Polypeptides, derivatives and uses thereof

Abstract
The invention provides a compound having formula X1-Arg-Xaa-Arg-X2 in which X1 and X2 are up to 30 amino acid residues and Xaa is an amino acid residue. A preferred compound is the tripeptide Arg-Glu-Arg which corresponds to amino acid residues 328 to 330 of human amyloid precursor protein. The invention further provides a derivative of a polypeptide having the formula X1-Arg-Xaa-Arg-X2 wherein X1 and X2, which may be the same or different, each represents from zero to 30 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid residue or derivative thereof, at least one functional group of at least one said amino acid residue or derivative thereof being protected by a protective group. The compounds of the invention are believed to be useful in the treatment of Alzheimer's disease and as cognitive enhancers.
Description


FIELD OF THE INVENTION

[0001] The present invention relates to polypeptide compounds, to compounds derived therefrom and to the use of such compounds in medicine. Compounds according to the invention are believed to be potentially useful as cognitive enhancers and in the treatment of neurodegenerative diseases such as Alzheimer's disease.



BACKGROUND TO THE INVENTION

[0002] Alzheimer's disease is a degenerative brain disease which is characterised by progressive loss of memory and subsequently most other cognitive functions in an irreversible decline over a period of years. It represents a substantial health problem, particularly in an ageing population.


[0003] The amyloid precursor protein (“APP”) is a multifunctional transmembrane protein and is known to have important functions in normal brain tissue. The human form of APP is known to consist of 695 amino acid residues (SEQ ID No: 1) in a sequence which is also known-(see Kang et al, Nature 325, 733-736 (1987), the contents of which are incorporated herein by reference). The chick form of APP is known to consist of 534 amino acid residues (SEQ ID No: 2) and to resemble the human form closely, being approximately 95% homologous therewith (see the paper by Kang et al just mentioned and Barnes et al, J Neurosci, 18 (15) 5869-5880 (1998), contents of which are also incorporated herein by reference). The amino acid sequences of the human and chick forms of APP are reproduced in FIG. 1 of the drawings of this specification.


[0004] Two effects which have been noted to take place in the brain of a person suffering from Alzheimer's disease are the build up outside the nerve cells of the brain of tangled masses of protein and the build up inside the brain cells of a different protein. The extracellular proteins are known to be aggregates of polypeptides having amino acid sequences corresponding to portions of the extracellular part of APP. The tangled masses of these proteins are known as amyloid plaques. The intracellular proteins are known as tau proteins. It is however not known whether either or both of the extracellular accumulation of amyloid plaques and the intracellular accumulation of tau proteins are the causes or the symptoms of Alzheimer's and related neurodegenerative diseases of the Alzheimer type.


[0005] The amino acid sequence of the β-amyloid polypeptide fragment (1-42) is identical in the human and chick forms of APP and consists of amino acid residues 597 to 638 in the human form and residues 436 to 477 in the chick form, (see the papers by Kang et al and Barnes et al referred to hereinbefore).


[0006] Definitions


[0007] The following expressions are used in this specification and have the following meanings, except where the context indicates otherwise:
1APPmeans “amyloid precursorprotein”;human APPmeans the human form of APP;chick APPmeans the chick form of APP;RERMSmeans the pentapeptide Arg-Glu-Arg-Met-Ser (SEQ ID No: 3);APP 328-332also means the pentapeptide Arg-Glu-Arg-Met-Ser (SEQ ID No: 3)which corresponds to amino acidresidues 328 to 332 of human APP;SMRERmeans the pentapeptide Ser-Met-Arg-Glu-Arg (SEQ ID No: 4);APP 332-328means the same as SMRER;Aβ domainmeans the domain of APP whichforms β-amyloid plaques;β-amyloid 12-28means the sequence of amino acidresidues which constitute part ofthe Aβ domain of human APP, thesequence being Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys (SEQ ID No:8) which corresponds to aminoacid residues 608 to 624 of humanAPP and amino acids 447 to 463 ofchick APP;RSAERmeans the pentapeptide Arg-Ser-Ala-Glu-Arg (SEQ ID No: 5);APP 319-335means the polypeptide Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser-Gln-Val-Met(AKERLEAKHRERMSQVM) (SEQ ID No:6);RERmeans the tripeptide Arg-Glu-Arg(SEQ ID No: 9);APP 328-330means the same as RER;Ac-RERmeans RER in which one of thehydrogen atoms of the —NH2 groupat the N-terminus has beenreplaced by an acetyl group; thestructural formula of Ac-RER isgiven hereinbelow;RERMmeans the tetrapeptide Arg-Glu-Arg-Met (SEQ ID No: 10);APP 328-331means the same as RERM;MRERmeans the tetrapeptide Met-Arg-Glu-Arg (SEQ ID No: 11);APP 331-328means the same as MRER;amino acidas used herein is meant toinclude both natural andsynthetic amino acids, and both Dand L amino acids;standard amino acidmeans any of the twenty standardL-amino acids commonly found innaturally occurring peptides;nonstandard amino acidmeans any amino acid, other thanthe standard amino acids,regardless of whether it isprepared synthetically or derivedfrom a natural source; as usedherein, “synthetic amino acid”also encompasses chemicallymodified amino acids, includingbut not limited to salts, aminoacid derivatives (such asamides), and substitutions.Amino acids contained within thepeptides of the presentinvention, and particularly atthe carboxy- or amino-terminus,can be modified by methylation,amidation, acetylation orsubstitution with other chemicalgroups which can change thepeptide's circulating half lifewithout adversely affecting theiractivity; additionally, adisulfide linkage may be presentor absent in the peptides of theinvention;derivativeincludes any purposefullygenerated peptide which in itsentirety, or in part, has asubstantially similar amino acidsequence to the presentcompounds; derivatives of thepresent compounds may becharacterized by single ormultiple amino acidsubstitutions, deletions,additions, or replacements; thesederivatives may include (a)derivatives in which one or moreamino acid residues of thepresent compounds are substitutedwith conservative or non-conservative amino acids; (b)derivatives in which one or moreamino acids are added to thepresent compounds; (c)derivatives in which one or moreof the amino acids of the presentcompounds include a substituentgroup; (d) derivatives in whichthe present compounds or aportion thereof is fused toanother peptide (e.g., serumalbumin or protein transductiondomain); (e) derivatives in whichone or more nonstandard aminoacid residues (i.e., those otherthan the 20 standard L-aminoacids found in naturallyoccurring proteins) areincorporated or substituted intothe present compounds sequence;and (f) derivatives in which oneor more nonamino acid linkinggroups are incorporated into orreplace a portion of the presentcompounds;APP 296-335, APP 317-have the meanings given in tables332, APP 321-335, APP1 and 2 hereinafter.319-332, APP 321-332,APP 321-331, APP 325-335, APP 321-330, APP327-332 and APP 316-337


[0008] Throughout this specification and its claims amino acid sequences are written using the standard one-letter or three-letter abbreviations. All sequences are written from left to right in the direction from the N-terminus to the C-terminus.


[0009] The following term is defined as follows:
2reverse order sequenceas used herein, the reverse ordersequence of a given sequence is asequence in which the order ofamino acid residues is reversedcompared with the given sequencewhen reading in the direction fromthe N-terminus to the C-terminusand vice versa; thus, for example,SMRER is the reverse ordersequence of RERMS, each being readas stated above from left to rightin the N-terminal to C-terminaldirection; further,MVQSMRERHKAELREKA (SEQ ID No: 7)(also referred to herein as APP335-319) is the reverse ordersequence of APP 319-335 definedabove.


[0010] WO-A-94/09808 (The Regents of The University of Califormia, inventor T Saito) and T Saito and various co-authors in J. Neuroscience 14 5461-5470 (1994), J. Neuobiol. 25, 585-594 (1994) and J. Cell Biol. 121, 879-886 (1993) disclose certain polypeptides corresponding to parts of human APP. These polypeptides consist of the following:
3TABLE 1no. ofaminocorrespondingacidpart ofSEQ IDresidueshuman APPsequenceNO.40APP 296-335TPDAVDKYLETPGDENEHAHF22QKAKERLEAKHRERMSQVM[Thr-Pro-Asp-Ala-Val-Asp-Lys-Tyr-Leu-Glu-Thr-Pro-Gly-Asp-Glu-Asn-Glu-His-Ala-His-Phe-Gln-Lys-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser-Gln-Val-Met]17APP 319-335AKERLEAKHRERMSQVM6[Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser-Gln-Val-Met]16APP 317-332QKAKERLEAKHRERMS12[Gln-Lys-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser]15APP 321-335ERLEAKHRERMSQVM13[Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser-Gln-Val-Met]14APP 319-332AKERLEAKHRERMS14[Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser]12APP 321-332ERLEAKHRERMS15[Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser]11APP 321-331ERLEAKHRERM16[Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met]11APP 325-335AKHRERMSQVM17[Ala-Lys-His-Arg-Glu-Arg-Met-Ser-Gln-Val-Met]10APP 321-330ERLEAKHRER18[Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg]6APP 327-332HRERMS19[His-Arg-Glu-Arg-Met-Ser]5APP 328-332RERMS3[Arg-Glu-Arg-Met-Ser]4APP 328-331RERM10[Arg-Glu-Arg-Met]3APP 328-330RER9[Arg-Glu-Arg]


[0011] The same publications also refer to a 17-mer polypeptide which is the reverse-order sequence of APP 319-335 (as defined above). The reverse order sequence is also identified herein as APP 335-319.


[0012] G Multhorp et al is J. Mol Recognition 8, 247-257 (1995) disclose the following polypeptide which also corresponds to part of human APP:
4TABLE 2No. ofaminocorrespondingacidpart ofSEQ IDresidueshuman APPSequenceNO.22APP 316-337FQKAKERLEAKHRERMSQVMRE20[Phe-Gln-Lys-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-Arg-Glu-Arg-Met-Ser-Gln-Val-Met-Arg-Glu]



SUMMARY OF THE INVENTION

[0013] The present invention provides a derivative of a polypeptide having the formula:


X1-Arg-Xaa-Arg-X2  (I)


[0014] wherein X1 and X2, which may be the same or different, each represents from zero to 30 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid residue or a derivative thereof, at least one functional group of at least one said amino acid residue or derivative thereof being protected by a protective group.


[0015] Preferably, the protected functional group(s) comprise one or more amino groups.


[0016] Advantageously, the amino group(s) comprise an N-terminal amino group.


[0017] Conveniently, at least one protected amino group is protected by replacement of only one of its hydrogen atoms by a protective group.


[0018] In other polypeptide derivatives, the protected functional group(s) comprise one or more carboxyl groups.


[0019] Advantageously, the carboxyl group(s) comprise a C-terminal carboxyl group.


[0020] Advantageously, the or each protective group is an acyl group represented by the formula
1


[0021] wherein R represents a straight- or branched-chain alkyl group, for example a methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, pentyl or hexyl group, a substituted or unsubstituted cycloalkyl group, for example a methylcyclohexyl or cyclohexyl group, a substituted or unsubstituted straight- or branched-chain aralkyl group, for example a benzyl group, or a substituted or unsubstituted aryl group, for example a phenyl or tolyl group. Examples of substituents in the substituted groups mentioned above are the alkyl groups also mentioned above. Straight- or branched-chain alkyl groups are most preferred for R, methyl groups being particularly preferred.


[0022] In formula (I), amino acid derivatives include, for example, substituted amino acids. In formula (I), X1 and X2 are each preferably idenpendently from zero to 20, more preferably from zero to 10.


[0023] When X1 and X2 are both zero in formula (I), formula (I) is that of a tripeptide derivative which is preferably Ac-RER when Xaa is glutamic acid.


[0024] Preferably, compounds according to the invention are compounds in which X1 and X2 are such that formula (I) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 332 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom, or to a sequence which is closely homologous thereto or in which the amino acids thereof are replaced by nonstandard amino acids.


[0025] It is also preferred that formula (I) is one in which X1 and X2 are such that the formula represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom, or to a sequence which is closely homologous thereto or in which the amino acids thereof are replaced by nonstandard amino acids.


[0026] As used herein, a peptide or a portion of a peptide which is “closely homologous” means the peptide, or the portion thereof, has an amino acid homology of greater than about 80% with respect to a reference peptide, preferably greater than about 90% and, more preferably, greater than about 95%.


[0027] Amino acid sequence homology may be computed by using the BLASTP and TBLASTN programs which employ the BLAST (basic local alignment search tool) 2.0.14 algorithm; BLASTP and TBLASTN settings to be used in such computations are indicated in table 3 below. Amino acid sequence identity (complete homology) is reported under “Identities” by the BLASTP and TBLASTN programs. Amino acid sequence similarity (degree of homology) is reported under “Positives” by the BLASTP and TBLASTN programs. Techniques for computing amino acid sequence homology are well known to those skilled in the art, and the use of the BLAST algorithm is described in Altschul et al. (1990), J. Mol. Biol. 215: 403-10 and Altschul et al. (1997), Nucleic Acids Res. 25:3389-3402, the disclosures of which are herein incorporated by reference in their entirety. BLASTP and TBLASTN programs utilizing the BLAST 2.0.14 algorithm and may be accessed at http://www.ncbi.nlm.nih.gov/.
5TABLE 3Settings to be used for the computation of aminoacid sequence similarity or identity with BLASTP andTBLASTN programs utilizing the BLAST 2.0.14 algorithmExpect Value10FilterLow complexity filteringusing SEG program*Substitution MatrixBLOSUM62Gap existence cost11Per residue gap cost 1Lambda ratio 0.85Word size 3*The SEG program is described by Wootton and Federhen (1993), Comput. Chem. 17: 149-163.


[0028] Perferably, X1 in formula (I) represents:


X3-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His


[0029] wherein X3 represents from zero to 21 natural or synthetic amino acid residues or derivatives thereof, and/or X2 represents


Met-Ser-Gln-Val-Met-X4


[0030] wherein X4 represents from zero to 25, natural or synthetic amino acid residues or derivatives thereof.


[0031] X3 and X4 are again preferably each independently from zero to 20, more preferably from zero to 10.


[0032] When X3 and X4 are both zero and Xaa is glutamic acid, the amino acid residues of the formula corresponds to the sequence of amino acid residues 319 to 335 of human APP.


[0033] It is also preferred that X1 in (I) represents:


X3-Met-Val-Gln-Ser-Met


[0034] wherein X3 represents from zero to 25, natural or synthetic amino acid residues or derivatives thereof, and/or X2 represents:


His-Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala-X4


[0035] wherein X4 represents from zero to 21, natural or synthetic amino acid residues or derivatives thereof.


[0036] X3 and X4 are again preferably idependently each from zero to 20, more preferably from zero to 10.


[0037] When X3 and X4 are both zero and Xaa is glutamic acid, the amino acid residues of the formula corresponds to the reverse-order sequence of amino acid residues 335 to 319 of human APP.


[0038] The invention also provides compounds of formula (I) in which X2 represents:


Met-X4


[0039] wherein X4 represents from zero to 29 natural or synthetic amino acid residues or derivatives thereof.


[0040] In such compounds, X2 preferably represents:


Met-Ser-X4


[0041] wherein X4 represents from zero to 28 natural or synthetic amino acid residues or derivatives thereof.


[0042] Further, the invention provides compounds of formula (I) in which X1 represents:


X3-Met


[0043] wherein X3 represents from zero to 29 natural or synthetic amino acid residues or derivatives thereof.


[0044] In such compounds, Xl preferably represents:


X3-Ser-Met


[0045] wherein X3 represents from zero to 28 natural or synthetic amino acid residues or derivatives thereof.


[0046] The invention thus provides derivatives of the stated kind of the peptides RER, RERM, MRER, RERMS and SMRER.


[0047] The most preferred of such derivatives is the compound Ac-RER which has the structural formula:
2


[0048] In addition to the compounds mentioned hereinbefore, the present invention also provides the compounds (including the stated derivatives of RER, RERM, MRER, SMRER and RERMS) for use in medicine and their use in the preparation of medicaments for the treatment of neurodegenerative diseases, including Alzheimer's disease, and as cognitive enhancers.


[0049] The invention further provides pharmaceutical compositions comprising the compounds (including the stated derivatives of RER, RERM, MRER, SMRER and RERMS) and a pharmaceutically-acceptable carrier and also compositions in which a compound according to the invention (including the stated derivatives of RER, RERM, MRER, SMRER and RERMS) is chemically or physically linked to a further molecule or vehicle to form a complex for pharmaceutical delivery of the compound.


[0050] Further, the invention provides a method of treatment of a neurodegenerative disease in a human or non-human animal suffering or potentially suffering from the disease is administered with an amount of a composition referred to in the preceding paragraph or a compound according to the present invention effective to treat the disease. The invention also provides a method of producing a cognitive enhancement in a human or non-human animal by administering to the animal a said composition or compound in an amount effective to produce the enhancement.


[0051] The compounds which are most preferred in the medical uses and pharmaceutical compositions are the stated derivatives of the following:


Arg-Glu-Arg  (SEQ ID No: 9)


[0052] which corresponds to amino acid residues 328-330 of human APP,


Arg-Glu-Arg-Met  (SEQ ID No: 10)


[0053] which corresponds to amino acid residues 328-331 of human APP,


Met-Arg-Glu-Arg  (SEQ ID No: 11)


[0054] which is the reverse-order polypeptide corresponding to the above,


Arg-Glu-Arg-Met-Ser  (SEQ ID No: 3)


[0055] which corresponds to amino acid residues 328-332 of human APP,


Ser-Met-Arg-Glu-Arg  (SEQ ID No: 4)


[0056] which is the reverse-order polypeptide corresponding to the above,
6Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-(SEQ ID No: 6)Arg-Glu-Arg-Met-Ser-Gln-Val-Met


[0057] which corresponds to amino acid residues 319-335 of human APP, and
7Met-Val-Gln-Ser-Met-Arg-Glu-Arg-His-(SEQ ID No: 7)Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala


[0058] which is the reverse-order polypeptide corresponding to the above.


[0059] The present invention also provides a compound having a formula comprising:




X


1
-Arg-Glu-Arg-X2  (II)



[0060] wherein X1 and X2, which may be the same or different, each represents from zero to 32 natural or synthetic amino acid residues or derivatives thereof, and Xaa represents a natural or synthetic amino acid residue or a derivative thereof, it being preferred that the compound is none of the following (as hereinbefore defined): APP 296-335, APP 319-335, APP 317-332, APP 321-335, APP 319-332, APP 321-332, APP 321-331, APP 325-335, APP 321-330, APP 327-332,


[0061] APP 328-332, APP 328-331, APP 328-330, APP 335-319 and APP 316-337.


[0062] In formula (II), X1 and X2 are preferably and idependently each from zero to 22, more preferably from zero to 12. Most preferably, one or both of X1 and X2 is zero.


[0063] Preferably, X1 and X2 are such that formula (II) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 330 of human APP and up to 32 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.


[0064] It is also preferred that X1 and X2 are such that formula (II) represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 32 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said reverse-order sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.


[0065] The invention further provides a compound having a formula comprising:


X1-Arg-Xaa-Arg-X2  (III)


[0066] wherein X1 and X2, which may be the same or different, each represents from zero to 32 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid residue or a derivative thereof, for use in medicine.


[0067] In formula (III), X1 and X2 are preferably idependently each from zero to 22, more preferably from zero to 12. Most preferably, one or both of X1 and X2 is zero.


[0068] Preferably, X1 and X2 are such that formula (III) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 330 of human APP and up to 32 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.


[0069] It is also preferred that X1 and X2 are such that formula (III) represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said reverse-order sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.


[0070] A particularly preferred compound is one in which X1 and X2 represents:


X3-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His


[0071] wherein X3 represents from zero to 23 natural or synthetic amino acid residues or derivatives thereof, and/or X2 represents:


Met-Ser-Gln-Val-Met-X4


[0072] wherein X4 represents from zero to 27 natural or synthetic amino acid residues or derivatives thereof.


[0073] Another preferred compound is one in which X1 and X2 represents:


X3-Met-Val-Gln-Ser-Met


[0074] wherein X3 represents from zero to 27 natural or synthetic amino acid residues or derivatives thereof, and/or X2 represents:


His-Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala-X4


[0075] wherein X4 represents from zero to 23 natural or synthetic amino acid residues or derivatives thereof.


[0076] In such compounds, X3 and X4 are preferably idependently each from zero to 20, more preferably from zero to 10. Most preferably, one or both of X3 and X4 iS zero.


[0077] Xaa in formulae (I) and (III) is preferably glutamic acid.


[0078] The present invention also provides the use of a compound having a formula comprising:


X1-Arg-Xaa-Arg-X2  (III)


[0079] wherein X1 and X2, which may be the same or different, each represents from zero to 32 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid residue or a derivative thereof, in the preparation of a medicament for use in the treatment of a neurodegenerative disease or as a cognitive enhancer.


[0080] In addition, the invention provides a pharmaceutical omposition comprising such a compound and a harmaceutically acceptable carrier.


[0081] Moreover, the invention provides a said compound which is chemically or physically linked to a further molecule or ehicle to form a complex for pharmaceutical delivery of he compound.


[0082] Furthermore, the invention provides methods of reating a neurodegenerative disease or of obtaining a cognitive enhancement in a human or non-human animal by administering to the animal an effective amount of a compound according to the invention, optionally in the form of a pharmaceutical composition as referred to.


[0083] The present invention provides a compound having a formula comprising:


X1-Arg-Xaal-Arg-Xaa2-Xaa3-X2  (IV)


[0084] wherein X1 and X2, which may be the same or different, each represents from zero to 30 natural or synthetic amino acid residues or derivatives thereof and Xaa1, Xaa2 and Xaa3, which may be the same or different, each represents a natural or synthetic amino acid or a derivative thereof.


[0085] The amino acid derivatives include, for example, substituted amino acids.


[0086] X1 and X2 are each preferably from zero to 20, more preferably from zero to 10.


[0087] When X1 and X2 are both zero, the formula is that of a pentapeptide which is RERMS when Xaa1 is glutamic acid, Xaa2 is methionine and Xaa3 is serine.


[0088] In a compound according to the invention, Xaa1 is preferably glutamic acid, Xaa2 is preferably methionine and Xaa3 is preferably serine.


[0089] Preferably, the compound is one in which X1 and X2 are such that (IV) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 332 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom.


[0090] The degree of homology is preferably at least 80%, more preferably at least 90% and, most preferably, at least 95%.


[0091] The invention also provides compounds having a formula comprising:


X1-Xaa3-Xaa2-Arg-Xaa1-Arg-X2  (V)


[0092] wherein X1, X2, Xaa1, Xaa2 and Xaa3 are as stated hereinbefore.


[0093] When X1 and X2 are both zero, the formula is that of a pentapeptide which is SMRER when Xaa1 is glutamic acid, Xaa2 is methionine and Xaa3 is serine.


[0094] Such formulae represent the reverse-order sequences of the formulae mentioned hereinbefore.


[0095] Preferably, the compound is one in which X1 and X2 are such that the formula represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 332 to 328 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom.


[0096] The degree of homology is again preferably at least 80%, more preferably at least 90% and, most preferably, at least 95%.


[0097] Preferably, X1 in (IV) represents:


X3-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His


[0098] and/or X2 represents


Gln-Val-Met-X4


[0099] X3 and X4 being the same or different and representing from zero to 30 natural or synthetic amino acid residues or derivatives thereof.


[0100] X3 and X4 are again preferably each from zero to 20, more preferably from zero to 10.


[0101] When X3 and X4 are both zero and Xaa1, Xaa2 and Xaa3 are glutamic acid, methionine and serine, respectively, the formula corresponds to the sequence of amino acid residues 319 to 335 of human APP.


[0102] Preferably, X1 in (V) represents:


X3-Met-Val-Gln


[0103] and/or X2 represents:


His-Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala-X4


[0104] wherein X3 and X4, which may be the same or different, each represents from zero to 30 natural or synthetic amino acid residues or derivatives thereof.


[0105] X3 and X4 are again preferably each from zero to 20, more preferably from zero to 10.


[0106] When X3 and X4 are both zero and Xaa1, Xaa2 and Xaa3 are glutamic acid, methionine and serine, respectively, the formula corresponds to the reverse-order sequence of amino acid residues 335 to 319 of human APP.


[0107] In addition to the compounds mentioned hereinbefore, the present invention also provides the compounds (including RERMS and SMRER) for use in medicine and their use in the preparation of medicaments for the treatment of neurodegenerative diseases, including Alzheimer's disease, and as cognitive enhancers.


[0108] The invention further provides pharmaceutical compositions comprising the compounds (including RERMS and SMRER) and a pharmaceutically-acceptable carrier and also compositions in which a compound according to the invention (including RERMS and SMRER) is chemically or physically linked to a further molecule or vehicle to form a complex for pharmaceutical delivery of the compound.


[0109] The compounds which are most preferred in the medical uses and pharmaceutical compositions are the following:


Arg-Glu-Arg-Met-Ser  (SEQ ID No:3)


[0110] which corresponds to amino acid residues 328-332 of human APP,


Ser-Met-Arg-Glu-Arg  (SEQ ID No:4)


[0111] which is the reverse-order polypeptide of the above,
8Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His-(SEQ ID No: 6)Arg-Glu-Arg-Met-Ser-Gln-Val-Met


[0112] which corresponds to amino acid residues 319-335 of human APP, and
9Met-Val-Gln-Ser-Met-Arg-Glu-Arg-His-(SEQ ID No: 7)Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala


[0113] which is the reverse-order polypeptide of the above.


[0114] The present invention provides a compound having a formula comprising:


X1-Arg-xaa-Arg-X2  (VI)


[0115] wherein X1 and X2, which may be the same or different, each represents from zero to 30 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid or a derivative thereof. Xaa is preferably glutamic acid.


[0116] The amino acid derivatives include, for example, substituted amino acids.


[0117] X1 and X2 are each preferably from zero to 20, more preferably from zero to 10.


[0118] When X1 and X2 are both zero, the formula is that of a tripeptide which is Arg-Glu-Arg (RER) when Xaa is glutamic acid.


[0119] Preferably, the compound is one in which X1 and X2 are such that (I) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 330 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom.


[0120] It is also preferred that the compound is one in which X1 and X2 are such that the formula represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom.


[0121] In each case, the degree of homology is again preferably at least 80%, more preferably at least 90% and, most preferably, at least 95%.


[0122] Preferably, X1 in (VI) represents:


X3-Ala-Lys-Glu-Arg-Leu-Glu-Ala-Lys-His


[0123] and/or X2 represents


Met-Ser-Gln-Val-Met-X4


[0124] X3 and X4 being the same or different and representing from zero to 30 natural or synthetic amino acid residues or derivatives thereof.


[0125] X3 and X4 are again preferably each from zero to 20, more preferably from zero to 10.


[0126] When X3 and X4 are both zero and Xaa is glutamic acid, the formula corresponds to the sequence of amino acid residues 319 to 335 of human APP.


[0127] It is also preferred that X1 in (VI) represents:


X3-Met-Val-Gln-Ser-Met


[0128] and/or X2 represents:


His-Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala-X4


[0129] wherein X3 and X4, which may be the same or different, each represents from zero to 30 natural or synthetic amino acid residues or derivatives thereof.


[0130] X3 and X4 are again preferably each from zero to 20, more preferably from zero to 10.


[0131] When X3 and X4 are both zero and Xaa is glutamic acid, the formula corresponds to the reverse-order sequence of amino acid residues 335 to 319 of human APP.


[0132] The invention also provides compounds having the formula (VI) in which Xaa is glutamic acid and either X1 is methionine and X2 is zero, or X1 is zero and X2 is methionine. These are the compounds Met-Arg-Glu-Arg (MRER) (SEQ ID No: 11) and Arg-Glu-Arg-Met (RERM) (SEQ ID No: 10), respectively.


[0133] The present invention also provides the compounds mentioned above (including RER) for use in medicine and their use in the preparation of medicaments for the treatment of neurodegenerative diseases, including Alzheimer's disease, and as cognitive enhancers.


[0134] The invention further provides pharmaceutical compositions comprising the compounds (including RER) and a pharmaceutically-acceptable carrier and also compositions in which a compound according to the invention (including RER) is chemically or physically linked to a further molecule or vehicle to form a complex for pharmaceutical delivery of the compound.


[0135] The compound which is most preferred in the medical uses and pharmaceutical compositions is:


Arg-Glu-Arg  (SEQ ID No:9)


[0136] which corresponds to amino acid residues 328-330 of human APP.


[0137] The invention further provides a compound having a formula comprising


X1-Ser-Met-Arg-Glu-Arg-X2  (VII)


[0138] wherein X1 and X2, which may be the same or different, each represents from zero to 30 amino acid residues, the amino acid residues of X1 and X2 being such that, when X1 and X2 are not both zero, the formula represents a reverse-order sequence corresponding to amino acid residues 332 to 328 of human APP and from zero to 30 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said reverse-order sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of said amino acids, provided always that the compound is not
10Met-Val-Gln-Ser-Met-Arg-Glu-Arg-His-(SEQ ID No: 7)Lys-Ala-Glu-Leu-Arg-Glu-Lys-Ala


[0139] Subject to the above proviso, formula (VII) thus includes within its scope polypeptides which consist of a core sequence of the five amino acid residues 332 to 328 of human APP in reverse order relative to human APP and, extending therefrom in the N-terminal direction, up to 30 of amino acid residues 333 to 362 of human APP and, in the C-terminal direction, up to 30 of amino acid residues 327 to 328 of human APP, the whole forming a reverse-order sequence relative to human APP.


[0140] In formula (VII), X1 is preferably from zero to 20 and/or X2 is from zero to 20. More preferably, X1 is from zero to 10 and/or X2 is from zero to 10. Still more preferably, X1 and/or X2 is zero.


[0141] In other preferred compounds of formula (VII), X1 is 2 or less and X2 is 8 or less.







BRIEF DESCRIPTION OF THE DRAWINGS

[0142] The drawings of this specification consist of the following:


[0143]
FIG. 1 which shows the amino acid sequence of human APP and chick APP, as referred to hereinbefore;


[0144]
FIG. 2 shows the effect of β-amyloid 12-28 polypeptide on memory formation;


[0145]
FIG. 3 shows the effect of RERMS on β-amyloid 12-28 induced amnesia;


[0146]
FIG. 4 shows the effect of RERMS on anti-APP induced amnesia;


[0147]
FIG. 5 shows the effect of RERMS, SMRER and RSAER on APP-antisense induced amnesia;


[0148]
FIG. 6 shows the effect of APP 319-335 on APP-antisense induced amnesia;


[0149]
FIG. 7 shows the effect of RERMS on weak training;


[0150]
FIG. 8 shows the effect of APP 319-335 on weak training; FIG. 9 shows the effect of RER on weak training;


[0151]
FIG. 10 shows the effects of RER and Ac-RER on amyloid 12-28 induced amnesia;


[0152]
FIG. 11 shows the effect of Ac-RER on weak training;


[0153]
FIG. 12 shows the effects of differing doses of RER and Ac-RER; and


[0154]
FIG. 13 shows the effect of Ac-RER on β-amyloid 12-28 induced amnesia.







DETAILED DESCRIPTION OF THE INVENTION

[0155] The invention will now be described further by way of example with reference to the following experimental procedures and results.


[0156] Materials and Methods


[0157] Animals and Training


[0158] Commercially obtained Ross Chunky eggs were incubated and hatched in brooders and held until 16+6 hours old. Chicks were placed in pairs in small aluminium pens. Following an equilibration period of an hour, the chicks were pretrained and trained essentially as described by Lossner and Rose (J. Neurochem. 41, 1357-1363 (1983), the contents of which are incorporated herein by reference). Pretraining involved three 10 s presentations of a small (2 mm diameter) white bead, at approximately 5 minute intervals. Chicks, which failed to peck the bead at least twice in three presentations (less than 5%), were not used subsequently, but remained in their pens for the duration of the experiment. Two training techniques were used: “strong” and “weak” training. In both, 5 to 10 minutes after the last pre-training trial, chicks were trained by a 10 s presentation of a 4 mm diameter chrome bead, which had been dipped in the bitter-tasting methylanthranilate. Control chicks pecked at a water-coated or dry bead. In the “strong” version of the task, 100% methylanthranilate was used. In the “weak” version, 10% methylanthranilate was used. Chicks spontaneously pecked at the training or control beads within 20 s. Chicks that peck at the bitter bead evinced a disgust reaction and would not normally peck at a similar, but dry bead for some hours subsequently. At various times following training chicks were tested, by offering them a dry 4 mm diameter chrome bead, followed 10 minutes later by a small (2 mm diameter) white bead, each for 20 to 30 s. Animals were tested by an experimenter blind as to which treatment each chick had received. Chicks are considered to remember the task if they avoid the chrome bead at test but peck at the white bead (discriminate), and to have forgotten it if they peck at both beads. Recall is calculated as a percent avoidance score (percentage of chicks which avoid the chrome bead) and as a discrimination score (percentage of chicks which avoid the chrome but peck at the white bead). The use of the discrimination score ensures that chicks can indeed see and peck accurately at the bead; and hence that the avoidance of the chrome bead is not due to non-specific factors such as lack of visuo-motor coordination, motivation, attention, arousal, etc. but is a positive act, demonstrating memory for the distasteful stimulus. Each chick was trained and tested only once and differences between groups tested for statistical significance by g-test described by Sokal and Rohlf (Biometry: the Principles and Practice of Statistics in Biological Research (2nd edition), W H Freeman, New York (1981)), the contents of which are incorporated herein by reference. The validity of this particular training task used to assess memory formation is extensively discussed by Andrew (Neural and Behavioural Plasticity: the Use of the Domestic Chick as a Model, Oxford University Press, Oxford, UK (1991), the contents of which are incorporated herein by reference.


[0159] Chicks trained on the strong version of the task were found to recall the avoidance for at least 48 hours, and more than 80% were found normally to avoid and discriminate on test at 24 hours. Therefore if agents that are amnesic—that is, cause the chick not to remember—are administered, chicks will demonstrate forgetting by pecking rather than avoiding the chrome bead on test. By contrast, chicks were found normally to remember the “weak” version of the task for only a few hours—some 6 to 8 hours in all; retention at 24 hours was normally reduced to some 20 to 30%. Thus the learning experience is not committed to long-term memory. Agents that are memory enhancers can thus be tested. A memory enhancing agent, administered to a chick trained on the weak learning task, produces an increase in retention—increased avoidance of the chrome bead—at 24 hours. That is, such memory enhancers help convert weak to strong learning by enabling the transition from shorter to longer-term memory.


[0160] Peptide injections


[0161] Bilateral intracranial injections (2 μg/hemisphere) of either saline, or solutions in saline of different peptides (0.5 to 5 μg/hemisphere) homologous to different regions of he external domain of human APP were injected intracerebrally into a specific brain region, known to be required for memory formation (the intermediate hyperstriatum ventrale) at different time-points pre- or post-training using a 5 μg Hamilton syringe fitted with a plastic sleeve to allow a penetration of 3 mm. After completion of the injection, the needle was kept in place for 5 s. Correct placement was ensured by using a specially designed headholder described by Davis et al (Physiol. Behav. 22, 177-184 (1979), the contents of which are incorporated herein by reference) and was routinely visually monitored postmortem. Peptides or other substances were administered at various times either before or after the training protocol. Chicks were tested at different time points post-training as described above. The general behaviour of the chicks following injections was observed to detect any potential non-specific or adverse reactions to the injections.


[0162] Peptide Materials


[0163] The polypeptides administered were synthesised using a conventional peptide synthesiser in a manner which is well-known to those skilled in the art. The synthesised polypeptides were purified by use of RP-HPLC and purity further checked by mass spectrometry (MALDI-TOF), both techniques being well known to those skilled in the art. The polypeptides after synthesis were kept under argon in a lyophilised state, the argon preventing oxidation of cysteine, methionine and tryptophan in particular.


[0164] Polypeptide synthesis as just mentioned is carried out by MWG-Biotech UK Limited of Milton Keynes, UK.


[0165] RERMS is also available from Bachem Limited of St. Helens, Merseyside, UK.


[0166] Ac-RER can be synthesised by techniques well-known to those skilled in the art. It was obtained from Cambridge Research Biochemicals Limited of Billingham, Cleveland, UK.


[0167] For further details regarding synthetic methods for the preparation of peptides and peptide derivatives, reference is made to “Principles of Peptide Synthesis” by M. Bodanszky, 2nd Edition (Springer Laboratory, 1993), the entire contents of which are incorporated herein by reference.


[0168] Experimental Results


[0169] It is well known in many animal model systems for the study of memory that injection of β-amyloid and β-amyloid peptides, such as β-amyloid 12-28, results in a failure of animals to retain recently acquired memories. FIG. 2 shows this result for a chick; injection of β-amyloid 12-28 into the brain 30 minutes prior to training chicks on the passive avoidance task results in amnesia in animals tested 30 minutes subsequently.


[0170]
FIG. 2 shows in the left-hand half the percent avoidance measured in terms of total avoidance and discrimination for a saline control and in the right-hand half the percent avoidance measured when β-amyloid 12-28 is injected as described above 30 minutes pretraining and memory is tested 30 minutes posttraining. However, if amnesia is induced by injection of β-amyloid 12-28 30 minutes pretraining, and RERMS is injected 20 minutes pretraining, memory retention is restored. FIG. 3 shows that in this case memory is normal at 24 hours post-training.


[0171]
FIG. 3 shows on the left the percent avoidance measured in terms of total avoidance and discrimination for a saline control, in the centre the corresponding results when β-amyloid 12-28 is injected 30 minutes pretraining and memory tested 24 hours posttraining, and on the right the results when the pretraining injection of β-amyloid 12-28 is followed 10 minutes later by RERMS and memory is again tested 24 hours posttraining.


[0172] It is thus shown that RERMS can prevent the memory loss produced by β-amyloid 12-28, a component of the amyloid plaques characteristic of Alzheimer's disease.


[0173] It is known that disrupting the normal function of APP by blocking its external domain with a specific monoclonal antibody (mb22C11) around the time of training, whilst without effect on the ability of chicks to learn the passive avoidance response, prevents the transition to long term memory. The monoclonal antibody mb22C11, available from Boehringer-Mannheim, specifically recognises an epitope consisting of part of the external domain of APP. FIG. 4 shows on the left the percent avoidance measured for chicks injected with a saline control, in the centre the percent avoidance measured when mb22C11 is injected (1-5 μg in 2 μl) intracerebrally as described hereinbefore for peptide injections 30 minutes pretraining and, on the right, the percent avoidance measured when RERMS is also injected 25 minutes after mb22C11 (5 minutes pretraining). In all cases, memory was tested 24 hours posttraining.


[0174] The results shown in FIG. 4 demonstrate that RERMS injected 5 minutes before training will prevent antibody induced memory loss and that the peptide RERMS can prevent anti-APP induced memory loss. Thus, RERMS can prevent the memory loss resulting from disrupting the normal function of APP.


[0175]
FIGS. 5 and 6 show the effect of inducing memory loss by injection of a 16-mer end-protected phosphodiester oligodeoxynucleotide designed to correspond to the transcription start sites 146 and AUG1786 of the APP mRNA, immediately upstream of a ribozyme binding site. The oligodeoxynucleotide, 5′-CCC GAG GAC TGA GCC A-3′ (SEQ ID No: 21) was further modified on the 2nd and 13th nucleotides to prevent internal looping and is available from King's College Molecular Medicine Unit, London, UK. The oligodeoxynucleotide was used in scrambled (SC) and antisense (AS) forms and administered as described hereinbefore for peptide administration in an amount of 0.6 to 1.0 μg in 2 μl.


[0176] In a first experiment, chicks were injected with saline, RERMS, SMRER and RSAER in various combinations in the amounts stated hereinbefore.


[0177] The results are shown in FIG. 5 which shows the percent avoidances measured on the “strong” learning task described hereinbefore. FIG. 5a shows the effect compared with a saline control of administration separately of SC oligodeoxynucleotide 12 hours pretraining and AS oligodeoxynucleotide 12 hours pretraining, together with the effect of administration of RERMS following the AS oligodeoxynucleotide 30 minutes pretraining.


[0178]
FIG. 5

a
shows that the SC oligodeoxynucleotide had no effect on memory but the AS compound had a significant effect of memory loss which was avoided to a substantial extent when RERMS was administered.


[0179]
FIG. 5

b
shows that similar results were obtained with the reverse-order pentapeptide SMRER.


[0180]
FIG. 5

c
shows that the effect obtained with RERMS and SMRER is absent with the pentapeptide RSAER.


[0181] In a second experiment, SC and AS oligodeoxynucleotides were administered 12 hours pretraining. A polypeptide (APP 319-335) corresponding to amino acid residues 319 to 335 of human APP was injected 30 minutes pretraining. Chicks were tested for memory according to the “strong” version of the test described hereinbefore 30 minutes posttraining.


[0182]
FIG. 6 shows successively from the left: the percent avoidance measured for a saline control; the percent avoidance measured when SC oligodeoxynucleotide was administered; the percent avoidance measured when AS oligodeoxynucleotide was administered; and the percent avoidance measured when APP 319-335 was administered 30 minutes pretraining following administration of AS oligodeoxynucleotide 12 hours pretraining. Each result is shown both in terms of total avoidance (left-hand column) and discrimination (right-hand column)


[0183] The results shown in FIG. 6 demonstrate that APP319-335 can prevent antisense induced memory loss.


[0184]
FIGS. 7 and 8 show the effects of RERMS and APP 319-335 on memory in chicks trained on the “weak” memory test described hereinbefore.


[0185] As stated hereinbefore, weakly trained chicks (trained on 10% methylanthranilate) retain memory for the avoidance for only some 6 hours, and thereafter forget. FIG. 7 shows, on the left, the percent avoidance results (in terms of total avoidance and discrimination) for chicks trained on the “strong” version of the training, in the centre the corresponding results for “weak” training and, on the right, the effect of administration of RERMS following “weak” training. The chicks were tested for memory 24 hours posttraining; RERMS was administered in accordance with the procedure described hereinbefore 30 minutes pretraining.


[0186]
FIG. 8 shows the corresponding results obtained when the APP 319-335 polypeptide was used instead of RERMS.


[0187]
FIGS. 7 and 8 show that RERMS and APP 319-335 if injected prior to training chicks on the weak task, enhance memory at 24 hours. They thus function as cognitive enhancers (nootropic agents). Thus, RERMS and APP 319-335 both enhance normal memory in weakly trained animals.


[0188]
FIG. 9 shows the effect of RER on memory in chicks trained on the “weak” memory test described hereinbefore.


[0189] As stated hereinbefore, weakly trained chicks (trained on 10% methylanthranilate) retain memory for the avoidance for only some 6 hours, and thereafter forget.


[0190]
FIG. 9 shows, in the three columns on the left, on the left the percent avoidance results (in terms of total avoidance) for chicks trained on the “strong” version of the training, in the centre the corresponding results for “weak” training and, on the right, the effect of administration of RER following “weak” training. The chicks were tested for memory 24 hours posttraining; RER was administered in accordance with the procedure described hereinbefore 30 minutes pretraining.


[0191]
FIG. 9 shows, on the right, the corresponding data in terms of discrimination.


[0192]
FIG. 9 shows that RER, if injected prior to training chicks on the weak task, enhances memory at 24 hours. It thus functions as a cognitive enhancer (nootropic agent). Thus, RER enhances normal memory in weakly trained animals.


[0193]
FIG. 10 shows the effect of. RER and Ac-RER on β-amyloid 12-28 induced amnesia in chicks trained on the “strong” memory test described hereinbefore.


[0194]
FIG. 10 shows from left to right the percent avoidance measured in terms of total avoidance and discrimination for


[0195] chicks trained on the “strong” version of the training;


[0196] the amnesic effect of β-amyloid 12-28 administered at 2 μg/hemisphere 30 mins prior to training;


[0197] the effect of RER administered at 2 μg/hemisphere 20 mins prior to training after administration of β-amyloid 12-28 30 mins prior to training; and


[0198] the effect of Ac-RER administered at 2 μg/hemisphere 20 mins prior to training after administration of β-amyloid 12-28 30 mins prior to training.


[0199] The results in FIG. 10 show that both RER and Ac-RER have the effect of restoring memory measured 20 mins after administration of RER or Ac-RER, following amnesia induced by administration of β-amyloid 12-28.


[0200] The results also show that the memory-restorative effect of Ac-RER is less than that of RER but indicate that Ac-RER is more stable after administration and therefore more suitable for peripheral administration.


[0201]
FIG. 11 shows the effect of Ac-RER on memory in chicks trained on the “weak” memory test described hereinbefore.


[0202]
FIG. 11 shows from left to right the percent avoidance measured in terms of total avoidance and discrimination for


[0203] chicks trained on the “strong” version of the training:


[0204] chicks trained on the “weak” version of the training;


[0205] chicks trained on the “weak” version of the training after having had Ac-RER administered at 2 μg/hemisphere 30 mins beforehand; and


[0206] chicks trained on the “weak” version of the training after having had Ac-RER administered at 2 μg/hemisphere 60 mins beforehand.


[0207] The results in FIG. 11 show that Ac-RER has the effect of improving the memory of weakly trained chicks when administered 30 or 60 minutes beforehand. The results also show that the effect 60 minutes after administration is still significant, although less than 30 minutes after administration.


[0208] The results therefore show that Ac-RER has the effect of a cognitive enhancer and that the effect is apparent over a significant time period.


[0209]
FIG. 12 shows the effect of different doses of RER and Ac-RER on memory in chicks trained on the “weak” memory test described hereinbefore.


[0210]
FIG. 12 shows from left to right the percent avoidance measured in terms of total avoidance and discrimination for


[0211] chicks trained on the “strong” version of the training;


[0212] chicks trained on the “weak” version of the training;


[0213] chicks trained on the “weak” version of the training after having had RER administered 30 mins beforehand at 0.2 μg/hemisphere;


[0214] chicks trained on the “weak” version of the training after having had RER administered 30 mins beforehand at 1.0 μg/hemisphere;


[0215] chicks trained on the “weak” version of the training after having had RER administered 30 mins beforehand at 2.0 μg/hemisphere;


[0216] chicks trained on the “weak” version of the training after having had Ac-RER administered 30 mins beforehand at 4.0 μg/hemisphere; and


[0217] chicks trained on the “weak” version of the training after having had Ac-RER administered 30 mins beforehand at 6.0 μg/hemisphere.


[0218] The results in FIG. 12 show that both RER and Ac-RER have the effect of improving the memory of weakly-trained chicks when administered 30 minutes beforehand and that higher doses of Ac-RER than of RER are required to obtain a comparable effect.


[0219] The results therefore show that increased amounts of Ac-RER, in comparison to RER, are required to be used as a cognitive enhancer. This again indicates that Ac-RER is more stable after administration than RER and therefore more suitable for peripheral administration.


[0220]
FIG. 13 shows the effect of Ac-RER administered at different times on β-amyloid 12-28 induced amnesia in chicks trained on the “strong” memory test described hereinbefore.


[0221]
FIG. 13 shows from left to right the percent avoidance measured in terms of total avoidance and discrimination for


[0222] chicks trained on the “strong” version of the training;


[0223] the amnesic effect of β-amyloid 12-28 administered at 2 μg/hemisphere 30 mins prior to training;


[0224] the memory-restorative effect of Ac-RER administered at 4 μg/hemisphere 60 mins prior to training and 30 mins prior to administration of β-amyloid 12-28 at 2 μg/hemisphere;


[0225] the memory-restorative effect of Ac-RER administered at 4 μg/hemisphere 20 mins prior to training and 10 mins after administration of β-amyloid 12-28 at 2 μg/hemisphere; and


[0226] the memory-restorative effect of Ac-RER administered at 4 μg/hemisphere together with β-amyloid 12-28 at at 2 μg/hemisphere 30 mins prior to training.


[0227] The results of FIG. 13 show that Ac-RER has the effect of restoring memory when amnesia has been induced by β-amyloid 12-28. The effect is manifested regardless of whether Ac-RER is administered before, after or simultaneously with the amnesia-inducing β-amyloid 12-28.


[0228] The role of APP in memory formation has been attributed to its involvement in cell-to-substrate adhesion processes. The data reported suggests that the APP involvement in memory formation most probably involves change in signal transduction events. The post-training time within which the antibody and antisense-induced amnesia, and within which RER, Ac-RER, RERMS and SMRER prevents amnesia, corresponds to that during which memory formation is vulnerable to disruption of the putative signal-transduction functions of APP.


[0229] The chick system is a good one for exploring these issues, because the learning task is precise and sharply timed, and permits one also to be sure that any observed effect of an injected substance is specific to retention and not either to acquisition or to concomitant processes such as visual acuity, arousal or motor activity. Further, the role of other cell adhesion molecules in the cascade leading to synaptic modulation has been well mapped, so that the effects of either blocking or attempting to rescue functional APP activity can be set into an established context: see Rose, Learn. Memory 7, 1-17 (2000) the contents of which are fully incorporated herein by reference.


[0230] It is therefore indicated by the experimental results reported above that compounds of the present invention are effective for the treatment and/or prevention of neurological diseases and disorders and as cognitive enhancers (nootropic agents) in other animals, including human and non-human mammals. The compounds are therefore effective in the treatment and/or prevention of Alzheimer's disease in humans and other neurodegenerative diseases and disorders in animals generally, including humans. Such animals include transgenic and other animal models for Alzheimer's disease.


[0231] As used herein, except where the context indicates otherwise, the terms “treatment”, “treat” and analogous expressions used in relation to neurodegenerative diseases include within their scope not only treatment when symptoms are apparent but also the partial or total prevention of such diseases and delay in their onset in patients or animals who are subjected to treatment before onset of the disease or its symptoms become apparent.


[0232] The compounds of the present invention may be administered intracerebally as described above, or may be administered peripherally, for example intramuscularly, intravenously, transdermally or orally, preferably after complexation as described above. Instead or in addition, the compounds may be protected against alteration between administration and effectiveness, for example by addition of protective groups.


[0233] The experimental results of FIGS. 10 to 13 show that the polypeptide derivatives of the present invention, particularly Ac-RER, are effective for longer time periods after administration than their analogues lacking protective groups and are therefore particularly suitable for peripheral administration.


[0234] The compounds of the present invention may also be formulated as pharmaceutical compositions as referred to hereinbefore, particularly such compositions as are capable of crossing the blood-brain barrier and thereby be suitable for peripheral administration.


[0235] In all events a suitable dose of peptide compounds according to the invention is from 10 to 100 μg/kg body weight of the animal being treated.


[0236] As used herein, the term “effective to treat” in the context of a neurodegenerative disease means that amount of the compound(s) used in the treatment which causes a reduction or stabilisation or, as the case may be, prevents or delays the appearance of such symptoms as measured by standard medical or psychological criteria, for example as disclosed in Handbook of Memory Disorders (eds: A D Baddeley, B A Wilson and F N Watts), Wiley (1995), the disclosure of which is herein incorporated by reference.


[0237] As used herein, the term “effective to treat” in relation to a cognitive enhancement means an amount of the compound(s) used in the treatment which causes an improvement in cognitive power as measured by psychological criteria, for example as disclosed in Handbook of Memory Disorders (eds: A D Baddeley, B A Wilson and F N Watts), Wiley (1995), the disclosure of which is herein incorporated by reference.
11SEQUENCE LISTING FREE TEXTSEQ IDNO.Free Text <223>3Description of Artificial Sequence: 5-merpolypeptide4Description of Artificial Sequence: 5-merpolypeptide5Description of Artificial Sequence: 5-merpolypeptide6Description of Artificial Sequence: 17-merpolypeptide7Description of Artificial Sequence: 17-merpolypeptide8Description of Artificial Sequence: 17-merpolypeptide9Description of Artificial Sequence: 3-merpolypeptide10Description of Artificial Sequence: 4-merpolypeptide11Description of Artificial Sequence: 4-merpolypeptide12Description of Artificial Sequence: 16-merpolypeptide13Description of Artificial Sequence: 15-merpolypeptide14Description of Artificial Sequence: 14-merpolypeptide15Description of Artificial Sequence: 12-merpolypeptide16Description of Artificial Sequence: 11-merpolypeptide17Description of Artificial Sequence: 11-merpolypeptide18Description of Artificial Sequence: 10-merpolypeptide19Description of Artificial Sequence: 6-merpolypeptide20Description of Artificial Sequence: 22-merpolypeptide21Description of Artificial Sequence: end-protected16-mer oligonucleotide modified at positions 2 &13 to prevent internal looping22Description of Artificial Sequence: 40-merpolypeptide


[0238]


Claims
  • 1. A derivative of a polypeptide having the formula:
  • 2. A polypeptide derivative according to claim 1, in which the protected functional group(s) comprise one or more amino groups.
  • 3. A polypeptide derivative according to claim 2, in which the amino group(s) comprise an N-terminal amino group.
  • 4. A polypeptide derivative according to claim 2 or 3, in which at least one protected amino group is protected by replacement of only one of its hydrogen atoms by a protective group.
  • 5. A polypeptide derivative according to claim 1, in which the protected functional group(s) comprise one or more carboxyl groups.
  • 6. A polypeptide derivative according to claim 4, in which the carboxyl group(s) comprise a C-terminal carboxyl group.
  • 7. A polypeptide derivative according to any preceding claim, in which at least one protective group is an acyl group represented by the formula
  • 8. A polypeptide derivative according to claim 7, in which R represents a C1 to C6 straight- or branched-chain alkyl group.
  • 9. A polypeptide derivative according to claim 8, in which R represents a methyl group.
  • 10. A polypeptide derivative according to any preceding claim, in which X1 is from zero to 20 and/or X2 is from zero to 20.
  • 11. A polypeptide derivative according to claim 7, in which X1 is from zero to 10 and/or X2 is from zero to 10.
  • 12. A polypeptide derivative according to claim 8, in which X1 and/or X2 is zero.
  • 13. A polypeptide derivative according to any of 25 claims 1 to 9, in which X1 and X2 are such that formula (I) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 330 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom, or to a sequence which is closely homologous thereto or in which the amino acids thereof are replaced by nonstandard amino acids.
  • 14. A polypeptide derivative according to any of claims 1 to 9, in which X1 and X2 are such that formula (I) represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom, or to a sequence which is closely homologous thereto or in which the amino acids thereof are replaced by nonstandard amino acids.
  • 15. A polypeptide derivative according to any of claims 1 to 9, in which X1 represents:
  • 16. A polypeptide derivative according to claim 15, in which X3 is from zero to 20 and/or X4 is from zero to 20.
  • 17. A polypeptide derivative according to claim 16, in which X3 is from zero to 10 and/or X4 is from zero to 10.
  • 18. A polypeptide derivative according to claim 17, in which X3 and/or X4 is zero.
  • 19. A polypeptide derivative according to any of claims 1 to 9, in which X1 represents:
  • 20. A polypeptide derivative according to claim 19, in which X3 is from zero to 20 and/or X4 is from zero to 20.
  • 21. A polypeptide derivative according to claim 20, in which X3 is from zero to 10 and/or X4 is from zero to 10.
  • 22. A polypeptide derivative according to claim 21, in which X3 and/or X4 is zero.
  • 23. A polypeptide derivative according to any of claims 1 to 9, in which X2 represents:
  • 24. A polypeptide derivative according to claim 23, in which X2 represents:
  • 25. A polypeptide derivative according to any of claims 1 to 9, in which X1 represents:
  • 26. A polypeptide derivative according to claim 25, in which X1 represents:
  • 27. A polypeptide derivative according to any of claims 1 to 9, in which Xaa is glutamic acid, X1 is methionine and X2 is zero.
  • 28. A polypeptide derivative according to any of claims 1 to 9, in which Xaa is glutamic acid, X1 is zero and X2 is methionine.
  • 29. A polypeptide derivative according to any of claims 1 to 9, in which Xaa is glutamic acid and X1 and X2 are both zero.
  • 30. A polypeptide derivative according to any of claims 1 to 9, in which Xaa is glutamic acid, X1 is zero and X2 is Met-Ser.
  • 31. A polypeptide derivative according to any of claims 1 to 9, in which Xaa is glutamic acid, X1 is Ser-Met and X2 is zero.
  • 32. A compound having the formula
  • 33. A compound having the formula
  • 34. A compound according to claim 33, in which R represents a C1 to C6 straight- or branched-chain alkyl group.
  • 35. A compound having the formula
  • 36. A polypeptide derivative, according to any of claims 1 to 31 or a compound according to any of claims 32 to 35 for use in medicine.
  • 37. Use of a polypeptide derivative according to any of claims 1 to 31 or a compound according to any of claims 32 to 35 in the preparation of a medicament for use in the treatment of a neurodegenerative disease or as a cognitive enhancer.
  • 38. Use according to claim 37, in which the neurodegenerative disease is Alzheimer's disease.
  • 39. A pharmaceutical composition comprising a polypeptide derivative according to any of claims 1 to 31 or a compound according to any of claims 32 to 35 and a pharmaceutically acceptable carrier.
  • 40. A pharmaceutical composition in which a polypeptide derivative according to any of claims 1 to 31 or compound according to any of claims 32 to 35 is chemically or physically linked to a further molecule or vehicle to form a complex for pharmaceutical delivery of the said compound.
  • 41. A method of treatment of a neurodegenerative disease in an animal, comprising: identifying an animal suffering or potentially suffering from a neurodegenerative disease; and administering to the animal an amount of a polypeptide derivative according to any of claims 1 to 31, of a compound according to any of claims 32 to 35, or of a composition according to claim 39 or 40 effective treat the neurodegenerative disease.
  • 42. A method according to claim 41, in which the neurodegenerative disease is Alzheimer's disease.
  • 43. A method of producing a cognitive enhancement effect in an animal, comprising: providing an animal in which the effect is to be produced; and administering to the animal an amount a polypeptide derivative according to any of claims 1 to 31, of a compound according to any of claims 32 to 35, or of a composition according to claim 39 or 40 effective to produce the cognitive enhancement.
  • 44. A compound having a formula comprising:
  • 45. A compound according to claim 44, in which X1 is from zero to 22 and/or X2 is from zero to 22.
  • 46. A compound according to claim 45, in which X1 is from zero to 12 and/or X2 is from zero to 12.
  • 47. A compound according to claim 46, in which either X1 or X2 is zero.
  • 48. A compound according to claim 44, in which X1 and X2 are such that formula (II) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 330 of human APP and up to 32 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.
  • 49. A compound according to claim 44, in which X1 and X2 are such that formula (II) represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 32 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said reverse-order sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.
  • 50. A compound having a formula comprising:
  • 51. A compound according to claim 50, in which X1 is from zero to 22 and/or X2 is from zero to 22.
  • 52. A compound according to claim 51, in which X1 is from zero to 12 and/or X2 is from zero to 12.
  • 53. A compound according to claim 52, in which X1 and/or X2 is zero.
  • 54. A compound according to claim 50, in which X1 and X2 are such that formula (III) represents an amino acid sequence which is identical or closely homologous to amino acid residues 328 to 330 of human APP and up to 32 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.
  • 55. A compound according to claim 50, in which X1 and X2 are such that formula (III) represents a reverse-order amino acid sequence which is identical or closely homologous to amino acid residues 330 to 328 of human APP and up to 30 successive amino acid residues of human APP extending in each direction therefrom, the formula also comprising sequences closely homologous to said reverse-order sequence and sequences in which said amino acids thereof are replaced by nonstandard amino acids and/or by derivatives of acid amino acids.
  • 56. A compound according to claim 50, in which X1 represents:
  • 57. A compound according to claim 56, in which X3 is from zero to 20 and/or X4 is from zero to 20.
  • 58. A compound according to claim 57, in which X3 is from zero to 10 and/or X4 is from zero to 10.
  • 59. A compound according to claim 58, in which X3 and/or X4 is zero.
  • 60. A compound according to claim 50, in which X1 represents:
  • 61. A compound according to claim 60, in which X3 is from zero to 20 and/or X4 is from zero to 20.
  • 62. A compound according to claim 61, in which X3 is from zero to 10 and/or X4 is from zero to 10.
  • 63. A compound according to claim 62, in which X3 and/or X4 is zero.
  • 64. A compound according to any of claims 1 to 26 and 44 to 63, in which Xaa is glutamic acid.
  • 65. A compound according to claim 50, in which Xaa is glutamic acid, X1 is methionine and X2 is zero.
  • 66. A compound according to claim 50, in which Xaa is glutamic acid, X1 is zero and X2 is methionine.
  • 67. A compound according to claim 50, in which Xaa is 5 glutamic acid, and X1 and X2 are both zero.
  • 68. Use of a compound having a formula comprising:
  • 69. A pharmaceutical composition comprising a compound having a formula comprising:
  • 70. A pharmaceutical composition in which a compound having a formula comprising:
  • 71. A method of treatment of a neurodegenerative disease in an animal, comprising: identifying an animal suffering or potentially suffering from a neurodegenerative disease; and administering to the animal an amount of a compound having a formula comprising: X1-Arg-Xaa-Arg-X2  (III) wherein X1 and X2, which may be the same or different, each represents from zero to 32 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid residue or a derivative thereof, effective to treat the neurodegenerative disease.
  • 72. A method according to claim 70, in which the neurodegenerative disease is Alzheimer's disease.
  • 73. A method of producing a cognitive enhancement effect in an animal, comprising providing an animal in which the effect is to be produced; and administering to the animal an amount of a compound having a formula comprising: X1-Arg-Xaa-Arg-X2  (III) wherein X1 and X2, which may be the same or different, each represents from zero to 32 natural or synthetic amino acid residues or derivatives thereof and Xaa represents a natural or synthetic amino acid residue or a derivative thereof, effective to produce the cognitive enhancement.
  • 74. A compound having any of the following formulae:
  • 75. Use of a compound having any of the following formulae:
  • 76. A pharmaceutical composition comprising a compound having any of the following formulae:
  • 77. A pharmaceutical composition in which a compound having any of the following formulae:
  • 78. A method of treatment of a neurodegenerative disease in an animal, comprising: identifying an animal suffering or potentially suffering from a neurodegenerative disease; and administering to the animal an amount of a compound having any of the following formulae: 16Arg-Glu-Arg(SEQ ID NO 9)Arg-Glu-Arg-Met(SEQ ID NO 10)Met-Arg-Glu-Arg(SEQ ID NO 11)Arg-Glu-Arg-Met-Ser(SEQ ID NO 3)Ser-Met-Arg-Glu-Arg(SEQ ID NO 4)effective to treat the neurodegenerative disease.
  • 79. A method according to claim 78, in which the neurodegenerative disease is Alzheimer's disease.
  • 80. A method of producing a cognitive enhancement effect in an animal, comprising providing an animal in which the effect is to be produced; and administering to the animal an amount of a compound having any of the following formulae: 17Arg-Glu-Arg(SEQ ID NO 9)Arg-Glu-Arg-Met(SEQ ID NO 10)Met-Arg-Glu-Arg(SEQ ID NO 11)Arg-Glu-Arg-Met-Ser(SEQ ID NO 3)Ser-Met-Arg-Glu-Arg(SEQ ID NO 4)effective to produce the cognitive enhancement.
Priority Claims (4)
Number Date Country Kind
0109558.7 Apr 2001 GB
0120084.9 Aug 2001 GB
09998491 Nov 2001 US
0207387.2 Mar 2002 GB
PCT Information
Filing Document Filing Date Country Kind
PCT/GB02/01769 4/17/2002 WO