 118, 143, 147, 152, 153,



VLTPHRYRDSDAHTLLFLALFAV

154



KGMEAARACVEILAAREKIAA







I53-50B.1NegT2
(M)NQHSHKDHETVRIAVVRARW
I53-50B: 
I53-50B: 


SEQ ID NO: 154
HAEIVDACVSAFEAAMRDIGGDR
24, 28, 36, 124, 125,
6,7, 8, 9, 10, 11, 13, 18, 20,



FAVDVFDVPGAYEIPLHARTLAE
127, 128, 129, 131, 132,
21, 34, 38, 39, 40, 43, 44,



TGRYGAVLGTAFVVDGGIYDHEF
133, 135, 139
48, 51, 63, 67, 70, 87, 101,



VASAVIDGMMNVQLDTGVPVLSA

105, 118, 143, 147, 152, 153,



VLTPHEYEDSDADTLLFLALFAV

154



KGMEAARACVEILAAREKIAA







I53-50B.4PosT1
(M)NQHSHKDHETVRIAVVRARW
I53-50B: 
I53-50B: 


SEQ ID NO: 155
HAEIVDACVSAFEAAMRDIGGDR
24, 28, 36, 124, 125,
6,7,8, 9, 10, 11, 13, 18, 20,



FAVDVEDVPGAYEIPLHARTLAE
128, 129, 131, 132,
21, 34, 38, 39, 40, 43, 44,



TGRYGAVLGTAFVVNGGIYRHEF
133, 135, 139
48, 51, 63, 67, 70, 87, 101,



VASAVINGMMNVQLNTGVPVLSA

105, 118, 143, 147, 152, 153,



VLTPHNYDKSKAHTLLFLALFAV

154



KGMEAARACVEILAAREKIAA












I53-50-v4 pentameric component



(MGSSHHHHHHSSGLVPRGS
EQKLISEEDLGS)NQHSQKDQETVRIAVVRARWHAFIVDACV



SAFEAAMRKIGGERFAVDVFDVPGAYEIPLHARTLAKTGRYGAVLGTAFVVNGGIYRHEFVA


SAVIDGMMNVQLDTGVPVLSAVLTPHNYDKSNAKTLLFLALFAVKGMEAARACVEILAAREK


IAA(GSLEGS) (SEQ ID NO: 156)





I53-5-v1 pentameric component B


(M)NQHSHKDHETVRIAVVRARWHAEIVDACVSAFEAAMRDIGGDRFAVDVFDVPGAYEIPL


HARTLAETGRYGAVLGTAFVVNGGIYRHEFVASAVIDGMMNVQLDTGVPVLSAVLTPHNYDK


SKAHTLLFLALFAVKGMEAARACVEILAAREKIAA(GS) (SEQ ID NO: 157)





I53-50-v2 pentameric component B


(M)NQHSHKDHETVRIAVVRARWHAFIVDACVSAFEAAMRDIGGDRFAVDVFDVPGAYEIPL


HARTLAETGRYGAVLGTAFVVNGGIYRHEFVASAVIDGMMNVQLDTGVPVLSAVLTPHNYDK


SNAKTLLFLALFAVKGMEAARACVEILAAREKIAA(GS) (SEQ ID NO: 158)





I53-50-v3 pentameric component B


(M)NQHSHKDHETVRIAVVRARWHAFIVDACVSAFEAAMRDIGGDRFAVDVFDVPGAYEIPL


HARTLAETGRYGAVLGTAFVVNGGIYRHEFVASAVIDGMMNVQLDTGVPVLSAVLTPHNYDK


SNAKTLLFLALFAVKGMEAARACVEILAAREKIAA(GS) (SEQ ID NO: 159)









In an exemplary embodiment, the first protein comprises the amino acid sequence of SEQ ID NO:155. In various further such embodiments, the at least one or a plurality (20,%, 33%, 40%, 50%, 75%, etc.) of the second assemblies comprises at least one second protein comprising the amino acid sequence selected from the group consisting of SEQ ID NO:85-88, or all second assemblies comprise at least one second protein comprising the amino acid sequence selected from the group consisting of SEQ ID NO:85-88.


In one specific embodiment,

    • (a) the first protein comprises the amino acid sequence of SEQ ID NO:155;
    • (b) all second proteins comprise the amino acid sequence of SEQ ID NO:85, wherein X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125.


In another specific embodiment,

    • (a) the first protein comprises the amino acid sequence of SEQ ID NO:155;
    • (b) all second proteins comprise the amino acid sequence of SEQ ID NO:85, wherein X1 in at least 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125.


In a further specific embodiment:

    • (a) the first protein comprises the amino acid sequence of SEQ ID NO:155;
    • (b) all second proteins comprise the amino acid sequence selected from the group consisting of SEQ ID NO:1-8.


In one specific embodiment:

    • (a) the first protein comprises the amino acid sequence of SEQ ID NO:155;
    • (b) all second proteins comprise the amino acid sequence of SEQ ID NO:1 or 5.


The disclosure further provides compositions, comprising a plurality of nanoparticles of any embodiment or combination of embodiments of the disclosure. In one embodiment, the compositions comprise a plurality of nanoparticles of the specific embodiments disclosed above.


In a fourth aspect, the disclosure provides nucleic acids encoding a polypeptide or fusion protein of the disclosure. The nucleic acid sequence may comprise RNA (such as mRNA) or DNA. Such nucleic acid sequences may comprise additional sequences useful for promoting expression and/or purification of the encoded protein, including but not limited to polyA sequences, modified Kozak sequences, and sequences encoding epitope tags, export signals, and secretory signals, nuclear localization signals, and plasma membrane localization signals. It will be apparent to those of skill in the art, based on the teachings herein, what nucleic acid sequences will encode the proteins of the invention.


In a fifth aspect, disclosure provides expression vectors comprising the isolated nucleic acid of any embodiment or combination of embodiments of the disclosure operatively linked to a suitable control sequence. “Expression vector” includes vectors that operatively link a nucleic acid coding region or gene to any control sequences capable of effecting expression of the gene product. “Control sequences” operably linked to the nucleic acid sequences of the disclosure are nucleic acid sequences capable of effecting the expression of the nucleic acid molecules. The control sequences need not be contiguous with the nucleic acid sequences, so long as they function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the nucleic acid sequences and the promoter sequence can still be considered “operably linked” to the coding sequence. Other such control sequences include, but are not limited to, polyadenylation signals, termination signals, and ribosome binding sites. Such expression vectors can be of any type known in the art, including but not limited to plasmid and viral-based expression vectors. The control sequence used to drive expression of the disclosed nucleic acid sequences in a mammalian system may be constitutive (driven by any of a variety of promoters, including but not limited to, CMV, SV40, RSV, actin, EF) or inducible (driven by any of a number of inducible promoters including, but not limited to, tetracycline, ecdysone, steroid-responsive).


In a sixth aspect, the present disclosure provides cells comprising the polypeptide, the nanoparticle, the composition, the nucleic acid, and/or the expression vector of any embodiment or combination of embodiments of the disclosure, wherein the cells can be either prokaryotic or eukaryotic, such as mammalian cells. In one embodiment the cells may be transiently or stably transfected with the nucleic acids or expression vectors of the disclosure. Such transfection of expression vectors into prokaryotic and eukaryotic cells can be accomplished via any technique known in the art. A method of producing a polypeptide according to the invention is an additional part of the invention. The method comprises the steps of (a) culturing a host according to this aspect of the invention under conditions conducive to the expression of the polypeptide, and (b) optionally, recovering the expressed polypeptide.


In a seventh aspect, the disclosure provides pharmaceutical compositions/vaccines comprising

    • (a) the polypeptide, the nanoparticle, the composition, the nucleic acid, the expression vector, and/or the cell of embodiment or combination of embodiments herein; and
    • (b) a pharmaceutically acceptable carrier.


As shown in the examples that follow, the nanoparticle immunogens elicit potent and protective antibody responses against SARS-CoV-2. The nanoparticle vaccines of the disclosure induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease.


The compositions/vaccines may further comprise (a) a lyoprotectant; (b) a surfactant; (c) a bulking agent; (d) a tonicity adjusting agent; (e) a stabilizer; (f) a preservative and/or (g) a buffer. In some embodiments, the buffer in the pharmaceutical composition is a Tris buffer, a histidine buffer, a phosphate buffer, a citrate buffer or an acetate buffer. The composition may also include a lyoprotectant, e.g. sucrose, sorbitol or trehalose. In certain embodiments, the composition includes a preservative e.g. benzalkonium chloride, benzethonium, chlorohexidine, phenol, m-cresol, benzyl alcohol, methylparaben, propylparaben, chlorobutanol, o-cresol, p-cresol, chlorocresol, phenylmercuric nitrate, thimerosal, benzoic acid, and various mixtures thereof. In other embodiments, the composition includes a bulking agent, like glycine. In yet other embodiments, the composition includes a surfactant e.g., polysorbate-20, polysorbate-40, polysorbate-60, polysorbate-65, polysorbate-80 polysorbate-85, poloxamer-188, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trilaurate, sorbitan tristearate, sorbitan trioleaste, or a combination thereof. The composition may also include a tonicity adjusting agent, e.g., a compound that renders the formulation substantially isotonic or isoosmotic with human blood. Exemplary tonicity adjusting agents include sucrose, sorbitol, glycine, methionine, mannitol, dextrose, inositol, sodium chloride, arginine and arginine hydrochloride. In other embodiments, the composition additionally includes a stabilizer, e.g., a molecule which substantially prevents or reduces chemical and/or physical instability of the nanostructure, in lyophilized or liquid form. Exemplary stabilizers include sucrose, sorbitol, glycine, inositol, sodium chloride, methionine, arginine, and arginine hydrochloride.


The nanoparticles may be the sole active agent in the composition, or the composition may further comprise one or more other agents suitable for an intended use, including but not limited to adjuvants to stimulate the immune system generally and improve immune responses overall. Any suitable adjuvant can be used. The term “adjuvant” refers to a compound or mixture that enhances the immune response to an antigen. Exemplary adjuvants include, but are not limited to, Adju-Phos™, Adjumer™, albumin-heparin microparticles, Algal Glucan, Algammulin, Alum, Antigen Formulation, AS-2 adjuvant, autologous dendritic cells, autologous PBMC, Avridine™, B7-2, BAK, BAY R1005, Bupivacaine, Bupivacaine-HCl, BWZL, Calcitriol, Calcium Phosphate Gel, CCR5 peptides, CFA, Cholera holotoxin (CT) and Cholera toxin B subunit (CTB), Cholera toxin A1-subunit-Protein A D-fragment fusion protein, CpG, CRL 1005, Cytokine-containing Liposomes, D-Murapalmitine, DDA, DHEA, Diphtheria toxoid, DL-PGL, DMPC, DMPG, DOC/Alum Complex, Fowlpox, Freund's Complete Adjuvant, Gamma Inulin, Gerbu Adjuvant, GM-CSF, GMDP, hGM-CSF, hIL-12 (N222L), hTNF-alpha, IFA, IFN-gamma in pcDNA3, IL-12 DNA, IL-12 plasmid, IL-12/GMCSF plasmid (Sykes), IL-2 in pcDNA3, IL-2/Ig plasmid, IL-2/Ig protein, IL-4, IL-4 in pcDNA3, Imiquimod™, ImmTher™, Immunoliposomes Containing Antibodies to Costimulatory Molecules, Interferon-gamma, Interleukin-1 beta, Interleukin-12, Interleukin-2, Interleukin-7, ISCOM(s)™, Iscoprep 7.0.3™, Keyhole Limpet Hemocyanin, Lipid-based Adjuvant, Liposomes, Loxoribine, LT(R192G), LT-OA or LT Oral Adjuvant, LT-R192G, LTK63, LTK72, MF59, MONTANIDE ISA 51, MONTANIDE ISA 720, MPL.TM., MPL-SE, MTP-PE, MTP-PE Liposomes, Murametide, Murapalmitine, NAGO, nCT native Cholera Toxin, Non-Ionic Surfactant Vesicles, non-toxic mutant E112K of Cholera Toxin mCT-E112K, p-Hydroxybenzoique acid methyl ester, pCIL-10, pCIL12, pCMVmCAT1, pCMVN, Peptomer-NP, Pleuran, PLG, PLGA, PGA, and PLA, Pluronic L121, PMMA, PODDS1M, Poly rA: Poly rU, Polysorbate 80, Protein Cochleates, QS-21, Quadri A saponin, Quil-A, Rehydragel HPA, Rehydragel LV, RIBI, Ribilike adjuvant system (MPL, TMD, CWS), S-28463, SAF-1, Sclavo peptide, Sendai Proteoliposomes, Sendai-containing Lipid Matrices, Span 85, Specol, Squalane 1, Squalene 2, Stearyl Tyrosine, Tetanus toxoid (TT), Theramide™, Threonyl muramyl dipeptide (TMDP), Ty Particles, and Walter Reed Liposomes. Selection of an adjuvant depends on the subject to be treated. Preferably, a pharmaceutically acceptable adjuvant is used.


In an eighth aspect, the disclosure provides methods to treat or limit development of a SARS-CoV-2 infection, comprising administering to a subject in need thereof an amount effective to treat or limit development of the infection of the polypeptide, nanoparticle, composition, nucleic acid, pharmaceutical composition, or vaccine of any embodiment herein (referred to as the “immunogenic composition”). The subject may be any suitable mammalian subject, including but not limited to a human subject.


When the method comprises limiting a SARS-CoV-2 infection, the immunogenic composition is administered prophylactically to a subject that is not known to be infected, but may be at risk of exposure to SARS-CoV-2. As used herein, “limiting development” includes, but is not limited to accomplishing one or more of the following: (a) generating an immune response (antibody and/or cell-based) to of SARS-CoV-2 in the subject; (b) generating neutralizing antibodies against SARS-CoV-2 in the subject (b) limiting build-up of SARS-CoV-2 titer in the subject after exposure to SARS-CoV-2; and/or (c) limiting or preventing development of SARS-CoV-2 symptoms after infection. Exemplary symptoms of SARS-CoV-2 infection include, but are not limited to, fever, fatigue, cough, shortness of breath, chest pressure and/or pain, loss or diminution of the sense of smell, loss or diminution of the sense of taste, and respiratory issues including but not limited to pneumonia, bronchitis, severe acute respiratory syndrome (SARS), and upper and lower respiratory tract infections.


In one embodiment, the methods generate an immune response in a subject in the subject not known to be infected with SARS-CoV-2, wherein the immune response serves to limit development of infection and symptoms of a SARS-CoV-2 infection. In one embodiment, the immune response comprises generation of neutralizing antibodies against SARS-CoV-2. In an exemplary such embodiment, the immune response comprises generation of SARS-CoV-2 spike protein antibody-specific responses with a mean geometric titer of at least 1×105. In a further embodiment, the immune response comprises generation of antibodies against multiple antigenic epitopes.


As used herein, an “effective amount” refers to an amount of the immunogenic composition that is effective for treating and/or limiting SARS-CoV-2 infection. The polypeptide, nanoparticle, composition, nucleic acid, pharmaceutical composition, or vaccine of any embodiment herein are typically formulated as a pharmaceutical composition, such as those disclosed above, and can be administered via any suitable route, including orally, parentally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term parenteral as used herein includes, subcutaneous, intravenous, intra-arterial, intramuscular, intrasternal, intratendinous, intraspinal, intracranial, intrathoracic, infusion techniques or intraperitoneally. Polypeptide compositions may also be administered via microspheres, liposomes, immune-stimulating complexes (ISCOMs), or other microparticulate delivery systems or sustained release formulations introduced into suitable tissues (such as blood). Dosage regimens can be adjusted to provide the optimum desired response (e.g., a therapeutic or prophylactic response). A suitable dosage range may, for instance, be 0.1 μg/kg-100 mg/kg body weight of the polypeptide or nanoparticle thereof. The composition can be delivered in a single bolus, or may be administered more than once (e.g., 2, 3, 4, 5, or more times) as determined by attending medical personnel.


In one embodiment, the administering comprises administering a first dose and a second dose of the immunogenic composition, wherein the second dose is administered about 2 weeks to about 12 weeks, or about 4 weeks to about 12 weeks after the first does is administered. In various further embodiments, the second dose is administered about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 weeks after the first dose. In another embodiment, three doses may be administered, with a second dose administered about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 weeks after the first dose, and the third dose administered about 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, or 12 weeks after the second dose.


In various other embodiments of prime-boost dosing, the administering comprises

    • (a) administering a prime dose to the subject of a DNA, mRNA, or adenoviral vector vaccine, wherein the DNA, mRNA, or adenoviral vector vaccine encodes an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125-137; and
    • (b) administering a boost dose to the subject of the polypeptide, nanoparticle, composition, nucleic acid, pharmaceutical composition, or vaccine of any embodiment or combination disclosed herein.


In an alternative embodiment, the administering comprises

    • (a) administering a prime dose to the subject of any embodiment or combination disclosed herein; and
    • (b) administering a boost dose to the subject of a DNA, mRNA, or adenoviral vector vaccine, wherein the DNA, mRNA, or adenoviral vector vaccine encodes an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125-137.


In either of these embodiments, any suitable DNA, mRNA, or adenoviral vector vaccine may be used in conjunction with the immunogenic compositions of the present disclosure, including but not limited to vaccines to be developed as well as those available from Moderna, Pfizer/BioNTech, Johnson & Johnson, etc.


In another embodiment of the methods, the subject is infected with a severe acute respiratory (SARS) virus, including but not limited to SARS-CoV-2, wherein the administering elicits an immune response against the SARS virus in the subject that treats a SARS virus infection in the subject. When the method comprises treating a SARS-CoV-2 infection, the immunogenic compositions are administered to a subject that has already been infected with SARS-CoV-2, and/or who is suffering from symptoms (as described above) indicating that the subject is likely to have been infected with SARS-CoV-2.


As used herein, “treat” or “treating” includes, but is not limited to accomplishing one or more of the following: (a) reducing SARS-CoV-2 titer in the subject; (b) limiting any increase of SARS-CoV-2 titer in the subject; (c) reducing the severity of SARS-CoV-2 symptoms; (d) limiting or preventing development of SARS-CoV-2 symptoms after infection; (e) inhibiting worsening of SARS-CoV-2 symptoms; (f) limiting or preventing recurrence of SARS-CoV-2 symptoms in subjects that were previously symptomatic for SARS-CoV-2 infection; and/or (e) survival.


The disclosure further provides kits, which may be used to prepare the nanoparticles and compositions of the disclosure. In one embodiment, the kits comprise:

    • (a) the polypeptide of any embodiment or combination of embodiments disclosed herein, such as in the first aspect; and
    • (b) a first protein comprising an amino acid sequence at least at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or absent.


In one embodiment, the polypeptide comprises the amino acid sequence of SEQ ID NO:1 or 5, and the first protein comprises the amino acid sequence of SEQ ID NO:155.


In another embodiment, the kits comprise:

    • (a) a nucleic acid encoding the polypeptide of any embodiment or combination of embodiments disclosed herein, such as in the first aspect; and
    • (b) a nucleic acid encoding first protein comprising an amino acid sequence at least at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or absent.


In one embodiment, the polypeptide comprises the amino acid sequence of SEQ ID NO:1 or 5, and the first protein comprises the amino acid sequence of SEQ ID NO:155.


In a further embodiment, the kits comprise:

    • (a) an expression vector comprising a nucleic acid encoding the polypeptide any embodiment or combination of embodiments disclosed herein, such as in the first aspect, operatively linked to a suitable control sequence; and
    • (b) an expression vector comprising a nucleic acid encoding first protein comprising an amino acid sequence at least at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or absent, wherein the nucleic acid is operatively linked to a suitable control sequence.


In one embodiment, the polypeptide comprises the amino acid sequence of SEQ ID NO:1 or 5, and the first protein comprises the amino acid sequence of SEQ ID NO:155.


In another embodiment, the kits comprise:

    • (a) a cell comprising an expression vector, wherein the expression vector comprises a nucleic acid encoding the polypeptide any embodiment or combination of embodiments disclosed herein, such as in the first aspect, operatively linked to a suitable control sequence; and
    • (b) a cell comprising an expression vector, wherein the expression vector comprises a nucleic acid encoding first protein comprising an amino acid sequence at least at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or absent, wherein the nucleic acid is operatively linked to a suitable control sequence.


In one embodiment, the polypeptide comprises the amino acid sequence of SEQ ID NO:1 or 5, and the first protein comprises the amino acid sequence of SEQ ID NO:155.


EXAMPLES
Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2
Summary

A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, indicate that manufacture of the nanoparticle vaccines will be highly scalable.


Design, In Vitro Assembly, and Characterization of SARS-CoV-2 RBD Nanoparticle Immunogens

To design vaccine candidates that induce potent neutralizing Ab responses, we focused on the RBD of the SARS-CoV-2 S glycoprotein (FIG. 1A-B). To overcome the limited immunogenicity of this small, monomeric antigen, we multivalently displayed the RBD on the exterior surface of the two-component protein nanoparticle I53-50. I53-50 is a computationally designed, 28 nm, 120-subunit complex with icosahedral symmetry constructed from trimeric (I53-50A) and pentameric (I53-50B) components (all amino acid sequences provided in Table 3). The nanoparticle can be assembled in vitro by simply mixing independently expressed and purified I53-50A and I53-50B. The RBD (residues 328-531) was genetically fused to I53-50A using linkers comprising 8, 12, or 16 glycine and serine residues (hereafter referred to as RBD-8GS-, RBD-12GS-, or RBD-16GS-I53-50A) to enable flexible presentation of the antigen extending from the nanoparticle surface (FIG. 1C). All RBD-I53-50A constructs were recombinantly expressed using mammalian (Expi293F) cells to ensure proper folding and glycosylation of the viral antigen. Initial yields of purified RBD-I53-50A proteins (˜30 mg purified protein per liter Expi293F cells) were ˜20-fold higher than for the prefusion-stabilized S-2P trimer (Kirchdoerfer et al., 2018; Pallesen et al., 2017; Walls et al., 2020; Wrapp et al., 2020) (˜1.5 mg/L), and increased to ˜60 mg/L following promoter optimization. The RBD-I53-50A proteins were mixed with pentameric I53-50B purified from E. coli in a ˜1:1 molar ratio (subunit:subunit) to initiate nanoparticle assembly (FIG. 1D).









TABLE3





Amino acid sequences of proteins used in this work (See figures 1-6)















>RBD-8GS-I53-50A


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL


DSKVGGNYNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHL


IEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGV


MTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKG


TPDEVREKAKAFVEKIRGATEGGSHHHHHHHH (SEQ ID NO: 14)





>RBD-12GS-I53-50A


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL


DSKVGGNYNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVEAG


GVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFY


MPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSA


LVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH (SEQ ID NO: 22)





>RBD-16GS-I53-50A


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDETGCVIAWNSNNL


DSKVGGNYNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVA


VFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEK


GVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWEKAGVLAVG


VGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH (SEQ ID NO; 2)





>Monomeric SARS-COV-2 RBD


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL


DSKVGGNYNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTHHHHHHHH (SEQ ID NO: 160)





>SARS-COV-2 S-2P Trimer


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVERSSVLHSTQDL


FLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPENDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV


IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNEKNLREFVEKNIDGY


FKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPR


TFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNERVQPTESIVRFPNITNLCPFGEVENATR


FASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIA


DYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPL


QSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNENENGLTGTGVLTESNKKELPFQQF


GRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYST


GSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNS


IAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQ


VKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLENKVTLADAGFIKQYGDCLGDIAARDLICAQKENG


LTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRENGIGVTQNVLYENQKLIANQENSA


IGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQS


LQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFT


TAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSEK


EELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKGSGRENLYFQG


GGGSGYIPEAPRDGQAYVRKDGEWVLLSTFLGHHHHHHHH (SEQ ID NO: 161)





>hACE2 (R518G) -Fc


MARAWIFFLLCLAGRALASTIEEQAKTFLDKENHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWSAFL


KEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQECLLLEP


GLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSR


GQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGREWTNLYSLTVPFGQKPNID


VTDAMVDQAWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDERILMCTKVT


MDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNETEINF


LLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDPASLFHVSNDYS


FIRYYTGTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLENMLRLGKSEPWTLALENVVGAKNMNVRPL


LNYFEPLFTWLKDQNKNSFVGWSTDWSPYADPLVPRGSGGGGDPEPKSCDKTHTCPPCPAPELLGGPSVFLFP


PKPKDTLMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK


EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN


YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 162)





>mACE2-Fc


MPMGSLQPLATLYLLGMLVASVLAQSTIEEQAKTFLDKENHEAEDLFYQSSLASWNYNTNITEENVQNMNNAG


EKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPNNPQ


ECLLLDPGLNEIMEKSLDYNERLWAWEGWRSEVGKQLRPLYEEYVVLKNEMARANHYKDYGDYWRGNYEVNGV


DGYDYNRDQLIEDVERTFEEIKPLYEHLHAYVRAKLMNAYPSYISPTGCLPAHLLGDMWGREWTNLYSLTVPF


GQKPNIDVTDAMVNQAWNAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKVVCHPTAWDLGKGDERI


IMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPELLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQED


NETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDPASLE


HVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLLNMLKLGKSEPWTLALENVVGAK


NMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWSPYADQSIKVRISLKSALGDKAYEWNDNEMYLERSSVAYA


MRTYFLEIKHQTILFGEEDVRVADLKPRISENFYVTAPKNVSDIIPRTEVEEAIRISRSRINDAFRLNDNSLE


FLGIQTTLAPPYQSPVTDPLVPRGSGGGGDPEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP


EVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS


FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO: 163)





>RBD-8GS-I53-50A


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDETGCVIAWNSNNL


DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHL


IEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGV


MTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKG


TPDEVREKAKAFVEKIRGATEGGSHHHHHHHH





>RBD-12GS-I53-50A


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL


DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVAVFAG


GVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFY


MPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSA


LVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH





>RBD-16GS-I53-50A


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDETGCVIAWNSNNL


DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTGGSGGSGSGGSGGSGSEKAAKAEEAARKMEELFKKHKIVAVLRANSVEEAIEKAVA


VFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEK


GVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVG


VGSALVKGTPDEVREKAKAFVEKIRGATEGGSHHHHHHHH





>Monomeric SARS-COV-2 RBD


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVL


YNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNL


DSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPLQSYGFQPTNGVGYQPYRVVVLS


FELLHAPATVCGPKKSTHHHHHHHH





>SARS-COV-2 S-2P Trimer


MGILPSPGMPALLSLVSLLSVLLMGCVAETGTQCVNLTTRTQLPPAYTNSFTRGVYYPDKVERSSVLHSTQDL


FLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPENDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVV


IKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNEKNLREFVFKNIDGY


FKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPR


TFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNERVQPTESIVRFPNITNLCPFGEVENATR


FASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIA


DYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLERKSNLKPFERDISTEIYQAGSTPCNGVEGENCYFPL


QSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNENENGLTGTGVLTESNKKELPFQQF


GRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYST


GSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPSGAGSVASQSIIAYTMSLGAENSVAYSNNS


IAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQ


VKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLENKVTLADAGFIKQYGDCLGDIAARDLICAQKENG


LTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRENGIGVTQNVLYENQKLIANQFNSA


IGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDPPEAEVQIDRLITGRLQS


LQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFT


TAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSEK


EELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKGSGRENLYFQG


GGGSGYIPEAPRDGQAYVRKDGEWVLLSTELGHHHHHHHH





>hACE2 (R518G)-Fc


MARAWIFFLLCLAGRALASTIEEQAKTFLDKENHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWSAFL


KEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQECLLLEP


GLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSR


GQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGREWTNLYSLTVPFGQKPNID


VTDAMVDQAWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDERILMCTKVT


MDDELTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNETEINE


LLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDPASLFHVSNDYS


FIRYYTGTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLENMLRLGKSEPWTLALENVVGAKNMNVRPL


LNYFEPLFTWLKDQNKNSFVGWSTDWSPYADPLVPRGSGGGGDPEPKSCDKTHTCPPCPAPELLGGPSVELEP


PKPKDTLMISRTPEVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK


EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN


YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





>mACE2-Fc


MPMGSLQPLATLYLLGMLVASVLAQSTIEEQAKTELDKENHEAEDLFYQSSLASWNYNTNITEENVQNMNNAG


EKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPNNPQ


ECLLLDPGLNEIMEKSLDYNERLWAWEGWRSEVGKQLRPLYEEYVVLKNEMARANHYKDYGDYWRGNYEVNGV


DGYDYNRDQLIEDVERTFEEIKPLYEHLHAYVRAKLMNAYPSYISPTGCLPAHLLGDMWGREWTNLYSLTVPF


GQKPNIDVTDAMVNQAWNAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKVVCHPTAWDLGKGDERI


IMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQED


NETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDPASLE


HVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLLNMLKLGKSEPWTLALENVVGAK


NMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWSPYADQSIKVRISLKSALGDKAYEWNDNEMYLERSSVAYA


MRTYFLEIKHQTILFGEEDVRVADLKPRISENFYVTAPKNVSDIIPRTEVEEAIRISRSRINDAFRLNDNSLE


FLGIQTTLAPPYQSPVTDPLVPRGSGGGGDPEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTP


EVTCVVVDVSHEDPEVKENWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA


PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS


FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK









Size-exclusion chromatography (SEC) of the SARS-CoV-2 RBD-I53-50 nanoparticles revealed predominant peaks corresponding to the target icosahedral assemblies and smaller peaks comprising residual unassembled RBD-I53-50A components (FIGS. 7A and 7B). Dynamic light scattering (DLS) and negative stain electron microscopy (nsEM) confirmed the homogeneity and monodispersity of the various RBD-I53-50 nanoparticles, both before and after freeze/thaw (FIGS. 1E, 1F, and 7C). The average hydrodynamic diameter and percent polydispersity measured by DLS for RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 before freeze/thaw were 38.5 (27%), 37 (21%), and 41 (27%) nm, respectively, compared to 30 (22%) nm for unmodified I53-50 nanoparticles. Hydrogen/Deuterium-exchange mass spectrometry confirmed that display of the RBD on the trimeric RBD-8GS-I53-50A component preserved the conformation of the antigen and structural order of several distinct antibody epitopes (FIGS. 1G and 7D). Finally, we used glycoproteomics to show that all three RBD-I53-50A components were N-glycosylated at positions N331 and N343 similarly to the SARS-CoV-2 S-2P ectodomain trimer (Watanabe et al., 2020), again suggesting that the displayed antigen retained its native antigenic properties (FIGS. 1H and 7E).









TABLE 4







Antigenic Characterization of SARS-CoV-2 RBD-I53-50A Components











Antigen
Binder
kon (M−1 s−1)
koff (s−1)
KD (nM)





SARS-CoV-2 RBD
hACE2
7 × 104 ± 5 × 102
5 × 10−3 ± 1 × 10−5
69 ± 0.5



CR3022 Fab
2 × 105 ± 2 × 103
9 × 10−3 ± 3 × 10−5
45 ± 0.5


RBD-8GS-I53-50A
hACE2
6 × 104 ± 4 × 102
4 × 10−3 ± 1 × 10−5
70 ± 0.5



CR3022 Fab
2 × 105 ± 1 × 103
1 × 10−2 ± 3 × 10−5
57 ± 0.4


RBD-12GS-I53-50A
hACE2
6 × 104 ± 4 × 102
5 × 10−3 ± 1 × 10−5
78 ± 0.5



CR3022 Fab
2 × 105 ± 2 × 103
9 × 10−3 ± 2 × 10−5
42 ± 0.4


RBD-16GS-I53-50A
hACE2
6 × 104 ± 4 × 102
4 × 10−2 ± 1 × 10−5
66 ± 0.4



CR3022 Fab
2 × 105 ± 1 × 103
1 × 10−2 ± 2 × 10−5
56 ± 0.4









Each experiment was performed at least twice, and the values and fitting errors presented are derived from a representative experiment. The corresponding binding curves and fits are presented in FIG. 8.


Antigenic Characterization of SARS-CoV-2 RBD-I53-50 Nanoparticle Components and Immunogens

We used recombinant human ACE2 ectodomain and two S-specific mAbs (CR3022 and S309) to characterize the antigenicity of the RBD when fused to I53-50A as well as the accessibility of multiple RBD epitopes in the context of the assembled nanoparticle immunogens. CR3022 and S309 were both isolated from individuals infected with SARS-CoV and cross-react with the SARS-CoV-2 RBD. CR3022 is a weakly neutralizing Ab that binds to a conserved, cryptic epitope in the RBD that becomes accessible upon RBD opening but is distinct from the receptor binding motif (RBM), the surface of the RBD that interacts with ACE2 (Huo et al., 2020; ter Meulen et al., 2006; Yuan et al., 2020). S309 neutralizes both SARS CoV and SARS-CoV-2 by binding to a glycan-containing epitope that is conserved amongst sarbecoviruses and accessible in both the open and closed prefusion S conformational states (Pinto et al., 2020).


We used bio-layer interferometry (BLI) to confirm the binding affinities of the monomeric human ACE2 (hACE2) ectodomain and the CR3022 Fab for the monomeric RBD. Equilibrium dissociation constants (KD) of these reagents for immobilized RBD-I53-50A fusion proteins closely matched those obtained for the monomeric RBD (Table 4 and FIG. 8). These data further confirm that the RBD-I53-50A fusion proteins display the RBD in its native conformation.


To evaluate the possibility that the magnitude and quality of nanoparticle immunogen-elicited Ab responses can be modulated by the accessibility of specific epitopes in the context of a dense, multivalent antigen array, we measured the binding of the nanoparticle immunogens to immobilized dimeric macaque ACE2 (mACE2-Fc) and the CR3022 and S309 mAbs, the latter of which roughly mimics the B cell receptor (BCR)-antigen interaction that is central to B cell activation. This approach does not allow the calculation of KD values due to the multivalent nature of the interactions, but does enable qualitative comparisons of epitope accessibility in different nanoparticle constructs. We compared the full-valency nanoparticles displaying 60 RBDs to a less dense antigen array by leveraging the versatility of in vitro assembly to prepare nanoparticle immunogens displaying the RBD antigen at 50% valency (˜30 RBDs per nanoparticle) (FIG. 9). This was achieved by adding pentameric I53-50B to an equimolar mixture of RBD-I53-50A and unmodified I53-50A lacking fused antigen. We found that all of the RBD nanoparticles bound well to the immobilized mACE2-Fc, CR3022, and S309 (FIG. 2A). Although there were no consistent trends among the 50% and 100% valency RBD-8GS- and RBD-12GS-I53-50 nanoparticles, the 100% valency RBD-16GS-I53-50 nanoparticles resulted in the highest binding signals against all three binders (FIG. 2B). It is possible that the longer linker in the RBD-16GS-I53-50 nanoparticle enables better access to the epitopes targeted by ACE2, CR3022, and S309, although our data cannot rule out other possible explanations. We conclude that multiple distinct epitopes targeted by neutralizing antibodies are exposed and accessible for binding in the context of the RBD antigen array presented on the nanoparticle exterior.


Physical and Antigenic Stability of RBD Nanoparticle Immunogens and S-2P Trimer

We first used chemical denaturation in guanidine hydrochloride (GdnHCl) to compare the stability of the RBD-I53-50A fusion proteins and RBD-12GS-I53-50 nanoparticle immunogen to recombinant monomeric RBD and the S-2P ectodomain trimer (FIG. 3A). Fluorescence emission spectra from samples incubated in 0-6.5 M GdnHCl revealed that all three RBD-I53-50A fusion proteins and the RBD-12GS-I53-50 nanoparticle undergo a transition between 4 and 5 M GdnHCl that indicates at least partial unfolding, whereas the S-2P trimer showed a transition at lower [GdnHCl], between 2 and 4 M. The monomeric RBD exhibited a less cooperative unfolding transition over 0-5 M GdnHCl. We then used a suite of analytical assays to monitor physical and antigenic stability over four weeks post-purification at three temperatures: <−70° C., 2-8° C., and 22-27° C. (FIG. 3B-E). Consistent with previous reports, the monomeric RBD proved quite stable, yielding little change in appearance by SDS-PAGE (FIG. 10A), mACE2-Fc and CR3022 binding (FIG. 10B), or the ratio of UV/vis absorption at 320/280 nm, a measure of particulate scattering (FIG. 10C). The S-2P trimer was unstable at 2-8° C., exhibiting clear signs of unfolding by nsEM even at early time points (FIG. 9D). It maintained its structure considerably better at 22-27° C. until the latest time point (28 days), when unfolding was apparent by nsEM and UV/vis indicated some aggregation (FIG. 10C). All three RBD-I53-50A components were highly stable, exhibiting no substantial change in any readout at any time point (data not shown). Finally, the RBD-12GS-I53-50 nanoparticle was also quite stable over the four-week study, showing changes only in UV/vis absorbance, where a peak near 320 nm appeared after 7 days at 22-27° C. (data not shown). Electron micrographs and DLS of the RBD-12GS-I53-50 nanoparticle samples consistently showed monodisperse, well-formed nanoparticles at all temperatures over the four-week period (FIGS. 10D, 10E). Collectively, these data show that the RBD-I53-50A components and the RBD-12GS-I53-50 nanoparticle have high physical and antigenic stability, superior to the S-2P ectodomain trimer.


RBD-I53-50 Nanoparticle Immunogens Elicit Potent Neutralizing Antibody Responses in BALB/c and Human Immune Repertoire Mice.

We compared the immunogenicity of the three RBD-I53-50 nanoparticles, each displaying the RBD at either 50% or 100% valency, to the S-2P ectodomain trimer and the monomeric RBD in BALB/c mice. Groups of ten mice were immunized intramuscularly at weeks 0 and 3 with AddaVax™-adjuvanted formulations containing either 0.9 or 5 μg of SARS-CoV-2 antigen in either soluble or particulate form. Three weeks post-prime, all RBD nanoparticles elicited robust S-specific Ab responses with geometric mean reciprocal half-maximal effective concentrations ranging between 8×102 and 1×104 (FIG. 4A). In contrast, the monomeric RBD and the low dose of S-2P trimer did not induce detectable levels of S-specific Abs, while the high dose of S-2P trimer elicited weak responses. Following a second immunization, we observed an enhancement of S-specific Ab titers for all RBD nanoparticle groups, with geometric mean titers (GMT) ranging from 1×105 to 2×106 (FIG. 4B). These levels of S-specific Abs matched or exceeded most samples from a panel of 29 COVID-19 human convalescent sera (HCS) from Washington state and the benchmark 20/130 COVID-19 plasma from NIBSC (FIG. 4A-B, Table 5). Immunization with two 5 μg doses of S-2P trimer induced S-specific Ab responses ˜1-2 orders of magnitude weaker than the RBD nanoparticles, and the monomeric RBD did not elicit detectable antigen-specific Abs after two immunizations. As expected, we also detected an Ab response to the 153-50 scaffold, which was constant in magnitude across all RBD nanoparticle groups (FIG. 11). These data indicate that multivalent display of the RBD on a self-assembling nanoparticle scaffold dramatically improves its immunogenicity.









TABLE 5







Source of patient convalescent sera











Hospitalized
Not Hospitalized
Overall



(N = 4)
(N = 22)
(N = 26)

















Age








Mean (SD)
58.0
(15.1)
45.1
(17.2)
47.1
(17.2)


Median [Min, Max]
64.8
[35.5, 67.0]
43.6
[18.1, 76.0]
45.4
[18.1, 76.0]


Sex


Male
1
(25.0%)
11
(50.0%)
12
(46.2%)


Female
3
(75.0%)
11
(50.0%)
14
(53.8%)


Race


Asian
1
(25.0%)
2
(9.1%)
3
(11.5%)


Black or African
1
(25.0%)
0
(0%)
1
(3.8%)


American


White
2
(50.0%)
20
(90.9%)
22
(84.6%)


Hispanic ethnicity
0
(0%)
1
(4.5%)
1
(3.8%)


Insurance


Private
3
(75.0%)
17
(77.3%)
20
(76.9%)


Government
1
(25.0%)
5
(22.7%)
6
(23.1%)


Housing Type


House/condo/townhouse
1
(25.0%)
5
(22.7%)
6
(23.1%)


Apartment
3
(75.0%)
17
(77.3%)
20
(76.9%)


House members


2 people
1
(25.0%)
10
(45.5%)
11
(42.3%)


3 people
1
(25.0%)
1
(4.5%)
2
(7.7%)


4 people
0
(0%)
2
(9.1%)
2
(7.7%)


5 people
0
(0%)
2
(9.1%)
2
(7.7%)


6 or more people
1
(25.0%)
2
(9.1%)
3
(11.5%)


I live by myself
1
(25.0%)
5
(22.7%)
6
(23.1%)


Smoking


Nonsmoker
4
(100%)
19
(86.4%)
23
(88.5%)


Tobacco use
0
(0%)
3
(13.6%)
3
(11.5%)


Electronic
0
(0%)
1
(4.5%)
1
(3.8%)


cigarettes/vapor


pen use


Received 2019-2020
2
(50.0%)
16
(72.7%)
18
(69.2%)


Influenza vaccine


(N = 23)


Employed


Retired
1
(25.0%)
0
(0%)
1
(3.8%)


Self-employed
1
(25.0%)
4
(18.2%)
5
(19.2%)


Unemployed
0
(0%)
2
(9.1%)
2
(7.7%)


Yes, and I would be
2
(50.0%)
12
(54.5%)
14
(53.8%)


paid for hours missed


Yes, but I would not be
0
(0%)
4
(18.2%)
4
(15.4%)


paid for hours missed


Highest Level of


Medical Treatment


Received


Outpatient - Testing
0
(0%)
15
(68.2%)
15
(57.7%)


Only


Outpatient - Saw
0
(0%)
7
(31.8%)
7
(26.9%)


Provider**


Inpatient (General
2
(50.0%)
0
(0%)
2
(7.7%)


Floor)


Inpatient (ICU)
2
(50.0%)
0
(0%)
2
(7.7%)


Comorbidities*


No comorbidities
1
(25.0%)
20
(90.9%)
21
(80.8%)


Hypertension
2
(50.0%)
2
(9.1%)
4
(15.4%)


Diabetes
2
(50.0%)
0
(0%)
2
(7.7%)


Cardiovascular disease
1
(25.0%)
0
(0%)
1
(3.8%)


Chronic kidney disease
1
(25.0%)
0
(0%)
1
(3.8%)


Cardiovascular disease
1
(25.0%)
0
(0%)
1
(3.8%)


HIV
1
(25.0%)
0
(0%)
1
(3.8%)


Highest Level of


Respiratory Support


None
1
(25.0%)
22
(100%)
23
(88.5%)


Non-invasive
1
(25.0%)
0
(0%)
1
(3.8%)


ventilation (BiPAP)


Mechanical
2
(50.0%)
0
(0%)
2
(7.7%)


ventilation/intubation


Travel out of state in
0
(0%)
4
(18.2%)
4
(15.4%)


last 30 days (N = 23)


Symptoms*


Feeling feverish
3
(75.0%)
15
(68.2%)
18
(69.2%)


Cough
4
(100%)
17
(77.3%)
21
(80.8%)


Chills or shivering
3
(75.0%)
15
(68.2%)
18
(69.2%)


Sweats
2
(50.0%)
14
(63.6%)
16
(61.5%)


Sore throat or
0
(0%)
10
(45.5%)
10
(38.5%)


itchy/scratchy throat


Nausea or vomiting
1
(25.0%)
3
(13.6%)
4
(15.4%)


Runny or stuffy nose
1
(25.0%)
13
(59.1%)
14
(53.8%)


Muscle or body aches
2
(50.0%)
15
(68.2%)
17
(65.4%)


Increased trouble
3
(75.0%)
5
(22.7%)
8
(30.8%)


breathing


Fatigue
2
(50.0%)
17
(77.3%)
19
(73.1%)


Diarrhea
2
(50.0%)
6
(27.3%)
8
(30.8%)


Rash
0
(0%)
1
(4.5%)
1
(3.8%)


Ear pain or ear
0
(0%)
1
(4.5%)
1
(3.8%)


discharge


Loss of sense of taste
0
(0%)
7
(31.8%)
7
(26.9%)


or smell





*Categories not mutually exclusive


**Includes Primary Care Physician, Urgent care, Emergency Department






We prototyped potential human antibody responses to the RBD nanoparticle immunogens using the Kymab proprietary IntelliSelect™ Transgenic mouse platform (known as ‘Darwin’) that is transgenic for the non-rearranged human antibody variable and constant region germline repertoire. In contrast to previous mice with chimeric antibody loci that have been described (Lee et al., 2014), the mice in the present study differed in that they were engineered to express fully human kappa light chain Abs. Groups of five Darwin mice were immunized intramuscularly with S-2P trimer, 100% RBD-12GS-, or 100% RBD-16GS-I53-50 nanoparticles at antigen doses of 0.9 μg (nanoparticles only) or 5 μg (FIG. 4C). All groups immunized with RBD nanoparticles elicited S-directed Ab responses post-prime (EC50 2×103-1×104) that were substantially boosted by a second immunization at week 3 (EC50 ranging from 4×105 to 8×105) (FIGS. 4C and 4D). In this animal model, the S-2P trimer elicited levels of S-specific Abs comparable to the RBD nanoparticles after each immunization.


We then evaluated the neutralizing activity elicited by each immunogen using both pseudovirus and live virus neutralization assays. In BALB/c mice, all RBD nanoparticle immunogens elicited serum neutralizing Abs after a single immunization, with reciprocal half-maximal inhibition dilutions (IC50) ranging from 1×102 to 5×102 (GMT) in pseudovirus and 3×103 to 7×103 in live virus neutralization assays (FIGS. 5A and 5C). No significant differences in pseudovirus or live virus neutralization were observed between low or high doses of RBD-8GS-, RBD-12GS-, or RBD-16GS-I53-50 nanoparticles at 50% (pseudovirus neutralization only) or 100% valency, in agreement with the S-specific Ab data. The GMT of all three 100% valency RBD nanoparticle groups matched or exceeded that of the panel of 29 HCS tested in the pseudovirus neutralization assay (FIG. 5A). Immunization with monomeric RBD or S-2P trimer did not elicit neutralizing Abs after a single immunization(FIGS. 5A and 5C). As in BALB/c mice, both high and low doses of the RBD-I53-50 nanoparticles in Darwin mice elicited pseudovirus neutralizing Ab titers (IC50 8×101 to 2.5×102) comparable to HCS (IC50 1×102) after a single immunization, whereas 5 μg of the S-2P trimer did not elicit detectable levels of neutralizing Abs (FIG. 5E) despite eliciting similar levels of total S-specific Abs.


In both mouse models, a second immunization with the RBD-I53-50 nanoparticles led to a large increase in neutralizing Ab titers. In BALB/c mice, pseudovirus neutralization GMT reached 2×103 to 3×104, exceeding that of the HCS by 1-2 orders of magnitude, and live virus neutralization titers reached 2×104 to 3×104 (FIGS. 5B and 5D). A second immunization with 5 μg of the S-2P trimer also strongly boosted neutralizing activity, although pseudovirus and live virus neutralization (GMTs of 3×102 and 6×103, respectively) were still lower than in sera from animals immunized with the RBD nanoparticles. The increases between the S-2P trimer and the RBD nanoparticles ranged from 7-90-fold and 4-9-fold in the pseudovirus and live virus neutralization assays, respectively. The 0.9 μg dose of the S-2P trimer and both doses of the monomeric RBD failed to elicit detectable neutralization after two immunizations. Similar increases in pseudovirus neutralization were observed after the second immunization in the Darwin mice, although the titers were lower overall than in BALB/c mice (FIG. 5F).


Several conclusions can be drawn from these data. First, the RBD nanoparticles elicit potent neutralizing Ab responses in two mouse models that exceed those elicited by the prefusion-stabilized S-2P trimer and, after two doses, by infection in humans. Second, linker length and antigen valency did not substantially impact the overall immunogenicity of the RBD nanoparticles, although there is a trend suggesting that RBD-16GS-I53-50 may be more immunogenic than the nanoparticles with shorter linkers. These observations are consistent with the antigenicity and accessibility data presented in Table 4 and FIG. 2 showing that multiple epitopes are intact and accessible in all RBD nanoparticle immunogens. Finally, the elicitation of comparable neutralizing Ab titers by both the 0.9 and 5 μg doses of each nanoparticle immunogen suggests that RBD presentation on the I53-50 nanoparticle enables dose sparing, which is a key consideration for vaccine manufacturing and distribution.


Eight mice immunized with AddaVax™ only, monomeric RBD, S-2P trimer, or RBD-8GS- or RBD-12GS-I53-50 nanoparticles were challenged seven weeks post-boost with a mouse-adapted SARS-CoV-2 virus (SARS-CoV-2 MA) to determine whether these immunogens confer protection from viral replication. The RBD-8GS- and RBD-12GS-I53-50 nanoparticles provided complete protection from detectable SARS-CoV-2 MA replication in mouse lung and nasal turbinates (FIG. 5G-H). Immunization with the monomeric RBD, 0.9 μg S-2P trimer, and adjuvant control did not protect from SARS-CoV-2 MA replication. These results mirrored our pseudovirus and live virus neutralization data showing that the RBD nanoparticles induce potent anti-SARS-CoV-2 Ab responses at either dose or valency.


RBD Nanoparticle Vaccines Elicit Robust B Cell Responses and Antibodies Targeting Multiple Epitopes in Mice and a Nonhuman Primate

Germinal center (GC) responses are a key process in the formation of durable B cell memory, resulting in the formation of affinity-matured, class-switched memory B cells and long-lived plasma cells. We therefore evaluated the antigen-specific GC B cell responses in mice immunized with the monomeric RBD, S-2P trimer, and RBD-8GS-, RBD-12GS-, or RBD-16GS-I53-50 nanoparticles. The quantity and phenotype of RBD-specific B cells were assessed 11 days after immunization to determine levels of GC precursors and B cells (B220+CD3CD138CD38GL7+) (FIG. 12). Immunization with RBD nanoparticles resulted in an expansion of RBD-specific B cells and GC precursors and B cells (FIG. 6A-C). The S-2P trimer resulted in a detectable but lower number and frequency of RBD-specific B cells and GC precursors and B cells compared to the RBD nanoparticles, whereas the monomeric RBD construct did not elicit an appreciable B cell response. Consistent with these findings, immunization with the three RBD nanoparticles and trimeric S-2P led to the emergence of CD38+/−GL7+ IgM+ and class-switched (swIg+) RBD-specific B cells, indicative of functional GC precursors and GC B cells (FIG. 6D). The robust GC B cell responses and increased proportions of IgM+ and swIg+ RBD-specific B cells in the mice immunized with the RBD-nanoparticles and, to a lesser extent, S-2P constructs is consistent with an ongoing GC reaction, which in time should result in the formation of memory B cells and long-lived plasma cells. To evaluate the durability of humoral responses elicited by the RBD nanoparticle vaccines, we analyzed serum Ab responses 20-24 weeks post-boost. The magnitude of both binding and neutralization titers were similar to their levels two weeks post-boost for all nanoparticle groups (FIGS. 12B,C), indicating that the designed immunogens elicit not only potent but also durable neutralizing Abs. This is likely due in part to improved induction of long-lived plasma cells by the nanoparticle vaccines, as the number of S-2P-specific Ab secreting cells in the bone marrow was ˜3-fold higher for mice immunized with the RBD-16GS-I53-50 nanoparticle compared to the S-2P trimer (FIG. 12D).


We compared the ratio of binding to neutralizing antibodies elicited by the S-2P and the RBD-8GS-, RBD-12GS-, and RBD-16GS-I53-50 nanoparticles and HCS as a measure of the quality of the Ab responses elicited by the nanoparticle immunogens. In Kymab Darwin™ mice, the nanoparticle vaccines had lower (better) ratios than S-2P-immunized mice, but higher than HCS (FIG. 6E). In BALB/c mice, the ratio of binding to pseudovirus neutralizing titers elicited by RBD-12GS- and RBD-16GS-I53-50 was clearly decreased compared to S-2P and HCS (FIG. 6F). This pattern was consistent when ratios were calculated using live virus neutralizing titers, although the magnitude of the differences between groups was smaller due to the high values obtained in the live virus neutralization assay. These results suggest the Ab responses elicited by the RBD-12GS- and RBD-16GS-I53-50 nanoparticle immunogens are of higher quality than that obtained from immunization with the S-2P trimer or acquired during natural infection, perhaps because it is focused on epitopes in the RBD that are the target of most neutralizing Abs.


We set out to identify the epitopes recognized by Abs elicited upon immunization with the nanoparticle immunogens in a nonhuman primate model that more closely resembles humans in their immune response to vaccination. We immunized a pigtail macaque with 250 μg of RBD-12GS-I53-50 (88 μg of RBD antigen) at weeks 0 and 4 and found that serum collected at week 8 had high levels of S-specific Abs (EC50˜1×106). Polyclonal Fabs were generated and purified for use in competition BLI with hACE2, CR3022, and S309, which recognize three distinct sites targeted by neutralizing Abs on the SARS-CoV-2 RBD (FIG. 6G). The polyclonal sera inhibited binding of hACE2, CR3022 Fab, and S309 Fab at concentrations above their respective dissociation constants in a dose-dependent manner (FIG. 6H-J). These data indicate that immunization with 12GS-RBD-I53-50 elicited Abs targeting several non-overlapping epitopes, which we expect to limit the potential for emergence and selection of escape mutants, especially since coronaviruses do not mutate quickly when compared to viruses such as influenza or human immunodeficiency virus (Li et al., 2020; Smith et al., 2014).


DISCUSSION

Here we showed that two-component self-assembling SARS-CoV-2 RBD nanoparticle vaccine candidates elicit potent neutralizing Ab responses targeting multiple distinct RBD epitopes. The greater neutralizing Ab responses elicited by the RBD nanoparticles compared to the prefusion-stabilized ectodomain trimer are very promising. Our data indicate that RBD-12GS-I53-50 and RBD-16GS-I53-50 elicit nearly ten-fold higher levels of S-specific Abs and, more importantly, roughly ten-fold higher levels of neutralizing activity compared to the S-2P ectodomain trimer. This enhancement in potency is maintained at a more than five-fold lower antigen dose by mass, suggesting that presentation on the nanoparticle also has a dose-sparing effect. Both enhanced potency and dose-sparing could be critical for addressing the need to manufacture an unprecedented number of doses of vaccine to respond to the SARS-CoV-2 pandemic.


Although the RBD is poorly immunogenic as a monomer, our data establish that it can form the basis of a highly immunogenic vaccine when presented multivalently in our designs. The exceptionally low binding:neutralizing ratio elicited upon immunization with the RBD nanoparticles suggests that presentation of the RBD on I53-50 focuses the humoral response on epitopes recognized by neutralizing Abs. This metric is a potentially important indicator of vaccine safety, as high levels of binding yet non-neutralizing or weakly neutralizing Abs may contribute to vaccine-associated enhancement of respiratory disease. Our data further show that RBD-12GS-I53-50 elicited Ab responses targeting several of the non-overlapping epitopes recognized by neutralizing Abs that have been identified in the RBD. Such polyclonal responses targeting multiple distinct epitopes might explain the magnitude of neutralization observed and should minimize the risk of selection or emergence of escape mutations. Finally, the high production yield of RBD-I53-50A components and the robust stability of the antigen-bearing RBD nanoparticles makes them amenable to large-scale manufacturing.


REFERENCES



  • Alsoussi, W. B., Turner, J. S., Case, J. B., Zhao, H., Schmitz, A. J., Zhou, J. Q., Chen, R. E., Lei, T., Rizk, A. A., McIntire, K. M., et al. (2020). A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. J Immunol.

  • Anthony, S. J., Gilardi, K., Menachery, V. D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Liang, E., Wells, H., Hicks, A., et al. (2017). Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus. MBio 8.

  • Anywaine, Z., Whitworth, H., Kaleebu, P., Praygod, G., Shukarev, G., Manno, D., Kapiga, S., Grosskurth, H., Kalluvya, S., Bockstal, V., et al. (2019). Safety and Immunogenicity of a 2-Dose Heterologous Vaccination Regimen With Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-Month Data From a Phase 1 Randomized Clinical Trial in Uganda and Tanzania. J Infect Dis 220,46-56.

  • Bale, J. B., Gonen, S., Liu, Y., Shefller, W., Ellis, D., Thomas, C., Cascio, D., Yeates, T. O., Gonen, T., King, N. P., et al. (2016). Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389-394.

  • Barnes, C. O., West, A. P., Huey-Tubman, K. E., Hoffmann, M. A. G., Sharaf, N. G., Hoffman, P. R., Koranda, N., Gristick, H. B., Gaebler, C., Muecksch, F., et al. (2020). Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell.

  • Boyoglu-Barnum, S., Ellis, D., Gillespie, R. A., Hutchinson, G. B., Park, Y.-J., Moin, S. M., Acton, O., Ravichandran, R., Murphy, M., Pettie, D., et al. (2020). Elicitation of broadly protective immunity to influenza by multivalent hemagglutinin nanoparticle vaccines. bioRxiv, 2020.2005.2030.125179.

  • Brouwer, P. J. M., Antanasijevic, A., Berndsen, Z., Yasmeen, A., Fiala, B., Bijl, T. P. L., Bontjer, I., Bale, J. B., Sheffler, W., Allen, J. D., et al. (2019). Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nat Commun 10, 4272.

  • Brouwer, P. J. M., Caniels, T. G., van der Straten, K., Snitselaar, J. L., Aldon, Y., Bangaru, S., Torres, J. L., Okba, N. M. A., Claireaux, M., Kerster, G., et al. (2020). Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science.

  • Bruun, T. U. J., Andersson, A. C., Draper, S. J., and Howarth, M. (2018). Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS Nano 12, 8855-8866.

  • Corbett, K. S., Edwards, D. K., Leist, S. R., Abiona, O. M., Boyoglu-Barnum, S., Gillespie, R. A., Himansu, S., SchAfer, A., Ziwawo, C. T., DiPiazza, A. T., et al. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature.

  • Corti, D., Zhao, J., Pedotti, M., Simonelli, L., Agnihothram, S., Fett, C., Fernandez-Rodriguez, B., Foglierini, M., Agatic, G., Vanzetta, F., et al. (2015). Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc Natl Acad Sci USA 112, 10473-10478.

  • Dai, L., Zheng, T., Xu, K., Han, Y., Xu, L., Huang, E., An, Y., Cheng, Y., Li, S., Liu, M., et al. (2020). A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS. Cell.

  • Davis, A. K. F., McCormick, K., Gumina, M. E., Petrie, J. G., Martin, E. T., Xue, K. S., Bloom, J. D., Monto, A. S., Bushman, F. D., and Hensley, S. E. (2018). Sera from Individuals with Narrowly Focused Influenza Virus Antibodies Rapidly Select Viral Escape Mutations. J Virol 92.

  • Dinnon, K. H., Leist, S. R., SchAfer, A., Edwards, C. E., Martinez, D. R., Montgomery, S. A., West, A., Yount, B. L., Hou, Y. J., Adams, L. E., et al. (2020). A mouse-adapted SARS-CoV-2 model for the evaluation of COVID-19 medical countermeasures. bioRxiv, 2020.2005.2006.081497.

  • Edwards, R. J., Mansouri, K., Stalls, V., Manne, K., Watts, B., Parks, R., Gobeil, S. M. C., Janowska, K., Li, D., Lu, X., et al. (2020). Cold sensitivity of the SARS-CoV-2 spike ectodomain. bioRxiv. Erasmus, J. H., Khandhar, A. P., O'Connor, M. A., Walls, A. C., Hemann, E. A., Murapa, P., Archer, J., Leventhal, S., Fuller, J. T., Lewis, T. B., et al. (2020). An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci Transl Med 12.

  • Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., et al. (2020). Safety and immunogenicity of the ChAdOxl nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet.

  • Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., and Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6,343-345.

  • Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., and Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25.

  • Graham, B. S. (2020). Rapid COVID-19 vaccine development. Science 368, 945-946.

  • Guttman, M., Weis, D. D., Engen, J. R., and Lee, K. K. (2013). Analysis of overlapped and noisy hydrogen/deuterium exchange mass spectra. J Am Soc Mass Spectrom 24, 1906-1912.

  • Henderson, R., Edwards, R. J., Mansouri, K., Janowska, K., Stalls, V., Gobeil, S. M. C., Kopp, M., Li, D., Parks, R., Hsu, A. L., et al. (2020). Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat Struct Mol Biol.

  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280.e278.

  • Hou, Y. J., Okuda, K., Edwards, C. E., Martinez, D. R., Asakura, T., Dinnon, K. H., Kato, T., Lee, R. E., Yount, B. L., Mascenik, T. M., et al. (2020). SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 182, 429-446.e414.

  • Hsia, Y., Bale, J. B., Gonen, S., Shi, D., Shefler, W., Fong, K. K., Nattermann, U., Xu, C., Huang, P. S., Ravichandran, R., et al. (2016). Design of a hyperstable 60-subunit protein dodecahedron. [corrected]. Nature 535, 136-139.

  • Hsieh, C. L., Goldsmith, J. A., Schaub, J. M., DiVenere, A. M., Kuo, H. C., Javanmardi, K., Le, K. C., Wrapp, D., Lee, A. G., Liu, Y., et al. (2020). Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science.

  • Huo, J., Zhao, Y., Ren, J., Zhou, D., Duyvesteyn, H. M. E., Ginn, H. M., Carrique, L., Malinauskas, T., Ruza, R. R., Shah, P. N. M., et al. (2020). Neutralisation of SARS-CoV-2 by destruction of the prefusion Spike. Cell Host & Microbe.

  • Irvine, D. J., and Read, B. J. (2020). Shaping humoral immunity to vaccines through antigen-displaying nanoparticles. Curr Opin Immunol 65, 1-6.

  • Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., et al. (2020). An mRNA Vaccine against SARS-CoV-2-Preliminary Report. N Engl J Med.

  • Kanekiyo, M., Bu, W., Joyce, M. G., Meng, G., Whittle, J. R., Baxa, U., Yamamoto, T., Narpala, S., Todd, J. P., Rao, S. S., et al. (2015). Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 162, 1090-1100.

  • Kanekiyo, M., Ellis, D., and King, N. P. (2019a). New Vaccine Design and Delivery Technologies. J Infect Dis 219, S88-S96.

  • Kanekiyo, M., and Graham, B. S. (2020). Next-Generation Influenza Vaccines. Cold Spring Harb Perspect Med.

  • Kanekiyo, M., Joyce, M. G., Gillespie, R. A., Gallagher, J. R., Andrews, S. F., Yassine, H. M., Wheatley, A. K., Fisher, B. E., Ambrozak, D. R., Creanga, A., et al. (2019b). Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat Immunol 20,362-372.

  • Kanekiyo, M., Wei, C. J., Yassine, H. M., McTamney, P. M., Boyington, J. C., Whittle, J. R., Rao, S. S., Kong, W. P., Wang, L., and Nabel, G. J. (2013). Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing HIN1 antibodies. Nature 499, 102-106.

  • Keech, C., Albert, G., Reed, P., Neal, S., Plested, J. S., Zhu, M., Cloney-Clark, S., Zhou, H., Patel, N., Frieman, M. B., et al. (2020). First-in-Human Trial of a SARS CoV 2 Recombinant Spike Protein Nanoparticle Vaccine. bioRxiv, 2020.08.05.20168435.

  • Kim, H. W., Canchola, J. G., Brandt, C. D., Pyles, G., Chanock, R. M., Jensen, K., and Parrott, R. H. (1969). Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89, 422-434.

  • King, N. P., Sheffler, W., Sawaya, M. R., Vollmar, B. S., Sumida, J. P., Andre, I., Gonen, T., Yeates, T. O., and Baker, D. (2012). Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171-1174.

  • Kirchdoerfer, R. N., Wang, N., Pallesen, J., Wrapp, D., Turner, H. L., Cottrell, C. A., Corbett, K. S., Graham, B. S., McLellan, J. S., and Ward, A. B. (2018). Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep 8, 15701.

  • Kreimer, A. R., Herrero, R., Sampson, J. N., Porras, C., Lowy, D. R., Schiller, J. T., Schiffman, M., Rodriguez, A. C., Chanock, S., Jimenez, S., et al. (2018). Evidence for single-dose protection by the bivalent HPV vaccine-Review of the Costa Rica HPV vaccine trial and future research studies. Vaccine 36,4774-4782.

  • Krenkova, J., Szekrenyes, A., Keresztessy, Z., Foret, F., and Guttman, A. (2013). Oriented immobilization of peptide-N-glycosidase F on a monolithic support for glycosylation analysis. J Chromatogr A 1322, 54-61.

  • Krishnamurty, A. T., Thouvenel, C. D., Portugal, S., Keitany, G. J., Kim, K. S., Holder, A., Crompton, P. D., Rawlings, D. J., and Pepper, M. (2016). Somatically Hypermutated Plasmodium-Specific IgM(+) Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge. Immunity 45, 402-414.

  • Kumru, O. S., Joshi, S. B., Smith, D. E., Middaugh, C. R., Prusik, T., and Volkin, D. B. (2014). Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals 42, 237-259.

  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature.

  • Lee, E. C., Liang, Q., Ali, H., Bayliss, L., Beasley, A., Bloomfield-Gerdes, T., Bonoli, L., Brown, R., Campbell, J., Carpenter, A., et al. (2014). Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol 32, 356-363.

  • Lee, J. M., Eguia, R., Zost, S. J., Choudhary, S., Wilson, P. C., Bedford, T., Stevens-Ayers, T., Boeckh, M., Hurt, A. C., Lakdawala, S. S., et al. (2019). Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. Elife 8.

  • Letko, M., Marzi, A., and Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology.

  • Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454.

  • Li, X., Wang, W., Zhao, X., Zai, J., Zhao, Q., Li, Y., and Chaillon, A. (2020). Transmission dynamics and evolutionary history of 2019-nCoV. J Med Virol 92, 501-511.

  • Lopez-Sagaseta, J., Malito, E., Rappuoli, R., and Bottomley, M. J. (2016). Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 14, 58-68.

  • Mandolesi, M., Sheward, D. J., Hanke, L., Ma, J., Pushparaj, P., Vidakovics, L. P., Kim, C., Loré, K., Dopico, X. C., Coquet, J. M., et al. (2020). SARS-CoV-2 protein subunit vaccination elicits potent neutralizing antibody responses. bioRxiv, 2020.2007.2031.228486.

  • Marcandalli, J., Fiala, B., Ols, S., Perotti, M., de van der Schueren, W., Snijder, J., Hodge, E., Benhaim, M., Ravichandran, R., Carter, L., et al. (2019). Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 176, 1420-1431 e0417.

  • McCallum, M., Walls, A. C., Bowen, J. E., Corti, D., and Veesler, D. (2020). Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nat Struct Mol Biol.

  • Menachery, V. D., Yount, B. L., Jr., Debbink, K., Agnihothram, S., Gralinski, L. E., Plante, J. A., Graham, R. L., Scobey, T., Ge, X. Y., Donaldson, E. F., et al. (2015). A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 21, 1508-1513.

  • Menachery, V. D., Yount, B. L., Jr., Sims, A. C., Debbink, K., Agnihothram, S. S., Gralinski, L. E., Graham, R. L., Scobey, T., Plante, J. A., Royal, S. R., et al. (2016). SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci USA 113,3048-3053.

  • Millet, J. K., and Whittaker, G. R. (2016). Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. Bio Protoc 6.

  • Mulligan, M. J., Lyke, K. E., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S. P., Neuzil, K., Raabe, V., Bailey, R., Swanson, K. A., et al. (2020). Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report. medRxiv, 2020.2006.2030.20142570.

  • Pallesen, J., Wang, N., Corbett, K. S., Wrapp, D., Kirchdoerfer, R. N., Turner, H. L., Cottrell, C. A., Becker, M. M., Wang, L., Shi, W., et al. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA 114, E7348-E7357.

  • Pinto, D., Park, Y. J., Beltramello, M., Walls, A. C., Tortorici, M. A., Bianchi, S., Jaconi, S., Culap, K., Zatta, F., De Marco, A., et al. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290-295.

  • Poh, C. M., Carissimo, G., Wang, B., Amrun, S. N., Lee, C. Y., Chee, R. S., Fong, S. W., Yeo, N. K., Lee, W. H., Torres-Ruesta, A., et al. (2020). Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun 11, 2806.

  • Polack, F. P., Teng, M. N., Collins, P. L., Prince, G. A., Exner, M., Regele, H., Lirman, D. D., Rabold, R., Hoffman, S. J., Karp, C. L., et al. (2002). A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med 196, 859-865.

  • Robbiani, D. F., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Gazumyan, A., Finkin, S., et al. (2020). Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature.

  • Rockx, B., Corti, D., Donaldson, E., Sheahan, T., Stadler, K., Lanzavecchia, A., and Baric, R. (2008). Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. J Virol 82, 3220-3235.

  • Rossen, J. W., de Beer, R., Godeke, G. J., Raamsman, M. J., Horzinek, M. C., Vennema, H., and Rottier, P. J. (1998). The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells. J Virol 72, 497-503.

  • Sahin, U., Muik, A., Derhovanessian, E., Vogler, I., Kranz, L. M., Vormehr, M., Baum, A., Pascal, K., Quandt, J., Maurus, D., et al. (2020). Concurrent human antibody and T<sub>H</sub>1 type T-cell responses elicited by a COVID-19 RNA vaccine. medRxiv, 2020.2007.2017.20140533.

  • Seydoux, E., Homad, L. J., MacCamy, A. J., Parks, K. R., Hurlburt, N. K., Jennewein, M. F., Akins, N. R., Stuart, A. B., Wan, Y.-H., Feng, J., et al. (2020). Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual. bioRxiv, 2020.2005.2012.091298.

  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., and Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature.

  • Smith, E. C., Sexton, N. R., and Denison, M. R. (2014). Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses. Annu Rev Virol 1, 111-132.

  • Stettler, K., Beltramello, M., Espinosa, D. A., Graham, V., Cassotta, A., Bianchi, S., Vanzetta, F., Minola, A., Jaconi, S., Mele, F., et al. (2016). Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353, 823-826.

  • Taylor, J. J., Martinez, R. J., Titcombe, P. J., Barsness, L. O., Thomas, S. R., Zhang, N., Katzman, S. D., Jenkins, M. K., and Mueller, D. L. (2012). Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen. J Exp Med 209,2065-2077.

  • ter Meulen, J., van den Brink, E. N., Poon, L. L., Marissen, W. E., Leung, C. S., Cox, F., Cheung, C. Y., Bakker, A. Q., Bogaards, J. A., van Deventer, E., et al. (2006). Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 3, e237.

  • Tortorici, M. A., and Veesler, D. (2019). Structural insights into coronavirus entry. Adv Virus Res 105, 93-116.

  • Traggiai, E., Becker, S., Subbarao, K., Kolesnikova, L., Uematsu, Y., Gismondo, M. R., Murphy, B. R., Rappuoli, R., and Lanzavecchia, A. (2004). An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10, 871-875.

  • Ueda, G., Antanasijevic, A., Fallas, J. A., Sheffler, W., Copps, J., Ellis, D., Hutchinson, G. B., Moyer, A., Yasmeen, A., Tsybovsky, Y., et al. (2020). Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. Elife 9.

  • Verkerke, H. P., Williams, J. A., Guttman, M., Simonich, C. A., Liang, Y., Filipavicius, M., Hu, S. L., Overbaugh, J., and Lee, K. K. (2016). Epitope-Independent Purification of Native-Like Envelope Trimers from Diverse HIV-1 Isolates. J Virol 90, 9471-9482.

  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292.e286.

  • Walls, A. C., Tortorici, M. A., Bosch, B. J., Frenz, B., Rottier, P. J. M., DiMaio, F., Rey, F. A., and Veesler, D. (2016a). Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114-117.

  • Walls, A. C., Tortorici, M. A., Frenz, B., Snijder, J., Li, W., Rey, F. A., DiMaio, F., Bosch, B. J., and Veesler, D. (2016b). Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23, 899-905.

  • Walls, A. C., Tortorici, M. A., Snijder, J., Xiong, X., Bosch, B. J., Rey, F. A., and Veesler, D. (2017). Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA 114,11157-11162.

  • Walls, A. C., Xiong, X., Park, Y. J., Tortorici, M. A., Snijder, J., Quispe, J., Cameroni, E., Gopal, R., Dai, M., Lanzavecchia, A., et al. (2019). Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 176, 1026-1039.e1015.

  • Wang, C., Li, W., Drabek, D., Okba, N. M. A., van Haperen, R., Osterhaus, A. D. M. E., van Kuppeveld, F. J. M., Haagmans, B. L., Grosveld, F., and Bosch, B.-J. (2020a). A human monoclonal antibody blocking SARS-CoV-2 infection. bioRxiv, 2020.2003.2011.987958.

  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., et al. (2020b). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cel 181, 894-904.e899.

  • Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S., and Crispin, M. (2020). Site-specific glycan analysis of the SARS-CoV-2 spike. Science.

  • Weis, D. D., Engen, J. R., and Kass, I. J. (2006). Semi-automated data processing of hydrogen exchange mass spectra using HX-Express. J Am Soc Mass Spectrom 17, 1700-1703.

  • Woo, P. C., Lau, S. K., Li, K. S., Poon, R. W., Wong, B. H., Tsoi, H. W., Yip, B. C., Huang, Y., Chan, K. H., and Yuen, K. Y. (2006). Molecular diversity of coronaviruses in bats. Virology 351, 180-187.

  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., and McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263.

  • Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., Zhao, C., Li, Z., Li, S., Bi, Y., Yang, Y., et al. (2020). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 1274-1278.

  • Xiong, X., Qu, K., Ciazynska, K. A., Hosmillo, M., Carter, A. P., Ebrahimi, S., Ke, Z., Scheres, S. H. W., Bergamaschi, L., Grice, G. L., et al. (2020). A thermostable, closed SARS-CoV-2 spike protein trimer. Nat Struct Mol Biol.

  • Xiong, X., Tortorici, M. A., Snijder, J., Yoshioka, C., Walls, A. C., Li, W., McGuire, A. T., Rey, F. A., Bosch, B. J., and Veesler, D. (2018). Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. J Virol 92.

  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448.

  • Yang, Y., Liu, C., Du, L., Jiang, S., Shi, Z., Baric, R. S., and Li, F. (2015). Two Mutations Were Critical for Bat-to-Human Transmission of Middle East Respiratory Syndrome Coronavirus. J Virol 89, 9119-9123.

  • Yu, J., Tostanoski, L. H., Peter, L., Mercado, N. B., McMahan, K., Mahrokhian, S. H., Nkolola, J. P., Liu, J., Li, Z., Chandrashekar, A., et al. (2020). DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science.

  • Yuan, M., Wu, N. C., Zhu, X., Lee, C. D., So, R. T. Y., Lv, H., Mok, C. K. P., and Wilson, I. A. (2020). A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science.

  • Zhang, Z., Zhang, A., and Xiao, G. (2012). Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing. Anal Chem 84,4942-4949.

  • Zhou, D., Duyvesteyn, H. M. E., Chen, C. P., Huang, C. G., Chen, T. H., Shih, S. R., Lin, Y. C., Cheng, C. Y., Cheng, S. H., Huang, Y. C., et al. (2020a). Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol.

  • Zhou, H., Chen, X., Hu, T., Li, J., Song, H., Liu, Y., Wang, P., Liu, D., Yang, J., Holmes, E. C., et al. (2020b). A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Curr Biol 30, 2196-2203.e2193.

  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., et al. (2020c). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.

  • Zhu, F. C., Li, Y. H., Guan, X. H., Hou, L. H., Wang, W. J., Li, J. X., Wu, S. P., Wang, B. S., Wang, Z.,

  • Wang, L., et al. (2020a). Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395, 1845-1854.

  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al. (2020b). A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med.

  • Zost, S. J., Gilchuk, P., Case, J. B., Binshtein, E., Chen, R. E., Nkolola, J. P., SchAfer, A., Reidy, J. X., Trivette, A., Nargi, R. S., et al. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature.



Methods









TABLE 6







Resources









REAGENT or RESOURCE
SOURCE
IDENTIFIER










Antibodies









CR3022
(ter Meulen et al., 2006)
N/A


S309
(Pinto et al., 2020)
N/A


B38
(Wu et al., 2020)
N/A


Goat anti-human HRP
Invitrogen
Cat #A18817 Lot #65-180-071919


Goat anti-mouse HRP
Invitrogen
Cat #626520 Lot #TG275230


Horse anti-mouse HRP
Cell Signaling Technology
Cat #7076S


Anti-mouse Fc Block
BD Biosciences
Cat#553142 RRID: AB_394657


Anti-mouse B220 BUV737
BD Biosciences
Cat#612838 RRID: AB_2738813


Anti-mouse CD3 PerCP-Cy5.5
BD Biosciences
Cat#551163 RRID: AB_394082


Anti-mouse CD138 BV650
BD Biosciences
Cat#564068 RRID: AB_2738574


Anti-mouse CD38 Alexa ™ Fluor
Thermo Fisher Scientific
Cat#56-0381-82


700

RRID: AB_657740


Anti-mouse GL7 ef450
Thermo Fisher Scientific
Cat#48-5902-82




RRID: AB_10870775


Anti-mouse IgM BV786
BD Biosciences
Cat#743328 RRID: AB_2741429


Anti-mouse IgD BUV395
BD Biosciences
Cat#565988 RRID: AB_2737433


Anti-mouse CD73 PE-Cy7
Thermo Fisher Scientific
Cat#25-0731-82




RRID: AB_10853348


Anti-mouse CD80 BV605
BD Biosciences
Cat#563052 RRID: AB_273795







Biological Samples









BALB/c mice
Jackson Laboratory
Cat #000651


Kymice ™
Kymab


20/130 COVID-19 plasma
NIBSC
20/130







Chemicals, Peptides, and Recombinant Proteins









AddaVax ™ adjuvant
InvivoGen
Cat# vac-adx-10


ABTS
ThermoFisher
Cat# 37615


TMB
SeraCare
Cat# 5120-0083


Thrombin
Sigma
Cat# T9326-150UN


Immobilized Papain
ThermoScientific
Cat# 20341


LysC-endoproteinase
NEB
Cat# P8109S


hACE2-Fc
This study
N/A


EZ-Link ™ Sulfo-NHS-LC
Thermo Fisher Scientific
Cat#21435


Biotinylation Kit


Streptavidin-APC
Agilent
Cat#PJ27S-1


Streptavidin-PE
Agilent
Cat#PJRS25-1


Anti-PE MicroBeads
Miltenyi Biotec
Cat#130-048-801


Anti-APC MicroBeads
Miltenyi Biotec
Cat#130-090-855


DyLight ™ 755 Antibody
Thermo Fisher Scientific
Cat#84538


Labeling Kit


AlexaFluor ™ 647 Protein
Thermo Fisher Scientific
Cat#A20173


Labeling Kit







Experimental Models: Cell Lines









Expi 293F
ThermoFisher
Cat #A14527


Vero(C1008)E6 adherent
ECACC General Collection
Cat #85020206


HEK-ACE2 adherent
BEI (Gift from Bloom lab)
NR-52511


HEK293T/17 Adherent
ATCC
Cat# CRL-11268


Vero E6
ATCC
Cat# CRL-1586







Recombinant DNA









pCMV-RBD-12GS-50A
GenScript (this study)
N/A


pCMVR-RBD-16GS-50A
GenScript (this study)
N/A


pCMV-RBD-8GS-50A
GenScript (this study)
N/A


S-2P trimer
GenScript (Walls et al. 2020)
BEI NR-52421


RBD
GenScript (Walls et al. 2020)
BEI NR-52422


SARS-CoV-2 S full length
GenScript (Walls et al. 2020)
BEI NR-52420


Murine leukemia virus
Millet and Whittaker 2016
N/A


gag-pol


pTG-Luciferase
Millet and Whittaker 2016
N/A







Software and Algorithms









UCSF ChimeraX
(Goddard et al., 2018)
https://www.rbvi.ucsf.edu/chimerax/


Prism ™
Graphpad
https://www.graphpad.com/scientific-software/prism/


FlowJo ™ v10
FlowJo
https://www.flowjo.com







Other









Octet ™ Biosensors:
Sartorius (FortéBio)
Cat# 18-5010


protein A


Octet ™ Biosensors:
Sartorius (FortéBio)
Cat# 18-5120


Anti-Penta-HIS (HIS1K)


Octet ™ Biosensors: NTA
Sartorius (FortéBio)
Cat# 18-5101


EM supplies 300 mesh grids
Ted Pella
Cat# 01843-F


Filter paper
Cytiva
Cat# 1004047


Uranyl formate
SPI Chem
Cat# 02545-AA


Unis ™ Capillary Cassettes
Unchained Labs
Cat# 201-1010


PrismA ™ Protein A resin
Cytiva
Cat# 17549802


Superdex ™ 200 Increase SEC
Cytiva
Cat# 28-9909-44


column


Superose ™ 6 Increase SEC
Cytiva
Cat# 29091596


column


Talon ™ resin
TaKaRa
Cat# 635652


VL26 Vantage L column
Millipore
Cat# 96100250


Excel resin
Cytiva
Cat# 17371203


Patterson Veterinary,
Patterson
Cat# 07-893-1389


Isoflurane, USP


Eppendorf ® Safe-Lock
Sigma Millipore
Cat# T9661


microcentrifuge tubes 1.5-mL


BD Luer-Lok ™ 1-mL Syringe
BD
Cat# BD309628


BD Single Use Needles 25G × ⅞
VWR
Cat# BD305124


BD PrecisionGlide ™ Needle
BD
Ref# 305120


23G × 1¼


BD Single Use Needles 27G × 1¼
VWR
Cat# BD305136


EndoSafe ™ LAL Test Cartridges
Charles River Labs
Cat # PTS20005F


Lemo21 ™ (DE3)
New England BioLabs
Cat#C2528J


Isopropyl-B-D-thiogalactoside
Sigma Aldrich
Cat#I6758


(IPTG)


Kanamycin Sulfate
Sigma-Aldrich
Cat#K1876


HiLoad ™ S200 pg
Cytiva
Cat#28989336


Ni Sepharose ™ 6 FF
Cytiva
Cat#17531808


HisTrap ™ FF
Cytiva
Cat#17525501









Cell Lines

HEK293F is a female human embryonic kidney cell line transformed and adapted to grow in suspension (Life Technologies). HEK293F cells were grown in 293FreeStyle™ expression medium (Life Technologies), cultured at 37° C. with 8% C02 and shaking at 130 rpm. Expi293F™ cells are derived from the HEK293F cell line (Life Technologies). Expi293F™ cells were grown in Expi293™ Expression Medium (Life Technologies), cultured at 36.5° C. with 8% CO2 and shaking at 150 rpm. VeroE6 is a female kidney epithelial cell from African green monkey. HEK293T/17 is a female human embryonic kidney cell line (ATCC). The HEK-ACE2 adherent cell line was obtained through BEI Resources, NIAID, NIH: Human Embryonic Kidney Cells (HEK-293T) Expressing Human Angiotensin-Converting Enzyme 2, HEK-293T-hACE2 Cell Line, NR-52511. All adherent cells were cultured at 37° C. with 8% C02 in flasks with DMEM+10% FBS (Hyclone)+1% penicillin-streptomycin. Cell lines other than Expi293F were not tested for mycoplasma contamination nor authenticated.


Mice

Female BALB/c mice four weeks old were obtained from Jackson Laboratory, Bar Harbor, Maine. Animal procedures were performed under the approvals of the Institutional Animal Care and Use Committee of University of Washington, Seattle, WA, and University of North Carolina, Chapel Hill, NC. Kymab's proprietary IntelliSelect™ Transgenic mouse platform, known as Darwin™, has complete human antibody loci with a non-rearranged human antibody variable and constant germline repertoire. Consequently, the antibodies produced by these mice are fully human.


Pigtail Macaques

Two adult male Pigtail macaques (Macaca nemestrina) were immunized in this study. All animals were housed at the Washington National Primate Research Center (WaNPRC), an American Association for the Accreditation of Laboratory Animal Care International (AAALAC)-accredited institution, as previously described (Erasmus et al., 2020). All procedures performed on the animals were with the approval of the University of Washington's Institutional Animal Care and Use Committee (IACUC).


Convalescent Human Sera

Samples collected between 1-60 days post infection from 31 individuals who tested positive for SARS-CoV-2 by PCR were profiled for anti-SARS-CoV-2 S antibody responses and the 29 with anti-S Ab responses were maintained in the cohort (FIGS. 4 and 5). Individuals were enrolled as part of the HAARVI study at the University of Washington in Seattle, WA. Baseline sociodemographic and clinical data for these individuals are summarized in Table 5. This study was approved by the University of Washington Human Subjects Division Institutional Review Board (STUDY00000959 and STUDY00003376). All experiments were performed in at least two technical and two biological replicates (for ELISA and pseudovirus neutralization assays). One sample is the 20/130 COVID-19 plasma from NIBSC.


Plasmid Construction

The SARS-CoV-2 RBD (BEI NR-52422) construct was synthesized by GenScript into pcDNA3.1-with an N-terminal mu-phosphatase signal peptide and a C-terminal octa-histidine tag (GHHHHHHHH) (SEQ ID NO:164). The boundaries of the construct are N-32sRFPN331 and 528KKST531-C(Walls et al., 2020). The SARS-CoV-2 S-2P ectodomain trimer (GenBank: YP_009724390.1, BEI NR-52420) was synthesized by GenScript into pCMV with an N-terminal mu-phosphatase signal peptide and a C-terminal TEV cleavage site (GSGRENLYFQG) (SEQ ID NO: 165), T4 fibritin foldon (GGGSGYIPEAPRDGQAYVRKDGEWVLLSTFL) (SEQ ID NO:166), and octa-histidine tag (GHHHHHHHH) (SEQ ID NO:164) (Walls et al., 2020). The construct contains the 2P mutations (proline substitutions at residues 986 and 987; (Pallesen et al., 2017)) and an 682SGAG685 substitution at the furin cleavage site. The SARS-CoV-2 RBD was genetically fused to the N terminus of the trimeric I53-50A nanoparticle component using linkers of 8, 12, or 16 glycine and serine residues. RBD-8GS- and RBD-12GS-I53-50A fusions were synthesized and cloned by Genscript into pCMV. The RBD-16GS-I53-50A fusion was cloned into pCMV/R using the XbaI and AvrII restriction sites and Gibson assembly (Gibson et al., 2009). All RBD-bearing components contained an N-terminal mu-phosphatase signal peptide and a C-terminal octa-histidine tag. The macaque or human ACE2 ectodomain was genetically fused to a sequence encoding a thrombin cleavage site and a human Fc fragment at the C-terminal end. hACE2-Fc was synthesized and cloned by GenScript with a BM40 signal peptide. Plasmids were transformed into the NEB 5-alpha strain of E. coli (New England Biolabs) for subsequent DNA extraction from bacterial culture (NucleoBond Xtra Midi™ kit) to obtain plasmid for transient transfection into Expi293F cells. The amino acid sequences of all novel proteins used in this study can be found in Table 3.


Transient Transfection

SARS-CoV-2 S and ACE2-Fc proteins were produced in Expi293F cells grown in suspension using Expi293F expression medium (Life Technologies) at 33° C., 70% humidity, 8% CO2 rotating at 150 rpm. The cultures were transfected using PEI-MAX™ (Polyscience) with cells grown to a density of 3.0 million cells per mL and cultivated for 3 days. Supernatants were clarified by centrifugation (5 minutes at 4000 ref), addition of PDADMAC solution to a final concentration of 0.0375% (Sigma Aldrich, #409014), and a second spin (5 minutes at 4000 ref).


Genes encoding CR3022 heavy and light chains were ordered from GenScript and cloned into pCMV/R. Antibodies were expressed by transient co-transfection of both heavy and light chain plasmids in Expi293F cells using PEI MAX™ (Polyscience) transfection reagent. Cell supernatants were harvested and clarified after 3 or 6 days as described above.


Protein Purification

Proteins containing His tags were purified from clarified supernatants via a batch bind method where each clarified supernatant was supplemented with 1 M Tris-HCl pH 8.0 to a final concentration of 45 mM and 5 M NaCl to a final concentration of ˜310 mM. Talon cobalt affinity resin (Takara) was added to the treated supernatants and allowed to incubate for 15 minutes with gentle shaking. Resin was collected using vacuum filtration with a 0.2 μm filter and transferred to a gravity column. The resin was washed with 20 mM Tris pH 8.0, 300 mM NaCl, and the protein was eluted with 3 column volumes of 20 mM Tris pH 8.0, 300 mM NaCl, 300 mM imidazole. The batch bind process was then repeated and the first and second elutions combined. SDS-PAGE was used to assess purity. RBD-I53-50A fusion protein IMAC elutions were concentrated to >1 mg/mL and subjected to three rounds of dialysis into 50 mM Tris pH 7, 185 mM NaCl, 100 mM Arginine, 4.5% glycerol, and 0.75% w/v 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) in a hydrated 10K molecular weight cutoff dialysis cassette (Thermo Scientific). S-2P IMAC elution fractions were concentrated to −1 mg/mL and dialyzed three times into 50 mM Tris pH 8, 150 mM NaCl, 0.25% L-Histidine in a hydrated 10K molecular weight cutoff dialysis cassette (Thermo Scientific). Due to inherent instability, the S-2P trimer was immediately flash frozen and stored at −80° C.


Clarified supernatants of cells expressing monoclonal antibodies and human or macaque ACE2-Fc were purified using a MabSelect PrismA™ 2.6×5 cm column (Cytiva) on an AKTA Avant150 FPLC (Cytiva). Bound antibodies were washed with five column volumes of 20 mM NaPO4, 150 mM NaCl pH 7.2, then five column volumes of 20 mM NaPO4, 1 M NaCl pH 7.4 and eluted with three column volumes of 100 mM glycine at pH 3.0. The eluate was neutralized with 2 M Trizma base to 50 mM final concentration. SDS-PAGE was used to assess purity.


Recombinant S309 was expressed as a Fab in expiCHO cells transiently co-transfected with plasmids expressing the heavy and light chain, as described above (see Transient transfection) (Stettler et al., 2016). The protein was affinity-purified using a HiTrap™ Protein A Mab select Xtra™ column (Cytiva) followed by desalting against 20 mM NaPO4, 150 mM NaCl pH 7.2 using a HiTrap™ Fast desalting column (Cytiva). The protein was sterilized with a 0.22 μm filter and stored at 4° C. until use.


Microbial Protein Expression and Purification

The I53-50A and I53-50B.4.PT1 proteins were expressed in Lemo21(DE3) (NEB) in LB (10 g Tryptone, 5 g Yeast Extract, 10 g NaCl) grown in 2 L baffled shake flasks or a 10 L BioFlo 320 Fermenter (Eppendorf). Cells were grown at 37° C. to an OD600 ˜0.8, and then induced with 1 mM IPTG. Expression temperature was reduced to 18° C. and the cells shaken for ˜16 h. The cells were harvested and lysed by microfluidization using a Microfluidics M110P at 18,000 psi in 50 mM Tris, 500 mM NaCl, 30 mM imidazole, 1 mM PMSF, 0.75% CHAPS. Lysates were clarified by centrifugation at 24,000 g for 30 min and applied to a 2.6×10 cm Ni Sepharose™ 6 FF column (Cytiva) for purification by IMAC on an AKTA Avant150 FPLC system (Cytiva). Protein of interest was eluted over a linear gradient of 30 mM to 500 mM imidazole in a background of 50 mM Tris pH 8, 500 mM NaCl, 0.75% CHAPS buffer. Peak fractions were pooled, concentrated in 10K MWCO centrifugal filters (Millipore), sterile filtered (0.22 μm) and applied to either a Superdex™ 200 Increase 10/300, or HiLoad™ S200 μg GL SEC column (Cytiva) using 50 mM Tris pH 8, 500 mM NaCl, 0.75% CHAPS buffer. I53-50A elutes at ˜0.6 column volume (CV). I53-50B.4PT1 elutes at ˜0.45 CV. After sizing, bacterial-derived components were tested to confirm low levels of endotoxin before using for nanoparticle assembly.


In Vitro Nanoparticle Assembly

Total protein concentration of purified individual nanoparticle components was determined by measuring absorbance at 280 nm using a UV/vis spectrophotometer (Agilent Cary 8454) and calculated extinction coefficients (Gasteiger et al., 2005). The assembly steps were performed at room temperature with addition in the following order: RBD-I53-50A trimeric fusion protein, followed by additional buffer as needed to achieve desired final concentration, and finally I53-50B.4PT1 pentameric component (in 50 mM Tris pH 8, 500 mM NaCl, 0.75% w/v CHAPS), with a molar ratio of RBD-I53-50A:I53-B.4PT1 of 1.1:1. In order to produce partial valency RBD-I53-50 nanoparticles (50% RBD-I53-50), both RBD-I53-50A and unmodified I53-50A trimers (in 50 mM Tris pH 8, 500 mM NaCl, 0.75% w/v CHAPS) were added in a slight molar excess (1.1×) to I53-50B.4PT1. All RBD-I53-50 in vitro assemblies were incubated at 2-8° C. with gentle rocking for at least 30 minutes before subsequent purification by SEC in order to remove residual unassembled component. Different columns were utilized depending on purpose: Superose™ 6 Increase 10/300 GL column was used analytically for nanoparticle size estimation, a Superdex™ 200 Increase 10/300 GL column used for small-scale pilot assemblies, and a HiLoad™ 26/600 Superdex™ 200 pg column used for nanoparticle production. Assembled particles elute at ˜11 mL on the Superose™ 6 column and in the void volume of Superdex™ 200 columns. Assembled nanoparticles were sterile filtered (0.22 μm) immediately prior to column application and following pooling of fractions.


hACE2-Fc and CR3022 Digestion


hACE2-Fc was digested with thrombin protease (Sigma Aldrich) in the presence of 2.5 mM CaCl2 at a 1:300 w/w thrombin:protein ratio. The reaction was incubated at ambient temperature for 16-18 hours with gentle rocking. Following incubation, the reaction mixture was concentrated using Ultracel™ 10K centrifugal filters (Millipore Amicon Ultra) and sterile filtered (0.22 μM). Cleaved hACE2 monomer was separated from uncleaved hACE2-Fc and the cleaved Fc regions using Protein A purification (see Protein purification above) on a HiScreen MabSelect SuRe™ column (Cytiva) using an AKTA avant 25 FPLC (Cytiva). Cleaved hACE2 monomer was collected in the flow through, sterile filtered (0.22 μm), and quantified by UV/vis.


LysC (New England BioLabs) was diluted to 10 ng/μL in 10 mM Tris pH 8 and added to CR3022 IgG at 1:2000 w/w LysC:IgG and subsequently incubated for 18 hours at 37° C. with orbital shaking at 230 rpm. The cleavage reaction was concentrated using Ultracel™ 10K centrifugal filters (Millipore Amicon Ultra) and sterile filtered (0.22 μM). Cleaved CR3022 mAb was separated from uncleaved CR3022 IgG and the Fc portion of cleaved IgG, using Protein A purification as described above. Cleaved CR3022 was collected in the flow through, sterile filtered (0.22 μm), and quantified by UV/vis.


Bio-Layer Interferometry (Antigenicity)

Antigenicity assays were performed and analyzed using BLI on an Octet™ Red 96 System (Pall Forté Bio/Sartorius) at ambient temperature with shaking at 1000 rpm. RBD-I53-50A trimeric components and monomeric RBD were diluted to 40 μg/mL in Kinetics buffer (1× HEPES-EP+(Pall Fortd Bio), 0.05% nonfat milk, and 0.02% sodium azide). Monomeric hACE2 and CR3022 Fab were diluted to 750 nM in Kinetics buffer and serially diluted three-fold for a final concentration of 3.1 nM. Reagents were applied to a black 96-well Greiner Bio-one microplate at 200 μL per well as described below. RBD-I53-50A components or monomeric RBD were immobilized onto Anti-Penta-HIS (HIS1K) biosensors per manufacturer instructions (Fortd Bio) except using the following sensor incubation times. HIS1K biosensors were hydrated in water for 10 minutes, and were then equilibrated in Kinetics buffer for 60 seconds. The HIS1K tips were loaded with diluted trimeric RBD-I53-50A component or monomeric RBD for 150 seconds and washed with Kinetics buffer for 300 seconds. The association step was performed by dipping the HIS1K biosensors with immobilized immunogen into diluted hACE2 monomer or CR3022 Fab for 600 seconds, then dissociation was measured by inserting the biosensors back into Kinetics buffer for 600 seconds. The data were baseline subtracted and the plots fitted using the Pall™ FortéBio/Sartorius analysis software (version 12.0). Plots in FIG. 8 show the association and dissociation steps.


Bio-Layer Interferometry (Accessibility)

Binding of mACE2-Fc, CR3022 IgG, and S309 IgG to monomeric RBD, RBD-I53-50A trimers, and RBD-I53-50 nanoparticles was analyzed for accessibility experiments and real-time stability studies using an Octet™ Red 96 System (Pall™ FortéBio/Sartorius) at ambient temperature with shaking at 1000 rpm. Protein samples were diluted to 100 nM in Kinetics buffer. Buffer, immunogen, and analyte were then applied to a black 96-well Greiner Bio-one microplate at 200 μL per well. Protein A biosensors (FortéBio/Sartorius) were first hydrated for 10 minutes in Kinetics buffer, then dipped into either mACE2-Fc, CR3022, or S309 IgG diluted to 10 μg/mL in Kinetics buffer in the immobilization step. After 500 seconds, the tips were transferred to Kinetics buffer for 60 seconds to reach a baseline. The association step was performed by dipping the loaded biosensors into the immunogens for 300 seconds, and subsequent dissociation was performed by dipping the biosensors back into Kinetics buffer for an additional 300 seconds. The data were baseline subtracted prior to plotting using the FortéBio analysis software (version 12.0). Plots in FIG. 2 show the 600 seconds of association and dissociation.


Negative Stain Electron Microscopy

RBD-I53-50 nanoparticles were first diluted to 75 μg/mL in 50 mM Tris pH 7, 185 mM NaCl, 100 mM Arginine, 4.5% v/v Glycerol, 0.75% w/v CHAPS, and S-2P protein was diluted to 0.03 mg/mL in 50 mM Tris pH 8, 150 mM NaCl, 0.25% L-Histidine prior to application of 3 μL of sample onto freshly glow-discharged 300-mesh copper grids. Sample was incubated on the grid for 1 minute before the grid was dipped in a 50 μL droplet of water and excess liquid blotted away with filter paper (Whatman). The grids were then dipped into 6 μL of 0.75% w/v uranyl formate stain. Stain was blotted off with filter paper, then the grids were dipped into another 6 μL of stain and incubated for ˜70 seconds. Finally, the stain was blotted away and the grids were allowed to dry for 1 minute. Prepared grids were imaged in a Talos model L120C electron microscope at 45,000× (nanoparticles) or 92,000× magnification (S-2P).


Dynamic Light Scattering

Dynamic Light Scattering (DLS) was used to measure hydrodynamic diameter (Dh) and % Polydispersity (% Pd) of RBD-I53-50 nanoparticle samples on an UNcle Nano-DSF (UNchained Laboratories). Sample was applied to a 8.8 μL quartz capillary cassette (UNi, UNchained Laboratories) and measured with 10 acquisitions of 5 seconds each, using auto-attenuation of the laser. Increased viscosity due to 4.5% v/v glycerol in the RBD nanoparticle buffer was accounted for by the UNcle™ Client software in Dh measurements.


Guanidine HCl Denaturation

Monomeric RBD, RBD-I53-50A fusion proteins, and RBD-I53-50 nanoparticle immunogens were diluted to 2.5 μM in 50 mM Tris pH 7.0, 185 mM NaCl, 100 mM Arginine, 4.5% v/v glycerol, 0.75% w/v CHAPS, and guanidine chloride [GdnHCl] ranging from 0 M to 6.5 M, increasing in 0.25 M increments, and prepared in triplicate. S-2P trimer was also diluted to 2.5 μM using 50 mM Tris pH 8, 150 mM NaCl, 0.25% L-Histidine, and the same GuHCl concentration range. Dilutions were mixed 10× by pipetting. The samples were then incubated 18-19 hours at ambient temperature. Using a Nano-DSF (UNcle™, UNchained Laboratories) and an 8.8 μL quartz capillary cassette (UNi™, UNchained Laboratories), fluorescence spectra were collected in triplicate, exciting at 266 nm and measuring emission from 200 nm to 750 nm at 25° C.


Endotoxin Measurements

Endotoxin levels in protein samples were measured using the EndoSafem Nexgen-MCS System (Charles River). Samples were diluted 1:50 or 1:100 in Endotoxin-free LAL reagent water, and applied into wells of an EndoSafe™ LAL reagent cartridge. Charles River EndoScan™-V software was used to analyze endotoxin content, automatically back-calculating for the dilution factor. Endotoxin values were reported as EU/mL which were then converted to EU/mg based on UV/vis measurements. Our threshold for samples suitable for immunization was <50 EU/mg.


UV/vis

Ultraviolet-visible spectrophotometry (UV/vis) was measured using an Agilent Technologies Cary™ 8454. Samples were applied to a 10 mm, 50 μL quartz cell (Starna Cells, Inc.) and absorbance was measured from 180 to 1000 nm. Net absorbance at 280 nm, obtained from measurement and single reference wavelength baseline subtraction, was used with calculated extinction coefficients and molecular weights to obtain protein concentration. The ratio of absorbance at 320/280 nm was used to determine relative aggregation levels in real-time stability study samples. Samples were diluted with respective purification/instrument blanking buffers to obtain an absorbance between 0.1 and 1.0. All data produced from the UV/vis instrument was processed in the 845× UV/visible System software.


Glycan Profiling

To identify site-specific glycosylation profiles, including glycoform distribution and occupancy determination, a bottom up mass spectrometry (MS) approach was utilized. Aliquots of 1 mg/mL monomeric, 8GS, 12GS and 16GS RBD protein were prepared to evaluate the glycosylation profiles at N331 and N343 of the four RBD variants. Comprehensive glycoprofiling on the stabilized Spike ectodomain (S-2P) was performed in parallel using 1.5 mg/mL SARS-CoV-2 S-2P protein. All the samples were denatured in a solution containing 25 mM Tris (pH 8.0), 7 M guanidinium chloride (GdnHCl) and 50 mM dithiothreitol (DTT) at 90° C. for 30 minutes. Reduced cysteines were alkylated by adding fresh iodoacetamide (IAA) to 100 mM and incubating at room temperature for 1 hour in the dark. 50 mM excess DTT was then added to quench the remaining IAA. The GndHCl concentration was reduced to 0.6 M by diluting the samples 11-fold with a 10 mM Tris (pH 8.0), 2 mM calcium chloride solution. Each sample was then split in half. One half (275 μL) was mixed with 10 units of recombinant Peptide N-glycanase F (GST-PNGase F) (Krenkova et al., 2013) and incubated at 37° C. for 1 hour in order to convert glycosylated Asn into deglycosylated Asp.


Protease digestions were performed in the following manner: all RBD samples and one S-2P sample were digested with Lys-C at a ratio of 1:40 (w/w) for RBD and 1:30 (w/w) for S-2P for 4 hours at 37° C., followed by Glu-C digestion overnight at the same ratios and conditions. The other three S-2P samples were digested with trypsin, chymotrypsin and alpha lytic protease, respectively, at a ratio of 1:30 (w/w) overnight at 37° C. All the digestion proteases used were MS grade (Promega). The next day, the digestion reactions were quenched by 0.02% formic acid (FA, Optima™, Fisher).


The glycoform determination of four S-2P samples was performed by nano LC-MS using an Orbitrap Fusion™ mass spectrometer (Thermo Fisher). The digested samples were desalted by Sep-Pak C18 cartridges (Waters) following the manufacturer's suggested protocol. A 2 cm trapping column and a 35 cm analytical column were freshly prepared in fused silica (100 μm ID) with 5 μM ReproSil-Pur™ C18 AQ beads (Dr. Maisch). 8 μL sample was injected and run by a 60-minute linear gradient from 2% to 30% acetonitrile in 0.1% FA, followed by 10 minutes of 80% acetonitrile. An EThcD method was optimized as followed: ion source: 2.1 kV for positive mode; ion transfer tube temperature: 350° C.; resolution: MS1=120000, MS2=30000; AGC target: MS1=2e5, MS2=1e5; and injection time: MS1=50 ms, MS2=60 ms.


Glycopeptide data were visualized and processed by Byonic™ and Byologic™ (Version 3.8, Protein Metrics Inc.) using a 6 ppm precursor and 10 ppm fragment mass tolerance. Glycopeptides were searched using the N-glycan 309 mammalian database in Protein Metrics PMI-Suite and scored based on the assignment of correct c- and z-fragment ions. The true-positive entities were further validated by the presence of glycan oxonium ions m/z at 204 (HexNAc ions) and 366 (HexNAcHex ions) and the absence in its corresponding spectrum in the deglycosylated sample. The relative abundance of each glycoform was determined by the peak area analyzed in Byologic™. Glycoforms were categorized in Oligo (Oligomannose), Hybrid, and Complex as well as subtypes in Complex, described in the previous study (Watanabe et al., 2020). HexNAc(2)Hex(9-5) is M(annose)9 to M5; HexNAc(3)Hex(5-6) is classified as Hybrid; HexNAc(3)Hex(3-4)X is A1 subtype; HexNAc(4)X is A2/A1B; HexNAc(5)X is A3/A2B and HexNAc(6)X is A4/A3B subtype. Hybrid and Complex forms with fucosylation are separately listed as FHybrid and FComplex (eg. FA1), respectively.


Glycan occupancy analysis and glycoform determination of the four RBD variants were performed by LC-MS on the Synapt G2-Si™ TOF mass spectrometer coupled to an Acquity™ UPLC system (Waters). Samples were resolved over a Waters CSH C18 1×100 mm 1.7 μm column with a linear gradient from 3% to 40% B over 30 minutes (A: 98% water, 2% acetonitrile, 0.1% FA; B: 100% acetonitrile, 0.1% FA). Data dependent acquisition (DDA) method was utilized with precursor mass range 300-2000, MS/MS mass range 50-2000 and a collision energy ramped from 70 to 100 V. Chromatographic peaks for the most abundant and non-overlapped isotopic peaks were determined and integrated with MassLynx™ (Waters). All the water and organic solvents used, unless specifically stated, were MS grade (Optima™, Fisher). The peak area ratio of the non-glycosylated (Asn) to the deglycosylated (Asp) glycopeptide was used to measure the glycan occupancy at each site.


Hydrogen/Deuterium-Exchange Mass Spectrometry

3 μg of monomeric RBD and RBD-8GS-I53-50A were incubated and H/D exchanged (HDX) in the deuteration buffer (pH* 7.6, 85% D2O, Cambridge Isotope Laboratories, Inc.) for 3, 60, 1800, and 72000 seconds, respectively, at 23° C. Samples were subsequently mixed 1:1 with ice-cold quench buffer (200 mM tris(2-chlorethyl) phosphate (TCEP), 8 M Urea, 0.2% formic acid) for a final pH 2.5 and immediately flash frozen in liquid nitrogen. Samples were in-line pepsin digested and analyzed by LC-MS-IMS on Synapt G2-Si™ TOF mass spectrometer (Waters) as previously described (Verkerke et al., 2016) with an 18 minute gradient applied. A fully deuteration control was made by collecting the pepsin digest eluate from an undeuterated sample LC-MS run, drying by speedvac, incubating in deuteration buffer for 1 hour at 85° C., and quenching the same as all other HDX samples. Internal exchange standards (Pro-Pro-Pro-Ile [PPPI] and Pro-Pro-Pro-Phe [PPPF]) were added in each sample to ensure consistent labeling conditions for all samples (Zhang et al., 2012). Pepsin digests for undeuterated samples were also analyzed by nano LC-MS using an Orbitrap Fusion™ mass spectrometer (Thermo Fisher) with the settings as described above for glycoprofiling. The data was then processed by Byonic™ to obtain the peptide reference list. Peptides were manually validated using DriftScope™ (Waters) and identified with orthogonal retention time (rt) and drift time (dt) coordinates. Deuterium uptake analysis was performed with HX-Express v2 (Guttman et al., 2013; Weis et al., 2006). Peaks were identified from the peptide spectra with binomial fitting applied. The deuterium uptake level was normalized relative to fully deuterated standards.


Mouse Immunizations and Challenge

Female BALB/c (Stock: 000651) mice were purchased at the age of four weeks from The Jackson Laboratory, Bar Harbor, Maine, and maintained at the Comparative Medicine Facility at the University of Washington, Seattle, WA, accredited by the American Association for the Accreditation of Laboratory Animal Care International (AAALAC). At six weeks of age, 10 mice per dosing group were vaccinated with a prime immunization, and three weeks later mice were boosted with a second vaccination. Prior to inoculation, immunogen suspensions were gently mixed 1:1 vol/vol with AddaVax™ adjuvant (Invivogen, San Diego, CA) to reach a final concentration of 0.009 or 0.05 mg/mL antigen. Mice were injected intramuscularly into the gastrocnemius muscle of each hind leg using a 27-gauge needle (BD, San Diego, CA) with 50 μL per injection site (100 μL total) of immunogen under isoflurane anesthesia. To obtain sera all mice were bled two weeks after prime and boost immunizations. Blood was collected via submental venous puncture and rested in 1.5 mL plastic Eppendorf tubes at room temperature for 30 minutes to allow for coagulation. Serum was separated from hematocrit via centrifugation at 2000 g for 10 minutes. Complement factors and pathogens in isolated serum were heat-inactivated via incubating serum at 56° C. for 60 minutes. Serum was stored at 4° C. or −80° C. until use. Six weeks post-boost, mice were exported from Comparative Medicine Facility at the University of Washington, Seattle, WA to an AAALAC accredited Animal Biosafety Level 3 (ABSL3) Laboratory at the University of North Carolina, Chapel Hill. After a 7-day acclimation time, mice were anesthetized with a mixture of ketamine/xylazine and challenged intranasally with 105 plaque-forming units (pfu) of mouse-adapted SARS-CoV-2 MA strain for the evaluation of vaccine efficacy (IACUC protocol 20-114.0). After infection, body weight was monitored daily until the termination of the study two days post-infection, when lung and nasal turbinate tissues were harvested to evaluate the viral load by plaque assay. All experiments were conducted at the University of Washington, Seattle, WA, and University of North Carolina, Chapel Hill, NC according to approved Institutional Animal Care and Use Committee protocols.


Immunization (Kymab DWVin™ Mice)

Kymab Darwin™ mice (a mix of males and females, 10 weeks of age), 5 mice per dosing group, were vaccinated with a prime immunization and three weeks later boosted with a second vaccination. Prior to inoculation, immunogen suspensions were gently mixed 1:1 vol/vol with AddaVax™ adjuvant (Invivogen) to reach a final concentration of 0.009 or 0.05 mg/mL antigen. Mice were injected intramuscularly into the tibialis muscle of each hind leg using a 30-gauge needle (BD) with 20 μL per injection site (40 μL total) of immunogen under isoflurane anesthesia. A final boost was administered intravenously (50 μL) with no adjuvant at week 7. Mice were sacrificed 5 days later under UK Home Office Schedule 1 (rising concentration of CO2) and spleen, lymph nodes, and bone marrow cryopreserved. Whole blood (0.1 ml) was collected 2 weeks after each dose (weeks 0, 2, 5, and week 8 terminal bleed). Serum was separated from hematocrit via centrifugation at 2000 g for 10 minutes. Serum was stored at −20° C. and was used to monitor titers by ELISA. All mice were maintained and all procedures carried out under United Kingdom Home Office License 70/8718 and with the approval of the Wellcome Trust Sanger Institute Animal Welfare and Ethical Review Body.


ELISA


For anti-S-2P ELISA, 25 μL of 2 μg/mL S-2P was plated onto 384-well Nunc Maxisorp™ (ThermoFisher) plates in PBS and sealed overnight at 4° C. The next day plates were washed 4× in Tris Buffered Saline Tween (TBST) using a plate washer (BioTek) and blocked with 2% BSA in TBST for 1 h at 37° C. Plates were washed 4× in TBST and 1:5 serial dilutions of mouse, NHP, or human sera were made in 25 μL TBST starting at 1:25 or 1:50 and incubated at 37° C. for 1 h. Plates were washed 4× in TBST, then anti-mouse (Invitrogen) or anti-human (Invitrogen) horseradish peroxidase-conjugated antibodies were diluted 1:5,000 and 25 μL added to each well and incubated at 37° C. for 1 h. Plates were washed 4× in TBST and 25 μL of TMB (SeraCare) was added to every well for 5 min at room temperature. The reaction was quenched with the addition of 25 μL of 1N HCl. Plates were immediately read at 450 nm on a VarioSkanLux™ plate reader (ThermoFisher) and data plotted and fit in Prism™ (GraphPad) using nonlinear regression sigmoidal, 4PL, X is log(concentration) to determine EC50 values from curve fits.


Pseudovirus Production

MLV-based SARS-CoV-2 S, SARS-CoV S, and WIV-1 pseudotypes were prepared as previously described (Millet and Whittaker, 2016; Walls et al., 2020). Briefly, HEK293T cells were co-transfected using Lipofectamine™ 2000 (Life Technologies) with an S-encoding plasmid, an MLV Gag-Pol packaging construct, and the MLV transfer vector encoding a luciferase reporter according to the manufacturer's instructions. Cells were washed 3× with Opti-MEM and incubated for 5 h at 37° C. with transfection medium. DMEM containing 10% FBS was added for 60 h. The supernatants were harvested by a 2,500 g spin, filtered through a 0.45 μm filter, concentrated with a 100 kDa membrane for 10 min at 2,500 g and then aliquoted and placed at −80° C.


Pseudovirus Entry and Serum Neutralization Assays

HEK-hACE2 cells were cultured in DMEM with 10% FBS (Hyclone) and 1% PenStrep with 8% CO2 in a 37° C. incubator (Thermofisher). One day prior to infection, 40 μL of poly-lysine (Sigma) was placed into 96-well plates and incubated with rotation for 5 min. Poly-lysine was removed, plates were dried for 5 min then washed 1× with DMEM prior to plating cells. The following day, cells were checked to be at 80% confluence. In a half-area 96-well plate a 1:3 serial dilution of sera was made in DMEM starting between 1:3 and 1:66 initial dilution in 22 μL final volume. 22 μL of pseudovirus was then added to the serial dilution and incubated at room temperature for 30-60 min. HEK-hACE2 plate media was removed and 40 μL of the sera/virus mixture was added to the cells and incubated for 2 h at 37° C. with 8% CO2. Following incubation, 40 μL 20% FBS and 2% PenStrep containing DMEM was added to the cells for 48 h. Following the 48-h infection, One-Glo-EX™ (Promega) was added to the cells in half culturing volume (40 μL added) and incubated in the dark for 5 min prior to reading on a Varioskan™ LUX plate reader (ThermoFisher). Measurements were done on all ten mouse sera samples from each group in at least duplicate. Relative luciferase units were plotted and normalized in Prism™ (GraphPad) using a zero value of cells alone and a 100% value of 1:2 virus alone. Nonlinear regression of log(inhibitor) vs. normalized response was used to determine IC50 values from curve fits. Mann-Whitney tests were used to compare two groups to determine whether they were statistically different.


Live Virus Production

SARS-CoV-2-nanoLuc virus (WA1 strain) in which ORF7 was replaced by nanoluciferase gene (nanoLuc), and mouse-adapted SARS-CoV-2 (SARS-CoV-2 MA) (Dinnon et al., 2020) were generated by the coronavirus reverse genetics system described previously (Hou et al., 2020). Recombinant viruses were generated in Vero E6 cells (ATCC-CRL 1586) grown in DMEM high glucose media (Gibco #11995065) supplemented with 10% Hyclone™ Fetal Clone II (GE #SH3006603HI), 1% non-essential amino acid, and 1% Pen/Strep in a 37° C. +5% CO2 incubator. To generate recombinant SARS-CoV-2, seven DNA fragments which collectively encode the full-length genome of SARS-CoV-2 flanked by a 5′ T7 promoter and a 3′ polyA tail were ligated and transcribed in vitro. The transcribed RNA was electroporated into Vero E6 cells to generate a P0 virus stock. The seed virus was amplified twice in Vero E6 cells at low moi for 48 h to create a working stock which was titered by plaque assay (Hou et al., 2020). All the live virus experiments, including the ligation and electroporation steps, were performed under biosafety level 3 (BSL-3) conditions at negative pressure, by operators in Tyvek suits wearing personal powered-air purifying respirators.


Luciferase-Based Serum Neutralization Assay, SARS-CoV-2-nanoLuc

Vero E6 cells were seeded at 2×104 cells/well in a 96-well plate 24 h before the assay. One hundred pfu of SARS-CoV-2-nanoLuc virus (Hou et al., 2020) were mixed with serum at 1:1 ratio and incubated at 37° C. for 1 h. An 8-point, 3-fold dilution curve was generated for each sample with starting concentration at 1:20 (standard) or 1:2000 (high neutralizer). Virus and serum mix was added to each well and incubated at 37° C. +5% CO2 for 48 h. Luciferase activities were measured by Nano-Glom Luciferase Assay System (Promega, WI) following manufacturer protocol using SpectraMax™ M3 luminometer (Molecular Device). Percent inhibition and 50% inhibition concentration (IC50) were calculated by the following equation: [1-(RLU with sample/RLU with mock treatment)]×100%. Fifty percent inhibition titer (IC50) was calculated in GraphPad Prism™ 8.3.0 by fitting the data points using a sigmoidal dose-response (variable slope) curve.


Tetramer Production

Recombinant SARS-CoV-2 S-2P trimer was biotinylated using the EZ-Link™ Sulfo-NHS-LC Biotinylation Kit (ThermoFisher) and tetramerized with streptavidin-APC (Agilent) as previously described (Krishnamurty et al., 2016; Taylor et al., 2012). The RBD domain of SARS-CoV-2 S was biotinylated and tetramerized with streptavidin-APC (Agilent). The APC decoy reagent was generated by conjugating SA-APC to Dylight™ 755 using a DyLight 755 antibody labeling kit (ThermoFisher), washing and removing unbound DyLight 755, and incubating with excess of an irrelevant biotinylated His-tagged protein. The PE decoy was generated in the same manner, by conjugating SA-PE to Alexa Fluor 647 with an AF647 antibody labeling kit (ThermoFisher).


Mouse Immunization, Cell Enrichment, and Flow Cytometry

For phenotyping of B cells, 6-week old female BALB/c mice, three per dosing group, were immunized intramuscularly with 50 μL per injection site of vaccine formulations containing 5 μg of SARS-CoV-2 antigen (either S-2P trimer or RBD, but not including mass from the I53-50 nanoparticle) mixed 1:1 vol/vol with AddaVax™ adjuvant on day 0. All experimental mice were euthanized for harvesting of inguinal and popliteal lymph nodes on day 11. The experiment was repeated two times. Popliteal and inguinal lymph nodes were collected and pooled for individual mice. Cell suspensions were prepared by mashing lymph nodes and filtering through 100 μM Nitex™ mesh. Cells were resuspended in PBS containing 2% FBS and Fc block (2.4G2), and were incubated with 10 nM Decoy tetramers at room temperature for 20 min. RBD-PE tetramer and Spike-APC tetramer were added at a concentration of 10 nM and incubated on ice for 20 min. Cells were washed, incubated with anti-PE and anti-APC magnetic beads on ice for 30 min, then passed over magnetized LS columns (Miltenyi Biotec). Bound B cells were stained with anti-mouse B220 (BUV737), CD3 (PerCP-Cy5.5), CD138 (BV650), CD38 (Alexa Fluor™ 700), GL7 (eFluor™ 450), IgM (BV786), IgD (BUV395), CD73 (PE-Cy7), and CD80 (BV605) on ice for 20 min. Cells were run on the Cytek Aurora™ and analyzed using FlowJom software (Treestar). Cell counts were determined using Accucheck™ cell counting beads.


NHP Immunization

A Pigtail macaque was immunized with 250 μg of RBD-12GS-I53-50 nanoparticle (88 μg RBD antigen) at day 0 and day 28. Blood was collected at days 0, 10, 14, 28, 42, and 56 days post-prime. Serum and plasma were collected as previously described (Erasmus et al., 2020). Prior to vaccination or blood collection, animals were sedated with an intramuscular injection (10 mg/kg) of ketamine (Ketaset®; Henry Schein). Prior to inoculation, immunogen suspensions were gently mixed 1:1 vol/vol with AddaVax™ adjuvant (Invivogen, San Diego, CA) to reach a final concentration of 0.250 mg/mL antigen. The vaccine was delivered intramuscularly into both quadriceps muscles with 1 mL per injection site on days 0 and 28. All injection sites were shaved prior to injection and monitored post-injection for any signs of local reactogenicity. At each study timepoint, full physical exams and evaluation of general health were performed on the animals, as previously described (Erasmus et al., 2020), and no adverse events were observed.


Competition Bio-Layer Interferometry

Purification of Fabs from NHP serum was adapted from (Boyoglu-Bamum et al., 2020). Briefly, 1 mL of day 56 serum was diluted to 10 mL with PBS and incubated with 1 mL of 3×PBS washed protein A beads (GenScript) with agitation overnight at 37° C. The next day beads were thoroughly washed with PBS using a gravity flow column and bound antibodies were eluted with 0.1 M glycine pH 3.5 into 1M Tris-HCl (pH 8.0) to a final concentration of 100 mM. Serum and early washes that flowed through were re-bound to beads overnight again for a second, repeat elution. IgGs were concentrated (Amicon 30 kDa) and buffer exchanged into PBS. 2×digestion buffer (40 mM sodium phosphate pH 6.5, 20 mM EDTA, 40 mM cysteine) was added to concentrated and pooled IgGs. 500 μL of resuspended immobilized papain resin (ThermoFisher Scientific) freshly washed in 1×digestion buffer (20 mM sodium phosphate, 10 mM EDTA, 20 mM cysteine, pH 6.5) was added to purified IgGs in 2×digestion buffer and samples were agitated for 5 h at 37° C. The supernatant was separated from resin and resin washes were collected and pooled with the resin flow through. Pooled supernatants were sterile-filtered at 0.22 μm and applied 6× to PBS-washed protein A beads in a gravity flow column. The column was eluted as described above and the papain procedure repeated overnight with undigested IgGs to increase yield. The protein A flowthroughs were pooled, concentrated (Amicon 10 kDa), and buffer exchanged into PBS. Purity was checked by SDS-PAGE.


Epitope competition was performed and analyzed using BLI on an Octet™ Red 96 System (Pall™ Fortd Bio/Sartorius) at 30° C. with shaking at 1000 rpm. NTA biosensors (Pall™ Fortd Bio/Sartorius) were hydrated in water for at least 10 minutes, and were then equilibrated in 10× Kinetics buffer (KB) (Pall™ Fortd Bio/Sartorius) for 60 seconds. 10 ng/μL monomeric RBD in 10×KB was loaded for 100 seconds prior to baseline acquisition in 10×KB for 300 seconds. Tips were then dipped into diluted polyclonal Fab in 10× KB in a 1:3 serial dilution beginning with 5000 nM for 2000 seconds or maintained in 10×KB. Tips bound at varying levels depending on the polyclonal Fab concentration. Tips were then dipped into the same concentration of polyclonal Fab plus either 200 nM of hACE2, 400 nM CR3022, or 20 nM S309 and incubated for 300-2000 seconds. The data were baseline subtracted and aligned to pre-loading with polyclonal Fabs using the Pall™ Fortd Bio/Sartorius analysis software (version 12.0) and plotted in PRISM™.

Claims
  • 1. A polypeptide comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NOS:1-84, 138-151446, and 167-184, wherein X1 is absent or is an amino acid linker, and wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent.
  • 2-9. (canceled)
  • 10. A nanoparticle, comprising: (a) a plurality of first assemblies, each first assembly comprising a plurality of identical first proteins; and,(b) a plurality of second assemblies, each second assembly comprising a plurality of second proteins;wherein the amino acid sequence of the first protein differs from the sequence of the second protein;wherein the plurality of first assemblies non-covalently interact with the plurality of second assemblies to form the nanoparticle; andwherein the nanoparticle displays on its surface an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, present in the at least one second protein andwherein the second proteins comprise an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEO ID NOS:85-124 or 185-193, wherein X1 for at least one second protein comprises an immunogenic portion of a SARS-CoV-2 antigen or a variant or homolog thereof, X2 is absent or an amino acid linker, and residues in parentheses are optional.
  • 11-15. (canceled)
  • 16. The nanoparticle of claim 10, wherein X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprises an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence selected from the group consisting of SEQ ID NO:125-137.
  • 17. (canceled)
  • 18. The nanoparticle of claim 10, wherein: (a) X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise mutations at 1, 2, 3, 4, 5, 6, 7, or all 8 positions relative to SEQ ID NO:125 selected from the group consisting of K90N, K90T, G119S, Y126F, T151I, E157K, E157A, S167P, N174Y, and L125R, including but not limited to mutations comprising one of the following naturally occurring mutations or combinations of mutations:N174Y (UK variant);K90N/E157K/N174Y (South African variant);K90N or T/E157K/N174Y (Brazil variant); orL125R (LA variant),; or(b) X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise mutations at 1, 2, 3, 4, 5, 6, 7, or all 8 positions relative to SEQ ID NO:130 selected from the group consisting of L18F, T20N, P26S, deletion of residues 69-70, D80A, D138Y, R190S, D215G, K417N, K417T, G446S, L452R, Y453F, T4781, E484K, S494P, N501Y, A570D, D614G, H655Y, P681H, A701V, T716L including but not limited to mutations comprising one of the following naturally occurring mutations or combinations of mutations:N501Y, optionally further including 1, 2, 3, 4, or 5 of deletion of one or both of residues 69-70, A570D, D614G, P681H, and/or T716L (UK variant);K417N/E484K/N501Y, optionally further including 1, 2, 3, 4, or 5 of L18F, D80A, D215G, D614G, and/or A701V (South African variant);K417N or T/E484K/N501Y, optionally further including 1, 2, 3, 4, or 5 of L18F, T20N, P26S, D138Y, R190S, D614G, and/or H655Y (Brazil variant); orL452R (LA variant).
  • 19-21. (canceled)
  • 22. The nanoparticle of claim 10, wherein (a) the plurality of second assemblies in total comprise 2, 3, 4, 5, 6, 7, 8, or more different SARS-CoV-2 antigens;(b) the plurality of second assemblies in total comprise 2, 3, 4, 5, 6, 7, 8, or more polypeptides comprising the amino acid sequence of a polypeptide;(c) all second assemblies comprise at least one second protein comprising the amino acid sequence of a polypeptide; and/or(d) all second proteins comprise the amino acid sequence of a polypeptide,wherein the polypeptide comprises an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEO ID NOS:1-84, 138-151, and 167-184, wherein X1 is absent or is an amino acid linker, and wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent.
  • 23-25. (canceled)
  • 26. The nanoparticle claim 10, wherein the first protein comprises an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent.
  • 27. (canceled)
  • 28. The nanoparticle of claim 10, wherein the first protein comprises the amino acid sequence of SEQ ID NO:155.
  • 29. The nanoparticle of claim 28, wherein the at least one second assembly comprises at least one second protein comprising the amino acid sequence selected from the group consisting of SEQ ID NO:85-88.
  • 30-31. (canceled)
  • 32. The nanoparticle of claim 10, wherein each first assembly is pentameric and each second assembly is trimeric.
  • 33. The nanoparticle of claim 10, wherein: (a) the first protein comprises the amino acid sequence of SEQ ID NO:155;(b) all second proteins comprise the amino acid sequence of SEQ ID NO:86, wherein X1 in at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% of the second proteins comprise an amino acid sequence at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO:125.
  • 34. (canceled)
  • 35. The nanoparticle of claim 10 wherein: (a) the first protein comprises the amino acid sequence of SEQ ID NO:155;(b) all second proteins comprise the amino acid sequence selected from the group consisting of SEQ ID NO:1-8.
  • 36-41. (canceled)
  • 42. A pharmaceutical composition comprising (a) the nanoparticle of claim 10; and(b) a pharmaceutically acceptable carrier.
  • 43. (canceled)
  • 44. The pharmaceutical composition of claim 42, further comprising an adjuvant.
  • 45. A vaccine comprising the nanoparticle of claim 10.
  • 46. (canceled)
  • 47. A method to treat or limit development of a SARS-CoV-2 infection, comprising administering to a subject in need thereof an amount effective to treat or limit development of the infection the pharmaceutical composition of claim 42.
  • 48. (canceled)
  • 49. The method of claim 47, wherein the subject is not infected with SARS-CoV-2, wherein the administering elicits an immune response against SARS-CoV-2 in the subject that limits development of a SARS-CoV-2 infection in the subject.
  • 50. The method of claim 49, wherein the administering comprises administering a first dose and a second dose, wherein the second dose is administered about 2 weeks to about 12 weeks, or about 4 weeks to about 12 weeks the first dose is administered.
  • 51-52. (canceled)
  • 53. The method of claim 47, wherein the immune response comprises generation of neutralizing antibodies against SARS-CoV-2.
  • 54. The method of claim 47, wherein the immune response comprises generation of SARS-CoV-2 spike protein antibody-specific responses with a mean geometric titer of at least 1×105.
  • 55. The method of claim 47, wherein the subject is infected with a severe acute respiratory (SARS) virus, including but not limited to SARS-CoV-2, wherein the administering elicits an immune response against the SARS virus in the subject that treats a SARS virus infection in the subject.
  • 56. A kit, comprising: (a) a polypeptide comprising an amino acid sequence at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 100% identical to the amino acid sequence selected from the group consisting of SEO ID NOS:1-84, 138-151, and 167-184, wherein X1 is absent or is an amino acid linker, and wherein residues in parentheses are optional and may be present or some or all of the optional residues may be absent; and(b) a first protein comprising an amino acid sequence at least at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected the group consisting of SEQ ID NOS:152-159, wherein residues in parentheses are optional and may be present or absent, preferably wherein the first protein comprises the amino acid sequence of SEQ ID NO:155.
  • 57-59. (canceled)
CROSS REFERENCE

This application is a U.S. national phase of International Application No. PCT/US2021/017799, filed on Feb. 12, 2021, which claims priority to U.S. Provisional Application Ser. No. 63/064,235, filed Aug. 11, 2020; 63/046,159, filed Jun. 30, 2020, and 62/977,036 filed Feb. 14, 2020, all incorporated by reference herein in their entirety.

FEDERAL FUNDING STATEMENT

This invention was made with government support under Grant Nos. HHSN272201700059C and R01 GM120553, awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2021/017799 2/12/2021 WO
Provisional Applications (3)
Number Date Country
63064235 Aug 2020 US
63046159 Jun 2020 US
62977036 Feb 2020 US