POLYPEPTIDES ENCODING ANTIBODIES BINDING TO SARS-COV-2 SPIKE PROTEIN

Information

  • Patent Application
  • 20230192821
  • Publication Number
    20230192821
  • Date Filed
    May 20, 2021
    3 years ago
  • Date Published
    June 22, 2023
    a year ago
Abstract
There is provided inter alia a polypeptide comprising a CDRH1 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH1 sequence as shown in Table 1 and/or a CDRH2 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH2 sequence as shown in Table 1 and/or a CDRH3 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH3 sequence as shown in Table 1.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to UK Patent Application Number 2007532.1 filed on May 20, 2020 entitled POLYPEPTIDES, the contents of which are herein incorporated by reference in their entirety.


SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing file, entitled 2231_1000PCT.txt, was created on May 19, 2021 and is 1,327,961 bytes in size. The information in electronic format of the Sequence Listing is incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to polypeptides which were identified in the BCR heavy chain repertoire of individuals during SARS-CoV-2 infection. The invention also includes polynucleotides encoding said polypeptides, pharmaceutical compositions comprising said polypeptides and the use of said polypeptides in suppressing or treating a disease or disorder mediated by infection with SARS-CoV-2, for providing prophylaxis to a subject at risk of infection of SARS-CoV-2 or for the diagnosis and/or prediction of outcome of SARS-CoV-2 infection.


BACKGROUND OF THE INVENTION

Since the report of the first patients in December 20191,2, the unprecedented global scale of the COVID-19 pandemic has become apparent. The infectious agent, the SARS-CoV-2 betacoronavirus3, causes mild symptoms in most cases but can cause severe respiratory diseases such as acute respiratory distress syndrome in some individuals. Risk factors for severe disease include age, male gender and underlying co-morbidities4.


Understanding the immune response to SARS-CoV-2 infection is critical to support the development of therapies. Recombinant monoclonal antibodies derived from analysis of B cell receptor (BCR) repertoires in infected patients or the immunisation of animals have been shown to be effective against several infectious diseases including Ebola virus5, rabies6 and respiratory syncytial virus disease7. Such therapeutic antibodies have the potential to protect susceptible populations as well as to treat severe established infections.


While many vaccine approaches are underway in response to the SARS-CoV-2 outbreak, many of these compositions include as immunogens either whole, attenuated virus or whole spike (S) protein—a viral membrane glycoprotein which mediates cell uptake by binding to host angiotensin-converting enzyme 2 (ACE2). The antibody response to such vaccines will be polyclonal in nature and will likely include both neutralising and non-neutralising antibodies. It is hoped that the neutralising component will be sufficient to provide long-term SARS-CoV-2 immunity following vaccination, although other potential confounders may exist, such as raising antibodies which mediate antibody-dependent enhancement (ADE) of viral entry8-10. While ADE is not proven for SARS-CoV-2, prior studies of SARS-CoV-1 in non-human primates showed that, while some S protein antibodies from human SARS-CoV-1 patients were protective, others enhanced the infection via ADE11. An alternative could be to support passive immunity to SARS-CoV-2, by administering one, or a small cocktail of, well-characterised, neutralising antibodies.


Patients recovering from COVID-19 have already been screened to identify neutralising antibodies, following analysis of relatively small numbers (100-500) of antibody sequences12,13. A more extensive BCR repertoire analysis was performed on six patients in Stanford, USA with signs and symptoms of COVID-19 who also tested positive for SARS-CoV-2 RNA14. Although no information was provided on the patient outcomes in that study, the analysis demonstrated preferential expression of a subset of immunoglobulin heavy chain (IGH) V gene segments with relatively little somatic hypermutation and showed evidence of convergent antibodies between patients.


To drive a deeper understanding of the nature of humoral immunity to SARS-CoV-2 infection and to identify potential therapeutic antibodies to SARS-CoV-2, we have evaluated the BCR heavy chain repertoire from 19 individuals at various stages of their immune response. We show that (1) there are stereotypic responses to SARS-CoV-2 infection, (2) infection stimulates both naïve and memory B cell responses, (3) sequence convergence can be used to identify putative SARS-CoV-2 specific antibodies, and (4) sequence convergence can be identified between different SARS-CoV-2 studies in different locations and using different sample types.


Polypeptides of the present invention may, in at least some embodiments, have one or more of the following advantages compared to the prior art:


(i) increased binding affinity to SARS-CoV-2, for example SARS-CoV-2 spike protein,


(ii) increased neutralising potency against SARS-CoV-2,


(iii) binding to non-spike protein components of SARS-CoV-2 to reduce viral load,


(iv) binding to host proteins to inhibit virus entry/infection,


(v) binding to SARS-CoV-2 infected human cells to enable infected cell killing,


(vi) binding to human cells or soluble factor to modulate immune response to the virus,


(vii) binding to human cells to alter innate immune responses from structural cells such as epithelial cells,


(viii) binding to endothelial cells to alter viral-related endothelial inflammation and modulation of the clotting response,


(ix) activity across all potential anti-viral mechanisms including novel ones (e.g., binding viral epitopes, secreted host epitopes, membrane host epitopes, modulating infected host cells, modulating innate and adaptive immune responses)


(x) neutralising potential against other/new forms of coronavirus,


(xi) suitability for administration with other agents in treating COVID-19 (e.g., to enhance anti-viral efficacy), (xii) suitable for prevention or treatment of SARS-CoV-2 infection,


(xii) suitability for administration by multiple routes (SC, IV, IM, dermal, nasal, oral),


(xiii) one or more polypeptides can be used in the diagnosis or prediction of outcome post SARS-CoV-2 infection.


SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is provided a polypeptide comprising:


a CDRH1 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH1 sequence as shown in Table 1 and/or


a CDRH2 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH2 sequence as shown in Table 1 and/or


a CDRH3 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH3 sequence as shown in Table 1.


In a further aspect there is provided a polypeptide comprising:


a FWRH1 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/or


a FWRH2 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/or


a FWRH3 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/or


a FWRH4 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH4 sequence as shown in Table 1.


In a further aspect there is provided pharmaceutical compositions comprising the polypeptides above and polynucleotides encoding the polypeptides above. Further aspects of the invention will be apparent from the detailed description of the invention.





DESCRIPTION OF THE FIGURES


FIG. 1A. B cell responses to SARS-COV-2 infection. IGHV gene segment usage distribution per isotype subclass. Bars show mean values+/− standard error of the mean. Comparisons performed using t-tests, with adjusted p values using Bonferroni correction for multiple comparisons; *p<0.05, **p<0.005, ***p<0.0005.



FIG. 1B. B cell responses to SARS-COV-2 infection. Isotype subclass distribution between IGHA and IGHG subclasses. Bars show mean values+/− standard error of the mean. Comparisons performed using t-tests, with adjusted p values using Bonferroni correction for multiple comparisons; *p<0.05, **p<0.005, ***p<0.0005.



FIG. 1C. B cell responses to SARS-COV-2 infection. Mean BCR CDRH3 lengths from COVID-19 patients compared to healthy controls. Bars show mean values+/− standard error of the mean. Comparisons performed using t-tests, with adjusted p values using Bonferroni correction for multiple comparisons; *p<0.05, **p<0.005, ***p<0.0005.



FIG. 2A. Response characteristics of SARS-CoV-2 infection. Distribution of sequences with different numbers of mutations from germline.



FIG. 2B. Response characteristics of SARS-CoV-2 infection. Relationship between the proportion of the repertoire comprised by unmutated sequences, and the disease state.



FIG. 2C. Response characteristics of SARS-CoV-2 infection. Individual sequences were clustered together into related groups to identify clonal expansions (clonotypes). Diversity of all clonotypes in the repertoire calculated using the Shannon diversity index. To normalise for different sequence numbers for each sample, a random subsample of 1,000 sequences was taken.



FIG. 2D. Response characteristics of SARS-CoV-2 infection. Correlation between the Shannon diversity index, and the proportion of unmutated sequences.



FIG. 2E. Response characteristics of SARS-CoV-2 infection. The percent of all sequences that fall into the largest 10 clonotypes.



FIG. 2F. Response characteristics of SARS-CoV-2 infection. Mean number of mutations of all sequences in the largest 10 clonotypes.



FIG. 3A. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Shown is the number of clonotypes shared by different numbers of participants, grouped by whether the clonotypes are also present in the healthy control dataset.



FIG. 3B. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Of the convergent clonotypes, the mean mutation count was compared between those that were convergent only within the SARS-CoV-2 patients, and those that were also convergent with the healthy control dataset.



FIG. 3C. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Of the convergent clonotypes, the CDRH3 AA sequence length was compared between those that were convergent only within the SARS-CoV-2 patients, and those that were also convergent with the healthy control dataset.



FIG. 3D. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Shown is a heatmap of the 777 convergent COVID-19-associated clonotypes (observed between 4 or more COVID-19 participants) with the 469 convergent clonotypes from seven metastatic breast cancer (BC) patient biopsy samples, demonstrating that the convergent signatures are unique to each disease cohort.



FIG. 3E. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Shown is the percentage frequencies of four example convergent clonotypes grouped by clinical status. Disclosed are SEQ ID NOS 570, 468, 435, and 467, respectively, in order of appearance



FIG. 3F. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Shown is a similarity tree of convergent clonotype cluster centers that are significantly associated with clinical status. Groups (i) and (ii) indicate groups of similar convergent clonotypes. An alignment of group (ii) provided adjacent. Disclosed are SEQ ID NOS 907, 943, 433, 570, 461, 435, 974, 655, 468, 481, 552, 480, 458, 467, 722, 742, 851, 558, 440, 540, 463, 487, 575, 559, 416, 467, 722, 742, 851, and 558, respectively, in order of columns.



FIG. 3G. Convergent BCR sequence signature within individuals infected with SARS-CoV-2. Data from all patients and healthy controls were clustered together to identify convergent clonotypes. Proportions of IGHA and IGHG of the convergent clonotypes that are associated with patients with improving symptoms are shown.



FIG. 4A. Matches of the 777 convergent clonotypes identified in the present study to other SARS-CoV-2 studies. CDRH3 sequence (shown across the top in black text, SEQ ID NO: 2002), and IGHV/IGHJ gene segments of a sequence identified in the bronchoalveolar lavage fluid of a SARS-CoV-2 patient from a Chinese cohort, and a CDRH3 AA sequence logo unpacking the sequence diversity present in the convergent clonotype found in the COVID-19 patients in this study that had an exact AA match.



FIG. 4B. Matches of the 777 convergent clonotypes identified in the present study to other SARS-CoV-2 studies. CDRH3 sequence (shown across the top in black text, SEQ ID NO: 2015), and IGHV/IGHJ gene segment of an antibody in the CoV-AbDab (S304) that has SARS-CoV-1 and SARS-CoV-2 neutralising activity, alongside a CDRH3 AA sequence logo unpacking the sequence diversity in the convergent clonotype found in the COVID-19 patients in this study that had an exact AA match.



FIG. 4C. Matches of the 777 convergent clonotypes identified in the present study to other SARS-CoV-2 studies. Shown is a comparison of convergent clonotypes to the BCR data from Nielsen et al14. Plotted along the x-axis are the 405 convergent clonotypes represented in at least one Nielsen et al. dataset. Each row represents a separate BCR repertoire from Nielsen et al.; Non-shaded area indicates that the convergent clonotype has a match in the Nielsen dataset.



FIG. 5A. Distribution of sequences with different numbers of mutations from germline. Each row is a different COVID-19 patient (right).



FIG. 5B. Distribution of sequences with different numbers of mutations from germline. Each row is a different COVID-19 patient (right).



FIG. 5C. Distribution of sequences with different numbers of mutations from germline. Each row is a different COVID-19 patient (right).



FIG. 5D. Distribution of sequences with different numbers of mutations from germline. Each row is a different COVID-19 patient (right).



FIG. 6. The proportion of IGHG1 sequences containing the autoreactive “NHS” and “AVY” motifs between COVID patients with improving, stable or worsening symptoms. IGHG1 (box) was the only significant correlation. P-values are determined by ANOVA.



FIG. 7A. Properties of the 777 convergent clonotypes. Pie chart shows isotype subclass usage of the sequences with the 777 convergent clonotypes.



FIG. 7B. Properties of the 777 convergent clonotypes. Graph shows IGHV gene segment usage of the 777 convergent clonotypes.



FIG. 8A. Percentage frequencies of the convergent clonotypes grouped by clinical status that significantly associated with clinical status. Disclosed are SEQ ID NOS 655, 943, 552, 559, 575, 463, 742, 570, 435, 416, 481, and 468, respectively, in order of appearance.



FIG. 8B. Percentage frequencies of the convergent clonotypes grouped by clinical status that significantly associated with clinical status. Disclosed are SEQ ID NOS 487, 722, 461, 467, 540, 558, 480, 458, 440, 974, 851, 433, and 907, respectively, in order of appearance.



FIG. 9A. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9B. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9C. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9D. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9E. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9F. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9G. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 9H. Lineage tree of the convergent clonotype that matched to the bronchoalveolar lavage fluid data. Lineage tree represents the members of the clonotype from the patient it was present in. Each node represents a unique sequence within the clonotype lineage tree, with the size indicative of the number of duplicate sequences present. Numbers on the edges of adjoining nodes show the number of mutations between the sequences.



FIG. 10. Logo plots unpacking the sequence diversity present for the convergent clonotypes that clustered with CoV-AbDab SARS-CoV-1 or SARS-CoV-2 binding antibodies. The CoV-AbDab reference CDRH3 (corresponding to SEQ ID NOS 2015-2020, respectively, in order of appearance) and IGHV/IGHJ gene segment is displayed above each Logo plot. Gene transcript matches are annotated with “*,” while mismatches are annotated with “**.” The full sequence for 31B9 is not yet publicly available, so its genetic origins are not determined (ND).





DETAILED DESCRIPTION

The complementarity determining regions (CDRs) and framework regions (FWRs) of an antibody or fragment thereof may be numbered from N- to C-terminus, i.e. FWR1, CDR1, FWR2, CDR2, FWR3, CDR3 and FWR4. In the context of a heavy chain variable domain, these regions may be denoted with an ‘H’, i.e. FWRH1, CDRH1, FWRH2, CDRH2, FWRH3, CDRH3 and FWRH4.


Table 1 below provides the polypeptide sequences of immunoglobulin heavy chain variable domains of the invention (VHs) with complementarity determining regions (CDRH1-3) and frameworks (FWRH1-4) of the invention annotated according to the IMGT system (Lefranc et al. “IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains” Dev. Comp. Immunol. 27(1):55-77 (2003)). The full length polypeptide sequence of any VH given in Table 1 is the combination of, from N- to C-terminus, FWRH1, CDRH1, FWRH2, CDRH2, FWRH3, CDRH3 and FWRH4 on a single row. For example, the polypeptide sequence of set1_1 is QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDG SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDAVYYCARDGGGYMDVWGQG TTVTVSS (SEQ ID NO: 1). “v_call” and “j_call” refer to the germline V and J gene segments from which the sequence originated, according to the IMGT system.


Table 2 below also provides the polypeptide sequences of immunoglobulin heavy chain variable domains (VHs) of the invention.


Based on the experimental work provided herein, it is expected that components of these VHs, such as the complementarity determining regions, frameworks, or combinations of these (such as full length VH sequences) may be utilised in therapeutic or prophylactic agents for treating or preventing SARS-CoV-2 infection, or for performing diagnostic or prognostic analysis of subjects infected, or suspected of being infected, with SARS-CoV-2.


It is envisaged that the proposed heavy chains be paired with suitable light chains to enable production of monoclonal antibodies, for example in IgG1 format. Cognate light chains can be identified by various methods, including computational prediction (eg Mason et al bioRxiv 617860 (2019)), the use of promiscuous or ‘common light chains’ (eg Xue et al. Biochem Biophys Res Commun. 515(3):481-486, (2019)), high-throughput paired heavy and light chain sequencing to identify native pairings (eg Wang et al Nat Biotechnol. 36(2):152-155 (2018)) and antibody display-based methods to find and optimise heavy and light chain pairings (eg Guo-Qiang et al. Methods Mol Biol. 562:133-142 2009).









TABLE 1







Polypeptide sequences of immunoglobulin heavy chain variable domains


(VHs), from N-to C-terminus, with frameworks and complementarity determining


regions annotated according to the IMGT system



















FWRH1
CDRH1
FWRH2
CDRH2
FWRH3
CDRH3
FWRH4


VH


(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID
(SEQ ID


name
v_call
j_call
NO)
NO)
NO)
NO)
NO)
NO)
NO)



















set1_1
IGHV3-
IGHJ6
2
38
135
216
304
416
1196



30-3










set1_2
IGHV3-
IGHJ4
2
39
135
216
304
417
1197



30










set1_3
IGHV4-
IGHJ5
3
40
136
217
305
418
1197



59










set1_4
IGHV3-
IGHJ4
2
39
135
218
304
419
1197



33










set1_5
IGHV1-
IGHJ3
4
41
137
219
306
420
1197



69










set2_1
IGHV3-
IGHJ6
5
42
138
220
307
421
1196



73










set2_2
IGHV3-
IGHJ4
6
43
139
221
308
422
1197



74










set2_3
IGHV3-
IGHJ4
5
42
138
220
307
423
1197



73










set2_4
IGHV3-
IGHJ3
5
42
138
220
307
424
1198



73










set2_5
IGHV3-
IGHJ4
7
44
140
222
309
425
1197



15










set2_6
IGHV3-
IGHJ4
2
45
141
223
310
426
1197



30










set2_7
IGHV4-
IGHJ4
8
46
142
224
311
427
1199



61










set2_8
IGHV4-
IGHJ4
9
47
143
225
312
428
1197



59










set2_9
IGHV3-
IGHJ4
7
48
140
226
313
429
1197



15










set2_10
IGHV4-
IGHJ4
10
47
144
225
314
430
1197



59










set2_11
IGHV4-
IGHJ4
11
49
145
227
315
431
1197



39










set2_12
IGHV3-
IGHJ4
12
50
146
228
304
432
1197



23










set2_13
IGHV5-
IGHJ4
13
51
147
229
316
433
1197



51










set2_14
IGHV3-
IGHJ6
7
44
140
222
309
434
1200



15










set2_15
IGHV1-
IGHJ4
14
52
148
230
317
435
1197



2










set2_16
IGHV4-
IGHJ5
15
53
149
231
318
436
1197



34










set2_17
IGHV4-
IGHJ4
15
54
150
231
319
437
1201



34










set2_18
IGHV4-
IGHJ4
9
47
143
225
320
438
1197



59










set2_19
IGHV4-
IGHJ4
9
47
143
225
312
439
1197



59










set2_20
IGHV4-
IGHJ4
16
55
151
232
321
440
1197



4










set2_21
IGHV1-
IGHJ4
14
56
152
233
322
441
1202



18










set2_22
IGHV1-
IGHJ5
14
57
153
234
323
442
1197



8










set2_23
IGHV3-
IGHJ4
5
42
138
220
307
443
1197



73










set2_24
IGHV4-
IGHJ5
16
55
151
232
321
444
1197



4










set2_25
IGHV3-
IGHJ4
2
39
135
218
304
445
1197



33










set2_26
IGHV3-
IGHJ4
6
58
154
235
324
446
1197



48










set2_27
IGHV3-
IGHJ4
6
59
155
236
304
447
1197



66










set2_28
IGHV3-
IGHJ5
6
60
156
237
325
448
1197



74










set2_29
IGHV5-
IGHJ4
17
61
157
229
326
449
1197



51










set2_30
IGHV3-
IGHJ6
2
39
135
218
304
450
1196



33










set2_31
IGHV3-
IGHJ4
18
62
158
238
327
451
1197



9










set2_32
IGHV5-
IGHJ3
17
63
157
239
328
452
1198



51










set2_33
IGHV3-
IGHJ4
2
38
135
216
304
453
1197



30










set2_34
IGHV3-
IGHJ4
19
64
159
240
329
454
1197



74










set2_35
IGHV3-
IGHJ4
20
65
160
241
330
455
1197



11










set2_36
IGHV3-
IGHJ4
6
59
155
236
304
456
1197



66










set2_37
IGHV5-
IGHJ3
17
61
157
229
326
457
1198



51










set2_38
IGHV3-
IGHJ4
2
39
135
218
304
458
1197



33










set2_39
IGHV3-
IGHJ4
2
38
135
216
304
459
1197



30










set2_40
IGHV3-
IGHJ4
2
38
135
216
304
460
1197



30










set2_41
IGHV3-
IGHJ4
2
38
135
216
304
461
1197



30










set2_42
IGHV3-
IGHJ5
2
38
135
216
304
462
1197



30










set2_43
IGHV3-
IGHJ2
2
39
135
218
304
463
1203



33










set2_44
IGHV3-
IGHJ4
2
38
135
216
304
464
1197



30










set2_45
IGHV3-
IGHJ4
2
39
135
218
304
465
1197



33










set2_46
IGHV3-
IGHJ6
2
38
135
216
304
466
1196



30-3










set2_47
IGHV3-
IGHJ3
2
38
135
216
304
467
1198



30-3










set2_48
IGHV3-
IGHJ4
21
59
155
236
304
468
1197



66










set2_49
IGHV3-
IGHJ4
2
39
135
218
304
469
1197



33










set2_50
IGHV3-
IGHJ4
2
38
135
216
304
470
1197



30










set2_51
IGHV4-
IGHJ4
15
66
161
242
312
471
1197



34










set2_52
IGHV3-
IGHJ3
2
38
135
216
304
472
1198



30










set2_53
IGHV3-
IGHJ5
2
38
135
216
304
473
1197



30










set2_54
IGHV4-
IGHJ4
22
67
143
232
331
474
1197



30-2










set2_55
IGHV3-
IGHJ4
2
38
135
216
304
475
1197



30










set2_56
IGHV3-
IGHJ4
2
39
135
218
304
476
1197



33










set2_57
IGHV3-
IGHJ4
2
39
135
218
304
477
1197



33










set2_58
IGHV3-
IGHJ6
2
68
162
243
332
478
1204



30










set2_59
IGHV3-
IGHJ6
2
39
135
216
304
479
1196



30










set2_60
IGHV3-
IGHJ4
21
59
155
236
304
480
1197



53










set2_61
IGHV3-
IGHJ2
2
38
135
216
304
481
1203



30










set2_62
IGHV3-
IGHJ4
2
39
135
216
304
482
1197



30










set2_63
IGHV1-
IGHJ3
23
69
163
244
333
483
1205



18










set2_64
IGHV3-
IGHJ4
6
58
154
235
324
484
1197



48










set2_65
IGHV1-
IGHJ4
14
70
164
245
334
485
1197



18










set2_66
IGHV3-
IGHJ4
2
38
135
216
304
486
1197



30










set2_67
IGHV3-
IGHJ5
2
38
135
216
304
487
1197



30










set2_68
IGHV3-
IGHJ4
2
38
135
216
304
488
1197



30










set2_69
IGHV1-
IGHJ4
4
71
165
246
335
489
1197



69










set2_70
IGHV3-
IGHJ4
2
39
135
216
304
490
1197



30










set2_71
IGHV3-
IGHJ4
2
38
135
216
304
491
1197



30










set2_72
IGHV3-
IGHJ4
2
38
135
216
304
492
1197



30










set2_73
IGHV3-
IGHJ3
2
38
135
216
304
493
1198



30-3










set2_74
IGHV3-
IGHJ4
2
38
135
216
304
494
1197



30










set2_75
IGHV3-
IGHJ4
6
58
154
235
324
495
1197



48










set2_76
IGHV3-
IGHJ4
2
39
135
216
304
496
1197



30










set2_77
IGHV3-
IGHJ4
2
39
135
216
304
497
1197



30










set2_78
IGHV3-
IGHJ4
2
39
135
216
304
498
1197



30










set2_79
IGHV3-
IGHJ4
2
38
135
216
304
499
1197



30-3










set2_80
IGHV3-
IGHJ6
2
38
135
216
304
500
1196



30










set2_81
IGHV3-
IGHJ6
2
39
135
218
304
501
1206



33










set2_82
IGHV3-
IGHJ4
2
38
135
216
304
502
1197



30-3










set2_83
IGHV3-
IGHJ3
2
38
135
216
304
503
1198



30










set2_84
IGHV2-
IGHJ4
24
72
166
247
336
504
1197



5










set2_85
IGHV3-
IGHJ4
2
73
135
248
337
505
1207



30










set2_86
IGHV3-
IGHJ5
6
59
155
236
338
506
1197



53










set2_87
IGHV3-
IGHJ6
2
38
135
216
304
507
1196



30-3










set2_88
IGHV2-
IGHJ4
25
74
167
249
339
508
1197



70










set2_89
IGHV2-
IGHJ4
24
72
166
247
336
509
1197



5










set2_90
IGHV3-
IGHJ6
2
39
135
218
304
510
1196



33










set2_91
IGHV3-
IGHJ4
2
75
168
250
340
511
1197



33










set2_92
IGHV3-
IGHJ4
7
58
169
251
341
512
1197



21










set2_93
IGHV3-
IGHJ6
2
39
135
216
304
513
1196



30










set2_94
IGHV1-
IGHJ4
14
76
170
252
342
514
1197



46










set2_95
IGHV4-
IGHJ6
15
66
161
242
312
515
1196



34










set2_96
IGHV2-
IGHJ4
25
74
167
249
339
516
1197



70










set2_97
IGHV3-
IGHJ4
6
43
171
253
343
517
1197



7










set2_98
IGHV1-
IGHJ5
14
70
164
245
334
518
1197



18










set2_99
IGHV3-
IGHJ4
26
77
172
216
344
519
1197



30-3










set2_100
IGHV3-
IGHJ6
21
59
173
236
304
520
1208



53










set2_101
IGHV4-
IGHJ6
11
78
174
225
345
521
1196



39










set2_102
IGHV3-
IGHJ3
21
59
155
236
304
522
1198



53










set2_103
IGHV4-
IGHJ6
15
66
161
242
312
523
1196



34










set2_104
IGHV3-
IGHJ4
12
38
146
254
304
524
1197



23










set2_105
IGHV3-
IGHJ4
2
38
135
216
304
525
1197



30










set2_106
IGHV1-
IGHJ3
14
70
164
245
334
526
1198



18










set2_107
IGHV4-
IGHJ6
16
79
151
255
346
527
1209



4










set2_108
IGHV4-
IGHJ4
15
66
161
242
312
528
1197



34










set2_109
IGHV4-
IGHJ4
9
47
175
256
347
529
1197



4










set2_110
IGHV3-
IGHJ5
6
80
171
253
348
530
1197



7










set2_111
IGHV2-
IGHJ4
25
74
167
249
339
531
1197



70










set2_112
IGHV2-
IGHJ5
24
72
166
247
336
532
1197



5










set2_113
IGHV2-
IGHJ5
27
81
166
247
349
533
1197



5










set2_114
IGHV3-
IGHJ6
2
39
135
218
304
534
1196



33










set2_115
IGHV5-
IGHJ6
17
61
157
229
326
535
1196



51










set2_116
IGHV3-
IGHJ4
2
38
135
216
304
536
1197



30-3










set2_117
IGHV3-
IGHJ4
2
82
176
257
350
537
1202



30










set2_118
IGHV3-
IGHJ4
2
38
135
216
304
538
1197



30










set2_119
IGHV3-
IGHJ3
2
38
135
216
304
539
1198



30










set2_120
IGHV3-
IGHJ4
2
83
135
216
304
540
1197



30










set2_121
IGHV3-
IGHJ6
2
39
135
218
304
541
1196



33










set2_122
IGHV1-
IGHJ4
14
84
148
230
351
542
1197



2










set2_123
IGHV5-
IGHJ4
17
61
157
229
326
543
1197



51










set2_124
IGHV3-
IGHJ4
7
85
169
251
341
544
1197



21










set2_125
IGHV3-
IGHJ4
2
38
135
216
304
545
1197



30










set2_126
IGHV2-
IGHJ4
24
72
166
247
336
546
1197



5










set2_127
IGHV4-
IGHJ4
9
47
143
225
312
547
1197



59










set2_128
IGHV3-
IGHJ4
2
86
177
216
352
548
1197



30-3










set2_129
IGHV3-
IGHJ3
2
38
135
216
304
549
1198



30










set2_130
IGHV2-
IGHJ3
24
72
166
247
336
550
1198



5










set2_131
IGHV3-
IGHJ4
2
87
135
258
353
551
1197



33










set2_132
IGHV3-
IGHJ4
2
39
135
216
304
552
1197



30










set2_133
IGHV3-
IGHJ4
2
39
135
216
304
553
1197



30










set2_134
IGHV3-
IGHJ3
2
39
135
218
304
554
1198



33










set2_135
IGHV3-
IGHJ4
2
39
135
218
304
555
1197



33










set2_136
IGHV3-
IGHJ3
2
38
135
216
304
556
1198



30










set2_137
IGHV2-
IGHJ4
25
74
167
249
339
557
1197



70










set2_138
IGHV3-
IGHJ4
2
39
135
218
354
558
1197



33










set2_139
IGHV3-
IGHJ6
2
39
135
259
304
559
1196



30










set2_140
IGHV4-
IGHJ4
11
88
145
225
355
560
1197



39










set2_141
IGHV4-
IGHJ4
15
66
161
242
312
561
1197



34










set2_142
IGHV3-
IGHJ6
2
39
135
218
304
562
1196



33










set2_143
IGHV3-
IGHJ4
2
38
135
216
304
563
1197



30










set2_144
IGHV3-
IGHJ4
2
38
135
216
304
564
1197



30-3










set2_145
IGHV3-
IGHJ4
2
39
135
218
304
565
1197



33










set2_146
IGHV3-
IGHJ6
2
38
135
216
304
566
1196



30-3










set2_147
IGHV2-
IGHJ4
24
72
166
247
336
567
1197



5










set2_148
IGHV3-
IGHJ4
2
38
135
216
304
568
1197



30-3










set2_149
IGHV3-
IGHJ6
2
39
135
218
304
569
1196



33










set2_150
IGHV4-
IGHJ4
9
47
143
225
312
570
1197



59










set2_151
IGHV3-
IGHJ6
2
38
135
216
304
571
1200



30










set2_152
IGHV3-
IGHJ6
2
38
135
216
304
572
1196



30-3










set2_153
IGHV3-
IGHJ4
2
39
135
216
304
573
1197



30










set2_154
IGHV3-
IGHJ4
28
89
178
260
356
574
1197



49










set2_155
IGHV3-
IGHJ6
2
39
135
218
304
575
1196



33










set2_156
IGHV3-
IGHJ6
2
38
135
216
304
576
1196



30










set2_157
IGHV3-
IGHJ4
2
39
135
218
304
577
1197



33










set2_158
IGHV3-
IGHJ4
12
38
146
254
304
578
1197



23










set2_159
IGHV3-
IGHJ4
6
43
171
253
343
579
1197



7










set2_160
IGHV1-
IGHJ4
4
90
179
261
357
580
1197



69










set2_161
IGHV3-
IGHJ3
2
91
135
216
304
581
1198



30










set2_162
IGHV4-
IGHJ4
15
66
161
242
312
582
1197



34










set2_163
IGHV2-
IGHJ4
25
74
167
249
339
583
1197



70










set2_164
IGHV3-
IGHJ4
2
39
135
218
304
584
1197



33










set2_165
IGHV4-
IGHJ6
15
66
161
242
312
585
1196



34










set2_166
IGHV3-
IGHJ4
2
39
135
216
304
586
1197



30










set2_167
IGHV3-
IGHJ3
2
39
135
218
304
587
1198



33










set2_168
IGHV3-
IGHJ4
2
39
135
218
304
588
1197



33










set2_169
IGHV1-
IGHJ4
14
84
148
230
351
589
1197



2










set2_170
IGHV3-
IGHJ6
2
39
135
218
304
590
1196



33










set2_171
IGHV3-
IGHJ4
2
39
135
216
304
591
1197



30










set2_172
IGHV3-
IGHJ6
2
38
135
216
304
592
1196



30










set2_173
IGHV3-
IGHJ3
2
39
135
218
304
593
1198



33










set2_174
IGHV3-
IGHJ4
18
92
180
262
358
594
1210



9










set2_175
IGHV3-
IGHJ4
2
39
135
218
304
595
1197



33










set2_176
IGHV3-
IGHJ4
2
38
135
216
304
596
1197



30










set2_177
IGHV3-
IGHJ6
2
39
135
218
304
597
1196



33










set2_178
IGHV3-
IGHJ3
7
58
169
251
341
598
1198



21










set2_179
IGHV3-
IGHJ3
2
93
181
263
359
599
1211



30-3










set2_180
IGHV2-
IGHJ3
25
74
167
249
339
600
1198



70










set2_181
IGHV3-
IGHJ4
2
39
135
216
304
601
1197



30










set2_182
IGHV3-
IGHJ4
2
38
135
216
304
602
1197



30










set2_183
IGHV3-
IGHJ4
2
38
135
216
304
603
1197



30-3










set2_184
IGHV3-
IGHJ4
2
39
135
218
304
604
1197



33










set2_185
IGHV1-
IGHJ4
14
70
164
245
334
605
1197



18










set2_186
IGHV3-
IGHJ3
2
38
135
216
304
606
1198



30-3










set2_187
IGHV4-
IGHJ4
9
47
143
225
312
607
1197



59










set2_188
IGHV2-
IGHJ2
29
94
182
264
360
608
1203



26










set2_189
IGHV3-
IGHJ4
18
92
158
238
361
609
1197



9










set2_190
IGHV3-
IGHJ6
2
39
135
216
304
610
1196



30










set2_191
IGHV5-
IGHJ6
17
61
157
229
326
611
1196



51










set2_192
IGHV3-
IGHJ4
2
39
135
216
304
612
1197



30










set2_193
IGHV3-
IGHJ4
12
38
146
254
304
613
1197



23










set2_194
IGHV1-
IGHJ4
14
70
164
245
334
614
1197



18










set2_195
IGHV1-
IGHJ6
14
70
164
245
334
615
1196



18










set2_196
IGHV3-
IGHJ6
2
39
135
218
304
616
1196



33










set2_197
IGHV3-
IGHJ4
2
95
135
265
304
617
1197



30-3










set2_198
IGHV3-
IGHJ6
2
39
135
216
304
618
1196



30










set2_199
IGHV2-
IGHJ4
25
74
167
249
339
619
1197



70










set2_200
IGHV3-
IGHJ6
2
39
135
218
304
620
1196



33










set2_201
IGHV3-
IGHJ4
2
38
135
216
304
621
1197



30










set2_202
IGHV3-
IGHJ4
2
39
135
218
304
622
1197



33










set2_203
IGHV3-
IGHJ6
2
39
135
216
304
623
1196



30










set2_204
IGHV3-
IGHJ6
12
96
183
266
362
569
1196



23










set2_205
IGHV3-
IGHJ6
2
39
135
218
304
624
1196



33










set2_206
IGHV3-
IGHJ6
2
39
135
216
304
625
1196



30










set2_207
IGHV3-
IGHJ3
2
39
135
218
304
626
1198



33










set2_208
IGHV3-
IGHJ4
2
97
135
216
304
627
1197



30-3










set2_209
IGHV5-
IGHJ4
17
61
157
229
326
628
1197



51










set2_210
IGHV2-
IGHJ4
25
74
167
249
339
629
1197



70










set2_211
IGHV3-
IGHJ4
2
38
135
216
304
630
1197



30










set2_212
IGHV3-
IGHJ4
2
39
135
218
304
631
1197



33










set2_213
IGHV3-
IGHJ4
2
39
135
218
304
632
1197



33










set2_214
IGHV3-
IGHJ6
2
39
135
216
304
633
1196



30










set2_215
IGHV3-
IGHJ4
2
39
135
218
304
634
1197



33










set2_216
IGHV3-
IGHJ4
2
39
135
218
304
635
1197



33










set2_217
IGHV3-
IGHJ4
2
39
135
218
304
636
1197



33










set2_218
IGHV5-
IGHJ4
17
61
157
229
326
637
1197



51










set2_219
IGHV2-
IGHJ6
24
72
166
247
363
638
1196



5










set2_220
IGHV1-
IGHJ5
30
98
184
267
364
639
1197



24










set2_221
IGHV3-
IGHJ6
2
39
135
218
304
640
1200



33










set2_222
IGHV4-
IGHJ6
15
66
161
242
312
641
1200



34










set2_223
IGHV3-
IGHJ4
2
38
135
216
304
642
1197



30










set2_224
IGHV3-
IGHJ6
2
39
135
218
304
643
1196



33










set2_225
IGHV3-
IGHJ6
2
99
135
268
365
644
1212



33










set2_226
IGHV3-
IGHJ4
6
43
171
253
343
645
1197



7










set2_227
IGHV4-
IGHJ4
9
47
143
269
366
646
1213



59










set2_228
IGHV3-
IGHJ4
18
92
158
238
361
647
1197



9










set2_229
IGHV3-
IGHJ4
2
38
135
216
304
648
1197



30










set2_230
IGHV2-
IGHJ6
24
72
166
247
336
649
1196



5










set2_231
IGHV3-
IGHJ4
2
39
135
218
304
650
1197



33










set2_232
IGHV3-
IGHJ6
2
39
135
218
304
651
1200



33










set2_233
IGHV3-
IGHJ4
2
38
135
216
304
652
1197



30










set2_234
IGHV3-
IGHJ3
2
38
135
216
304
653
1198



30










set2_235
IGHV3-
IGHJ6
2
38
135
216
304
654
1196



30










set2_236
IGHV1-
IGHJ3
31
100
185
270
367
655
1198



58










set2_237
IGHV3-
IGHJ4
2
38
135
216
304
656
1197



30










set2_238
IGHV3-
IGHJ4
7
58
169
251
368
657
1197



21










set2_239
IGHV3-
IGHJ4
6
43
171
253
343
658
1213



7










set2_240
IGHV3-
IGHJ6
2
38
135
216
304
659
1196



30










set2_241
IGHV3-
IGHJ4
2
38
135
216
304
660
1197



30










set2_242
IGHV3-
IGHJ6
2
38
135
216
304
661
1196



30










set2_243
IGHV3-
IGHJ4
2
39
135
218
304
662
1197



33










set2_244
IGHV3-
IGHJ6
2
38
135
216
304
663
1200



30










set2_245
IGHV3-
IGHJ6
2
38
135
216
304
664
1196



30










set2_246
IGHV3-
IGHJ4
12
38
146
254
304
665
1197



23










set2_247
IGHV1-
IGHJ4
14
70
164
245
334
666
1197



18










set2_248
IGHV3-
IGHJ4
2
38
135
216
304
667
1197



30










set2_249
IGHV3-
IGHJ3
2
101
135
216
369
668
1198



30










set2_250
IGHV3-
IGHJ6
2
102
135
271
370
669
1196



33










set2_251
IGHV3-
IGHJ4
6
43
171
253
343
670
1197



7










set2_252
IGHV3-
IGHJ5
2
38
135
216
304
671
1197



30-3










set2_253
IGHV3-
IGHJ4
2
39
135
216
304
672
1197



30










set2_254
IGHV3-
IGHJ4
2
39
135
218
304
673
1197



33










set2_255
IGHV3-
IGHJ4
6
43
139
221
308
674
1197



74










set2_256
IGHV3-
IGHJ4
2
39
135
218
304
675
1197



33










set2_257
IGHV3-
IGHJ4
2
39
135
218
304
676
1197



33










set2_258
IGHV3-
IGHJ6
20
65
186
272
341
677
1200



11










set2_259
IGHV3-
IGHJ4
2
39
135
218
304
678
1197



33










set2_260
IGHV3-
IGHJ5
2
39
135
218
304
679
1197



33










set2_261
IGHV3-
IGHJ4
2
39
135
218
304
680
1197



33










set2_262
IGHV3-
IGHJ5
2
38
135
216
304
681
1197



30










set2_263
IGHV3-
IGHJ6
2
38
135
216
304
682
1196



30-3










set2_264
IGHV2-
IGHJ4
25
74
167
249
339
683
1197



70










set2_265
IGHV3-
IGHJ4
6
43
139
221
308
684
1197



74










set2_266
IGHV2-
IGHJ4
24
72
166
247
336
685
1197



5










set2_267
IGHV3-
IGHJ4
2
38
135
216
304
686
1197



30










set2_268
IGHV3-
IGHJ4
2
39
135
216
304
687
1197



30










set2_269
IGHV3-
IGHJ4
2
39
135
216
304
688
1197



30










set2_270
IGHV3-
IGHJ4
6
43
139
221
308
689
1197



74










set2_271
IGHV5-
IGHJ4
17
61
157
229
326
690
1197



51










set2_272
IGHV3-
IGHJ5
2
38
135
216
304
671
1197



30










set2_273
IGHV3-
IGHJ4
2
39
135
218
304
691
1197



33










set2_274
IGHV3-
IGHJ4
2
38
135
216
304
692
1197



30-3










set2_275
IGHV3-
IGHJ4
2
39
135
216
304
693
1197



30










set2_276
IGHV4-
IGHJ4
15
66
161
242
312
694
1197



34










set2_277
IGHV3-
IGHJ4
2
38
135
216
304
695
1197



30










set2_278
IGHV3-
IGHJ5
2
38
135
216
304
696
1214



30










set2_279
IGHV3-
IGHJ3
2
38
135
216
304
697
1198



30










set2_280
IGHV3-
IGHJ4
2
39
135
218
304
698
1197



33










set2_281
IGHV3-
IGHJ4
2
39
135
218
304
699
1197



33










set2_282
IGHV3-
IGHJ4
2
38
135
216
304
700
1197



30










set2_283
IGHV3-
IGHJ4
12
38
146
254
304
701
1197



23










set2_284
IGHV3-
IGHJ4
2
38
135
216
304
702
1197



30










set2_285
IGHV3-
IGHJ4
2
39
135
218
304
703
1197



33










set2_286
IGHV3-
IGHJ4
2
38
135
216
304
704
1197



30










set2_287
IGHV3-
IGHJ6
2
39
135
218
304
705
1200



33










set2_288
IGHV3-
IGHJ4
6
43
139
221
308
706
1197



74










set2_289
IGHV3-
IGHJ6
2
39
135
218
304
707
1196



33










set2_290
IGHV3-
IGHJ6
2
39
135
218
304
708
1196



33










set2_291
IGHV3-
IGHJ4
2
38
187
216
304
709
1197



30-3










set2_292
IGHV2-
IGHJ4
25
74
167
249
339
710
1197



70










set2_293
IGHV3-
IGHJ6
7
58
169
251
341
711
1196



21










set2_294
IGHV3-
IGHJ4
2
39
135
273
371
712
1197



33










set2_295
IGHV3-
IGHJ4
28
103
178
260
356
713
1215



49










set2_296
IGHV3-
IGHJ6
2
38
135
216
372
714
1196



30-3










set2_297
IGHV5-
IGHJ4
17
61
157
229
326
715
1197



51










set2_298
IGHV3-
IGHJ4
2
38
135
216
304
716
1197



30










set2_299
IGHV3-
IGHJ5
2
101
135
274
373
717
1203



30










set2_300
IGHV3-
IGHJ4
2
38
135
216
304
718
1197



30










set2_301
IGHV3-
IGHJ4
2
38
135
216
304
719
1197



30










set2_302
IGHV3-
IGHJ3
2
38
135
216
304
720
1198



30










set2_303
IGHV3-
IGHJ4
2
38
135
216
304
721
1197



30










set2_304
IGHV3-
IGHJ3
2
38
135
216
304
722
1198



30-3










set2_305
IGHV3-
IGHJ6
2
38
135
216
304
723
1196



30










set2_306
IGHV3-
IGHJ6
2
38
188
275
374
724
1196



30










set2_307
IGHV3-
IGHJ3
2
38
135
216
304
725
1198



30










set2_308
IGHV3-
IGHJ4
2
38
135
216
304
726
1197



30










set2_309
IGHV1-
IGHJ5
30
98
184
267
364
727
1197



24










set2_310
IGHV3-
IGHJ5
2
38
135
216
304
728
1197



30










set2_311
IGHV1-
IGHJ5
30
98
184
267
364
729
1197



24










set2_312
IGHV3-
IGHJ4
2
38
135
216
304
730
1197



30










set2_313
IGHV3-
IGHJ6
2
104
141
276
375
731
1196



30-3










set2_314
IGHV2-
IGHJ4
24
72
166
247
336
732
1197



5










set2_315
IGHV3-
IGHJ3
2
38
135
216
304
733
1198



30-3










set2_316
IGHV3-
IGHJ6
7
58
169
251
341
734
1196



21










set2_317
IGHV3-
IGHJ3
2
38
135
216
304
735
1198



30-3










set2_318
IGHV3-
IGHJ3
2
38
135
216
304
736
1198



30










set2_319
IGHV3-
IGHJ4
2
38
135
216
304
737
1197



30










set2_320
IGHV1-
IGHJ5
30
98
184
267
364
738
1197



24










set2_321
IGHV3-
IGHJ5
2
38
135
216
304
739
1197



30










set2_322
IGHV3-
IGHJ4
2
38
135
216
304
740
1197



30-3










set2_323
IGHV3-
IGHJ3
2
38
135
216
304
741
1198



30










set2_324
IGHV3-
IGHJ5
2
38
135
216
304
742
1197



30-3










set2_325
IGHV3-
IGHJ6
2
38
135
216
304
743
1196



30-3










set2_326
IGHV3-
IGHJ6
2
38
135
216
304
744
1196



30










set2_327
IGHV3-
IGHJ4
2
38
135
216
304
745
1197



30










set2_328
IGHV1-
IGHJ5
30
98
184
267
364
746
1197



24










set2_329
IGHV3-
IGHJ4
2
39
135
216
304
747
1197



30










set2_330
IGHV3-
IGHJ4
2
38
135
216
304
748
1197



30










set2_331
IGHV3-
IGHJ4
6
43
171
253
343
749
1197



7










set2_332
IGHV3-
IGHJ4
2
38
135
216
304
750
1197



30-3










set2_333
IGHV3-
IGHJ4
2
38
135
216
304
751
1197



30










set2_334
IGHV3-
IGHJ4
2
38
135
216
304
752
1197



30










set2_335
IGHV3-
IGHJ6
2
38
135
216
304
753
1196



30-3










set2_336
IGHV1-
IGHJ5
30
98
184
267
364
754
1197



24










set2_337
IGHV3-
IGHJ5
2
38
135
216
304
755
1197



30










set2_338
IGHV3-
IGHJ4
2
38
135
216
304
756
1197



30










set2_339
IGHV3-
IGHJ4
6
43
171
253
343
757
1197



7










set2_340
IGHV3-
IGHJ4
2
38
189
216
376
758
1197



30










set2_341
IGHV3-
IGHJ4
2
38
135
216
304
759
1197



30










set2_342
IGHV3-
IGHJ4
7
58
169
251
341
760
1197



21










set2_343
IGHV3-
IGHJ6
2
39
135
218
304
761
1196



33










set2_344
IGHV3-
IGHJ4
2
38
135
216
304
762
1197



30-3










set2_345
IGHV3-
IGHJ5
2
38
135
216
304
763
1197



30-3










set2_346
IGHV4-
IGHJ6
9
47
143
225
312
764
1200



59










set2_347
IGHV1-
IGHJ5
30
98
184
267
364
765
1197



24










set2_348
IGHV3-
IGHJ4
2
38
135
216
304
766
1197



30










set2_349
IGHV3-
IGHJ6
2
101
135
216
304
767
1196



30-3










set2_350
IGHV1-
IGHJ5
30
98
184
267
364
768
1197



24










set2_351
IGHV3-
IGHJ3
2
38
135
216
304
769
1198



30










set2_352
IGHV3-
IGHJ6
2
105
141
216
377
770
1196



30










set2_353
IGHV3-
IGHJ4
2
39
135
218
304
771
1197



33










set2_354
IGHV1-
IGHJ5
30
98
184
267
364
772
1197



24










set2_355
IGHV1-
IGHJ5
30
98
184
267
364
773
1197



24










set2_356
IGHV3-
IGHJ4
6
106
190
277
378
774
1197



13










set2_357
IGHV3-
IGHJ4
2
38
135
278
379
775
1197



30










set2_358
IGHV3-
IGHJ4
32
107
191
279
380
776
1197



30










set2_359
IGHV3-
IGHJ3
2
38
135
216
304
777
1198



30-3










set2_360
IGHV3-
IGHJ3
2
39
135
216
304
778
1198



30










set2_361
IGHV3-
IGHJ4
2
38
135
216
304
779
1197



30










set2_362
IGHV1-
IGHJ5
30
98
184
267
364
780
1197



24










set2_363
IGHV1-
IGHJ5
30
98
184
267
364
781
1197



24










set2_364
IGHV1-
IGHJ5
30
98
184
267
364
782
1197



24










set2_365
IGHV1-
IGHJ5
30
98
184
267
364
783
1197



24










set2_366
IGHV3-
IGHJ4
2
38
135
216
304
784
1197



30-3










set2_367
IGHV3-
IGHJ4
2
38
135
216
304
785
1197



30-3










set2_368
IGHV3-
IGHJ4
2
39
135
216
304
786
1197



30










set2_369
IGHV2-
IGHJ4
25
74
167
249
339
787
1197



70










set2_370
IGHV3-
IGHJ3
2
39
135
216
304
788
1198



30










set2_371
IGHV3-
IGHJ4
2
38
135
216
304
789
1197



30










set2_372
IGHV3-
IGHJ5
2
38
135
216
304
790
1197



30-3










set2_373
IGHV3-
IGHJ4
2
38
135
216
304
791
1197



30










set2_374
IGHV3-
IGHJ3
2
101
135
216
381
792
1198



30










set2_375
IGHV3-
IGHJ2
6
106
190
280
378
793
1203



13










set2_376
IGHV3-
IGHJ6
2
39
135
218
304
794
1196



33










set2_377
IGHV3-
IGHJ4
2
39
135
216
304
795
1197



30










set2_378
IGHV3-
IGHJ4
2
38
135
216
304
796
1197



30










set2_379
IGHV3-
IGHJ6
6
43
171
253
343
797
1196



7










set2_380
IGHV3-
IGHJ3
2
38
135
216
304
798
1198



30










set2_381
IGHV3-
IGHJ4
2
38
135
216
304
799
1197



30










set2_382
IGHV3-
IGHJ4
2
38
135
216
304
800
1197



30










set2_383
IGHV3-
IGHJ4
2
38
135
216
304
801
1197



30-3










set2_384
IGHV3-
IGHJ4
2
38
135
216
304
802
1197



30










set2_385
IGHV3-
IGHJ4
2
38
135
216
304
803
1197



30










set2_386
IGHV1-
IGHJ4
30
98
184
267
364
804
1197



24










set2_387
IGHV3-
IGHJ6
2
38
135
216
304
805
1196



30










set2_388
IGHV1-
IGHJ4
30
98
184
267
364
806
1197



24










set2_389
IGHV3-
IGHJ4
2
38
135
216
304
807
1197



30










set2_390
IGHV3-
IGHJ5
2
38
135
216
304
808
1197



30-3










set2_391
IGHV3-
IGHJ4
2
38
135
216
304
809
1197



30










set2_392
IGHV3-
IGHJ3
2
38
135
216
304
810
1198



30










set2_393
IGHV2-
IGHJ4
33
74
192
249
339
811
1197



70










set2_394
IGHV3-
IGHJ4
2
38
135
216
304
812
1197



30










set2_395
IGHV3-
IGHJ6
2
39
135
218
304
813
1196



33










set2_396
IGHV3-
IGHJ3
2
38
135
216
304
814
1198



30-3










set2_397
IGHV3-
IGHJ3
2
38
135
216
304
815
1198



30










set2_398
IGHV3-
IGHJ3
2
38
135
216
304
816
1198



30










set2_399
IGHV3-
IGHJ4
2
38
135
216
304
817
1197



30










set2_400
IGHV3-
IGHJ4
2
38
135
216
304
818
1197



30










set2_401
IGHV1-
IGHJ5
30
98
184
267
364
819
1197



24










set2_402
IGHV3-
IGHJ6
2
39
135
216
304
820
1196



30










set2_403
IGHV3-
IGHJ4
7
58
169
251
341
821
1197



21










set2_404
IGHV3-
IGHJ4
6
106
190
277
378
822
1197



13










set2_405
IGHV3-
IGHJ5
2
38
135
216
304
823
1197



30










set2_406
IGHV3-
IGHJ4
6
43
171
253
343
824
1197



7










set2_407
IGHV3-
IGHJ4
2
38
135
216
304
825
1197



30-3










set2_408
IGHV2-
IGHJ4
25
74
167
249
339
826
1197



70










set2_409
IGHV3-
IGHJ4
2
38
135
216
304
827
1197



30










set2_410
IGHV3-
IGHJ4
6
108
154
272
341
828
1197



48










set2_411
IGHV3-
IGHJ5
2
38
135
216
304
829
1197



30










set2_412
IGHV3-
IGHJ4
2
91
135
281
304
830
1197



30










set2_413
IGHV1-
IGHJ5
30
98
184
267
364
831
1197



24










set2_414
IGHV3-
IGHJ6
2
39
135
218
304
832
1196



33










set2_415
IGHV3-
IGHJ4
2
38
135
216
382
833
1197



30










set2_416
IGHV3-
IGHJ3
2
38
193
216
383
834
1198



30-3










set2_417
IGHV3-
IGHJ5
2
38
135
216
304
835
1197



30










set2_418
IGHV3-
IGHJ3
2
39
135
216
304
836
1198



30










set2_419
IGHV3-
IGHJ4
12
38
146
254
304
837
1197



23










set2_420
IGHV3-
IGHJ4
2
39
135
216
304
838
1197



30










set2_421
IGHV3-
IGHJ5
2
38
135
216
304
839
1197



30










set2_422
IGHV3-
IGHJI
2
38
181
216
304
840
1197



30










set2_423
IGHV1-
IGHJ4
14
70
164
245
334
841
1197



18










set2_424
IGHV3-
IGHJ4
2
38
135
216
304
842
1197



30-3










set2_425
IGHV4-
IGHJ3
8
109
194
225
355
843
1198



31










set2_426
IGHV3-
IGHJ4
2
38
135
216
304
844
1197



30










set2_427
IGHV3-
IGHJ4
7
110
169
251
341
845
1197



21










set2_428
IGHV3-
IGHJ4
2
38
135
216
304
846
1197



30-3










set2_429
IGHV3-
IGHJ6
2
39
135
216
304
847
1196



30










set2_430
IGHV3-
IGHJ4
2
111
135
216
384
848
1197



30-3










set2_431
IGHV3-
IGHJ4
2
38
135
216
304
849
1197



30










set2_432
IGHV3-
IGHJ4
2
38
135
216
304
850
1197



30










set2_433
IGHV3-
IGHJ4
12
38
146
254
304
851
1197



23










set2_434
IGHV1-
IGHJ6
30
98
184
267
364
852
1200



24










set2_435
IGHV3-
IGHJ5
2
38
135
216
304
853
1197



30










set2_436
IGHV3-
IGHJ3
2
38
135
216
304
854
1198



30










set2_437
IGHV3-
IGHJ6
2
38
135
216
385
855
1196



30-3










set2_438
IGHV3-
IGHJ4
2
39
135
216
304
856
1197



30










set2_439
IGHV3-
IGHJ5
2
38
135
216
304
857
1197



30-3










set2_440
IGHV1-
IGHJ5
30
98
184
267
364
858
1197



24










set2_441
IGHV3-
IGHJ4
2
38
135
216
304
859
1197



30










set2_442
IGHV3-
IGHJ4
2
38
135
216
304
860
1197



30-3










set2_443
IGHV3-
IGHJ6
2
38
135
216
304
861
1196



30










set2_444
IGHV3-
IGHJ4
2
38
135
216
304
862
1197



30-3










set2_445
IGHV3-
IGHJI
2
112
195
216
386
863
1197



30-3










set2_446
IGHV3-
IGHJ6
6
58
154
235
341
864
1196



48










set2_447
IGHV3-
IGHJ4
18
92
158
238
361
865
1197



9










set2_448
IGHV3-
IGHJ4
2
39
135
218
304
866
1197



33










set2_449
IGHV3-
IGHJ6
2
39
135
216
304
867
1196



30










set2_450
IGHV1-
IGHJ5
30
98
184
267
387
868
1197



24










set2_451
IGHV1-
IGHJ5
30
98
184
267
364
869
1197



24










set2_452
IGHV3-
IGHJ5
21
59
155
236
304
870
1197



53










set2_453
IGHV3-
IGHJ4
2
39
135
216
304
871
1197



30










set2_454
IGHV3-
IGHJ3
2
39
196
282
388
872
1198



30










set2_455
IGHV3-
IGHJ4
2
38
135
216
304
873
1197



30-3










set2_456
IGHV3-
IGHJ4
2
39
135
283
304
874
1197



33










set2_457
IGHV3-
IGHJ4
2
38
135
216
304
875
1197



30










set2_458
IGHV3-
IGHJ6
2
39
135
218
304
876
1196



33










set2_459
IGHV3-
IGHJ6
2
38
135
216
304
877
1196



30










set2_460
IGHV3-
IGHJ3
2
38
135
216
389
878
1197



30










set2_461
IGHV3-
IGHJ3
2
38
135
216
304
879
1198



30










set2_462
IGHV3-
IGHJ4
2
38
135
216
304
880
1197



30










set2_463
IGHV3-
IGHJ4
2
38
135
216
304
881
1197



30-3










set2_464
IGHV3-
IGHJ4
2
113
181
284
390
882
1197



30-3










set2_465
IGHV3-
IGHJ6
2
38
135
216
304
883
1196



30










set2_466
IGHV3-
IGHJ4
2
38
135
216
304
884
1197



30










set2_467
IGHV3-
IGHJ4
34
38
197
285
391
885
1197



30-3










set2_468
IGHV3-
IGHJ6
7
58
169
251
341
886
1196



21










set2_469
IGHV3-
IGHJ3
2
111
193
216
304
887
1198



30-3










set2_470
IGHV3-
IGHJ4
2
38
135
216
392
888
1197



30










set2_471
IGHV3-
IGHJ4
2
39
135
216
304
889
1197



30










set2_472
IGHV3-
IGHJ3
2
38
135
216
304
890
1198



30










set2_473
IGHV1-
IGHJ4
30
98
184
267
364
891
1197



24










set2_474
IGHV3-
IGHJ3
2
39
135
218
304
892
1198



33










set2_475
IGHV3-
IGHJ6
2
39
135
216
304
893
1196



30










set2_476
IGHV3-
IGHJ4
7
58
169
251
341
894
1197



21










set2_477
IGHV3-
IGHJ4
6
114
139
286
393
895
1197



74










set2_478
IGHV3-
IGHJ4
2
38
135
216
304
896
1197



30










set2_479
IGHV3-
IGHJ4
21
59
155
236
304
897
1210



53










set2_480
IGHV3-
IGHJ3
2
39
135
216
304
898
1198



30










set2_481
IGHV3-
IGHJ6
21
115
183
236
304
899
1196



66










set2_482
IGHV2-
IGHJ4
25
74
167
249
339
900
1202



70










set2_483
IGHV3-
IGHJ2
6
106
190
280
378
901
1203



13










set2_484
IGHV4-
IGHJ4
15
66
161
242
394
902
1197



34










set2_485
IGHV3-
IGHJ4
7
58
169
251
341
903
1197



21










set2_486
IGHV1-
IGHJ5
30
98
184
267
364
904
1197



24










set2_487
IGHV3-
IGHJ4
7
58
169
251
341
905
1197



21










set2_488
IGHV5-
IGHJ4
17
116
198
287
395
906
1197



51










set2_489
IGHV1-
IGHJ5
30
98
184
267
364
907
1197



24










set2_490
IGHV1-
IGHJ4
4
90
199
288
396
908
1197



69










set2_491
IGHV3-
IGHJ4
2
39
135
216
304
909
1197



30










set2_492
IGHV3-
IGHJ4
12
38
146
254
304
910
1197



23










set2_493
IGHV3-
IGHJ4
7
58
169
251
341
911
1197



21










set2_494
IGHV3-
IGHJ4
2
39
135
216
304
912
1197



30










set2_495
IGHV3-
IGHJ6
2
39
135
218
304
913
1196



33










set2_496
IGHV1-
IGHJ4
4
90
199
288
396
914
1197



69










set2_497
IGHV3-
IGHJ4
7
58
169
251
341
915
1197



21










set2_498
IGHV4-
IGHJ4
9
47
143
225
312
916
1197



59










set2_499
IGHV3-
IGHJ5
2
39
135
218
304
917
1197



33










set2_500
IGHV3-
IGHJ6
35
117
200
289
397
918
1196



43










set2_501
IGHV3-
IGHJ5
7
58
169
251
341
919
1197



21










set2_502
IGHV3-
IGHJ4
12
38
146
254
304
920
1197



23










set2_503
IGHV3-
IGHJ4
12
38
146
254
304
921
1197



23










set2_504
IGHV3-
IGHJ4
7
58
169
251
341
922
1197



21










set2_505
IGHV3-
IGHJ4
2
39
135
216
304
923
1197



30










set2_506
IGHV3-
IGHJ4
7
58
169
251
341
924
1197



21










set2_507
IGHV1-
IGHJ4
14
84
148
230
351
925
1197



2










set2_508
IGHV4-
IGHJ3
9
47
143
225
312
926
1198



59










set2_509
IGHV3-
IGHJ3
2
39
135
218
304
927
1198



33










set2_510
IGHV3-
IGHJ6
2
39
135
216
304
928
1196



30










set2_511
IGHV1-
IGHJ6
14
76
170
252
342
929
1196



46










set2_512
IGHV4-
IGHJ5
9
47
143
225
312
930
1197



59










set2_513
IGHV4-
IGHJ6
15
66
161
242
312
931
1196



34










set2_514
IGHV1-
IGHJ4
14
76
170
252
342
932
1197



46










set2_515
IGHV2-
IGHJ4
24
72
166
290
336
933
1197



5










set2_516
IGHV4-
IGHJ6
9
118
143
225
312
934
1200



59










set2_517
IGHV3-
IGHJ6
18
92
158
238
361
935
1196



9










set2_518
IGHV3-
IGHJ4
2
39
201
216
304
936
1197



30










set2_519
IGHV3-
IGHJ4
2
39
135
218
304
937
1197



33










set2_520
IGHV3-
IGHJ6
6
43
171
253
343
938
1196



7










set2_521
IGHV3-
IGHJ5
20
65
186
272
341
939
1197



11










set2_522
IGHV1-
IGHJ4
14
70
164
245
334
940
1197



18










set2_523
IGHV3-
IGHJ5
12
38
146
254
304
941
1197



23










set2_524
IGHV3-
IGHJ4
2
38
135
216
304
942
1197



30










set2_525
IGHV3-
IGHJ5
2
39
135
216
304
943
1197



30










set2_526
IGHV3-
IGHJ5
2
38
202
216
304
944
1197



30-3










set2_527
IGHV1-
IGHJ6
4
119
179
261
357
945
1196



69










set2_528
IGHV3-
IGHJ4
12
38
146
254
304
946
1197



23










set2_529
IGHV3-
IGHJ4
7
58
169
251
341
947
1197



21










set2_530
IGHV1-
IGHJ6
30
98
184
267
364
948
1196



24










set2_531
IGHV3-
IGHJ5
18
92
158
238
361
949
1197



9










set2_532
IGHV4-
IGHJ6
9
47
143
225
312
950
1196



59










set2_533
IGHV3-
IGHJ4
2
39
135
218
304
951
1197



33










set2_534
IGHV3-
IGHJ4
2
39
135
218
304
952
1197



33










set2_535
IGHV1-
IGHJ5
30
98
184
267
364
953
1197



24










set2_536
IGHV3-
IGHJ4
2
39
135
216
304
954
1197



30










set2_537
IGHV3-
IGHJ6
7
58
169
251
341
955
1196



21










set2_538
IGHV3-
IGHJ6
2
38
135
216
304
956
1196



30-3










set2_539
IGHV3-
IGHJ4
2
39
135
218
304
957
1197



33










set2_540
IGHV3-
IGHJ6
2
39
135
216
304
958
1200



30










set2_541
IGHV1-
IGHJ6
14
84
148
230
351
959
1196



2










set2_542
IGHV3-
IGHJ4
36
39
203
291
304
960
1197



30










set2_543
IGHV3-
IGHJ4
2
39
135
216
304
961
1197



30










set2_544
IGHV3-
IGHJ4
2
39
135
218
304
962
1197



33










set2_545
IGHV3-
IGHJ5
2
39
135
218
304
963
1197



33










set2_546
IGHV1-
IGHJ5
30
98
184
267
364
964
1197



24










set2_547
IGHV3-
IGHJ4
2
38
135
216
304
965
1197



30










set2_548
IGHV1-
IGHJ6
4
90
199
288
396
966
1196



69










set2_549
IGHV3-
IGHJ3
21
59
155
236
304
967
1198



53










set2_550
IGHV1-
IGHJ4
30
98
184
267
364
968
1197



24










set2_551
IGHV1-
IGHJ4
4
90
179
261
357
969
1197



69










set2_552
IGHV3-
IGHJ6
2
39
135
216
304
970
1196



30










set2_553
IGHV4-
IGHJ4
9
47
143
225
312
971
1197



59










set2_554
IGHV3-
IGHJ3
12
38
146
254
304
972
1198



23










set2_555
IGHV3-
IGHJ4
2
39
135
218
304
973
1197



33










set2_556
IGHV4-
IGHJ4
11
88
145
225
355
974
1197



39










set2_557
IGHV3-
IGHJ4
6
106
190
277
378
975
1197



13










set2_558
IGHV3-
IGHJ3
12
38
146
254
304
976
1198



23










set2_559
IGHV1-
IGHJ4
14
76
170
252
342
977
1197



46










set2_560
IGHV3-
IGHJ4
2
39
135
216
304
978
1197



30










set2_561
IGHV1-
IGHJ3
31
100
185
270
367
979
1198



58










set2_562
IGHV3-
IGHJ6
6
58
154
235
324
980
1196



48










set2_563
IGHV3-
IGHJ6
2
39
135
218
304
981
1196



33










set2_564
IGHV4-
IGHJ4
9
47
143
225
312
982
1197



59










set2_565
IGHV4-
IGHJ4
8
109
194
225
355
983
1197



31










set2_566
IGHV3-
IGHJ4
7
120
204
292
398
984
1216



21










set2_567
IGHV1-
IGHJ5
30
98
184
267
364
985
1197



24










set2_568
IGHV4-
IGHJ3
11
88
145
225
355
986
1198



39










set2_569
IGHV3-
IGHJ6
6
106
190
277
378
987
1196



13










set2_570
IGHV2-
IGHJ3
33
74
192
249
339
988
1198



70










set2_571
IGHV2-
IGHJ3
24
72
166
247
336
989
1198



5










set2_572
IGHV3-
IGHJ6
6
58
154
235
341
990
1196



48










set2_573
IGHV4-
IGHJ3
8
109
194
225
355
991
1198



31










set2_574
IGHV4-
IGHJ4
8
109
194
225
355
992
1197



31










set2_575
IGHV4-
IGHJ6
11
88
145
225
355
993
1196



39










set2_576
IGHV1-
IGHJ6
4
90
199
288
396
994
1196



69










set2_577
IGHV1-
IGHJ6
4
90
199
288
396
995
1196



69










set2_578
IGHV3-
IGHJ4
2
39
135
218
304
996
1197



33










set2_579
IGHV1-
IGHJ4
30
98
184
267
364
997
1197



24










set2_580
IGHV1-
IGHJ6
4
90
199
288
396
998
1200



69










set2_581
IGHV2-
IGHJ5
24
72
166
247
336
999
1197



5










set2_582
IGHV1-
IGHJ5
14
84
148
230
351
1000
1197



2










set2_583
IGHV3-
IGHJ6
6
43
171
253
343
1001
1196



7










set2_584
IGHV3-
IGHJ3
6
59
155
236
338
1002
1198



53










set2_585
IGHV2-
IGHJ3
25
74
167
249
339
1003
1198



70










set2_586
IGHV1-
IGHJ4
30
98
184
267
364
1004
1197



24










set2_587
IGHV1-
IGHJ4
30
98
184
267
364
1005
1197



24










set2_588
IGHV4-
IGHJ4
9
47
143
225
312
1006
1197



59










set2_589
IGHV4-
IGHJ3
11
88
145
225
355
1007
1198



39










set2_590
IGHV1-
IGHJ5
30
98
184
267
364
1008
1197



24










set2_591
IGHV3-
IGHJ6
2
39
135
293
304
1009
1196



30










set2_592
IGHV1-
IGHJ6
4
90
199
288
396
1010
1196



69










set2_593
IGHV3-
IGHJ4
20
65
186
272
341
1011
1197



11










set2_594
IGHV2-
IGHJ4
33
74
192
249
339
1012
1197



70










set2_595
IGHV2-
IGHJ4
25
74
167
249
339
1013
1197



70










set2_596
IGHV3-
IGHJ6
12
38
146
254
304
1014
1196



23










set2_597
IGHV1-
IGHJ4
4
90
205
294
399
1015
1197



69










set2_598
IGHV3-
IGHJ6
6
43
171
253
343
1016
1196



7










set2_599
IGHV1-
IGHJ6
14
76
170
252
342
1017
1196



46










set2_600
IGHV3-
IGHJ6
20
65
186
272
341
1018
1196



11










set2_601
IGHV4-
IGHJI
15
66
161
242
312
1019
1197



34










set2_602
IGHV3-
IGHJ6
7
58
169
251
341
1020
1196



21










set2_603
IGHV3-
IGHJ6
6
43
171
253
343
1021
1196



7










set2_604
IGHV3-
IGHJ6
6
43
171
253
343
1022
1196



7










set2_605
IGHV4-
IGHJ5
15
66
161
242
312
1023
1197



34










set2_606
IGHV4-
IGHJ6
15
66
161
242
312
1024
1196



34










set2_607
IGHV2-
IGHJ4
29
94
182
264
360
1025
1197



26










set2_608
IGHV4-
IGHJ5
9
121
143
225
312
1026
1197



59










set2_609
IGHV1-
IGHJ6
4
71
199
288
357
1027
1196



69










set2_610
IGHV3-
IGHJ6
12
38
146
254
304
1028
1196



23










set2_611
IGHV3-
IGHJ6
6
43
171
253
343
1029
1196



7










set2_612
IGHV3-
IGHJ4
2
38
135
216
304
1030
1197



30










set2_613
IGHV4-
IGHJ5
15
122
161
242
400
1031
1197



34










set2_614
IGHV3-
IGHJ6
20
65
186
272
341
1032
1196



11










set2_615
IGHV4-
IGHJ3
15
66
161
242
312
1033
1198



34










set2_616
IGHV4-
IGHJ5
15
66
161
242
312
1034
1197



34










set2_617
IGHV1-
IGHJ5
30
98
184
267
364
1035
1197



24










set2_618
IGHV1-
IGHJ6
14
76
170
252
342
1036
1196



46










set2_619
IGHV1-
IGHJ6
14
76
170
252
342
1037
1196



46










set2_620
IGHV1-
IGHJ3
14
84
148
230
351
1038
1198



2










set2_621
IGHV4-
IGHJ5
15
66
161
242
312
1039
1197



34










set2_622
IGHV1-
IGHJ6
4
123
206
295
357
1040
1196



69










set2_623
IGHV3-
IGHJ6
6
43
171
253
343
1041
1196



7










set2_624
IGHV4-
IGHJ6
15
66
161
242
312
1042
1196



34










set2_625
IGHV3-
IGHJ6
12
38
146
254
304
1043
1196



23










set2_626
IGHV3-
IGHJ6
6
43
171
253
343
1044
1196



7










set2_627
IGHV3-
IGHJ6
2
39
135
218
304
1045
1196



33










set2_628
IGHV5-
IGHJ4
37
61
207
296
401
1046
1197



10-1










set2_629
IGHV3-
IGHJ6
20
65
186
272
341
1047
1196



11










set2_630
IGHV4-
IGHJ5
11
124
208
297
402
1048
1197



39










set2_631
IGHV5-
IGHJ4
37
61
207
296
401
1049
1197



10-1










set2_632
IGHV3-
IGHJ6
6
43
171
253
343
1050
1196



7










set2_633
IGHV3-
IGHJ4
7
44
140
222
309
1051
1197



15










set2_634
IGHV3-
IGHJ4
6
106
190
277
378
1052
1197



13










set2_635
IGHV3-
IGHJ6
6
125
171
253
403
1053
1217



7










set2_636
IGHV2-
IGHJ4
29
94
182
264
360
1054
1197



26










set2_637
IGHV3-
IGHJ6
12
38
146
254
304
1055
1196



23










set2_638
IGHV3-
IGHJ6
20
65
186
272
341
1056
1196



11










set2_639
IGHV3-
IGHJ6
20
65
186
272
341
1057
1196



11










set2_640
IGHV4-
IGHJ5
15
66
161
242
312
1058
1197



34










set2_641
IGHV1-
IGHJ4
14
70
164
245
334
1059
1197



18










set2_642
IGHV4-
IGHJ4
11
88
145
225
355
1060
1197



39










set2_643
IGHV1-
IGHJ6
14
84
148
230
351
1061
1196



2










set2_644
IGHV4-
IGHJ5
15
66
161
242
312
1062
1197



34










set2_645
IGHV4-
IGHJ4
15
66
161
242
312
1063
1197



34










set2_646
IGHV1-
IGHJ6
4
90
199
288
404
1064
1200



69










set2_647
IGHV1-
IGHJ6
4
90
199
288
396
1065
1196



69










set2_648
IGHV3-
IGHJ6
7
58
169
251
341
1066
1196



21










set2_649
IGHV4-
IGHJ6
15
66
161
242
405
1067
1196



34










set2_650
IGHV3-
IGHJ6
2
39
135
218
304
1068
1196



33










set2_651
IGHV3-
IGHJ4
7
58
169
251
341
1069
1197



21










set2_652
IGHV5-
IGHJ5
37
61
207
296
401
1070
1197



10-1










set2_653
IGHV3-
IGHJ6
6
43
171
253
343
1071
1196



7










set2_654
IGHV1-
IGHJ6
4
90
199
261
357
1072
1196



69










set2_655
IGHV3-
IGHJ4
2
39
135
216
304
1073
1197



30










set2_656
IGHV3-
IGHJ4
7
58
169
251
341
1074
1197



21










set2_657
IGHV3-
IGHJ6
6
43
171
253
343
1075
1196



7










set2_658
IGHV4-
IGHJ6
15
66
209
298
406
1076
1196



34










set2_659
IGHV3-
IGHJ4
2
39
135
216
304
1077
1197



30










set2_660
IGHV1-
IGHJ6
4
90
199
288
396
1078
1200



69










set2_661
IGHV4-
IGHJ3
15
66
161
242
312
1079
1198



34










set2_662
IGHV3-
IGHJ6
12
38
146
254
304
1080
1196



23










set2_663
IGHV1-
IGHJ6
4
90
199
288
396
1081
1196



69










set2_664
IGHV3-
IGHJ4
2
39
135
216
304
1082
1197



30










set2_665
IGHV3-
IGHJ6
12
38
146
254
304
1083
1196



23










set2_666
IGHV1-
IGHJ5
30
98
184
267
364
1084
1197



24










set2_667
IGHV3-
IGHJ3
7
44
140
222
309
1085
1198



15










set2_668
IGHV4-
IGHJ5
11
88
145
225
355
1086
1197



39










set2_669
IGHV4-
IGHJ3
9
126
210
225
407
1087
1198



59










set2_670
IGHV4-
IGHJ6
15
66
161
242
312
1088
1196



34










set2_671
IGHV4-
IGHJ5
9
47
143
225
312
1089
1197



59










set2_672
IGHV4-
IGHJ5
15
66
161
242
312
1090
1197



34










set2_673
IGHV1-
IGHJ5
30
98
184
267
364
1091
1197



24










set2_674
IGHV4-
IGHJ4
11
88
145
225
355
1092
1197



39










set2_675
IGHV4-
IGHJ3
9
47
143
299
312
1093
1198



59










set2_676
IGHV4-
IGHJ6
9
47
211
225
408
1094
1218



59










set2_677
IGHV1-
IGHJ6
14
70
164
245
334
1095
1196



18










set2_678
IGHV2-
IGHJ4
29
94
182
264
360
1096
1197



26










set2_679
IGHV3-
IGHJ6
12
38
146
254
304
1097
1196



23










set2_680
IGHV1-
IGHJ6
4
90
199
288
396
1098
1200



69










set2_681
IGHV4-
IGHJ3
9
47
175
256
347
1099
1198



4










set2_682
IGHV3-
IGHJ3
7
44
140
222
309
1100
1198



15










set2_683
IGHV1-
IGHJ6
14
84
148
230
351
1101
1196



2










set2_684
IGHV3-
IGHJ4
2
39
135
216
304
1102
1197



30










set2_685
IGHV1-
IGHJ6
4
90
199
288
396
1103
1200



69










set2_686
IGHV4-
IGHJ5
8
109
194
225
355
1104
1197



31










set2_687
IGHV3-
IGHJ5
6
127
139
300
308
1105
1197



74










set2_688
IGHV1-
IGHJ5
30
98
184
267
364
1106
1197



24










set2_689
IGHV1-
IGHJ5
4
128
199
288
396
1107
1197



69










set2_690
IGHV5-
IGHJ4
17
61
157
229
326
1108
1197



51










set2_691
IGHV1-
IGHJ6
14
70
164
245
334
1109
1196



18










set2_692
IGHV1-
IGHJ5
14
70
164
245
334
1110
1197



18










set2_693
IGHV3-
IGHJ6
20
65
186
272
341
1111
1196



11










set2_694
IGHV3-
IGHJ6
12
38
146
254
304
1112
1196



23










set2_695
IGHV3-
IGHJ6
6
43
171
253
343
1113
1196



7










set2_696
IGHV3-
IGHJ6
12
38
146
254
304
1114
1196



23










set2_697
IGHV5-
IGHJ5
17
61
157
229
326
1115
1197



51










set2_698
IGHV3-
IGHJ6
2
39
141
301
409
1116
1196



30










set2_699
IGHV4-
IGHJ3
11
88
145
225
410
1117
1198



39










set2_700
IGHV3-
IGHJ6
6
43
171
253
343
1118
1196



7










set2_701
IGHV4-
IGHJ4
15
66
161
242
312
1119
1197



34










set2_702
IGHV1-
IGHJ6
4
90
199
288
396
1120
1196



69










set2_703
IGHV4-
IGHJ5
11
88
145
225
355
1121
1197



39










set2_704
IGHV3-
IGHJ6
6
43
171
253
343
1122
1196



7










set2_705
IGHV4-
IGHJ6
9
47
143
225
312
1123
1196



59










set2_706
IGHV3-
IGHJ6
20
65
186
272
341
1124
1196



11










set2_707
IGHV4-
IGHJ4
15
66
161
242
312
1125
1197



34










set2_708
IGHV1-
IGHJ6
4
90
199
288
396
1126
1200



69










set2_709
IGHV1-
IGHJ6
4
90
199
288
396
1127
1196



69










set2_710
IGHV3-
IGHJ3
6
129
212
302
411
1128
1198



7










set2_711
IGHV4-
IGHJ6
11
88
145
225
355
1129
1196



39










set2_712
IGHV4-
IGHJ6
15
66
161
242
312
1130
1196



34










set2_713
IGHV1-
IGHJ3
14
84
148
230
351
1131
1198



2










set2_714
IGHV3-
IGHJ4
2
39
135
216
304
1132
1197



30










set2_715
IGHV4-
IGHJ6
8
109
194
225
355
1133
1196



31










set2_716
IGHV4-
IGHJ6
11
88
145
225
355
1134
1196



39










set2_717
IGHV3-
IGHJ6
7
58
169
251
341
1135
1200



21










set2_718
IGHV3-
IGHJ3
12
130
213
303
412
1136
1196



23










set2_719
IGHV3-
IGHJ6
6
106
190
280
378
1137
1200



13










set2_720
IGHV4-
IGHJ3
9
131
143
225
312
1138
1198



61










set2_721
IGHV3-
IGHJ4
7
44
140
222
309
1139
1197



15










set2_722
IGHV2-
IGHJ6
33
74
192
249
339
1140
1196



70










set2_723
IGHV4-
IGHJ6
15
66
161
242
312
1141
1196



34










set2_724
IGHV3-
IGHJ6
20
65
186
272
341
1142
1196



11










set2_725
IGHV4-
IGHJ6
9
47
143
225
312
1143
1196



59










set2_726
IGHV3-
IGHJ4
2
39
135
218
304
1144
1197



33










set2_727
IGHV1-
IGHJ6
30
98
184
267
364
1145
1196



24










set2_728
IGHV3-
IGHJ5
20
65
186
272
341
1146
1197



11










set2_729
IGHV3-
IGHJ2
6
106
190
277
378
1147
1203



13










set2_730
IGHV4-
IGHJ6
15
66
161
242
312
1148
1196



34










set2_731
IGHV1-
IGHJ6
14
70
164
245
334
1149
1196



18










set2_732
IGHV3-
IGHJ6
2
39
181
216
304
1150
1196



30










set2_733
IGHV4-
IGHJ6
15
66
161
242
312
1151
1196



34










set2_734
IGHV3-
IGHJ6
6
43
171
253
343
1152
1196



7










set2_735
IGHV4-
IGHJ5
11
88
145
225
355
1153
1197



39










set2_736
IGHV1-
IGHJ4
14
70
164
245
334
1154
1197



18










set2_737
IGHV3-
IGHJ3
6
132
214
221
413
1155
1198



74










set2_738
IGHV4-
IGHJ5
9
47
143
225
312
1156
1197



59










set2_739
IGHV4-
IGHJ6
11
88
145
225
355
1157
1196



39










set2_740
IGHV3-
IGHJ4
2
39
135
216
304
1158
1197



30










set2_741
IGHV1-
IGHJ6
14
70
164
245
334
1159
1196



18










set2_742
IGHV3-
IGHJ6
20
65
186
272
341
1160
1196



11










set2_743
IGHV3-
IGHJ6
6
43
171
253
343
1161
1196



7










set2_744
IGHV3-
IGHJ6
6
43
171
253
343
1162
1196



7










set2_745
IGHV1-
IGHJ6
14
70
164
245
334
1163
1196



18










set2_746
IGHV1-
IGHJ6
14
70
164
245
334
1164
1196



18










set2_747
IGHV1-
IGHJ6
30
98
184
267
364
1165
1196



24










set2_748
IGHV4-
IGHJ6
15
66
161
242
312
1166
1196



34










set2_749
IGHV1-
IGHJ6
14
70
164
245
334
1167
1196



18










set2_750
IGHV1-
IGHJ6
4
90
199
288
396
1168
1196



69










set2_751
IGHV3-
IGHJ6
6
43
171
253
343
1169
1196



7










set2_752
IGHV1-
IGHJ6
4
90
199
288
396
1170
1196



69










set2_753
IGHV3-
IGHJ4
2
133
135
216
414
1171
1197



30










set2_754
IGHV3-
IGHJ3
7
58
169
251
341
1172
1198



21










set2_755
IGHV3-
IGHJ6
2
39
135
218
304
1173
1196



33










set2_756
IGHV3-
IGHJ6
6
43
171
253
343
1174
1196



7










set2_757
IGHV1-
IGHJ6
14
70
164
245
334
1175
1196



18










set2_758
IGHV3-
IGHJ4
6
43
171
253
343
1176
1197



7










set2_759
IGHV1-
IGHJ6
14
84
148
230
351
1177
1196



2










set2_760
IGHV3-
IGHJ6
7
58
169
251
341
1178
1196



21










set2_761
IGHV4-
IGHJ6
15
66
161
242
312
1179
1196



34










set2_762
IGHV1-
IGHJ6
14
70
164
245
334
1180
1196



18










set2_763
IGHV3-
IGHJ6
20
65
186
272
341
1181
1196



11










set2_764
IGHV4-
IGHJ6
9
47
175
256
347
1182
1196



4










set2_765
IGHV4-
IGHJ6
15
66
161
242
312
1183
1196



34










set2_766
IGHV1-
IGHJ6
14
70
164
245
334
1184
1196



18










set2_767
IGHV1-
IGHJ6
14
70
164
245
334
1185
1196



18










set2_768
IGHV4-
IGHJ6
15
134
161
242
312
1186
1196



34










set2_769
IGHV1-
IGHJ6
14
70
164
245
334
1187
1196



18










set2_770
IGHV1-
IGHJ6
14
70
215
245
415
1188
1196



18










set2_771
IGHV3-
IGHJ6
2
39
135
218
304
1189
1196



33










set2_772
IGHV3-
IGHJ6
2
38
135
216
304
1190
1200



30










set2_773
IGHV3-
IGHJ6
2
39
135
218
304
1191
1196



33










set2_774
IGHV3-
IGHJ6
2
38
135
216
304
1192
1196



30










set2_775
IGHV3-
IGHJ6
2
39
135
218
304
1193
1196



33










set2_776
IGHV3-
IGHJ6
2
39
135
218
304
1194
1196



33










set2_777
IGHV3-
IGHJ6
2
39
135
218
304
1195
1196



33
















TABLE 2







Polypeptide sequences of immunoglobulin


heavy chain variable domains (VHs)











Polypeptide sequence



VH name
(SEQ ID NO)














set1_1
1



set1_2
1219



set1_3
1220



set1_4
1221



set1_5
1222



set2_1
1223



set2_2
1224



set2_3
1225



set2_4
1226



set2_5
1227



set2_6
1228



set2_7
1229



set2_8
1230



set2_9
1231



set2_10
1232



set2_11
1233



set2_12
1234



set2_13
1235



set2_14
1236



set2_15
1237



set2_16
1238



set2_17
1239



set2_18
1240



set2_19
1241



set2_20
1242



set2_21
1243



set2_22
1244



set2_23
1245



set2_24
1246



set2_25
1247



set2_26
1248



set2_27
1249



set2_28
1250



set2_29
1251



set2_30
1252



set2_31
1253



set2_32
1254



set2_33
1255



set2_34
1256



set2_35
1257



set2_36
1258



set2_37
1259



set2_38
1260



set2_39
1261



set2_40
1262



set2_41
1263



set2_42
1264



set2_43
1265



set2_44
1266



set2_45
1267



set2_46
1268



set2_47
1269



set2_48
1270



set2_49
1271



set2_50
1272



set2_51
1273



set2_52
1274



set2_53
1275



set2_54
1276



set2_55
1277



set2_56
1278



set2_57
1279



set2_58
1280



set2_59
1281



set2_60
1282



set2_61
1283



set2_62
1284



set2_63
1285



set2_64
1286



set2_65
1287



set2_66
1288



set2_67
1289



set2_68
1290



set2_69
1291



set2_70
1292



set2_71
1293



set2_72
1294



set2_73
1295



set2_74
1296



set2_75
1297



set2_76
1298



set2_77
1299



set2_78
1300



set2_79
1301



set2_80
1302



set2_81
1303



set2_82
1304



set2_83
1305



set2_84
1306



set2_85
1307



set2_86
1308



set2_87
1309



set2_88
1310



set2_89
1311



set2_90
1312



set2_91
1313



set2_92
1314



set2_93
1315



set2_94
1316



set2_95
1317



set2_96
1318



set2_97
1319



set2_98
1320



set2_99
1321



set2_100
1322



set2_101
1323



set2_102
1324



set2_103
1325



set2_104
1326



set2_105
1327



set2_106
1328



set2_107
1329



set2_108
1330



set2_109
1331



set2_110
1332



set2_111
1333



set2_112
1334



set2_113
1335



set2_114
1336



set2_115
1337



set2_116
1338



set2_117
1339



set2_118
1340



set2_119
1341



set2_120
1342



set2_121
1343



set2_122
1344



set2_123
1345



set2_124
1346



set2_125
1347



set2_126
1348



set2_127
1349



set2_128
1350



set2_129
1351



set2_130
1352



set2_131
1353



set2_132
1354



set2_133
1355



set2_134
1356



set2_135
1357



set2_136
1358



set2_137
1359



set2_138
1360



set2_139
1361



set2_140
1362



set2_141
1363



set2_142
1364



set2_143
1365



set2_144
1366



set2_145
1367



set2_146
1368



set2_147
1369



set2_148
1370



set2_149
1371



set2_150
1372



set2_151
1373



set2_152
1374



set2_153
1375



set2_154
1376



set2_155
1377



set2_156
1378



set2_157
1379



set2_158
1380



set2_159
1381



set2_160
1382



set2_161
1383



set2_162
1384



set2_163
1385



set2_164
1386



set2_165
1387



set2_166
1388



set2_167
1389



set2_168
1390



set2_169
1391



set2_170
1392



set2_171
1393



set2_172
1394



set2_173
1395



set2_174
1396



set2_175
1397



set2_176
1398



set2_177
1399



set2_178
1400



set2_179
1401



set2_180
1402



set2_181
1403



set2_182
1404



set2_183
1405



set2_184
1406



set2_185
1407



set2_186
1408



set2_187
1409



set2_188
1410



set2_189
1411



set2_190
1412



set2_191
1413



set2_192
1414



set2_193
1415



set2_194
1416



set2_195
1417



set2_196
1418



set2_197
1419



set2_198
1420



set2_199
1421



set2_200
1422



set2_201
1423



set2_202
1424



set2_203
1425



set2_204
1426



set2_205
1427



set2_206
1428



set2_207
1429



set2_208
1430



set2_209
1431



set2_210
1432



set2_211
1433



set2_212
1434



set2_213
1435



set2_214
1436



set2_215
1437



set2_216
1438



set2_217
1439



set2_218
1440



set2_219
1441



set2_220
1442



set2_221
1443



set2_222
1444



set2_223
1445



set2_224
1446



set2_225
1447



set2_226
1448



set2_227
1449



set2_228
1450



set2_229
1451



set2_230
1452



set2_231
1453



set2_232
1454



set2_233
1455



set2_234
1456



set2_235
1457



set2_236
1458



set2_237
1459



set2_238
1460



set2_239
1461



set2_240
1462



set2_241
1463



set2_242
1464



set2_243
1465



set2_244
1466



set2_245
1467



set2_246
1468



set2_247
1469



set2_248
1470



set2_249
1471



set2_250
1472



set2_251
1473



set2_252
1474



set2_253
1475



set2_254
1476



set2_255
1477



set2_256
1478



set2_257
1479



set2_258
1480



set2_259
1481



set2_260
1482



set2_261
1483



set2_262
1484



set2_263
1485



set2_264
1486



set2_265
1487



set2_266
1488



set2_267
1489



set2_268
1490



set2_269
1491



set2_270
1492



set2_271
1493



set2_272
1474



set2_273
1494



set2_274
1495



set2_275
1496



set2_276
1497



set2_277
1498



set2_278
1499



set2_279
1500



set2_280
1501



set2_281
1502



set2_282
1503



set2_283
1504



set2_284
1505



set2_285
1506



set2_286
1507



set2_287
1508



set2_288
1509



set2_289
1510



set2_290
1511



set2_291
1512



set2_292
1513



set2_293
1514



set2_294
1515



set2_295
1516



set2_296
1517



set2_297
1518



set2_298
1519



set2_299
1520



set2_300
1521



set2_301
1522



set2_302
1523



set2_303
1524



set2_304
1525



set2_305
1526



set2_306
1527



set2_307
1528



set2_308
1529



set2_309
1530



set2_310
1531



set2_311
1532



set2_312
1533



set2_313
1534



set2_314
1535



set2_315
1536



set2_316
1537



set2_317
1538



set2_318
1539



set2_319
1540



set2_320
1541



set2_321
1542



set2_322
1543



set2_323
1544



set2_324
1545



set2_325
1546



set2_326
1547



set2_327
1548



set2_328
1549



set2_329
1550



set2_330
1551



set2_331
1552



set2_332
1553



set2_333
1554



set2_334
1555



set2_335
1556



set2_336
1557



set2_337
1558



set2_338
1559



set2_339
1560



set2_340
1561



set2_341
1562



set2_342
1563



set2_343
1564



set2_344
1565



set2_345
1566



set2_346
1567



set2_347
1568



set2_348
1569



set2_349
1570



set2_350
1571



set2_351
1572



set2_352
1573



set2_353
1574



set2_354
1575



set2_355
1576



set2_356
1577



set2_357
1578



set2_358
1579



set2_359
1580



set2_360
1581



set2_361
1582



set2_362
1583



set2_363
1584



set2_364
1585



set2_365
1586



set2_366
1587



set2_367
1588



set2_368
1589



set2_369
1590



set2_370
1591



set2_371
1592



set2_372
1593



set2_373
1594



set2_374
1595



set2_375
1596



set2_376
1597



set2_377
1598



set2_378
1599



set2_379
1600



set2_380
1601



set2_381
1602



set2_382
1603



set2_383
1604



set2_384
1605



set2_385
1606



set2_386
1607



set2_387
1608



set2_388
1609



set2_389
1610



set2_390
1611



set2_391
1612



set2_392
1613



set2_393
1614



set2_394
1615



set2_395
1616



set2_396
1617



set2_397
1618



set2_398
1619



set2_399
1620



set2_400
1621



set2_401
1622



set2_402
1623



set2_403
1624



set2_404
1625



set2_405
1626



set2_406
1627



set2_407
1628



set2_408
1629



set2_409
1630



set2_410
1631



set2_411
1632



set2_412
1633



set2_413
1634



set2_414
1635



set2_415
1636



set2_416
1637



set2_417
1638



set2_418
1639



set2_419
1640



set2_420
1641



set2_421
1642



set2_422
1643



set2_423
1644



set2_424
1645



set2_425
1646



set2_426
1647



set2_427
1648



set2_428
1649



set2_429
1650



set2_430
1651



set2_431
1652



set2_432
1653



set2_433
1654



set2_434
1655



set2_435
1656



set2_436
1657



set2_437
1658



set2_438
1659



set2_439
1660



set2_440
1661



set2_441
1662



set2_442
1663



set2_443
1664



set2_444
1665



set2_445
1666



set2_446
1667



set2_447
1668



set2_448
1669



set2_449
1670



set2_450
1671



set2_451
1672



set2_452
1673



set2_453
1674



set2_454
1675



set2_455
1676



set2_456
1677



set2_457
1678



set2_458
1679



set2_459
1680



set2_460
1681



set2_461
1682



set2_462
1683



set2_463
1684



set2_464
1685



set2_465
1686



set2_466
1687



set2_467
1688



set2_468
1689



set2_469
1690



set2_470
1691



set2_471
1692



set2_472
1693



set2_473
1694



set2_474
1695



set2_475
1696



set2_476
1697



set2_477
1698



set2_478
1699



set2_479
1700



set2_480
1701



set2_481
1702



set2_482
1703



set2_483
1704



set2_484
1705



set2_485
1706



set2_486
1707



set2_487
1708



set2_488
1709



set2_489
1710



set2_490
1711



set2_491
1712



set2_492
1713



set2_493
1714



set2_494
1715



set2_495
1716



set2_496
1717



set2_497
1718



set2_498
1719



set2_499
1720



set2_500
1721



set2_501
1722



set2_502
1723



set2_503
1724



set2_504
1725



set2_505
1726



set2_506
1727



set2_507
1728



set2_508
1729



set2_509
1730



set2_510
1731



set2_511
1732



set2_512
1733



set2_513
1734



set2_514
1735



set2_515
1736



set2_516
1737



set2_517
1738



set2_518
1739



set2_519
1740



set2_520
1741



set2_521
1742



set2_522
1743



set2_523
1744



set2_524
1745



set2_525
1746



set2_526
1747



set2_527
1748



set2_528
1749



set2_529
1750



set2_530
1751



set2_531
1752



set2_532
1753



set2_533
1754



set2_534
1755



set2_535
1756



set2_536
1757



set2_537
1758



set2_538
1759



set2_539
1760



set2_540
1761



set2_541
1762



set2_542
1763



set2_543
1764



set2_544
1765



set2_545
1766



set2_546
1767



set2_547
1768



set2_548
1769



set2_549
1770



set2_550
1771



set2_551
1772



set2_552
1773



set2_553
1774



set2_554
1775



set2_555
1776



set2_556
1777



set2_557
1778



set2_558
1779



set2_559
1780



set2_560
1781



set2_561
1782



set2_562
1783



set2_563
1784



set2_564
1785



set2_565
1786



set2_566
1787



set2_567
1788



set2_568
1789



set2_569
1790



set2_570
1791



set2_571
1792



set2_572
1793



set2_573
1794



set2_574
1795



set2_575
1796



set2_576
1797



set2_577
1798



set2_578
1799



set2_579
1800



set2_580
1801



set2_581
1802



set2_582
1803



set2_583
1804



set2_584
1805



set2_585
1806



set2_586
1807



set2_587
1808



set2_588
1809



set2_589
1810



set2_590
1811



set2_591
1812



set2_592
1813



set2_593
1814



set2_594
1815



set2_595
1816



set2_596
1817



set2_597
1818



set2_598
1819



set2_599
1820



set2_600
1821



set2_601
1822



set2_602
1823



set2_603
1824



set2_604
1825



set2_605
1826



set2_606
1827



set2_607
1828



set2_608
1829



set2_609
1830



set2_610
1831



set2_611
1832



set2_612
1833



set2_613
1834



set2_614
1835



set2_615
1836



set2_616
1837



set2_617
1838



set2_618
1839



set2_619
1840



set2_620
1841



set2_621
1842



set2_622
1843



set2_623
1844



set2_624
1845



set2_625
1846



set2_626
1847



set2_627
1848



set2_628
1849



set2_629
1850



set2_630
1851



set2_631
1852



set2_632
1853



set2_633
1854



set2_634
1855



set2_635
1856



set2_636
1857



set2_637
1858



set2_638
1859



set2_639
1860



set2_640
1861



set2_641
1862



set2_642
1863



set2_643
1864



set2_644
1865



set2_645
1866



set2_646
1867



set2_647
1868



set2_648
1869



set2_649
1870



set2_650
1871



set2_651
1872



set2_652
1873



set2_653
1874



set2_654
1875



set2_655
1876



set2_656
1877



set2_657
1878



set2_658
1879



set2_659
1880



set2_660
1881



set2_661
1882



set2_662
1883



set2_663
1884



set2_664
1885



set2_665
1886



set2_666
1887



set2_667
1888



set2_668
1889



set2_669
1890



set2_670
1891



set2_671
1892



set2_672
1893



set2_673
1894



set2_674
1895



set2_675
1896



set2_676
1897



set2_677
1898



set2_678
1899



set2_679
1900



set2_680
1901



set2_681
1902



set2_682
1903



set2_683
1904



set2_684
1905



set2_685
1906



set2_686
1907



set2_687
1908



set2_688
1909



set2_689
1910



set2_690
1911



set2_691
1912



set2_692
1913



set2_693
1914



set2_694
1915



set2_695
1916



set2_696
1917



set2_697
1918



set2_698
1919



set2_699
1920



set2_700
1921



set2_701
1922



set2_702
1923



set2_703
1924



set2_704
1925



set2_705
1926



set2_706
1927



set2_707
1928



set2_708
1929



set2_709
1930



set2_710
1931



set2_711
1932



set2_712
1933



set2_713
1934



set2_714
1935



set2_715
1936



set2_716
1937



set2_717
1938



set2_718
1939



set2_719
1940



set2_720
1941



set2_721
1942



set2_722
1943



set2_723
1944



set2_724
1945



set2_725
1946



set2_726
1947



set2_727
1948



set2_728
1949



set2_729
1950



set2_730
1951



set2_731
1952



set2_732
1953



set2_733
1954



set2_734
1955



set2_735
1956



set2_736
1957



set2_737
1958



set2_738
1959



set2_739
1960



set2_740
1961



set2_741
1962



set2_742
1963



set2_743
1964



set2_744
1965



set2_745
1966



set2_746
1967



set2_747
1968



set2_748
1969



set2_749
1970



set2_750
1971



set2_751
1972



set2_752
1973



set2_753
1974



set2_754
1975



set2_755
1976



set2_756
1977



set2_757
1978



set2_758
1979



set2_759
1980



set2_760
1981



set2_761
1982



set2_762
1983



set2_763
1984



set2_764
1985



set2_765
1986



set2_766
1987



set2_767
1988



set2_768
1989



set2_769
1990



set2_770
1991



set2_771
1992



set2_772
1993



set2_773
1994



set2_774
1995



set2_775
1996



set2_776
1997



set2_777
1998










In one embodiment there is provided a polypeptide comprising:


a sequence (such as a CDRH1 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH1 sequence as shown in Table 1 and/or


a sequence (such as a CDRH2 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH2 sequence as shown in Table 1 and/or


a sequence (such as a CDRH3 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH3 sequence as shown in Table 1.


Suitably the polypeptide comprises


a sequence (such as a CDRH1 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a CDRH1 sequence as shown in Table 1 and/or


a sequence (such as a CDRH2 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a CDRH2 sequence as shown in Table 1 and/or


a sequence (such as a CDRH3 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a CDRH3 sequence as shown in Table 1.


More suitably the polypeptide comprises


a sequence (such as a CDRH1 sequence) comprising or consisting of a CDRH1 sequence as shown in Table 1 and/or


a sequence (such as a CDRH2 sequence) comprising or consisting of a CDRH2 sequence as shown in Table 1 and/or


a sequence (such as a CDRH3 sequence) comprising or consisting of a CDRH3 sequence as shown in Table 1.


More suitably the polypeptide comprises


a sequence (such as a CDRH1 sequence) comprising or consisting of a CDRH1 sequence as shown in Table 1 and


a sequence (such as a CDRH2 sequence) comprising or consisting of a CDRH2 sequence as shown in Table 1 and


a sequence (such as a CDRH3 sequence) comprising or consisting of a CDRH3 sequence as shown in Table 1.


Suitably the polypeptide comprises


a sequence (such as a FWRH1 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/or


a sequence (such as a FWRH2 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/or


a sequence (such as a FWRH3 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/or


a sequence (such as a FWRH4 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH4 sequence as shown in Table 1.


In one embodiment the polypeptide comprises:


a sequence (such as a FWRH1 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/or


a sequence (such as a FWRH2 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/or


a sequence (such as a FWRH3 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/or


a sequence (such as a FWRH4 sequence) comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH4 sequence as shown in Table 1.


More suitably the polypeptide comprises


a sequence (such as a FWRH1 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/or


a sequence (such as a FWRH2 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/or


a sequence (such as a FWRH3 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/or


a sequence (such as a FWRH4 sequence) comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH4 sequence as shown in Table 1.


More suitably the polypeptide comprises


a sequence (such as a FWRH1 sequence) comprising or consisting of a FWRH1 sequence as shown in Table 1 and/or


a sequence (such as a FWRH2 sequence) comprising or consisting of a FWRH2 sequence as shown in Table 1 and/or


a sequence (such as a FWRH3 sequence) comprising or consisting of a FWRH3 sequence as shown in Table 1 and/or


a sequence (such as a FWRH4 sequence) comprising or consisting of a FWRH4 sequence as shown in Table 1.


More suitably the polypeptide comprises


a sequence (such as a FWRH1 sequence) comprising or consisting of a FWRH1 sequence as shown in Table 1 and


a sequence (such as a FWRH2 sequence) comprising or consisting of a FWRH2 sequence as shown in Table 1 and


a sequence (such as a FWRH3 sequence) comprising or consisting of a FWRH3 sequence as shown in Table 1 and


a sequence (such as a FWRH4 sequence) comprising or consisting of a FWRH4 sequence as shown in Table 1.


Suitably the polypeptide comprises three complementarity determining regions (CDRH1-CDRH3). Suitably, the polypeptide comprises four framework regions (FWRH1-FWRH4).


In one embodiment there is provided a polypeptide comprising or consisting of a sequence sharing 80% or greater, more suitably 90% or greater, sequence identity with any immunoglobulin heavy chain variable domain (VH) sequence as shown in Table 1 (i.e. from N- to C-terminus, the combined sequence of FWRH1, CDRH1, FWRH2, CDRH2, FWRH3, CDRH3, FWRH4, for a single row) or Table 2. More suitably the polypeptide comprises or consists of an immunoglobulin heavy chain variable domain (VH) sequence as shown in Table 1 (i.e. from N- to C-terminus, the combined sequence of FWRH1, CDRH1, FWRH2, CDRH2, FWRH3, CDRH3, FWRH4, for a single row) or Table 2.


Suitably the polypeptide is an antibody, such as an antibody which belongs to the isotype subclass IGHA1, IGHA2 or IGHG1. Alternatively, the polypeptide is an antibody fragment, such as a F(ab′)2, an Fd, an Fv, an scFv, a VH, or a VHH.


Suitably the polypeptide binds to the spike protein (S protein) of SARS-CoV-2. More suitably the polypeptide binds to the S1 or S2 domain of the spike protein (S protein), such as the S1 domain of the spike protein (S1 protein).


An antibody fragment as used herein refers to a portion of an antibody that binds to a target. Examples of binding fragments encompassed within the term include a Fab, a F(ab′)2, an Fd, an Fv, an scFv, a VH, or a VHH.


Suitably the polypeptide comprises light chain CDRs (i.e. CDRL1, CDRL2, CDRL3). More suitably the polypeptide comprises light chain CDRs and framework regions (i.e. FWRL1, CDRL1, FWRL2, CDRL2, FWRL3, CDRL3 and FWRL4). More suitably the polypeptide is an antibody comprising both heavy and light chains. Suitably the light chain CDRs and/or frameworks and/or light chains are any one or more of those disclosed in Xue et al. Biochem Biophys Res Commun. 515(3):481-486, (2019).


Suitably, the polypeptide of the invention is isolated. An “isolated” polypeptide is one that is removed from its original environment. For example, a naturally-occurring polypeptide of the invention is isolated if it is separated from some or all of the coexisting materials in the natural system.


In one embodiment there is provided a pharmaceutical composition comprising the polypeptide and one or more pharmaceutically acceptable diluents or carriers. Suitably the composition comprises at least one further, different polypeptide according to any preceding claim. Suitably the composition comprises at least one further active agent.


In one embodiment the polypeptide or pharmaceutical composition is for use in suppressing or treating a disease or disorder mediated by infection of SARS-CoV-2, such as COVID-19, or for providing prophylaxis to a subject at risk of infection of SARS-CoV-2, such as COVID-19. In one embodiment there is provided a method of suppressing or treating a disease or disorder mediated by infection of SARS-CoV-2, such as COVID-19 or for providing prophylaxis to a subject at risk of infection of SARS-CoV-2, such as COVID-19, comprising administering to a person in need thereof a therapeutically effective amount of the polypeptide or pharmaceutical composition.


In one embodiment there is provided a polynucleotide encoding a polypeptide sequence disclosed in Table 1 or Table 2. In one embodiment there is provided a polynucleotide encoding an immunoglobulin heavy chain variable domain recited in Table 1 or Table 2. In one embodiment there is provided a vector comprising the polynucleotide.


The present invention will now be further described by means of the following non-limiting example.


Equivalents and Scope

While various invention embodiments have been particularly shown and described in the present disclosure, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the embodiments disclosed herein and set forth in the appended claims.


Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.


In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of a group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all group members are present in, employed in, or otherwise relevant to a given product or process.


It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the terms “consisting of” and “or including” are thus also encompassed and disclosed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to those of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiments of compositions disclosed herein can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.


All cited sources, for example, references, publications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.


Section and table headings are not intended to be limiting.


EXAMPLES
Example 1
COVID-19 Disease Samples

Blood samples were collected from n=19 patients admitted to hospital with acute COVID-19 pneumonia. The mean age of patients was 50.2 (SD 18.5) years and 13 (68%) were male. All patients had a clinical history consistent with COVID-19 and typical radiological changes. Seventeen patients had a confirmatory positive PCR test for SARS-CoV-2. The patients experienced an average of 11 days (range 4-20) of symptoms prior to the day on which the blood sample was collected. Nine of the patients were still requiring hospital care but not oxygen therapy on day of sample collection (WHO Ordinal Scale Score 3), while eight were hospitalised requiring oxygen by conventional mask or nasal prongs (WHO Ordinal Scale Score 4) and two were hospitalised with severe COVID-19 pneumonia requiring high-flow nasal oxygen (WHO Ordinal Scale Score 5). On the day of sample collection, the direct clinical care team considered two patients to be deteriorating, four improving and the remaining thirteen were clinically stable.


SARS-CoV-2 Infection Results in a Stereotypic B Cell Response

IGHA and IGHG BCR sequencing yielded on average 135,437 unique sequences, and 23,742 clonotypes per sample (Table 3). To characterise the B cell response in COVID-19, we compared this BCR repertoire data to BCR repertoire data from healthy controls obtained in a separate study15. Comparing IGHV gene segment usage revealed a significantly different IGHV gene usage in COVID-19 patients compared to the healthy controls, most notably with increases in the usage of IGHV2-5 (2.6×IGHA, 1.0×IGHG increase), IGHV2-70 (4.6×IGHA, 4.1×IGHG increase), IGHV3-30 (2.0×IGHA, 1.4×IGHG increase), IGHV5-51 (3.5×IGHA, 2.0×IGHG increase), and IGHV4-34 (1.4×IGHA, 2.4×IGHG increase) in the COVID-19 patients (FIG. 1A). All of these V gene segments have been previously observed in SARS-CoV-1 or SARS-CoV-2 specific antibodies16. IGHV4-34 has been shown to bind both autoantigens17 and commensal bacteria18 and has been associated with SLE19. Our data extends this, showing that the proportion of sequences containing the autoreactive AVY & NHS sequence motifs within the IGHV region is significantly more frequent in improving COVID-19 patients compared to stable or deteriorating COVID-19 patients, specifically in the IGHG1 isotype subclass (p-value=0.038; FIG. 6).


Comparing isotype subclasses showed a significant increase in the relative usage of IGHA1 and IGHG1 in COVID-19 patients (FIG. 1B)—these are the two first isotype subclasses that are switched to upon activation of IGHM20. There was also an increase in the mean CDRH3 length of the BCRs in the COVID-19 patients, that was most pronounced in the IGHA1, IGHA2 and IGHG1 isotype subclasses (FIG. 1C).


SARS-CoV-2 Infection Stimulates Both Naïve and Memory Responses

To further investigate the COVID-19-specific B cell response, we analysed the characteristics of the BCR sequences that are consistent with recent B cell activation—somatic hypermutation, and clonal expansion. In healthy controls, for class-switched sequences, there is a clear unimodal distribution of sequences with different numbers of mutations, and a mean mutation count across IGHA and IGHG isotypes of 17.6 (FIG. 2A). In the COVID-19 samples, the mean mutation count was 14.4, and there was a bimodal distribution with a separate peak of sequences with no mutations. This bimodal distribution was most pronounced in the IGHG1, IGHG3, and IGHA1 isotype subclasses, corresponding to the increased isotype usages. Such a distribution is consistent with an expansion of recently class-switched B cells that have yet to undergo somatic hypermutation. There was considerable variation between participants in the proportion of unmutated sequences (FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D), which had no significant correlation with the number of days since symptom onset (R=0.09, p=0.72), but was lower in the deteriorating compared to improving patients (FIG. 2B)


To investigate differential clonal expansion between patients, the Shannon diversity index of each repertoire was calculated (while accounting for differences in read depth through subsampling). A more diverse repertoire is indicative of a greater abundance of different clonal expansions. The BCR repertoires of the COVID-19 patients were significantly more diverse than the BCR repertoires of the healthy controls (FIG. 2C); this increase in diversity was positively correlated with an increased proportion of unmutated sequences (R=0.44, p=0.061; FIG. 2D). Interestingly, when we investigated the largest clonal expansions, despite having a more diverse repertoire, the largest clonal expansions in the COVID-19 samples were larger than in the healthy controls (FIG. 2E). These large clonal expansions were also highly mutated and had similar levels of mutation between the COVID-19 samples and the healthy controls (FIG. 2F).


Sequence Convergence can be Used to Identify Putative SARS-CoV-2 Specific Antibodies

Given the skewing of the B cell response in the COVID-19 patients to specific IGHV genes, we next investigated whether the same similarity was also seen on the BCR sequence level between different participants. Such convergent BCR signatures have been observed in response to other infectious diseases21, and may be used to identify disease-specific antibody sequences.


Of the 435,420 total clonotypes across all the COVID-19 patients, 9,646 (2.2%) were shared between at least two of the participants (FIG. 3A). As convergence could occur by chance or be due to an unrelated memory response from commonly encountered pathogens, the healthy control dataset was used to subtract irrelevant BCR sequences. Of the 9,646 convergent clonotypes, 1,442 (14.9%) were also present in at least one of the 40 healthy control samples. As expected, of the convergent clonotypes that were also present in the healthy control samples, the mean mutation count was significantly greater (FIG. 3B), and the mean CDRH3 length significantly shorter (FIG. 3C) than the convergent clonotypes that were unique to the COVID-19 patients.


To identify a set of SARS-CoV-2-specific antibody sequences with high confidence, we identified 777 convergent clonotypes that were shared between at least four of the COVID-19 patients (see Tables 1 and 2, which also include further convergent clonotypes from another set of samples), but not seen in the healthy controls. In parallel, for a comparison of convergent signatures, we performed the same analysis on a cohort of seven metastatic breast cancer patient biopsy samples22, which identified 469 convergent clonotypes. These convergent clonotypes were highly specific to each disease cohort (FIG. 3D). The 777 COVID-19 convergent clonotypes had low mutation levels, with a mean mutation count of 2, and only 51 clonotypes with a mean mutation greater than 5. The sequences within the convergent clonotypes were primarily of the IGHG1 (70%) and IGHA1 (16%) subclasses (FIG. 7A). The convergent clonotypes used a diversity of IGHV gene segments, with IGHV3-30, IGHV3-30-3 and IGHV3-33 as the most highly represented (FIG. 7B). This IGHV gene usage distribution differs between that of the total repertoire, and IGHV3-30 is also the most highly used IGHV gene in the CoV-AbDab16.


We next tested whether these convergent clonotypes correlated with disease severity. Indeed, 25 of these convergent clonotypes were found to associate with clinical symptoms after correcting for multiple testing, of which 22 were observed at a significantly higher frequency in improving patients (FIG. 3E, FIG. 8A, and FIG. 8B). This is a significantly higher proportion associated with clinical symptoms compared to that expected by chance (p-value=0.018 by random permutations of labels). Interestingly, some of these clonotypes are common in patients comprising >0.1% of a patient's repertoire. Furthermore, the convergent clonotypes that are associated with clinical symptoms cluster together (FIG. 3F) and are found primarily in the IGHA1 and IGHG1 isotypes (FIG. 3G).


BCR Sequence Convergence Signatures are Shared Between Different COVID-19 Studies in Different Locations and from Different Anatomical Sites


To further explore whether the convergent clonotypes observed in our study were indeed disease specific, and to determine whether such convergence was common across studies and geographic regions, we compared these 777 convergent clonotypes to public B cell datasets.


First, we compared our data to RNAseq data of bronchoalveolar lavage fluid obtained from five of the first infected patients in Wuhan, China23. These samples were obtained for the purpose of metagenomic analyses to identify the aetiological agent of the novel coronavirus but were re-analysed to determine whether we could extract any transcripts from BCRs. From the 10,038,758 total reads, we were able to identify 16 unique CDR3 AA sequences (Table 4). Of these, one had an exact AA match to a clonotype in our data and shared the same V gene segment (IGHV3-15), and J gene segment (IGHJ4) usage (FIG. 4A). This clonotype had a CDRH3 AA length of 12, so such a match is unlikely to occur due to chance alone. The clonotype contained 699 total sequences and was convergent between 8 of our 19 COVID-19 patients, but not present in the healthy controls. The clonotype was highly diverse, and the sequences had evidence of low mutation from germline, with a mean mutation count over all sequences of 4.8 (FIG. 7B).


Next, we compared our 777 convergent clonotypes to CoV-AbDab—the Coronavirus Antibody Database [accessed 10 May 2020]16. At the time of access, this database contained 80 non-redundant CDRH3 sequences from published and patented antibodies proven to bind SARS-CoV-1 and/or SARS-CoV-2. We found 6 of our clonotypes to have high CDRH3 homology to the antibodies in CoV-AbDab (FIG. 4B and FIG. 10). The most striking similarity was to S304, a previously described SARS-CoV-1 and SARS-CoV-2 receptor-binding domain antibody able to contribute to viral neutralisation24. One of the 777 convergent clonotypes contained sequences with an exact CDRH3 AA sequence match and utilised the same IGHV and IGHJ germline gene segments to S304. This clonotype was convergent across 6 patients and had a mean mutation count of 1.1.


Finally, we compared our data to a publicly available BCR deep sequencing dataset from six COVID-19 patients from Stanford, USA. 405 of our 777 convergent clonotypes matched to sequences in this dataset (FIG. 4C), showing the high level of convergence between studies. The average number of clonotype matches to the Stanford COVID-19 patient repertoires was 95, but this varied considerably between patients and timepoints. Two of the six patients were seronegative at the day of sampling (7451 and 7453), and these two patients had the fewest clonotype matches (16 and 14 respectively). Patient 7453 had an additional sample taken two days later (following seroconversion), and at this point had a large increase in the number of clonotype matches to 204.


Supplementary Information









TABLE 3







Summary of number of unique sequences, and number


of clonotypes obtained for each COVID-19 patient









Participant ID
Unique BCR Sequences
Clonotypes












1
47878
15456


2
257570
53168


3
33099
9616


4
37138
10754


5
198732
20036


6
233283
26181


7
51305
22276


8
39303
9391


9
221870
18278


10
54645
9255


11
202896
41132


12
31035
6791


13
40995
14782


14
171231
21373


15
280310
36446


16
29620
8736


17
253037
34805


18
60316
15068


19
329055
77557
















TABLE 4







CDRH3 AA sequences identified from bronchoalveolar RNAseq data










bestVHit
bestJHit
aaSeqCDR3
SEQ ID NO





IGHV2-26
IGHJ3
CARDSGRHLGPFDIW
1999





IGHV1-2
IGHJ3
CATPYYYDGGLDAFDIW
2000





IGHV3-74
IGHJ5
CARDLSRTNWFDPW
2001





IGHV3-15
IGHJ4
CTTDLHDYGDSDYW
2002





IGHV3-15
IGHJ4
CTTDFGGMITFGGVLRRI
2003





IGHV3-21
IGHJ4
CARAQSRGGYDSFFDFW
2004





IGHV3-21
IGHJ4
CGRGGPGTGIDYW
2005





IGHV4-59
IGHJ5
CARGGQYNNWFAPW
2006





IGHV3-74
IGHJ5
CVRDLSRTNWFDPW
2007





IGHV3-15
IGHJ4
YTRDLHDYGDSDYW
2008





IGHV3-23
IGHJ3
CAKIPSFLSDYDVHPNDAIDIW
2009





IGHV5-10-1
IGHJ4
CARHPQGAQFSNLGTYYFDYW
2010





IGHV4-59
IGHJ4
CARDGEYGGLAMW
2011





IGHV5-51
IGHJ6
CARPGTYYDILTGYSNHGMDVW
2012





IGHV4-39
IGHJ5
CARHASFRGTNYNWFDPW
2013





IGHV3-53
IGHJ5
CARDTSTEDVAWWFDPW
2014









The CDRH3 identified in our SARS-CoV-2 patient dataset is SEQ ID NO: 2002.


Discussion

We have used deep sequencing of the BCR heavy chain repertoire to evaluate the B cell responses of 19 individuals with COVID-19. In agreement with previous studies, there was a skewing of the repertoire in the response to SARS-CoV-2 infection, with an increased use of certain V genes, and an increase in the proportion of antibodies with longer CDRH3s, and an altered isotype subclass distribution14. The significantly increased usage of IGHA1 observed in the COVID-19 patients is in line with mucosal responses, where the longer hinge in IGHA1 compared to IGHA2 may offer advantages in antigen recognition by allowing higher avidity bivalent interactions with distantly spaced antigens.


As anticipated, given the novel nature of the virus, that SARS-CoV-2 infection largely stimulated a characteristically naïve response, rather than a reactivation of pre-existing memory B cells—(1) there was an increased prevalence of unmutated antigen-experienced class-switched BCR sequences, (2) an increase in the diversity of class-switched IGHA and IGHG BCRs, and (3) an increase in the usage of isotype subclasses that are associated with viral immunity. These observations are consistent with an increase in the frequency of recently activated B cells in response to SARS-CoV-2. In addition to the naïve response, there was also evidence of a proportion of the response arising from memory recall. In the COVID-19 patients, the largest clonal expansions were highly mutated, equivalent to the level observed in healthy control cohort. Such a secondary response to SARS-CoV-2 has been previously observed25, and may be due to recall of B cells activated in response to previously circulating human coronaviruses, as recently highlighted26,27.


We observed a potential relationship between repertoire characteristics and disease state, with improving patients showing a tendency towards a higher proportion of unmutated sequences. The increased prevalence of autoreactive IGHV4-34 sequences in improving COVID-19 patients compared to stable or deteriorating COVID-19 patients potentially suggests a role for natural or autoreactive antibodies in resolving infection and lower risk of pathology. However, this will need to be confirmed using larger sample cohorts. There is a clear need to expand on these findings by deepening the data pool and gathering more clinical data to aid understanding of the differences between individuals that respond with mild versus severe disease and have different recovery patterns. Building upon these observations could help to inform the future development of diagnostic assays to monitor and predict the progression of disease in infected patients.


A large number (777) of highly convergent clonotypes unique to COVID-19 were identified (see Table 1 and Table 2, which also include further convergent clonotypes from a separate set of samples). Our approach of subtracting the convergent clonotypes also observed in healthy controls15, allowed us to identify convergence specific to the disease cohort. The unbiased nature of the BCR repertoire analysis approach means that, whilst these convergent clonotypes are likely to include many antibodies to the spike protein and other parts of the virus they may also include other protective antibodies, including those to host proteins. It is expected that the heavy chains we have identified, and components of these heavy chains, will find utility in the treatment, prevention and diagnosis of COVID-19. Furthermore, characterisation of the heavy chains we have identified, coupled with matched light chains to generate functional antibodies will permit analysis of the binding sites and neutralising potential of these antibodies. The report that plasma derived from recently recovered donors with high neutralising antibody titres can improve the outcome of patients with severe disease28, supports the hypotheses that intervention with a therapeutic antibody has the potential to be an effective treatment. A manufactured monoclonal antibody or combination of antibodies would also provide a simpler, scalable and safer approach than plasma therapy.


Sequence convergence between our 777 convergent clonotypes with heavy chains from published and patented SARS-CoV-1 and SARS-CoV-2 antibodies16 supports several observations. Firstly, it demonstrates that our approach of finding a convergent sequence signature is a useful method for enriching disease-specific antibodies, as we find matches to known SARS-CoV spike-binding antibodies. Secondly, it shows that the clonotypes observed in response to SARS-CoV-2 overlap with those to SARS-CoV-1, presumably explained by the relatively high homology of the two related viruses 3. Indeed, here we show that there is an overrepresentation of clonotypes that correlate with patient clinical symptoms than is expected by chance, and these BCR sequences are associated with the dominant IgA1 and IgG1 responses. Finally, it shows that the convergence extends beyond our UK COVID-19 disease cohort.


Further evidence for convergence extending beyond our disease cohort came from the comparisons of our 777 convergent clonotypes to deep sequencing datasets from China23 and the USA14. The dataset from the USA is also from BCR sequencing of the peripheral blood of COVID-19 patients, and here we found matches to 405 of our 777 clonotypes. The dataset from China was from total RNA sequencing of the bronchoalveolar lavage fluid of SARS-CoV-2 infected patients. Only 16 unique CDRH3 sequences could be identified in this whole dataset, but one of them matched a convergent clonotype in the current study, showing that convergence can be seen both between different locations, and different sample types. We believe that the identification of such high BCR sequence convergence between geographically distinct and independent datasets could be highly significant and validates the disease association of the clonotypes, as well as the overall approach.


In summary, our BCR repertoire analysis provides information on the specific nature of the B cell response to SARS-CoV-2 infection. The information generated has the potential to facilitate the treatment of COVID-19 by supporting diagnostic approaches to predict the progression of disease, informing vaccine development and enabling the development of therapeutic antibody treatments and prophylactics.


Materials and Methods
Clinical Information Gathering

Peripheral blood was obtained from patients admitted with acute COVID-19 pneumonia to medical wards at Barts Health NHS Trust, London, UK, after informed consent by the direct care team (NHS HRA RES Ethics 19/SC/0361). Venous blood was collected in EDTA Vacutainers (BD). Patient demographics and clinical information relevant to their admission were collected by members of the direct care team, including duration of symptoms prior to blood sample collection. Current severity was mapped to the WHO Ordinal Scale of Severity. Whether patients at time of sample collection were clinically Improving, Stable or Deteriorating was subjectively determined by the direct clinical team prior to any sample analysis. This determination was primarily made on the basis of whether requirement for supplemental oxygen was increasing, stable, or decreasing comparing current day to previous three days.


Sample Collection and Initial Processing

Blood samples were centrifuged at 150×g for 15 minutes at room temperature to separate plasma. The cell pellet was resuspended with phosphate-buffered saline (PBS without calcium and magnesium, Sigma) to 20 ml, layered onto 15 ml Ficoll-Paque Plus (GE Healthcare) and then centrifuged at 400×g for 30 minutes at room temperature without brake. Mononuclear cells (PBMCs) were extracted from the buffy coat and washed twice with PBS at 300×g for 8 min. PBMCs were counted with Trypan blue (Sigma) and viability of >96% was observed. 5×106 PBMCs were resuspended in RLT (Qiagen) and incubated at room temperature for 10 min prior to storage at −80° C. Consecutive donor samples with sufficient RLT samples progressed to RNA preparation and BCR preparation and are included in this manuscript.


Metastatic breast cancer biopsy samples were collected and RNA extracted as part of a previously reported cohort22.


RNA Prep & BCR Sequencing

Total RNA from 5×106 PBMCs was isolated using RNeasy kits (Qiagen). First-strand cDNA was generated from total RNA using SuperScript RT IV (Invitrogen) and IgA and IgG isotype specific primers29 including UMIs at 50° C. for 45 min (inactivation at 80° C. for 10 min).


The resulting cDNA was used as template for High Fidelity PCR amplification (KAPA, Roche) using a set of 6 FR1-specific forward primers29 including sample-specific barcode sequences (6 bp) and a reverse primer specific to the RT primer (initial denaturation at 95° C. for 3 min, 25 cycles at 98° C. for 20 sec, 60° C. for 30 sec, 72° C. for 1 min and final extension at 72° C. for 7 min). The amount of Ig amplicons (˜450 bp) was quantified by TapeStation (Beckman Coulter) and gel-purified.


Dual-indexed sequencing adapters (KAPA) were ligated onto 500 ng amplicons per patient using the HyperPrep library construction kit (KAPA) and the adapter-ligated libraries were finally PCR-amplified for 3 cycles (98° C. for 15 sec, 60° C. for 30 sec, 72° C. for 30 sec, final extension at 72° C. for 1 min). Pools of 10 and 9 libraries were sequenced on an Illumina MiSeq using 2×300 bp chemistry.


Sequence Processing

The Immcantation framework was used for sequence processing30,31 Briefly, paired-end reads were joined based on a minimum overlap of 20 nt, and a max error of 0.2, and reads with a mean phred score below 20 were removed. Primer regions, including UMIs and sample barcodes, were then identified within each read, and trimmed. Together, the sample barcode, UMI, and constant region primer were used to assign molecular groupings for each read. Within each grouping, usearch32, was used to subdivide the grouping, with a cutoff of 80% nucleotide identity, to account for randomly overlapping UMIs. Each of the resulting groupings is assumed to represent reads arising from a single RNA. Reads within each grouping were then aligned, and a consensus sequence determined.


For each processed sequence, IgBlast33 was used to determine V, D and J gene segments, and locations of the CDRs and FWRs. Isotype was determined based on comparison to germline constant region sequences. Sequences annotated as unproductive by IgBlast were removed. The number of mutations within each sequence was determined using the shazam R package31.


Sequences were clustered to identify those arising from clonally related B cells; a process termed clonotyping. Sequences from all samples were clustered together to also identify convergent clusters between samples. Clustering was performed using a previously described algorithm34. Clustering required identical V and J gene segment usage, identical CDRH3 length, and allowed 1 AA mismatch for every 10 AAs within the CDRH3. Cluster centers were defined as the most common sequence within the cluster. Lineages were reconstructed from clusters using the alakazam R package35. The similarity tree of the convergent clonontype CDR3 sequences was generated through a kmer similarity matrix between sequences in R.


Public Healthy Control Data Processing

The healthy control BCR sequence dataset used here has been described previously15. Only samples from participants aged 10 years or older, and from peripheral blood were used, resulting in a mean age of 28 (range: 11-51). Furthermore, only class-switched sequences were considered.


Public SARS-CoV-2 Bronchoalveolar Lavage RNAseq Data Processing

The bronchoalveolar lavage data comes from a previously published study of SARS-CoV-2 infection23 with data available under the PRJNA605983 BioProject on NCBI. MIXCR v3.0.3 was used, with default settings, to extract reads mapping to antibody genes from the total RNASeq data36.


Public CoV-AbDab Data Processing

All public CDRH3 AA sequences associated with published or patented SARS-CoV-1 or SARS-CoV-2 binding antibodies were mined from CoV-AbDab16, downloaded on 10 May 2020. A total of 80 non-redundant CDRH3s were identified (100% identity threshold). These sequences were then clustered alongside the representative CDRH3 sequence from each of our 777 convergent clones using CD-HIT37, at an 80% sequence identity threshold (allowing at most a CDRH3 length mismatch of 1 AA). Cluster centres containing at least one CoV-AbDab CDRH3 and one convergent clone CDRH3 were further investigated.


Public COVID-19 BCR Sequence Data Processing

The fourteen MiSeq “read 1” FASTQ datasets from the six SARS-CoV-2 patients analysed in Nielsen et al.14 were downloaded from the Sequence Read Archive38. IgBlast33 was used to identify heavy chain V, D, and J gene rearrangements and antibody regions. Unproductive sequences, sequences with out-of-frame V and J genes, and sequences missing the CDRH3 region were removed from the downstream analysis. Sequences with 100% amino acid and isotype matches were collapsed. To circumvent the disparity in collapsed dataset sizes between pairs of replicates, we selected the replicate with the highest number of sequences for downstream analysis.


Convergent Clonotyping Matching to Public Repertoires

The public SARS-CoV-2-positive14 and healthy control BCR repertoires39 were scanned for clonotype matches to our 777 convergent clonotype cluster centres. A BCR repertoire sequence was determined as a match if it had identical V and J genes, the same length CDRH3, and was within 1 AA mismatch per 10 CDRH3 AAs to a convergent clonotype representative sequence.


Statistical Analysis and Graphing

Statistical analysis and plotting were performed using R40. Plotting was performed using ggplot241. Sequence logos were created using ggseqlogo42. Specific statistical tests used are detailed in the figure descriptions. Correlations of IGHV4-34 autoreactive motifs and convergent clonotypes was performed by manova in R.


REFERENCES



  • 1. Lu, H., Stratton, C. W. & Tang, Y. W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology vol. 92 401-402 (2020).

  • 2. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506 (2020).

  • 3. Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 94, (2020).

  • 4. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507-513 (2020).

  • 5. Mulangu, S. et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 381, 2293-2303 (2019).

  • 6. Gogtay, N. J. et al. Comparison of a Novel Human Rabies Monoclonal Antibody to Human Rabies Immunoglobulin for Postexposure Prophylaxis: A Phase 2/3, Randomized, Single-Blind, Noninferiority, Controlled Study. Clin. Infect. Dis. 66, 387-395 (2018).

  • 7. Johnson, S. et al. Development of a Humanized Monoclonal Antibody (MEDI-493) with Potent In Vitro and In Vivo Activity against Respiratory Syncytial Virus. J. Infect. Dis. 176, 1215-1224 (1997).

  • 8. Wang, S. F. et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 451, 208-214 (2014).

  • 9. Tetro, J. A. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 22, 72-73 (2020).

  • 10. Sharma, A. It is too soon to attribute ADE to COVID-19. Microbes and Infection (2020) doi:10.1016/j.micinf.2020.03.005.

  • 11. Wang, Q. et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect. Dis. 2, 361-376 (2016).

  • 12. Brouwer, P. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. bioRxiv (2020) doi:10.1101/2020.05.12.088716.

  • 13. Andreano, E. et al. Identification of neutralizing human monoclonal antibodies from Italian Covid-19 convalescent patients. bioRxiv (2020) doi:10.1101/2020.05.05.078154.

  • 14. Nielsen, S. et al. B cell clonal expansion and convergent antibody responses to SARS-CoV-2. Res. Sq. (2020) doi:10.21203/rs.3.rs-27220/v1.

  • 15. Ghraichy, M. et al. Maturation of naïve and antigen-experienced B-cell receptor repertoires with age. bioRxiv (2019) doi:10.1101/609651.

  • 16. Raybould, M. I. J., Kovaltsuk, A., Marks, C. & Deane, C. M. CoV-AbDab: the Coronavirus Antibody Database. bioRxiv (2020) doi:10.1101/2020.05.15.077313.

  • 17. Pascual, V. et al. Nucleotide sequence analysis of the V regions of two IgM cold agglutinins: Evidence that the V(H)4-21 gene segment is responsible for the major cross-reactive idiotype. J. Immunol. 146, 4385-4391 (1991).

  • 18. Schickel, J. N. et al. Self-reactive VH4-34-expressing IgG B cells recognizecommensal bacteria. J. Exp. Med. 214, 1991-2003 (2017).

  • 19. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755-765 (2015).

  • 20. Horns, F. et al. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. Elife 5, 1-20 (2016).

  • 21. Parameswaran, P. et al. Convergent Antibody Signatures in Human Dengue. Cell Host Microbe 13, 691-700 (2013).

  • 22. De Mattos-Arruda, L. et al. The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Rep. 27, 2690-2708.e10 (2019).

  • 23. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273 (2020).

  • 24. Pinto, D. et al. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv (2020) doi:10.1101/2020.04.07.023903.

  • 25. Wec, A. Z. et al. Broad sarbecovirus neutralizing antibodies define a key site of vulnerability on the SARS-CoV-2 spike protein. bioRxiv (2020) doi:10.1101/2020.05.15.096511.

  • 26. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell (2020) doi:10.1016/j.cell.2020.05.015.

  • 27. Ng, K. et al. Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans. BioRxiv (2020) doi:10.1101/2020.05.14.095414.

  • 28. Duan, K. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. 117, 202004168 (2020).

  • 29. van Dongen, J. J. M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257-317 (2003).

  • 30. Vander Heiden, J. A. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930-2 (2014).

  • 31. Gupta, N. T. et al. Change-O: A toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356-3358 (2015).

  • 32. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461 (2010).

  • 33. Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34-40 (2013).

  • 34. Galson, J. D. et al. BCR repertoire sequencing: different patterns of B cell activation after two Meningococcal vaccines. Immunol. Cell Biol. 93, 885-95 (2015).

  • 35. Vander Heiden, J. A. & Gupta, N. alakazam: Immunoglobulin Clonal Lineage and Diversity Analysis. R Packag. version 0.2.0 (2015).

  • 36. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380-381 (2015).

  • 37. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150-3152 (2012).

  • 38. Leinonen, R., Sugawara, H. & Shumway, M. The sequence read archive. Nucleic Acids Res. 39, (2011).

  • 39. Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566, 393-397 (2019).

  • 40. Team, R. D. C. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria (2008).

  • 41. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer; 1st ed. 2009. Corr. 3rd printing 2010 edition, 2009).

  • 42. Wagih, O. Ggseqlogo: A versatile R package for drawing sequence logos. Bioinformatics 33, 3645-3647 (2017).

  • Throughout the specification and the claims which follow, unless the context requires otherwise, the word ‘comprise’, and variations such as ‘comprises’ and ‘comprising’, will be understood to imply the inclusion of a stated integer, step, group of integers or group of steps but not to the exclusion of any other integer, step, group of integers or group of steps. All patents and patent applications mentioned throughout the specification of the present invention are herein incorporated in their entirety by reference. The invention embraces all combinations of preferred and more preferred groups and suitable and more suitable groups and embodiments of groups recited above.


Claims
  • 1. A polypeptide comprising: a CDRH1 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH1 sequence as shown in Table 1 and/ora CDRH2 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH2 sequence as shown in Table 1 and/ora CDRH3 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a CDRH3 sequence as shown in Table 1.
  • 2. The polypeptide according to claim 1 wherein the polypeptide comprises a CDRH1 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a CDRH1 sequence as shown in Table 1 and/ora CDRH2 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a CDRH2 sequence as shown in Table 1 and/ora CDRH3 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a CDRH3 sequence as shown in Table 1.
  • 3. The polypeptide according to claim 2 wherein the polypeptide comprises a CDRH1 sequence comprising or consisting of a CDRH1 sequence as shown in Table 1 and/ora CDRH2 sequence comprising or consisting of a CDRH2 sequence as shown in Table 1 and/ora CDRH3 sequence comprising or consisting of a CDRH3 sequence as shown in Table 1.
  • 4. The polypeptide according to claim 3 wherein the polypeptide comprises a CDRH1 sequence comprising or consisting of a CDRH1 sequence as shown in Table 1 anda CDRH2 sequence comprising or consisting of a CDRH2 sequence as shown in Table 1 anda CDRH3 sequence comprising or consisting of a CDRH3 sequence as shown in Table 1.
  • 5. The polypeptide according to any preceding claim, wherein the polypeptide comprises a FWRH1 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/ora FWRH2 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/ora FWRH3 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/ora FWRH4 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH4 sequence as shown in Table 1.
  • 6. A polypeptide comprising: a FWRH1 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/ora FWRH2 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/ora FWRH3 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/ora FWRH4 sequence comprising or consisting of a sequence sharing 80% or greater sequence identity with a FWRH4 sequence as shown in Table 1.
  • 7. The polypeptide according to either claim 5 or 6, wherein the polypeptide comprises a FWRH1 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH1 sequence as shown in Table 1 and/ora FWRH2 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH2 sequence as shown in Table 1 and/ora FWRH3 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH3 sequence as shown in Table 1 and/ora FWRH4 sequence comprising or consisting of a sequence sharing 90% or greater sequence identity with a FWRH4 sequence as shown in Table 1.
  • 8. The polypeptide according to claim 7, wherein the polypeptide comprises a FWRH1 sequence comprising or consisting of a FWRH1 sequence as shown in Table 1 and/ora FWRH2 sequence comprising or consisting of a FWRH2 sequence as shown in Table 1 and/ora FWRH3 sequence comprising or consisting of a FWRH3 sequence as shown in Table 1 and/ora FWRH4 sequence comprising or consisting of a FWRH4 sequence as shown in Table 1.
  • 9. The polypeptide according to claim 8, wherein the polypeptide comprises a FWRH1 sequence comprising or consisting of a FWRH1 sequence as shown in Table 1 anda FWRH2 sequence comprising or consisting of a FWRH2 sequence as shown in Table 1 anda FWRH3 sequence comprising or consisting of a FWRH3 sequence as shown in Table 1 anda FWRH4 sequence comprising or consisting of a FWRH4 sequence as shown in Table 1.
  • 10. The polypeptide according to any preceding claim, wherein the polypeptide comprises three complementarity determining regions (CDRH1-CDRH3).
  • 11. The polypeptide according to any preceding claim, wherein the polypeptide comprises four framework regions (FWRH1-FWRH4).
  • 12. A polypeptide comprising or consisting of a sequence sharing 80% or greater sequence identity with any immunoglobulin heavy chain variable domain (VH) sequence as shown in Table 1 or Table 2.
  • 13. The polypeptide according to claim 12, wherein the polypeptide comprises or consists of a sequence sharing 90% or greater sequence identity with any immunoglobulin heavy chain variable domain (VH) sequence as shown in Table 1 or Table 2.
  • 14. The polypeptide according to either claim 12 or 13 wherein the polypeptide comprises or consists of an immunoglobulin heavy chain variable domain (VH) sequence as shown in Table 1 or Table 2.
  • 15. The polypeptide according to any preceding claim which is paired with a cognate light chain polypeptide.
  • 16. The polypeptide according to any preceding claim wherein the polypeptide is an antibody.
  • 17. The polypeptide according to claim 15 wherein the antibody belongs to the isotype subclass IGHA1, IGHA2, IGHG1, IGHG2, IGHG3 or IGHG4.
  • 18. The polypeptide according to any one of claims 1 to 14 wherein the polypeptide is an antibody fragment, such as a F(ab′)2, an Fd, an Fv, an scFv, a VH, or a VHH.
  • 19. The polypeptide according to any preceding claim, wherein the polypeptide binds to the spike protein (S protein) of SARS-CoV-2.
  • 20. The polypeptide according to claim 19 wherein the polypeptide binds to the S1 or S2 domain of the spike protein (S protein), such as the S1 domain of the spike protein (S1 protein).
  • 21. Polypeptide according to any preceding claims which binds to SARS-Cov2 viral proteins other than the spike protein.
  • 22. Polypeptide according to any preceding claims which binds to SARS-CoV2 infected human cells.
  • 23. Polypeptide according to any preceding claim which binds to a human protein to reduce viral load, increase viral neutralisation or beneficially modify immune responses occurring as a consequence of virus infection.
  • 24. A pharmaceutical composition comprising the polypeptide according to any preceding claim and one or more pharmaceutically acceptable diluents or carriers.
  • 25. The pharmaceutical composition according to claim 24 further comprising up to 3 polypeptides that may bind to different epitopes, in various combination ratios according to any preceding claim.
  • 26. The pharmaceutical composition according to either claim 24 or 25 comprising at least one further active agent such as an anti-viral or anti-inflammatory agent.
  • 27. The polypeptide or pharmaceutical composition according to any preceding claims, for use in suppressing or treating a disease or disorder mediated by infection of SARS-CoV-2, such as COVID-19, or for providing prophylaxis to a subject at risk of infection of SARS-CoV-2, such as COVID-19.
  • 28. A method of suppressing or treating a disease or disorder mediated by infection of SARS-CoV-2, such as COVID-19 or for providing prophylaxis to a subject at risk of infection of SARS-CoV-2, such as COVID-19, comprising administering to a person in need thereof a therapeutically effective amount of the polypeptide or pharmaceutical composition according to any preceding claims.
  • 29. A polypeptide or pharmaceutical composition according to any preceding claims, for providing treatment or prophylaxis of an infection mediated by other/new forms of coronavirus.
  • 30. One or more polypeptides according to any preceding claims, for use in diagnosis and/or prediction of outcome of SARS-CoV-2 infection.
  • 31. A polypeptide or pharmaceutical composition according to any preceding claims, for use in medical equipment in order to prevent or reduce the risk of infection (e.g., mask or air filter).
  • 32. A polynucleotide encoding the polypeptide according to any one of claims 1 to 23.
  • 33. A vector comprising the polynucleotide according to claim 32.
Priority Claims (1)
Number Date Country Kind
2007532.1 May 2020 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2021/051221 5/20/2021 WO