POLYPEPTIDES FOR DETECTION AND TREATMENT OF CORONAVIRUS INFECTION

Abstract
To address the need in the art, the inventors have comprehensively characterized the SARS-CoV-2-specific B cell repertoire in convalescent COVID-19 patients and generated mAbs against the spike, ORF8, and NP proteins. Together, the inventors' data reveal key insight into antigen specificity and B cell subset distribution upon SARS-CoV-2 infection in the context of age, sex, and disease severity. Aspects of the disclosure relate to novel antibody and antigen binding fragments. Further aspects relate to polypeptides comprising the antigen binding fragment(s) of the disclosure, and compositions comprising the polypeptides, antibodies, and/or antigen binding fragments of the disclosure. Also described are nucleic acids encoding an antibody or antigen binding fragment of the disclosure.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 24, 2021, is named ARCDP0715WO_ST25.txt and is 1,359,473 bytes in size.


BACKGROUND
I. Field of the Invention

Aspects of the invention relate to at least the fields of virology and molecular biology.


II. Background

Since the emergence of SARS-CoV-2 in December 2019, the World Health Organization has reported spread to over 200 countries with infections approaching 64 million and deaths 1.5 million worldwide. Despite this burden, the quest to identify effective vaccines, therapies, and protective biomarkers continues. The isolation of human monoclonal antibodies (mAbs) specific for immunogenic SARS-CoV-2 proteins holds immense potential, as they can be rapidly employed as therapeutic agents, diagnostic reagents, and aid vaccine optimization. Several independent groups have identified potently neutralizing mAbs against the SARS-CoV-2 spike protein, the major immunogenic surface glycoprotein 1-7. Despite these advances, there have been no mAbs isolated against other immunogenic targets of SARS-CoV-2, including the internal nucleoprotein (NP) and open reading frame (ORF) protein, which have been suggested to induce antibody responses and immunomodulatory effects in humans 8-12. Moreover, the properties and frequencies of B cell subsets targeting distinct SARS-CoV-2 antigens remain poorly understood, and are likely shaped by clinical features such as age and disease severity6,13,14. Therefore, there is a need in the art for effective therapies against SARS-CoV-2.


SUMMARY

To address the need for new treatments, the inventors have comprehensively characterized the SARS-CoV-2-specific B cell repertoire in convalescent COVID-19 patients and generated mAbs against the spike, ORFS, and NP proteins. Together, the inventors' data reveal key insights into antigen specificity and B cell subset distribution upon SARS-CoV-2 infection in the context of age, sex, and disease severity. Aspects of the disclosure relate to novel antibody and antigen binding fragments, as well as methods of using these fragments. Further aspects relate to polypeptides comprising the antigen binding fragment(s) of the disclosure, and compositions comprising the polypeptides, antibodies, and/or antigen binding fragments of the disclosure. Also described are nucleic acids encoding an antibody or antigen binding fragment of the disclosure. The disclosure also relates to nucleic acids encoding an antibody heavy chain, wherein the nucleic acid has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to one of SEQ ID NOS:1621-1710 or 2707-2755. Also described are nucleic acids encoding an antibody light chain of the disclosure, wherein the nucleic acid has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to one of SEQ ID NOS:1711-1800 or 2756-2804. Further aspects relate to vectors or expression vectors comprising nucleic acids of the disclosure and host cells comprising polypeptides, nucleic acids, vectors, antibodies, or antigen binding fragments of the disclosure. The nucleic acids of the disclosure may be DNA or RNA.


Also described is a method of a making a cell comprising transferring one or more nucleic acid(s) of the disclosure into a cell. In some embodiments, the method further comprises culturing the cell under conditions that allow for expression of a polypeptide from the nucleic acid. In some embodiments, the method further comprising isolating the expressed polypeptide. The cell may be further defined as a human cell, B cell, T cell, Chinese hamster ovary, NS0 murine myeloma cell, PER.C6 cell, or a cell described herein.


Further aspects of the disclosure relate to a method for treating or preventing a coronavirus infection in a subject, the method comprising administering to the subject an antibody, antigen binding fragment, polypeptide, nucleic acid, or host cell of the disclosure. Yet further aspects relate to a method for evaluating a sample from a subject, the method comprising contacting a biological sample from the subject, or extract thereof, with at least one antibody, antigen binding fragment, or polypeptide of the disclosure. Also disclosed is a method for diagnosing a SARS-CoV-2 infection in a subject, the method comprising contacting a biological sample from the subject, or extract thereof, with at least one antibody, antigen binding fragment, or polypeptide of any one of the disclosure. In some aspects, the compositions of the disclosure are formulated as a vaccine for the treatment or prevention of a coronoavirus infection. In some embodiments, the antibodies, antigen binding fragments, or compositions of the disclosure are used in a vaccine for preventing coronaviral infections in a subject that does not have a coronaviral infection. In some embodiments, the antibodies, antigen binding fragments, or compositions of the disclosure are used to treat a subject having a coronaviral infection.


Also described is a method of a making a cell comprising transferring one or more nucleic acid(s) of the disclosure into a cell. In some aspects, the method further comprises culturing the cell under conditions that allow for expression of a polypeptide from the nucleic acid. In some aspects, the method further comprising isolating the expressed polypeptide. Aspects describe a method for producing a polypeptide comprising transferring one or more nucleic acid(s) or vector(s) of the disclosure into a cell and isolating polypeptides expressed from the nucleic acid. The cell may be further defined as a human cell, B cell, T cell, Chinese hamster ovary, NS0 murine myeloma cell, PER.C6 cell, or a cell described herein.


Further aspects of the disclosure relate to a method for treating or preventing a coronavirus infection in a subject, the method comprising administering to the subject an antibody, antigen binding fragment, polypeptide, nucleic acid, or host cell of the disclosure. Yet further aspects relate to a method for evaluating a sample from a subject, the method comprising contacting a biological sample from the subject, or extract thereof, with at least one antibody, antigen binding fragment, or polypeptide of the disclosure. Also disclosed is a method for diagnosing a SARS-CoV-2 infection in a subject, the method comprising contacting a biological sample from the subject, or extract thereof, with at least one antibody, antigen binding fragment, or polypeptide of any one of the disclosure. In some aspects, the compositions of the disclosure are formulated as a vaccine for the treatment or prevention of a coronoavirus infection. In some aspects, the antibodies, antigen binding fragments, or compositions of the disclosure are used in a vaccine for preventing coronaviral infections in a subject that does not have a coronaviral infection. In some aspects, the antibodies, antigen binding fragments, or compositions of the disclosure are used to treat a subject having a coronavirus infection.


Aspects of the disclosure relate to an antibody or antigen binding fragment comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 from a heavy chain variable region of an antibody clone of Table 1 and wherein the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same clone of Table 1. Further aspects relate to an antibody or antigen binding fragment comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 having or having at least 80% sequence identity or having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity with a HCDR1, HCDR2, and HCDR3 from a heavy chain variable region of an antibody clone of Table 1 and wherein the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 having or having at least 80% sequence identity or having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity with a LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same clone of Table 1. The HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and/or LCDR3 may be determined from the variable region sequences by methods known in the art. In some aspects, the CDR is HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and/or LCDR3 determined by the Chothia method. In some aspects, the CDR is HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and/or LCDR3 determined by the Kabat method. In some aspects, the CDR is HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, and/or LCDR3 determined by the IMGT method.


Aspects of the disclosure relate to an antibody or antigen binding fragment in which the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 each comprise an amino acid sequence that has at least 80% sequence identity to an HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 of Table 1, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 are from the same antibody clone. In some aspects, the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 each comprise an amino acid sequence that has or has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to an HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 of Table 1, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 are from the same antibody clone. In some aspects, the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 each comprise the amino acid sequence of an HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 of Table 1, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 are from the same antibody clone.


Aspects of the disclosure relate to an antibody or antigen binding fragment comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to the HCDR1, HCR2, HCR3 from a heavy chain variable region of a antibody clone of Table 1 and wherein the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to the LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same antibody clone of Table 1. In some aspects, the antibody or antigen binding fragment comprises a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 having or having at least 80% sequence identity to the HCDR1, HCR2, HCR3 from a heavy chain variable region of a antibody clone of Table 1 and wherein the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 having at least 80% sequence identity to the LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 having the amino acid sequence of an of a HCDR1, HCDR2, and HCDR3 of a clone of Table 1 and the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 comprising the amino acid sequence of the LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same clone of Table 1.


The polypeptides of the disclosure may comprise at least two antigen binding fragments, wherein each antigen binding fragment is independently selected from an antigen binding fragment of the disclosure. In some aspects, the polypeptide is multivalent. In some aspects, the polypeptide is multispecific. In some aspects, the polypeptide is bispecific. In some aspects, the polypeptide comprises, comprises at least, or comprises at most 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 antigen binding regions. Each antigen binding region may be independently selected from an antigen binding region of the disclosure. In some aspects, the polypeptide may have repeated units of the same antigen binding region, such as at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 repeated units.


In some aspects, the heavy chain variable region comprises an amino acid sequence with at least 80% sequence identity to a heavy chain variable region of an antibody clone of Table 1 and/or the light chain variable region comprises an amino acid sequence with at least 80% sequence identity to the light chain variable region of the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises an amino acid sequence having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to a heavy chain variable region of an antibody clone of Table 1 and/or the light chain variable region comprises an amino acid sequence having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to the light chain variable region of the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises the amino acid sequence of a heavy chain variable region of an antibody clone of Table 1 and/or the light chain variable region comprises the amino acid sequence of the same antibody clone of Table 1. In some aspects, the antibody or antigen binding fragment comprises a heavy chain framework region (HFR) 1, HFR2, HFR3, and HFR4 and light chain framework region (LFR) 1, LFR2, LFR3, and LFR4, and wherein the HFR1, HFR2, HFR3, and HFR4 comprises an amino acid sequence with at least 80% sequence identity to an HFR1, HFR2, HFR3, and HFR4, respectively, of an antibody clone of Table 1, and the LFR1, LFR2, LFR3, and LFR4 comprises an amino acid sequence with at least 80% sequence identity to the LFR1, LFR2, LFR3, and LFR4, respectively, of the same antibody clone of Table 1. In some aspects, the antibody or antigen binding fragment comprises a heavy chain framework region (HFR) 1, HFR2, HFR3, and HFR4 and light chain framework region (LFR) 1, LFR2, LFR3, and LFR4, and wherein the HFR1, HFR2, HFR3, and HFR4 comprises an amino acid sequence having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to an HFR1, HFR2, HFR3, and HFR4, respectively, of an antibody clone of Table 1, and the LFR1, LFR2, LFR3, and LFR4 comprises an amino acid sequence having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to the LFR1, LFR2, LFR3, and LFR4, respectively, of the same antibody clone of Table 1. In some aspects, the HFR1, HFR2, HFR3, and HFR4 comprises the amino acid sequence of an HFR1, HFR2, HFR3, and HFR4, respectively, of an antibody clone of Table 1, and the LFR1, LFR2, LFR3, and LFR4 comprises the amino acid sequence of the LFR1, LFR2, LFR3, and LFR4, respectively, of the same antibody clone of Table 1. In some aspects, the antibody or antigen binding fragment comprises a heavy chain and a light chain and wherein the heavy chain comprises an amino acid sequence with at least 70% sequence identity to a heavy chain of an antibody clone of Table 1 and the light chain comprises an amino acid sequence with at least 70% sequence identity to the light chain of the same antibody clone of Table 1. In some aspects, the antibody or antigen binding fragment comprises a heavy chain and a light chain and wherein the heavy chain comprises an amino acid sequence having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to a heavy chain of an antibody clone of Table 1 and the light chain comprises an amino acid sequence having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to the light chain of the same antibody clone of Table 1. In some aspects, the antibody or antigen binding fragment comprises a heavy chain and a light chain and wherein the heavy chain comprises the amino acid sequence of an antibody clone of Table 1 and the light chain comprises the amino acid sequence of the same antibody clone of Table 1.


In some aspects, the heavy chain variable region comprises a heavy chain framework region that has or has at least 80% sequence identity to a heavy chain framework region of an antibody clone of Table 1 and the light chain variable region comprises a light chain framework region that has or has at least 80% sequence identity to a light chain framework region of the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises a heavy chain framework region having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to a heavy chain framework region of an antibody clone of Table 1 and the light chain variable region comprises a light chain framework region having or having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% (or any derivable range therein) sequence identity to a light chain framework region of the same antibody clone of Table 1.


In some aspects, the heavy chain variable region comprises at least 70% sequence identity to the heavy chain variable region of an antibody clone of Table 1 and the light chain variable region comprises at least 70% sequence identity to the light chain variable region of the same antibody clone of Table 1, and wherein the heavy chain and light chain comprise 100% sequence identity to each of the three heavy chain CDRs and three light chain CDRs from the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises at least 75% sequence identity to the heavy chain variable region of an antibody clone of Table 1 and the light chain variable region comprises at least 75% sequence identity to the light chain variable region of the same antibody clone of Table 1, and wherein the heavy chain and light chain comprise 100% sequence identity to each of the three heavy chain CDRs and three light chain CDRs from the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises at least 80% sequence identity to the heavy chain variable region of an antibody clone of Table 1 and the light chain variable region comprises at least 80% sequence identity to the light chain variable region of the same antibody clone of Table 1, and wherein the heavy chain and light chain comprise 100% sequence identity to each of the three heavy chain CDRs and three light chain CDRs from the same antibody clone of Table 1 In some aspects, the heavy chain variable region comprises at least 85% sequence identity to the heavy chain variable region of an antibody clone of Table 1 and the light chain variable region comprises at least 85% sequence identity to the light chain variable region of the same antibody clone of Table 1, and wherein the heavy chain and light chain comprise 100% sequence identity to each of the three heavy chain CDRs and three light chain CDRs from the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises at least 90% sequence identity to the heavy chain variable region of an antibody clone of Table 1 and the light chain variable region comprises at least 90% sequence identity to the light chain variable region of the same antibody clone of Table 1, and wherein the heavy chain and light chain comprise 100% sequence identity to each of the three heavy chain CDRs and three light chain CDRs from the same antibody clone of Table 1. In some aspects, the heavy chain variable region comprises at least 95% sequence identity to the heavy chain variable region of an antibody clone of Table 1 and the light chain variable region comprises at least 95% sequence identity to the light chain variable region of the same antibody clone of Table 1, and wherein the heavy chain and light chain comprise 100% sequence identity to each of the three heavy chain CDRs and three light chain CDRs from the same antibody clone of Table 1.


The antibody or antigen binding fragment of the disclosure may be human, chimeric, or humanized. In some aspects, the antibody, or antigen binding fragment binds a SARS-CoV-2 Spike, NP protein, or ORF8 with a kD of about 10−6 nM to about 10−12 pM. In some aspects, the antibody, or antigen binding fragment binds a SARS-CoV-2 Spike, NP protein, or ORFS with a kD of about, a kD of at least, or a kD of at most 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14, 10−15, 10−16, 10−17, or 10−18 (or any derivable range therein) μM, nM, or pM. In some aspects, the antibody or antigen binding fragment specifically binds to a receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The antibody may be further defined as a neutralizing antibody. In some aspects, the antibody or antigen binding fragment is further defined as a human antibody or antigen binding fragment, humanized antibody or antigen binding fragment, recombinant antibody or antigen binding fragment, chimeric antibody or antigen binding fragment, an antibody or antigen binding fragment derivative, a veneered antibody or antigen binding fragment, a diabody, a monoclonal antibody or antigen binding fragment, a single domain antibody, or a single chain antibody. In some aspects, the antigen binding fragment is further defined as a single chain variable fragment (scFv), F(ab′)2, Fab′, Fab, Fv, or rIgG. In some aspects, the antibody, antigen binding fragment, or polypeptide is operatively linked to a detectable label. Detectable labels are described herein.


Aspects of the disclosure also relate to multi-specific and/or multivalent antibodies and polypeptides. Accordingly, aspects relate to bivalent or bispecific antibodies that comprise two antigen binding fragments, wherein the antigen binding fragment is two of the same antigen binding fragments or two different antigen binding fragments described herein. The disclosure also provides for multi-specific polypeptides. Aspects relate to polypeptides comprising or comprising at least 2, 3, 4, 5, or 6 antigen binding fragments.


The antigen binding fragment may be at least 2, 3, 4, 5, or 6 scFv, F(ab′)2, Fab′, Fab, Fv, or rIgG, or combinations thereof. The polypeptide and/or antigen binding fragments of the disclosure may comprise a linker between a heavy chain and light chain variable region or between antigen binding fragments. The linker may be a flexible linker. Exemplary flexible linkers include glycine polymers (G)n, glycine-serine polymers (including, for example, (GS)n, (GSGGS-SEQ ID NO:2805)n, (G4S)n and (GGGS-SEQ ID NO:2806)n, where n is an integer of at least one. In some aspects, n is at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 (or any derivable range therein). Glycine-alanine polymers, alanine-serine polymers, and other flexible linkers known in the art and may be used as a linker in the polypeptides of the disclosure. Exemplary linkers can comprise or consist of GGSG (SEQ ID NO:2807), GGSGG (SEQ ID NO:2808), GSGSG (SEQ ID NO:2809), GSGGG (SEQ ID NO:2810), GGGSG (SEQ ID NO:2811), GSGSG (SEQ ID NO:2812), and the like.


In some aspects, the coronavirus infection is a SARS-CoV-2 infection. In some aspects, the coronavirus infection is a SARS-CoV infection. In some aspects, the coronavirus infection is a MERS-CoV infection. In some aspects, the coronavirus infection is a HCoV-HCoV-HKU1, HCoV-229E, or HCoV-NL63 infection.


Compositions of the disclosure, such as pharmaceutical compositions may comprise a pharmaceutical excipient, carrier, or molecule described herein. In some aspects, the composition further comprises an adjuvant or an immunostimulator. Such adjuvants or immunostimulators may include, but are not limited to stimulators of pattern recognition receptors, such as Toll-like receptors, RIG-1 and NOD-like receptors (NLR), mineral salts, such as alum, alum combined with monphosphoryl lipid (MPL) A of Enterobacteria, such as Escherichia coli, Salmonella minnesota, Salmonella typhimurium, or Shigella flexneri or specifically with MPL (ASO4), MPL A of above-mentioned bacteria separately, saponins, such as QS-21, Quil-A, ISCOMs, ISCOMATRIX, emulsions such as MF59, Montanide, ISA 51 and ISA 720, AS02 (QS21+squalene+MPL.), liposomes and liposomal formulations such as ASO1, synthesized or specifically prepared microparticles and microcarriers such as bacteria-derived outer membrane vesicles (OMV) of N. gonorrheae, Chlamydia trachomatis and others, or chitosan particles, depot-forming agents, such as Pluronic block co-polymers, specifically modified or prepared peptides, such as muramyl dipeptide, aminoalkyl glucosaminide 4-phosphates, such as RC529, or proteins, such as bacterial toxoids or toxin fragments. Compositions may comprise more than one antibody and/or antigen binding fragment of the disclosure. Accordingly, compositions of the disclosure may comprise, may comprise at least, or may comprise at most 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 antibodies and/or antigen binding fragments of the disclosure. The compositions of the disclosure may be formulated for a route of administration described herein. In some aspects, the composition, antibody, antigen binding fragment, or polypeptide is formulated for parenteral, intravenous, subcutaneous, intramuscular, or intranasal administration. In a particular aspect, the compositions is formulated for intranasal administration.


In some aspects, the host cell is a human cell, B cell, T cell, Chinese hamster ovary, NS0 murine myeloma cell, or PER.C6 cell. In some aspects, the host cell is a cell type or cell population described herein.


In aspects of the disclosure, the subject or patient may be a human subject or a human patient. In some aspects, the subject or patient is a non-human animal. In some aspects, the non-human animal is a bat, monkey, camel, rat, mouse, rabbit, goat, chicken, bird, cat, or dog. The subject may further be defined as an at-risk subject. At-risk subjects include health care workers, immunocompromised subjects, people over the age of 65, or those with at least one or at least two underlying conditions. Example of underlying conditions include obesity, high blood pressure, autoimmunity, cancer, and asthma. In some aspects, the subject has one or more symptoms of a coronavirus infection. Symptoms of a coronavirus infection include, but are not limited to elevated temperature or a fever of 100.0° F. or more, loss of taste or smell, cough, difficulty breathing, shortness of breath, fatigue, headache, chills, sore throat, congestion or runny nose, shaking or exaggerated shivering, significant muscle pain or ache, diarrhea, and/or nausea or vomiting. In some aspects, the subject does not have any symptoms of a coronavirus infection. In some aspects, the subject has been diagnosed with a coronavirus infection. In some aspects, the subject has not been diagnosed with a coronavirus infection. In some aspects, the subject has been previously treated for a coronavirus infection. In some aspects, the subject has been previously vaccinated for coronavirus. In some aspects, the subject has not been previously vaccinated for coronavirus. In some aspects, the previous treatment comprises a pain reliever, such as acetaminophen or ibuprofen, a steroid such as dexamethasone, prednisolone, beclomethasone, fluticasone, or methylprednisone or an antiviral such as remdesivir. In some aspects, the subject is administered an additional therapeutic. The additional therapeutic may comprise one or more of a pain reliever, such as acetaminophen or ibuprofen, a steroid such as dexamethasone, prednisolone, beclomethasone, fluticasone, or methylprednisone or an antiviral such as remdesivir. In some aspects, the additional therapeutic comprises dexamethasone. In some aspects, the additional therapeutic comprises remdesivir.


In some aspects of the disclosure, the method further comprises incubating the antibody, antigen binding fragment, or polypeptide under conditions that allow for the binding of the antibody, antigen binding fragment, or polypeptide to antigens in the biological sample or extract thereof. In some aspects, the method further comprises detecting the binding of an antigen to the antibody, antigen binding fragment, or polypeptide. In some aspects, the method further comprises contacting the biological sample with at least one capture antibody, antigen, or polypeptide. The at least one capture antibody, antigen binding fragment, or polypeptide may be an antibody, polypeptide, or antigen binding fragment of the disclosure. In some aspects, the capture antibody is linked or operatively linked to a solid support. The term “operatively linked” refers to a situation where two components are combined or capable of combining to form a complex. For example, the components may be covalently attached and/or on the same polypeptide, such as in a fusion protein or the components may have a certain degree of binding affinity for each other, such as a binding affinity that occurs through van der Waals forces. In some aspects, the biological sample comprises a blood sample, urine sample, fecal sample, or nasopharyngeal sample. In aspects of the disclosure, the at least one antibody, antigen binding fragment, or polypeptide may be operatively linked to a detectable label. In some aspects, the method further comprises incubating the antibody, antigen binding fragment, or polypeptide under conditions that allow for the binding of the antibody, antigen binding fragment, or polypeptide to antigens in the biological sample or extract thereof. In some aspects, the method further comprises detecting the binding of an antigen to the antibody, antigen binding fragment, or polypeptide. In some aspects, the method further comprises contacting the biological sample with at least one capture antibody, antigen, or polypeptide. In some aspects, the biological sample comprises a blood sample, urine sample, fecal sample, or nasopharyngeal sample.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:3-5, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:12-14, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:21-23, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:30-32, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:39-41, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:48-respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:57-59, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:66-68, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:75-77, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:84-86, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:93-95, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:102-104, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:111-113, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:120-122, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:129-131, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:138-140, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:147-149, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:156-158, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:165-167, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:174-176, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:183-185, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:192-194, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:201-203, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:210-212, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:219-221, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:228-230, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:237-239, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:246-248, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:255-257, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:264-266, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:273-275, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:282-284, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:291-293, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:300-302, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:309-311, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:318-320, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:327-329, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:336-338, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:345-347, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:354-356, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:363-365, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:372-374, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:381-383, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:390-392, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:399-401, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:408-410, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:417-419, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:426-428, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:435-437, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:444-446, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:453-455, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:462-464, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:471-473, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:480-482, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:489-491, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:498-500, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:507-509, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:516-518, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:525-527, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:534-536, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:543-545, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:552-554, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:561-563, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:570-572, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:579-581, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:588-590, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:597-599, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:606-608, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:615-617, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:624-626, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:633-635, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:642-644, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:651-653, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:660-662, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:669-671, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:678-680, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:687-689, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:696-698, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:705-707, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:714-716, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:723-725, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:732-734, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:741-743, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:750-752, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:759-761, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:768-770, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:777-779, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:786-788, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:795-797, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:804-806, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:813-815, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:822-824, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:831-833, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:840-842, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:849-851, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:858-860, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:867-869, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:876-878, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:885-887, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:894-896, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:903-905, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:912-914, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:921-923, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:930-932, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:939-941, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:948-950, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:957-959, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:966-968, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:975-977, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:984-986, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:993-995, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1002-1004, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1011-1013, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1020-1022, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1029-1031, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1038-1040, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1047-1049, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1056-1058, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1065-1067, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1074-1076, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1083-1085, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1092-1094, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1101-1103, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1110-1112, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1119-1121, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1128-1130, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1137-1139, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1146-1148, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1155-1157, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1164-1166, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1173-1175, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1182-1184, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1191-1193, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1200-1202, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1209-1211, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1218-1220, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1227-1229, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1236-1238, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1245-1247, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1254-1256, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1263-1265, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1272-1274, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1281-1283, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1290-1292, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1299-1301, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1308-1310, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1317-1319, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1326-1328, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1335-1337, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1344-1346, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1353-1355, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1362-1364, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1371-1373, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1380-1382, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1389-1391, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1398-1400, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1407-1409, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1416-1418, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1425-1427, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1434-1436, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1443-1445, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1452-1454, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1461-1463, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1470-1472, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1479-1481, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1488-1490, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1497-1499, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1506-1508, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1515-1517, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1524-1526, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1533-1535, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1542-1544, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1551-1553, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1560-1562, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1569-1571, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1578-1580, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1587-1589, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1596-1598, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1605-1607, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1614-1616, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1827-1829, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1836-1838, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1845-1847, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1854-1856, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1863-1865, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1872-1874, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1881-1883, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1890-1892, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1899-1901, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1908-1910, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1917-1919, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1926-1928, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1935-1937, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1944-1946, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1953-1955, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1962-1964, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1971-1973, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1980-1982, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:1989-1991, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:1998-2000, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2007-2009, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2016-2018, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2025-2027, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2034-2036, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2043-2045, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2052-2054, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2061-2063, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2070-2072, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2079-2081, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2088-2090, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2097-2099, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2106-2108, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2115-2117, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2124-2126, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2133-2135, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2142-2144, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2151-2153, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2160-2162, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2169-2171, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2178-2180, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2187-2189, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2196-2198, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2205-2207, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2214-2216, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2223-2225, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2232-2234, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2241-2243, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2250-2252, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2259-2261, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2268-2270, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2277-2279, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2286-2288, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2295-2297, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2304-2306, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2313-2315, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2322-2324, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or


polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2331-2333, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2340-2342, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2349-2351, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2358-2360, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2367-2369, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2376-2378, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2385-2387, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2394-2396, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or


polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2403-2405, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2412-2414, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2421-2423, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2430-2432, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2439-2441, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2448-2450, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2457-2459, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2466-2468, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2475-2477, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2484-2486, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2493-2495, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2502-2504, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2511-2513, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2520-2522, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2529-2531, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2538-2540, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2547-2549, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2556-2558, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or


polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2565-2567, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2574-2576, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2583-2585, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2592-2594, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2601-2603, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2610-2612, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2619-2621, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2628-2630, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or


polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2637-2639, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2646-2648, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2655-2657, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2664-2666, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2673-2675, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2682-2684, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region having a HCDR1, HCDR2, and HCDR3, and a light chain variable region having a LCDR1, LCDR2, and LCDR3, wherein the HCDR1, HCDR2, and HCDR3 comprises an amino acid sequence of SEQ ID NOS:2691-2693, respectively and the LCDR1, LCDR2, and LCDR3 comprises an amino acid sequence of SEQ ID NOS:2700-2702, respectively.


Aspects of the disclosure relate to an antibody, antigen binding fragment, or polypeptide comprising a heavy chain variable region and a light chain variable region of SEQ ID NOS:2 and 11, SEQ ID NOS:20 and 29, SEQ ID NOS:38 and 47, SEQ ID NOS:56 and 65, SEQ ID NOS:74 and 83, SEQ ID NOS:92 and 101, SEQ ID NOS:110 and 119, SEQ ID NOS:128 and 137, SEQ ID NOS:146 and 155, SEQ ID NOS:164 and 173, SEQ ID NOS:182 and 191, SEQ ID NOS:200 and 209, SEQ ID NOS:218 and 227, SEQ ID NOS:236 and 245, SEQ ID NOS:254 and 263, SEQ ID NOS:272 and 281, SEQ ID NOS:290 and 299, SEQ ID NOS:308 and 317, SEQ ID NOS:326 and 335, SEQ ID NOS:344 and 353, SEQ ID NOS:362 and 371, SEQ ID NOS:380 and 389, SEQ ID NOS:398 and 407, SEQ ID NOS:416 and 425, SEQ ID NOS:434 and 443, SEQ ID NOS:452 and 461, SEQ ID NOS:470 and 479, SEQ ID NOS:488 and 497, SEQ ID NOS:506 and 515, SEQ ID NOS:524 and 533, SEQ ID NOS:542 and 551, SEQ ID NOS:560 and 569, SEQ ID NOS:578 and 587, SEQ ID NOS:596 and 605, SEQ ID NOS:614 and 623, SEQ ID NOS:632 and 641, SEQ ID NOS:650 and 659, SEQ ID NOS:668 and 677, SEQ ID NOS:686 and 695, SEQ ID NOS:704 and 713, SEQ ID NOS:722 and 731, SEQ ID NOS:740 and 749, SEQ ID NOS:758 and 767, SEQ ID NOS:776 and 785, SEQ ID NOS:794 and 803, SEQ ID NOS:812 and 821, SEQ ID NOS:830 and 839, SEQ ID NOS:848 and 857, SEQ ID NOS:866 and 875, SEQ ID NOS:884 and 893, SEQ ID NOS:902 and 911, SEQ ID NOS:920 and 929, SEQ ID NOS:938 and 947, SEQ ID NOS:956 and 965, SEQ ID NOS:974 and 983, SEQ ID NOS:992 and 1001, SEQ ID NOS:1010 and 1019, SEQ ID NOS:1028 and 1037, SEQ ID NOS:1046 and 1055, SEQ ID NOS:1064 and 1073, SEQ ID NOS:1082 and 1091, SEQ ID NOS:1100 and 1109, SEQ ID NOS:1118 and 1127, SEQ ID NOS:1136 and 1145, SEQ ID NOS:1154 and 1163, SEQ ID NOS:1172 and 1181, SEQ ID NOS:1190 and 1199, SEQ ID NOS:1208 and 1217, SEQ ID NOS:1226 and 1235, SEQ ID NOS:1244 and 1253, SEQ ID NOS:1262 and 1271, SEQ ID NOS:1280 and 1289, SEQ ID NOS:1298 and 1307, SEQ ID NOS:1316 and 1325, SEQ ID NOS:1334 and 1343, SEQ ID NOS:1352 and 1361, SEQ ID NOS:1370 and 1379, SEQ ID NOS:1388 and 1397, SEQ ID NOS:1406 and 1415, SEQ ID NOS:1424 and 1433, SEQ ID NOS:1442 and 1451, SEQ ID NOS:1460 and 1469, SEQ ID NOS:1478 and 1487, SEQ ID NOS:1496 and 1505, SEQ ID NOS:1514 and 1523, SEQ ID NOS:1532 and 1541, SEQ ID NOS:1550 and 1559, SEQ ID NOS:1568 and 1577, SEQ ID NOS:1586 and 1595, SEQ ID NOS:1604 and 1613, SEQ ID NOS:1826 and 1835, SEQ ID NOS:1844 and 1853, SEQ ID NOS:1862 and 1871, SEQ ID NOS:1880 and 1889, SEQ ID NOS:1898 and 1907, SEQ ID NOS:1916 and 1925, SEQ ID NOS:1934 and 1943, SEQ ID NOS:1952 and 1961, SEQ ID NOS:1970 and 1979, SEQ ID NOS:1988 and 1997, SEQ ID NOS:2006 and 2015, SEQ ID NOS:2024 and 2033, SEQ ID NOS:2042 and 2051, SEQ ID NOS:2060 and 2069, SEQ ID NOS:2078 and 2087, SEQ ID NOS:2096 and 2105, SEQ ID NOS:2114 and 2123, SEQ ID NOS:2132 and 2141, SEQ ID NOS:2150 and 2159, SEQ ID NOS:2168 and 2177, SEQ ID NOS:2186 and 2195, SEQ ID NOS:2204 and 2213, SEQ ID NOS:2222 and 2231, SEQ ID NOS:2240 and 2249, SEQ ID NOS:2258 and 2267, SEQ ID NOS:2276 and 2285, SEQ ID NOS:2294 and 2303, SEQ ID NOS:2312 and 2321, SEQ ID NOS:2330 and 2339, SEQ ID NOS:2348 and 2357, SEQ ID NOS:2366 and 2375, SEQ ID NOS:2384 and 2393, SEQ ID NOS:2402 and 2411, SEQ ID NOS:2420 and 2429, SEQ ID NOS:2438 and 2447, SEQ ID NOS:2456 and 2465, SEQ ID NOS:2474 and 2483, SEQ ID NOS:2492 and 2501, SEQ ID NOS:2510 and 2519, SEQ ID NOS:2528 and 2537, SEQ ID NOS:2546 and 2555, SEQ ID NOS:2564 and 2573, SEQ ID NOS:2582 and 2591, SEQ ID NOS:2600 and 2609, SEQ ID NOS:2618 and 2627, SEQ ID NOS:2636 and 2645, SEQ ID NOS:2654 and 2663, SEQ ID NOS:2672 and 2681, or SEQ ID NOS:2690 and 2699.


Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the measurement or quantitation method.


The use of the word “a” or “an” when used in conjunction with the term “comprising” may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.”


The phrase “and/or” means “and” or “or”. To illustrate, A, B, and/or C includes: A alone, B alone, C alone, a combination of A and B, a combination of A and C, a combination of B and C, or a combination of A, B, and C. In other words, “and/or” operates as an inclusive or.


The words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.


The compositions and methods for their use can “comprise,” “consist essentially of,” or “consist of” any of the ingredients or steps disclosed throughout the specification. Compositions and methods “consisting essentially of” any of the ingredients or steps disclosed limits the scope of the claim to the specified materials or steps which do not materially affect the basic and novel characteristic of the claimed invention. As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. It is contemplated that embodiments described herein in the context of the term “comprising” may also be implemented in the context of the term “consisting of” or “consisting essentially of.”


“Individual, “subject,” and “patient” are used interchangeably and can refer to a human or non-human.


It is specifically contemplated that any limitation discussed with respect to one embodiment of the invention may apply to any other embodiment of the invention. Furthermore, any composition of the invention may be used in any method of the invention, and any method of the invention may be used to produce or to utilize any composition of the invention. Aspects of an embodiment set forth in the Examples are also embodiments that may be implemented in the context of embodiments discussed elsewhere in a different Example or elsewhere in the application, such as in the Summary of Invention, Detailed Description of the Embodiments, Claims, and description of Figure Legends.


Any method in the context of a therapeutic, diagnostic, or physiologic purpose or effect may also be described in “use” claim language such as “Use of” any compound, composition, or agent discussed herein for achieving or implementing a described therapeutic, diagnostic, or physiologic purpose or effect.


Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating specific embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.



FIG. 1a-g: B cell subsets enriched for SARS-CoV-2-reactivity are revealed by transcriptome, Ig repertoire, and probe binding. a, Model demonstrating antigen probe preparation and representative gating strategy for sorting antigen-positive B cells. b, Percentage of antigen-probe-positive total B cells (CD19+CD3), naïve B cells (CD27+CD37int), and memory B cells (CD27+CD38int) (left), and naïve vs. memory B cells by subject (right; n=17 subjects yielding quality sequencing data). Statistics are paired non-parametric Friedman test (*p=0.0491; ****p<0.0001; bars=median). c, Integrated transcriptional UMAP analysis of distinct B cell clusters and the corresponding number of B cells per cluster. d, Feature library enrichment of antigen-probe-positive B cells by cluster. e, Percent probe reactivity of all B cells per cluster. f, Ig isotype usage and VH gene SHIM for all antigen-positive B cells per cluster. Bars indicate median with interquartile range. g, Representative visualization of antigen reactivity revealing antigen-specific B cells. Axes indicate antigen probe intensities.



FIG. 2a-d: Transcriptional analysis distinguishes naïve, innate-like and MBC subsets specific to SARS-CoV-2 proteins. a-b, Trajectory (a) and pseudotime (b) analyses of clusters 0-11 reveals least to most differentiated clusters. Cluster 12 is excluded from trajectory analysis as it represents a separate partition as defined by Monocle3. c, Heatmap showing the top twenty most differentially expressed genes per cluster. Red stars denote genes used in memory B cell (MBC) identification. d, Volcano plots comparing differentially expressed genes in MBC-like clusters relative to cluster 2 (näive B cells). Genes used in MBC identification are indicated: cd27, cd38, hhex, zeb2, pou2afl, spib, cd80, cd86, mcl1, prdm1, abp1, manf, bach2, pax5. Red-colored dots represent a log fold change in expression >0.1 and an adj-p value <0.01. Putative B cell subset identities are highlighted where they could be clearly defined (a).



FIG. 3a-p: SARS-CoV-2-reactive B cells exhibit unique features for isotype, SHM, subset of origin, and VH gene usage. a-1, Ig isotype, VH gene SHM, and distribution of B cells by integrated cluster for spike—(a, b, c, d), NP—(e, f, g, h) and ORFS-specific B cells (i, j, k, 1). m-p, Tree maps showing frequency of VH gene locus usage for total spike (including RBD) (m), RBD only (n), NP (o), and ORFS-specific B cells (p). Numbers in the center of each pie chart and below each tree map indicate number of cells analyzed per reactivity.



FIG. 4a-d: Characterization of mAbs from single SARS-CoV-2-reactive B cells. a, Cluster origin of cloned mAbs (n=90). b, Representative plot showing the selection of B cells chosen to clone mAbs, antigen binding curves by ELISA for each reactive mAb (spike, n=38; RBD, n=36; NP, n=19; ORF8, n=24), and percentages of total cloned mAbs exhibiting specificity (right). Dashed line on ELISA curves represents the OD405 cutoff of 0.5 for positivity. c, Neutralization potency (log10 PFU/ml) of mAbs (n=80) tested by live SARS-CoV-2 virus plaque assay. Dashed line at x=6.5 indicates cutoff for neutralization. d, Percentage of total spike, NP, and ORF8-specific mAbs that displayed neutralization activity. Numbers below each bar chart indicate the number of mAbs tested for neutralization. ELISA data are representative of 2-4 independent experiments performed in duplicate and mAbs were screened once for neutralization ability.



FIG. 5a-i: B cell antigen targeting, subset distribution, and adaptability is linked to clinical features. a, Total serum anti-Ig endpoint titers for SARS-CoV-2 antigens determined by ELISA (n=25 subjects). b, Number of IgG/IgA antibody secreting cells (ASCs) per 106 cells determined by ELISpot (n=23 subjects). c. Percentage of antigen-probe-positive cells by subject. d, Percentage of antigen-probe-positive cells stratified by age (years), sex, and symptom duration (weeks). e, Two-sided spearman correlation between percentage of all cells specific to ORF8 and subject age with p and r values indicated. f, Percentage of antigen-probe-positive B cells in MBC-like clusters (3, 4, 5, 6, 7, 9, and 12) or naïve and innate-like clusters (0, 1, 2, 8, 10, 11) stratified by age, sex, and symptom duration. (g-i) VH gene SHM for antigen-specific cells from a given age (g), sex (h), or symptom duration group (i). Data in a and b were analyzed using paired non-parametric Friedman tests with multiple comparisons against the spike (*p=0.0154, ****p<0.0001; bars=median). Red dashed line in a at y=45 indicates cutoff for no serum titer detected. The data in d and f were analyzed using two-sided Chi-square or Fisher's exact tests, (****p<0.0001; ***p=0.0009). Data in g were analyzed using unpaired non-parametric Kruskal-Wallis with multiple comparisons (****p<0.0001; ***p=0.0002; bars=mean). Statistics used in h and i are two-sided unpaired non-parametric Mann-Whitney tests (****p<0.0001; bars=mean). Numbers below each bar chart indicate the number of cells analyzed.



FIG. 6a-c. Additional characteristics of B cells comprising integrated clusters. a, Antigen-probe-positive B cell distribution across integrated clusters by subject with the number of cells per subject indicated. b, Variable gene segment usage in B cell receptor heavy chains of antigen-probe-positive B cells across integrated clusters. c, Diagrams showing antigen-probe-positive B cells per cluster with probe intensities for the indicated antigens plotted on the axes.



FIG. 7. Expression of MBC and LLPC gene markers in integrated clusters. Normalized expression levels of the indicated genes represented as violin plots.



FIG. 8a-i. Heavy and light chain features of SARS-CoV-2 reactive B cells. a-b, Heavy chain (HC, a) and light chain (LC, b) complementarity determining region 3 (CDR3) lengths, shown by antigen-reactivity. c-d, HC (c) and LC (d) isoelectric points pI, shown by antigen-reactivity. e, Number of light chain (LC) somatic hypermutations (SHM), shown by antigen-reactivity. f-i. Tree maps showing frequency of Vk/L gene locus usage for spike—(f), RBD—(g), NP—(h), and ORF8-specific B cells (i). White squares indicate unique Vk/L usages. In panels a-e groups were compared by unpaired nonparametric Kruskal-Wallis test with multiple comparisons (N.S.=not significant, ****p<0.0001; ***p=0.0006; **p=0.0033). For all analyses shown, n=531 for spike, n=47 for RBD, n=293 for NP, and n=463 cells selected for ORF8.



FIG. 9a-g. Additional features of mAbs cloned from antigen-specific and multi-probe binding B cells. a, ELISA KD for specific mAbs against the spike (n=38), RBD (n=36), ORF8 (n=24), and NP (n=19), versus normalized probe intensity for spike, ORF8, and NP respectively. Whole spike antigen probe intensities are plotted for RBD-binding mAbs. Statistics are two-sided Spearman correlations with p and r values indicated. b, Example selection of multi-probe-reactive B cells. c, Isotype frequencies of multi-probe-reactive B cells. d, Number of VH gene SIAM for multi-probe-reactive B cells. e, Proportion of multi-probe-reactive B cells in integrated clusters. f, Percentage of multi-probe-reactive B cells binding PE-SA-oligo by ELISA. g, Percent multi-probe-reactive B cells exhibiting polyreactivity, as determined by ELISA. Numbers in the center of each pie chart indicate number of B cell s/mAbs analyzed.



FIG. 10a-e. SARS-CoV-2-specific B cells constitute multiple distinct clusters. (a) Model demonstrating antigen probe preparation and representative gating strategy for sorting antigen-positive B cells. (b) Integrated transcriptional UMAP analysis of distinct B cell clusters (n=42 samples from severe acute [n=10], convalescent visit 1 [n=28], and convalescent visit 2 [n=4] cohorts; 55,656 cells). (c) Cluster quality score determined by ROGUE analysis. (d) UMAP projections showing antigen-specific cells used in all downstream analyses and the clusters they derive from. (e) Quantitative visualization of antigen-specific cells and their distributions across distinct clusters.



FIG. 11a-c. B cell receptor and transcriptional analysis reveals cluster identities. (a) B cell receptor isotype usage, somatic hypermutation (SHM), and antigen reactivity by cluster for all integrated samples. SHM data are plotted with the overlay indicating the median with interquartile range. (b) Heatmap displaying differentially expressed genes across clusters. A summary of cluster identities is provided below. (c) UMAP projections with cell color indicating gene module scoring for the indicated B cell subsets. Also see Tables S5 and S6.



FIG. 12a j. B cell immunodominance and adaptability landscapes vary in acute infection in convalescence. (a) UMAP projection showing cells colored by time point of blood draw. Sev acute, severe acute; Cony v1, convalescent visit 1; Cony v2, convalescent visit 2. (b) UMAP projections showing cells binding the specified antigens, colored by time point of blood draw. (c) Percentage of B cells targeting distinct antigens by cohort. Four Cony v1 and Cony v2 subjects represent matched visits. (d-f) Quantification of B cell subsets targeting distinct antigens across cohorts. Also see FIG. 11B, bottom for clusters used to define B cell subsets. Numbers above bars indicate the number of specific cells isolated. (g) Percentage of total antigen-specific memory B cells from ˜1.5-4.5 months (mo) post-symptom onset in four matched-convalescent subjects. Statistics are chi-square test, ****p<0.0001. (h) Variable heavy-chain (VH) somatic hypermutation (SHM) of antigen-specific B cells across both convalescent time points for four matched subjects. Statistics are unpaired non-parametric Mann-Whitney tests, **p=0.0021 and ****p<0.0001. (i and j) Antigen-specific memory B cells divided by SHM tertiles at Cony v1 (I) and Cony v2 time points (J) for four matched subjects.



FIG. 13a-f. B cells targeting distinct antigens display unique variable gene usages. (a-e) Heatmaps showing the frequency of heavy- and light-chain gene pairings for B cells binding the indicated antigens using integrated data from all cohorts (left; legend indicates number of cells per pairing), and dendrograms showing the top ten variable heavy-chain (VH) gene usages for Cony v1 (n=28) and Cony v2 (n=4) cohorts (right). The number of cells encompassing the top ten VH genes represented per antigen is indicated below each dendrogram. (f) Circos plots showing the top ten heavy- and light-chain gene pairings shared across four matched Cony v1 (left; n=1,293 cells) and Cony v2 (right; n=1,438 cells) subjects. Total antigen-specific cells against SARS2 spike and RBD, HCoV spike, ORF8, and NP are shown.



FIG. 14a-h. Neutralization capacity and in vivo protective ability of mAbs to the SARS-CoV-2 spike and intracellular proteins. (a) Antigen binding curves by ELISA for antigen-specific mAbs. Dashed line at y=0.5 on ELISA curves represents the OD405 cutoff of 0.5 for positivity (spike, n=43; NP, n=19; ORF8, n=24). Data are representative of two or three independent experiments. Also see Table S7. (b) Neutralization potency (log 10 PFU/ml) of mAbs tested by SARS-CoV-2 virus plaque assay. RBD, n=33; spike non-RBD, n=13; NP, n=18; ORF8, n=24. Dashed line at x=6.5 indicates the cutoff for neutralization. Statistics are non-parametric Kruskal-Wallis with Dunn's post-test for multiple comparisons, ****p<0.0001. Data are representative of one independent experiment. (c) Weight change in hamsters intranasally challenged with SARS-CoV-2, followed by therapeutic intraperitoneal (i.p.) administration of anti-RBD antibodies (mean±SD, n=4 biological replicates for each mAb). Control conditions are PBS injection or injection of an irrelevant Ebola virus anti-GP133 mAb. (d) Viral titers of SARS-CoV-2 in lungs harvested from hamsters post-challenge in (c). Bars indicate mean±SD. Statistics are unpaired non-parametric Kruskal-Wallis with Dunn's post-test for multiple comparisons, *p=0.0135, ***p=0.0011, and **p=0.0075. (e) Weight change of mice intranasally challenged with SARS-CoV-2, followed by therapeutic i.p. administration of anti-ORF8 antibody cocktails (mean±SD, n=3 biological replicates for each mAb). (f) Viral titers of SARS-CoV-2 in lungs harvested from mice post-challenge in (e). Titers are presented as N gene copy number compared with a standard curve, and bars indicate mean±SD. Statistics performed are non-parametric Kruskal-Wallis with Dunn's post-test for multiple comparisons; no differences were significant. (g) Weight change in hamsters intranasally challenged with SARS-CoV-2, followed by therapeutic intraperitoneal (i.p.) administration of an anti-NP antibody (mean±SD, n=4 biological replicates for each mAb). (h) Viral titers of SARS-CoV-2 in lungs harvested from hamsters post-challenge shown in (g). Bars indicate mean±SD. Statistics performed are non-parametric Mann-Whitney test; no differences were significant.



FIG. 15a-n. Antigen-specificity and B cell subset distribution is linked to clinical features. (a) Reactivity distribution of total antigen-specific B cells by subject for the convalescent visit 1 cohort (n=28). (b-d) Reactivity distribution of total antigen-specific B cells by age (b), disease severity (c), and sex (d). Statistics are chi-square post hoc tests with Holm-Bonferroni adjustment, **p=0.0012 and ****p<0.0001; n.s., not significant. For age groups, 19-35 years, n=1,382 cells, 8 subjects; 36-49 years, n=5,319 cells, 13 subjects; 50-years, n=1,813 cells, 7 subjects. For severity groups, mild, n=990 cells, 4 subjects; moderate, n=4,462 cells, 13 subjects; severe, n=3,062 cells, 11 subjects. For sex, women, n=5,005 cells, 14 subjects; men, n=3,509 cells, 14 subjects. (e) Reactivity of antigen-specific memory B cells (MBCs; top) or naive B cells (bottom) by age group. Statistics are chi-square post hoc tests with Holm-Bonferroni adjustment, *p=0.0145 and ****p<0.0001; n.s., not significant. (f) Reactivity of antigen-specific MBCs (top) or naive B cells (bottom) by disease severity. Statistics are chi-square post hoc tests with Holm-Bonferroni adjustment, *p=0.0143 and ****p<0.0001; n.s., not significant. (g) Variable heavy-chain (VH) somatic hypermutation (SHM) for MBCs by age group (overlay shows median with interquartile range). Statistics are unpaired non-parametric ANOVA with Tukey's test for multiple comparisons, **p=0.002, ***p=0.0008, and ****p<0.0001. (h j) Antigen-specific MBCs by age, divided by SHM tertiles. (k) B cell subset distribution by subject. (1-n) B cell subset distribution by age (1), disease severity (m), and sex (n). Statistics are chi-square post hoc tests with Holm-Bonferroni adjustment, ***p=0.0007 and ****p<0.0001; n.s., not significant. For each group, n is the same as in (b)-(d).



FIG. 16a-d. B cell cluster distribution and antigen specificity by subject, Related to FIG. 10. (a-b) Overall cluster distribution (top) and antigen-specificity distribution (bottom) for subjects sorted with SARS2 spike (S), SARS2 RBD, NP, and ORF8 antigens, with (a) or without (b) an endemic HCoV cocktail comprised of S proteins from 229E, NL63, OC43, and HKU1 strains. (c) Integrated UMAP analysis showing cluster distribution for two severe acute subjects (R3 and R6) at pooled early (days 0, 1, 3) and late (days 7, 14) sampling time points post-convalescent plasma therapy (left) and summary of cluster distribution per timepoint (right). (d) Distribution in antigen-reactivity for pooled early and late timepoints post-convalescent plasma therapy for severe acute subjects R3 and R6. Statistics are Chi square test, n.s.=not significant.



FIG. 17a-d. Expression maps of select genes, Related to FIG. 11. (a-d) UMAP projections with cells colored by expression level of indicated genes associated with naïve B cells (a), memory B cells b), antibody-secreting cells (c), and mucosal homing (d). Also see Table S6.



FIG. 18a-j. Further analysis of antigen-specific B cell properties across distinct cohorts and timepoints, Related to FIG. 12. (a-c) Variable heavy chain (VH) somatic hypermutation (SHM) by antigen-specific B cells shown for severe acute (a; n=10), Cony v1 (b, n=28), or Cony v2 subjects (c; n=4). Overlay shows median with interquartile range. (d) Distribution of memory B cell specificity across visit timepoints for four matched Cony v1 and Cony v2 subjects, sampled at approximately 1.5 and 4.5 months post-symptom onset. Also see Table S1 for sampling time. (e-g) B cell receptor isotype usage by antigen-specific B cells shown for severe acute (e; n=10), Cony v1 (f; n=28), or Cony v2 subjects (g; n=4). (h-j) Total anti-immunoglobulin (Ig) serum titers across timepoints for 16 matched convalescent subjects, shown for SARS2 spike (h), NP (i), and ORF8 antigens (j). Dashed line at y=45 indicates cutoff for positivity; values are staggered in (j) to avoid overlap. Statistics are paired non-parametric Wilcoxon test, *p=0.0386. Data are representative of two independent experiments.



FIG. 19a-f. Correlation between antigen-probe positive B cells and serum titers, Related to FIG. 12. (a) Matched total anti-immunoglobulin (Ig) serum titers against spike, NP, and ORF8 antigens for Cony v1 subjects (n=28). Statistics are paired non-parametric Friedman test with Dunn's post-test for multiple comparisons, ****p<0.0001; ***p=0.0002; n.s.=not significant. Data are representative of two independent experiments. (b) Matched antigen-specific probe hit per Cony v1 subject (n=28). Statistics are paired non-parametric Friedman test with Dunn's post-test for multiple comparisons, n.s.=not significant. (c-e) Percentage of B cells specific for spike (d), NP (e), or ORF8 (f) in Cony v1 subjects (n=28) compared to serum titer levels for the same antigen. Statistics are nonparametric Spearman correlation, two-tailed, CI=95%, n.s.=not significant. Data are representative of two independent experiments. (f) MAbs cloned from non-specific multi-reactive B cells tested for polyreactivity (left) and PE-SA binding (right) by ELISA (n=10). Data are representative of one independent experiment.



FIG. 20a-d. Additional analyses of antigen reactivity by clinical parameter, Related to FIG. 15. (a) Percentages of antigen-specific memory B cells (MBCs) shown per Cony v1 subject by age. Age increases left to right along the graph. (b) Percentage of MBCs specific for ORF8 versus age for female (F) Cony V1 subjects (n=14). Statistics are nonparametric Spearman correlation, two-tailed, CI=95%. P value is indicated. (c) Percentage of MBCs specific for ORF8 versus age for male (M) Cony V1 subjects (n=14). Statistics are nonparametric Spearman correlation, two-tailed, CI=95%. P value is indicated, n.s.=not significant. (d) Percentages of antigen specific naïve-like B cells shown for each Cony v1 subject by severity. Severity score increases left to right along the graph, also see Table S1 for severity score per subject.





DETAILED DESCRIPTION OF THE INVENTION

Discovery of durable memory B cell (MBC) subsets against neutralizing viral epitopes is critical for determining immune correlates of protection from SARS-CoV-2 infection. Here, the inventors identified functionally distinct SARS-CoV-2-reactive B cell subsets by profiling the repertoire of convalescent COVID-19 patients using a high-throughput B cell sorting and sequencing platform. Utilizing barcoded SARS-CoV-2 antigen baits, the inventors isolated thousands of B cells that segregated into discrete functional subsets specific for the spike, nucleocapsid protein (NP), and open reading frame (ORF) proteins 7a and 8. Spike-specific B cells were enriched in canonical MBC clusters, and monoclonal antibodies (mAbs) from these cells were potently neutralizing. By contrast, B cells specific to ORF8 and NP were enriched in naïve and innate-like clusters, and mAbs against these targets were exclusively non-neutralizing. Finally, the inventors identified that B cell specificity, subset distribution, and affinity maturation were impacted by clinical features such as age, sex, and symptom duration. Together, the data provide a comprehensive tool for evaluating B cell immunity to SARS-CoV-2 infection or vaccination and highlight the complexity of the human B cell response to SARS-CoV-2.


I. Antibodies

Aspects of the disclosure relate to antibodies, antigen binding fragments thereof, or polypeptides capable of specifically binding to a SARS-CoV-2 spike (S) protein, NP protein, or ORFS. Certain aspects relate to antibodies, or fragments thereof, that specifically bind to a receptor binding domain (RBD) of a SARS-CoV-2 spike protein.


The term “antibody” refers to an intact immunoglobulin of any isotype, or a fragment thereof that can compete with the intact antibody for specific binding to the target antigen, and includes chimeric, humanized, fully human, and bispecific antibodies. As used herein, the terms “antibody” or “immunoglobulin” are used interchangeably and refer to any of several classes of structurally related proteins that function as part of the immune response of an animal, including IgG, IgD, IgE, IgA, IgM, and related proteins, as well as polypeptides comprising antibody CDR domains that retain antigen-binding activity.


The term “antigen” refers to a molecule or a portion of a molecule capable of being bound by a selective binding agent, such as an antibody. An antigen may possess one or more epitopes that are capable of interacting with different antibodies.


The term “epitope” includes any region or portion of molecule capable eliciting an immune response by binding to an immunoglobulin or to a T-cell receptor. Epitope determinants may include chemically active surface groups such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and may have specific three-dimensional structural characteristics and/or specific charge characteristics. Generally, antibodies specific for a particular target antigen will preferentially recognize an epitope on the target antigen within a complex mixture.


The epitope regions of a given polypeptide can be identified using many different epitope mapping techniques are well known in the art, including: x-ray crystallography, nuclear magnetic resonance spectroscopy, site-directed mutagenesis mapping, protein display arrays, see, e.g., Epitope Mapping Protocols, (Johan Rockberg and Johan Nilvebrant, Ed., 2018) Humana Press, New York, N.Y. Such techniques are known in the art and described in, e.g., U.S. Pat. No. 4,708,871; Geysen et al. Proc. Natl. Acad. Sci. USA 81:3998-4002 (1984); Geysen et al. Proc. Natl. Acad. Sci. USA 82:178-182 (1985); Geysen et al. Molec. Immunol. 23:709-715 (1986). Additionally, antigenic regions of proteins can also be predicted and identified using standard antigenicity and hydropathy plots.


The term “immunogenic sequence” means a molecule that includes an amino acid sequence of at least one epitope such that the molecule is capable of stimulating the production of antibodies in an appropriate host. The term “immunogenic composition” means a composition that comprises at least one immunogenic molecule (e.g., an antigen or carbohydrate).


An intact antibody is generally composed of two full-length heavy chains and two full-length light chains, but in some instances may include fewer chains, such as antibodies naturally occurring in camelids that may comprise only heavy chains. Antibodies as disclosed herein may be derived solely from a single source or may be “chimeric,” that is, different portions of the antibody may be derived from two different antibodies. For example, the variable or CDR regions may be derived from a rat or murine source, while the constant region is derived from a different animal source, such as a human. The antibodies or binding fragments may be produced in hybridomas, by recombinant DNA techniques, or by enzymatic or chemical cleavage of intact antibodies. Unless otherwise indicated, the term “antibody” includes derivatives, variants, fragments, and muteins thereof, examples of which are described below (Sela-Culang et al., Front Immunol. 2013; 4: 302; 2013).


The term “light chain” includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length light chain has a molecular weight of around 25,000 Daltons and includes a variable region domain (abbreviated herein as VL), and a constant region domain (abbreviated herein as CL). There are two classifications of light chains, identified as kappa (κ) and lambda (λ). The term “VL fragment” means a fragment of the light chain of a monoclonal antibody that includes all or part of the light chain variable region, including CDRs. A VL fragment can further include light chain constant region sequences. The variable region domain of the light chain is at the amino-terminus of the polypeptide.


The term “heavy chain” includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length heavy chain has a molecular weight of around 50,000 Daltons and includes a variable region domain (abbreviated herein as VH), and three constant region domains (abbreviated herein as CH1, CH2, and CH3). The term “VH fragment” means a fragment of the heavy chain of a monoclonal antibody that includes all or part of the heavy chain variable region, including CDRs. A VH fragment can further include heavy chain constant region sequences. The number of heavy chain constant region domains will depend on the isotype. The VH domain is at the amino-terminus of the polypeptide, and the CH domains are at the carboxy-terminus, with the CH3 being closest to the —COOH end. The isotype of an antibody can be IgM, IgD, IgG, IgA, or IgE and is defined by the heavy chains present of which there are five classifications: mu (μ), delta (δ), gamma (γ), alpha (α), or epsilon (ε) chains, respectively. IgG has several subtypes, including, but not limited to, IgG1, IgG2, IgG3, and IgG4. IgM subtypes include IgM1 and IgM2. IgA subtypes include IgA1 and IgA2.


A. Types of Antibodies


Antibodies can be whole immunoglobulins of any isotype or classification, chimeric antibodies, or hybrid antibodies with specificity to two or more antigens. They may also be fragments (e.g., F(ab′)2, Fab′, Fab, Fv, and the like), including hybrid fragments. An immunoglobulin also includes natural, synthetic, or genetically engineered proteins that act like an antibody by binding to specific antigens to form a complex. The term antibody includes genetically engineered or otherwise modified forms of immunoglobulins.


The term “monomer” means an antibody containing only one Ig unit. Monomers are the basic functional units of antibodies. The term “dimer” means an antibody containing two Ig units attached to one another via constant domains of the antibody heavy chains (the Fc, or fragment crystallizable, region). The complex may be stabilized by a joining (J) chain protein. The term “multimer” means an antibody containing more than two Ig units attached to one another via constant domains of the antibody heavy chains (the Fc region). The complex may be stabilized by a joining (J) chain protein.


The term “bivalent antibody” means an antibody that comprises two antigen-binding sites. The two binding sites may have the same antigen specificities or they may be bispecific, meaning the two antigen-binding sites have different antigen specificities.


Bispecific antibodies are a class of antibodies that have two paratopes with different binding sites for two or more distinct epitopes. In some embodiments, bispecific antibodies can be biparatopic, wherein a bispecific antibody may specifically recognize a different epitope from the same antigen. In some embodiments, bispecific antibodies can be constructed from a pair of different single domain antibodies termed “nanobodies”. Single domain antibodies are sourced and modified from cartilaginous fish and camelids. Nanobodies can be joined together by a linker using techniques typical to a person skilled in the art; such methods for selection and joining of nanobodies are described in PCT Publication No. WO2015044386A1, No. WO2010037838A2, and Bever et al., Anal Chem. 86:7875-7882 (2014), each of which are specifically incorporated herein by reference in their entirety.


Bispecific antibodies can be constructed as: a whole IgG, Fab′2, Fab′PEG, a diabody, or alternatively as scFv. Diabodies and scFvs can be constructed without an Fc region, using only variable domains, potentially reducing the effects of anti-idiotypic reaction. Bispecific antibodies may be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai and Lachmann, Clin. Exp. Immunol. 79:315-321 (1990); Kostelny et al., J. Immunol. 148:1547-1553 (1992), each of which are specifically incorporated by reference in their entirety.


In certain aspects, the antigen-binding domain may be multispecific or heterospecific by multimerizing with VH and VL region pairs that bind a different antigen. For example, the antibody may bind to, or interact with, (a) a cell surface antigen, (b) an Fc receptor on the surface of an effector cell, or (c) at least one other component. Accordingly, aspects may include, but are not limited to, bispecific, trispecific, tetraspecific, and other multispecific antibodies or antigen-binding fragments thereof that are directed to epitopes and to other targets, such as Fc receptors on effector cells.


In some embodiments, multispecific antibodies can be used and directly linked via a short flexible polypeptide chain, using routine methods known in the art. One such example is diabodies that are bivalent, bispecific antibodies in which the VH and VL domains are expressed on a single polypeptide chain, and utilize a linker that is too short to allow for pairing between domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain creating two antigen binding sites. The linker functionality is applicable for embodiments of triabodies, tetrabodies, and higher order antibody multimers. (see, e.g., Hollinger et al., Proc Natl. Acad. Sci. USA 90:6444-6448 (1993); Polijak et al., Structure 2:1121-1123 (1994); Todorovska et al., J. Immunol. Methods 248:47-66 (2001)).


Bispecific diabodies, as opposed to bispecific whole antibodies, may also be advantageous because they can be readily constructed and expressed in E. coli. Diabodies (and other polypeptides such as antibody fragments) of appropriate binding specificities can be readily selected using phage display (WO94/13804) from libraries. If one arm of the diabody is kept constant, for instance, with a specificity directed against a protein, then a library can be made where the other arm is varied and an antibody of appropriate specificity selected. Bispecific whole antibodies may be made by alternative engineering methods as described in Ridgeway et al., (Protein Eng., 9:616-621, 1996) and Krah et al., (N Biotechnol. 39:167-173, 2017), each of which is hereby incorporated by reference in their entirety.


Heteroconjugate antibodies are composed of two covalently linked monoclonal antibodies with different specificities. See, e.g., U.S. Pat. No. 6,010,902, incorporated herein by reference in its entirety.


The part of the Fv fragment of an antibody molecule that binds with high specificity to the epitope of the antigen is referred to herein as the “paratope.” The paratope consists of the amino acid residues that make contact with the epitope of an antigen to facilitate antigen recognition. Each of the two Fv fragments of an antibody is composed of the two variable domains, VH and VL, in dimerized configuration. The primary structure of each of the variable domains includes three hypervariable loops separated by, and flanked by, Framework Regions (FR). The hypervariable loops are the regions of highest primary sequences variability among the antibody molecules from any mammal. The term hypervariable loop is sometimes used interchangeably with the term “Complementarity Determining Region (CDR).” The length of the hypervariable loops (or CDRs) varies between antibody molecules. The framework regions of all antibody molecules from a given mammal have high primary sequence similarity/consensus. The consensus of framework regions can be used by one skilled in the art to identify both the framework regions and the hypervariable loops (or CDRs) which are interspersed among the framework regions. The hypervariable loops are given identifying names which distinguish their position within the polypeptide, and on which domain they occur. CDRs in the VL domain are identified as L1, L2, and L3, with L1 occurring at the most distal end and L3 occurring closest to the CL domain. The CDRs may also be given the names CDR-L1, CDR-L2, and CDR-L3. The L3 (CDR-L3) is generally the region of highest variability among all antibody molecules produced by a given organism. The CDRs are regions of the polypeptide chain arranged linearly in the primary structure, and separated from each other by Framework Regions. The amino terminal (N-terminal) end of the VL chain is named FR1. The region identified as FR2 occurs between L1 and L2 hypervariable loops. FR3 occurs between L2 and L3 hypervariable loops, and the FR4 region is closest to the CL domain. This structure and nomenclature is repeated for the VH chain, which includes three CDRs identified as CDR-H1, CDR-H2 and CDR-H3. The majority of amino acid residues in the variable domains, or Fv fragments (VH and VL), are part of the framework regions (approximately 85%). The three dimensional, or tertiary, structure of an antibody molecule is such that the framework regions are more internal to the molecule and provide the majority of the structure, with the CDRs on the external surface of the molecule.


Several methods have been developed and can be used by one skilled in the art to identify the exact amino acids that constitute each of these regions. This can be done using any of a number of multiple sequence alignment methods and algorithms, which identify the conserved amino acid residues that make up the framework regions, therefore identifying the CDRs that may vary in length but are located between framework regions. Three commonly used methods have been developed for identification of the CDRs of antibodies: Kabat (as described in T. T. Wu and E. A. Kabat, “AN ANALYSIS OF THE SEQUENCES OF THE VARIABLE REGIONS OF BENCE JONES PROTEINS AND MYELOMA LIGHT CHAINS AND THEIR IMPLICATIONS FOR ANTIBODY COMPLEMENTARITY,” J Exp Med, vol. 132, no. 2, pp. 211-250, August 1970); Chothia (as described in C. Chothia et al., “Conformations of immunoglobulin hypervariable regions,” Nature, vol. 342, no 6252, pp. 877-883, December 1989); and IMGT (as described in M.-P. Lefranc et al., “IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains,” Developmental & Comparative Immunology, vol. 27, no. 1, pp. 55-77, January 2003). These methods each include unique numbering systems for the identification of the amino acid residues that constitute the variable regions. In most antibody molecules, the amino acid residues that actually contact the epitope of the antigen occur in the CDRs, although in some cases, residues within the framework regions contribute to antigen binding.


One skilled in the art can use any of several methods to determine the paratope of an antibody. These methods include:


1) Computational predictions of the tertiary structure of the antibody/epitope binding interactions based on the chemical nature of the amino acid sequence of the antibody variable region and composition of the epitope.


2) Hydrogen-deuterium exchange and mass spectroscopy


3) Polypeptide fragmentation and peptide mapping approaches in which one generates multiple overlapping peptide fragments from the full length of the polypeptide and evaluates the binding affinity of these peptides for the epitope.


4) Antibody Phage Display Library analysis in which the antibody Fab fragment encoding genes of the mammal are expressed by bacteriophage in such a way as to be incorporated into the coat of the phage. This population of Fab expressing phage are then allowed to interact with the antigen which has been immobilized or may be expressed in by a different exogenous expression system. Non-binding Fab fragments are washed away, thereby leaving only the specific binding Fab fragments attached to the antigen. The binding Fab fragments can be readily isolated and the genes which encode them determined. This approach can also be used for smaller regions of the Fab fragment including Fv fragments or specific VH and VL domains as appropriate.


In certain aspects, affinity matured antibodies are enhanced with one or more modifications in one or more CDRs thereof that result in an improvement in the affinity of the antibody for a target antigen as compared to a parent antibody that does not possess those alteration(s). Certain affinity matured antibodies will have nanomolar or picomolar affinities for the target antigen. Affinity matured antibodies are produced by procedures known in the art, e.g., Marks et al., Bio/Technology 10:779 (1992) describes affinity maturation by VH and VL domain shuffling, random mutagenesis of CDR and/or framework residues employed in phage display is described by Rajpal et al., PNAS. 24: 8466-8471 (2005) and Thie et al., Methods Mol Biol. 525:309-22 (2009) in conjugation with computation methods as demonstrated in Tiller et al., Front. Immunol. 8:986 (2017).


Chimeric immunoglobulins are the products of fused genes derived from different species; “humanized” chimeras generally have the framework region (FR) from human immunoglobulins and one or more CDRs are from a non-human source.


In certain aspects, portions of the heavy and/or light chain are identical or homologous to corresponding sequences from another particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity. U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851 (1984). For methods relating to chimeric antibodies, see, e.g., U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1985), each of which are specifically incorporated herein by reference in their entirety. CDR grafting is described, for example, in U.S. Pat. Nos. 6,180,370, 5,693,762, 5,693,761, and 5,530,101, which are all hereby incorporated by reference for all purposes.


In some embodiments, minimizing the antibody polypeptide sequence from the non-human species optimizes chimeric antibody function and reduces immunogenicity. Specific amino acid residues from non-antigen recognizing regions of the non-human antibody are modified to be homologous to corresponding residues in a human antibody or isotype. One example is the “CDR-grafted” antibody, in which an antibody comprises one or more CDRs from a particular species or belonging to a specific antibody class or subclass, while the remainder of the antibody chain(s) is identical or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For use in humans, the V region composed of CDR1, CDR2, and partial CDR3 for both the light and heavy chain variance region from a non-human immunoglobulin, are grafted with a human antibody framework region, replacing the naturally occurring antigen receptors of the human antibody with the non-human CDRs. In some instances, corresponding non-human residues replace framework region residues of the human immunoglobulin. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody to further refine performance. The humanized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. See, e.g., Jones et al., Nature 321:522 (1986); Riechmann et al., Nature 332:323 (1988); Presta, Curr. Op. Struct. Biol. 2:593 (1992); Vaswani and Hamilton, Ann. Allergy, Asthma and Immunol. 1:105 (1998); Harris, Biochem. Soc. Transactions 23; 1035 (1995); Hurle and Gross, Curr. Op. Biotech. 5:428 (1994); Verhoeyen et al., Science 239:1534-36 (1988).


Intrabodies are intracellularly localized immunoglobulins that bind to intracellular antigens as opposed to secreted antibodies, which bind antigens in the extracellular space.


Polyclonal antibody preparations typically include different antibodies against different determinants (epitopes). In order to produce polyclonal antibodies, a host, such as a rabbit or goat, is immunized with the antigen or antigen fragment, generally with an adjuvant and, if necessary, coupled to a carrier. Antibodies to the antigen are subsequently collected from the sera of the host. The polyclonal antibody can be affinity purified against the antigen rendering it monospecific.


Monoclonal antibodies or “mAb” refer to an antibody obtained from a population of homogeneous antibodies from an exclusive parental cell, e.g., the population is identical except for naturally occurring mutations that may be present in minor amounts. Each monoclonal antibody is directed against a single antigenic determinant.


B. Functional Antibody Fragments and Antigen-Binding Fragments


1. Antigen-Binding Fragments


Certain aspects relate to antibody fragments, such as antibody fragments that bind to a SARS-CoV-2 spike protein. The term functional antibody fragment includes antigen-binding fragments of an antibody that retain the ability to specifically bind to an antigen. These fragments are constituted of various arrangements of the variable region heavy chain (VH) and/or light chain (VL); and in some embodiments, include constant region heavy chain 1 (CH1) and light chain (CL). In some embodiments, they lack the Fc region constituted of heavy chain 2 (CH2) and 3 (CH3) domains. Embodiments of antigen binding fragments and the modifications thereof may include: (i) the Fab fragment type constituted with the VL, VH, CL, and CH1 domains; (ii) the Fd fragment type constituted with the VH and CH1 domains; (iii) the Fv fragment type constituted with the VH and VL domains; (iv) the single domain fragment type, dAb, (Ward, 1989; McCafferty et al., 1990; Holt et al., 2003) constituted with a single VH or VL domain; (v) isolated complementarity determining region (CDR) regions. Such terms are described, for example, in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, NY (1989); Molec. Biology and Biotechnology: A Comprehensive Desk Reference (Myers, R. A. (ed.), New York: VCH Publisher, Inc.); Huston et al., Cell Biophysics, 22:189-224 (1993); Pluckthun and Skerra, Meth. Enzymol., 178:497-515 (1989) and in Day, E. D., Advanced Immunochemistry, 2d ed., Wiley-Liss, Inc. New York, N.Y. (1990); Antibodies, 4:259-277 (2015), each of which are incorporated by reference.


Antigen-binding fragments also include fragments of an antibody that retain exactly, at least, or at most 1, 2, or 3 complementarity determining regions (CDRs) from a light chain variable region. Fusions of CDR-containing sequences to an Fc region (or a CH2 or CH3 region thereof) are included within the scope of this definition including, for example, scFv fused, directly or indirectly, to an Fc region are included herein.


The term Fab fragment (also “Fab”) means a monovalent antigen-binding fragment of an antibody containing the VL, VH, CL and CH1 domains. The term Fab′ fragment means a monovalent antigen-binding fragment of a monoclonal antibody that is larger than a Fab fragment. For example, a Fab′ fragment includes the VL, VH, CL and CH1 domains and all or part of the hinge region. The term F(ab′)2 fragment means a bivalent antigen-binding fragment of a monoclonal antibody comprising two Fab′ fragments linked by a disulfide bridge at the hinge region. An F(ab′)2 fragment includes, for example, all or part of the two VH and VL domains, and can further include all or part of the two CL and CH1 domains.


The term Fd fragment means a fragment of the heavy chain of a monoclonal antibody, which includes all or part of the VH, including the CDRs. An Fd fragment can further include CH1 region sequences.


The term Fv fragment means a monovalent antigen-binding fragment of a monoclonal antibody, including all or part of the VL and VH, and absent of the CL and CH1 domains. The VL and VH include, for example, the CDRs. Single-chain antibodies (sFv or scFv) are Fv molecules in which the VL and VH regions have been connected by a flexible linker to form a single polypeptide chain, which forms an antigen-binding fragment. Single chain antibodies are discussed in detail in International Patent Application Publication No. WO 88/01649 and U.S. Pat. Nos. 4,946,778 and 5,260,203, the disclosures of which are herein incorporated by reference. The term (scFv)2 means bivalent or bispecific sFv polypeptide chains that include oligomerization domains at their C-termini, separated from the sFv by a hinge region (Pack et al. 1992). The oligomerization domain comprises self-associating a-helices, e.g., leucine zippers, which can be further stabilized by additional disulfide bonds. (scFv)2 fragments are also known as “miniantibodies” or “minibodies.”


A single domain antibody is an antigen-binding fragment containing only a VH or the VL domain. In some instances, two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody. The two VH regions of a bivalent domain antibody may target the same or different antigens.


2. Fragment Antigen Binding Region, Fab


Fab polypeptides of the disclosure include the Fab antigen binding fragment of an antibody. Unless specifically stated otherwise, the term “Fab” relates to a polypeptide excluding the Fc portion of the antibody. The Fab may be conjugated to a polypeptide comprising other components, such as further antigen binding domains, costimulatory domains, linkers, peptide spacers, transmembrane domains, endodomains, and accessory proteins. Fab polypeptides can be generated using conventional techniques known in the art and are well-described in the literature.


3. Fragment Crystallizable Region, Fc


An Fc region contains two heavy chain fragments comprising the CH2 and CH3 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains. The term “Fc polypeptide” as used herein includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization are included.


C. Polypeptides with antibody CDRs & Scaffolding Domains that Display the CDRs


Antigen-binding peptide scaffolds, such as complementarity-determining regions (CDRs), are used to generate protein-binding molecules in accordance with the embodiments. Generally, a person skilled in the art can determine the type of protein scaffold on which to graft at least one of the CDRs. It is known that scaffolds, optimally, must meet a number of criteria such as: good phylogenetic conservation; known three-dimensional structure; small size; few or no post-transcriptional modifications; and/or be easy to produce, express, and purify. Skerra, J Mol Recognit, 13:167-87 (2000).


The protein scaffolds can be sourced from, but not limited to: fibronectin type III FN3 domain (known as “monobodies”), fibronectin type III domain 10, lipocalin, anticalin, Z-domain of protein A of Staphylococcus aureus, thioredoxin A or proteins with a repeated motif such as the “ankyrin repeat”, the “armadillo repeat”, the “leucine-rich repeat” and the “tetratricopeptide repeat”. Such proteins are described in US Patent Publication Nos. 2010/0285564, 2006/0058510, 2006/0088908, 2005/0106660, and PCT Publication No. WO2006/056464, each of which are specifically incorporated herein by reference in their entirety. Scaffolds derived from toxins from scorpions, insects, plants, mollusks, etc., and the protein inhibiters of neuronal NO synthase (PIN) may also be used.


D. Antibody Binding


The term “selective binding agent” refers to a molecule that binds to an antigen. Non-limiting examples include antibodies, antigen-binding fragments, scFv, Fab, Fab′, F(ab′)2, single chain antibodies, peptides, peptide fragments and proteins.


The term “binding” refers to a direct association between two molecules, due to, for example, covalent, electrostatic, hydrophobic, and ionic and/or hydrogen-bond interactions, including interactions such as salt bridges and water bridges. “Immunologically reactive” means that the selective binding agent or antibody of interest will bind with antigens present in a biological sample. The term “immune complex” refers the combination formed when an antibody or selective binding agent binds to an epitope on an antigen.


1. Affinity/Avidity


The term “affinity” refers the strength with which an antibody or selective binding agent binds an epitope. In antibody binding reactions, this is expressed as the affinity constant (Ka or ka sometimes referred to as the association constant) for any given antibody or selective binding agent. Affinity is measured as a comparison of the binding strength of the antibody to its antigen relative to the binding strength of the antibody to an unrelated amino acid sequence. Affinity can be expressed as, for example, 20-fold greater binding ability of the antibody to its antigen then to an unrelated amino acid sequence. As used herein, the term “avidity” refers to the resistance of a complex of two or more agents to dissociation after dilution. The terms “immunoreactive” and “preferentially binds” are used interchangeably herein with respect to antibodies and/or selective binding agent.


There are several experimental methods that can be used by one skilled in the art to evaluate the binding affinity of any given antibody or selective binding agent for its antigen. This is generally done by measuring the equilibrium dissociation constant (KD or Kd), using the equation KD=koff/kon=[A] [B]/[AB]. The term koff is the rate of dissociation between the antibody and antigen per unit time, and is related to the concentration of antibody and antigen present in solution in the unbound form at equilibrium. The term kon is the rate of antibody and antigen association per unit time, and is related to the concentration of the bound antigen-antibody complex at equilibrium. The units used for measuring the KD are mol/L (molarity, or M), or concentration. The Ka of an antibody is the opposite of the KD, and is determined by the equation Ka=1/KD. Examples of some experimental methods that can be used to determine the KD value are: enzyme-linked immunosorbent assays (ELISA), isothermal titration calorimetry (ITC), fluorescence anisotropy, surface plasmon resonance (SPR), and affinity capillary electrophoresis (ACE). The affinity constant (Ka) of an antibody is the opposite of the KD, and is determined by the equation Ka=1/KD.


Antibodies deemed useful in certain embodiments may have an affinity constant (Ka) of about, at least about, or at most about 106, 107, 108, 109, or 1010 M or any range derivable therein. Similarly, in some embodiments, antibodies may have a dissociation constant of about, at least about or at most about 10−6, 10−7, 10−8, 10−9, 10−10 M, or any range derivable therein. These values are reported for antibodies discussed herein and the same assay may be used to evaluate the binding properties of such antibodies. An antibody of the invention is said to “specifically bind” its target antigen when the dissociation constant (KD) is ≥10−8 M. The antibody specifically binds antigen with “high affinity” when the KD is ≥5×10−9 M, and with “very high affinity” when the KD is ≤5×10−10 M.


2. Epitope Specificity


The epitope of an antigen is the specific region of the antigen for which an antibody has binding affinity. In the case of protein or polypeptide antigens, the epitope is the specific residues (or specified amino acids or protein segment) that the antibody binds with high affinity. An antibody does not necessarily contact every residue within the protein. Nor does every single amino acid substitution or deletion within a protein necessarily affect binding affinity. For purposes of this specification and the accompanying claims, the terms “epitope” and “antigenic determinant” are used interchangeably to refer to the site on an antigen to which B and/or T cells respond or recognize. Polypeptide epitopes can be formed from both contiguous amino acids and noncontiguous amino acids juxtaposed by tertiary folding of a polypeptide. An epitope typically includes at least 3, and typically 5-10 amino acids in a unique spatial conformation.


Epitope specificity of an antibody can be determined in a variety of ways. One approach, for example, involves testing a collection of overlapping peptides of 15 amino acids spanning the full sequence of the protein and differing in increments of a small number of amino acids (e.g., 3 to 30 amino acids). The peptides are immobilized in separate wells of a microtiter dish. Immobilization can be accomplished, for example, by biotinylating one terminus of the peptides. This process may affect the antibody affinity for the epitope, therefore different samples of the same peptide can be biotinylated at the N and C terminus and immobilized in separate wells for the purposes of comparison. This is useful for identifying end-specific antibodies. Optionally, additional peptides can be included terminating at a particular amino acid of interest. This approach is useful for identifying end-specific antibodies to internal fragments. An antibody or antigen-binding fragment is screened for binding to each of the various peptides. The epitope is defined as a segment of amino acids that is common to all peptides to which the antibody shows high affinity binding.


3. Modification of Antibody Antigen-Binding Domains


It is understood that the antibodies of the present invention may be modified, such that they are substantially identical to the antibody polypeptide sequences, or fragments thereof, and still bind the epitopes of the present invention. Polypeptide sequences are “substantially identical” when optimally aligned using such programs as Clustal Omega, IGBLAST, GAP or BESTFIT using default gap weights, they share at least 80% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity or any range therein.


As discussed herein, minor variations in the amino acid sequences of antibodies or antigen-binding regions thereof are contemplated as being encompassed by the present invention, providing that the variations in the amino acid sequence maintain at least 75%, more preferably at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% and most preferably at least 99% sequence identity. In particular, conservative amino acid replacements are contemplated.


Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are generally divided into families based on the chemical nature of the side chain; e.g., acidic (aspartate, glutamate), basic (lysine, arginine, histidine), nonpolar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine). For example, it is reasonable to expect that an isolated replacement of a leucine moiety with an isoleucine or valine moiety, or a similar replacement of an amino acid with a structurally related amino acid in the same family, will not have a major effect on the binding or properties of the resulting molecule, especially if the replacement does not involve an amino acid within a framework site. Whether an amino acid change results in a functional peptide can readily be determined by assaying the specific activity of the polypeptide derivative. Standard ELISA, Surface Plasmon Resonance (SPR), or other antibody binding assays can be performed by one skilled in the art to make a quantitative comparison of antigen binging affinity between the unmodified antibody and any polypeptide derivatives with conservative substitutions generated through any of several methods available to one skilled in the art.


Fragments or analogs of antibodies or immunoglobulin molecules can be readily prepared by those skilled in the art. Preferred amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains. Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases. Preferably, computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Standard methods to identify protein sequences that fold into a known three-dimensional structure are available to those skilled in the art; Dill and McCallum., Science 338:1042-1046 (2012). Several algorithms for predicting protein structures and the gene sequences that encode these have been developed, and many of these algorithms can be found at the National Center for Biotechnology Information (on the World Wide Web at ncbi.nlm.nih.gov/guide/proteins/) and at the Bioinformatics Resource Portal (on the World Wide Web at expasy.org/proteomics). Thus, the foregoing examples demonstrate that those of skill in the art can recognize sequence motifs and structural conformations that may be used to define structural and functional domains in accordance with the invention.


Framework modifications can be made to antibodies to decrease immunogenicity, for example, by “backmutating” one or more framework residues to a corresponding germline sequence.


It is also contemplated that the antigen-binding domain may be multi-specific or multivalent by multimerizing the antigen-binding domain with VH and VL region pairs that bind either the same antigen (multi-valent) or a different antigen (multi-specific).


E. Chemical Modification of Antibodies


In some aspects, also contemplated are glycosylation variants of antibodies, wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide. Glycosylation of the polypeptides can be altered, for example, by modifying one or more sites of glycosylation within the polypeptide sequence to increase the affinity of the polypeptide for antigen (U.S. Pat. Nos. 5,714,350 and 6,350,861). In certain embodiments, antibody protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the native antibody. An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the native polypeptide. For example, the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid. In other embodiments, one or more new N-linked glycosylation sites are created. Antibodies typically have an N-linked glycosylation site in the Fc region.


Additional antibody variants include cysteine variants, wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., serine). Cysteine variants are useful, inter alia, when antibodies must be refolded into a biologically active conformation. Cysteine variants may have fewer cysteine residues than the native antibody and typically have an even number to minimize interactions resulting from unpaired cysteines.


In some aspects, the polypeptides can be pegylated to increase biological half-life by reacting the polypeptide with polyethylene glycol (PEG) or a reactive ester or aldehyde derivative of PEG, under conditions in which one or more PEG groups become attached to the polypeptide. Polypeptide pegylation may be carried out by an acylation reaction or an alkylation reaction with a reactive PEG molecule (or an analogous reactive water-soluble polymer). Methods for pegylating proteins are known in the art and can be applied to the polypeptides of the invention to obtain PEGylated derivatives of antibodies. See, e.g., EP 0 154 316 and EP 0 401 384. In some aspects, the antibody is conjugated or otherwise linked to transthyretin (TTR) or a TTR variant. The TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols, and polyvinyl alcohols. As used herein, the term “polyethylene glycol” is intended to encompass any of the forms of PEG that have been used to derivatize other proteins.


1. Conjugation


Derivatives of the antibodies and antigen binding fragments that are described herein are also provided. The derivatized antibody or fragment thereof may comprise any molecule or substance that imparts a desired property to the antibody or fragment. The derivatized antibody can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic, or enzymatic molecule, or a detectable bead), a molecule that binds to another molecule (e.g., biotin or streptavidin), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antibody for a particular use (e.g., administration to a subject, such as a human subject, or other in vivo or in vitro uses).


Optionally, an antibody or an immunological portion of an antibody can be chemically conjugated to, or expressed as, a fusion protein with other proteins. In some aspects, polypeptides may be chemically modified by conjugating or fusing the polypeptide to serum protein, such as human serum albumin, to increase half-life of the resulting molecule. See, e.g., EP 0322094 and EP 0 486 525. In some aspects, the polypeptides may be conjugated to a diagnostic agent and used diagnostically, for example, to monitor the development or progression of a disease and determine the efficacy of a given treatment regimen. In some aspects, the polypeptides may also be conjugated to a therapeutic agent to provide a therapy in combination with the therapeutic effect of the polypeptide. Additional suitable conjugated molecules include ribonuclease (RNase), DNase I, an anti sense nucleic acid, an inhibitory RNA molecule such as a siRNA molecule, an immunostimulatory nucleic acid, aptamers, ribozymes, triplex forming molecules, and external guide sequences. The functional nucleic acid molecules may act as effectors, inhibitors, modulators, and stimulators of a specific activity possessed by a target molecule, or the functional nucleic acid molecules may possess a de novo activity independent of any other molecules.


In some aspects, disclosed are antibodies and antibody-like molecules that are linked to at least one agent to form an antibody conjugate or payload. In order to increase the efficacy of antibody molecules as diagnostic or therapeutic agents, it is conventional to link or covalently bind or complex at least one desired molecule or moiety. Such a molecule or moiety may be, but is not limited to, at least one effector or reporter molecule. Effector molecules comprise molecules having a desired activity, e.g., cytotoxic activity. Non-limiting examples of effector molecules include toxins, therapeutic enzymes, antibiotics, radiolabeled nucleotides and the like. By contrast, a reporter molecule is defined as any moiety that may be detected using an assay. Non-limiting examples of reporter molecules that have been conjugated to antibodies include enzymes, radiolabels, haptens, fluorescent labels, phosphorescent molecules, chemiluminescent molecules, chromophores, luminescent molecules, photoaffinity molecules, colored particles, or ligands.


a. Conjugate Types


Certain examples of antibody conjugates are those conjugates in which the antibody is linked to a detectable label. “Detectable labels” are compounds and/or elements that can be detected due to their specific functional properties, and/or chemical characteristics, the use of which allows the antibody to be detected, and/or further quantified if desired. Examples of detectable labels include, but not limited to, radioactive isotopes, fluorescers, semiconductor nanocrystals, chemiluminescers, chromophores, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, dyes, metal ions, metal sols, ligands (e.g., biotin, streptavidin or haptens) and the like. Particular examples of labels are, but not limited to, horseradish peroxidase (HRP), fluorescein, FITC, rhodamine, dansyl, umbelliferone, dimethyl acridinium ester (DMAE), Texas red, luminol, NADPH and α- or β-galactosidase. Antibody conjugates include those intended primarily for use in vitro, where the antibody is linked to a secondary binding ligand and/or to an enzyme to generate a colored product upon contact with a chromogenic substrate. Examples of suitable enzymes include, but are not limited to, urease, alkaline phosphatase, (horseradish) hydrogen peroxidase, or glucose oxidase. Preferred secondary binding ligands are biotin and/or avidin and streptavidin compounds. The uses of such labels is well known to those of skill in the art and are described, for example, in U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241; each incorporated herein by reference. Molecules containing azido groups may also be used to form covalent bonds to proteins through reactive nitrene intermediates that are generated by low intensity ultraviolet light (Potter & Haley, 1983).


In some aspects, contemplated are immunoconjugates comprising an antibody or antigen-binding fragment thereof conjugated to a cytotoxic agent such as a chemotherapeutic agent, a drug, a growth inhibitory agent, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate). In this way, the agent of interest can be targeted directly to cells bearing cell surface antigen. The antibody and agent may be associated through non-covalent interactions such as through electrostatic forces, or by covalent bonds. Various linkers, known in the art, can be employed in order to form the immunoconjugate. Additionally, the immunoconjugate can be provided in the form of a fusion protein. In one aspect, an antibody may be conjugated to various therapeutic substances in order to target the cell surface antigen. Examples of conjugated agents include, but are not limited to, metal chelate complexes, drugs, toxins and other effector molecules, such as cytokines, lymphokines, chemokines, immunomodulators, radiosensitizers, asparaginase, carboranes, and radioactive halogens.


In antibody drug conjugates (ADC), an antibody (Ab) is conjugated to one or more drug moieties (D) through a linker (L). The ADC may be prepared by several routes, employing organic chemistry reactions, conditions, and reagents known to those skilled in the art, including: (1) reaction of a nucleophilic group of an antibody with a bivalent linker reagent, to form Ab-L, via a covalent bond, followed by reaction with a drug moiety D; and (2) reaction of a nucleophilic group of a drug moiety with a bivalent linker reagent, to form D-L, via a covalent bond, followed by reaction with the nucleophilic group of an antibody. Antibody drug conjugates may also be produced by modification of the antibody to introduce electrophilic moieties, which can react with nucleophilic substituents on the linker reagent or drug. Alternatively, a fusion protein comprising the antibody and cytotoxic agent may be made, e.g., by recombinant techniques or peptide synthesis. The length of DNA may comprise respective regions encoding the two portions of the conjugate either adjacent one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate. In yet another aspect, the antibody may be conjugated to a “receptor” (such as streptavidin) for utilization in tumor or cancer cell pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a “ligand” (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a radionucleotide).


Examples of an antibody-drug conjugates known to a person skilled in the art are pro-drugs useful for the local delivery of cytotoxic or cytostatic agents, i.e. drugs to kill or inhibit tumor cells in the treatment of cancer (Syrigos and Epenetos, Anticancer Res. 19:605-614 (1999); Niculescu-Duvaz and Springer, Adv. Drg. Del. Rev. 26:151-172 (1997); U.S. Pat. No. 4,975,278). In contrast, systematic administration of these unconjugated drug agents may result in unacceptable levels of toxicity to normal cells as well as the target tumor cells (Baldwin et al., Lancet 1:603-5 (1986); Thorpe, (1985) “Antibody Carriers of Cytotoxic Agents in Cancer Therapy: A Review,” In: Monoclonal Antibodies '84: Biological and Clinical Applications, A. Pincera et al., (eds.) pp. 475-506). Both polyclonal antibodies and monoclonal antibodies have been reported as useful in these strategies (Rowland et al., Cancer Immunol. Immunother. 21:183-87 (1986)).


In certain aspects, ADC include covalent or aggregative conjugates of antibodies, or antigen-binding fragments thereof, with other proteins or polypeptides, such as by expression of recombinant fusion proteins comprising heterologous polypeptides fused to the N-terminus or C-terminus of an antibody polypeptide. For example, the conjugated peptide may be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag (e.g., V5-His). Antibody-containing fusion proteins may comprise peptides added to facilitate purification or identification of the antibody (e.g., poly-His). An antibody polypeptide also can be linked to the FLAG® (Sigma-Aldrich, St. Louis, Mo.) peptide as described in Hopp et al., Bio/Technology 6:1204 (1988), and U.S. Pat. No. 5,011,912. Oligomers that contain one or more antibody polypeptides may be employed as antagonists. Oligomers may be in the form of covalently linked or non-covalently linked dimers, trimers, or higher oligomers. Oligomers comprising two or more antibody polypeptides are contemplated for use. Other oligomers include heterodimers, homotrimers, heterotrimers, homotetramers, heterotetramers, etc. In certain aspects, oligomers comprise multiple antibody polypeptides joined via covalent or non-covalent interactions between peptide moieties fused to the antibody polypeptides. Such peptides may be peptide linkers (spacers), or peptides that have the property of promoting oligomerization. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote oligomerization of antibody polypeptides attached thereto, as described in more detail below.


b. Conjugation Methodology


Several methods are known in the art for the attachment or conjugation of an antibody to its conjugate moiety. Some attachment methods involve the use of a metal chelate complex employing, for example, an organic chelating agent such a diethylenetriaminepentaacetic acid anhydride (DTPA); ethylenetriaminetetraacetic acid; N-chloro-p-toluenesulfonamide; and/or tetrachloro-3-6-diphenylglycouril-3 attached to the antibody (U.S. Pat. Nos. 4,472,509 and 4,938,948, each incorporated herein by reference). Monoclonal antibodies may also be reacted with an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate. Conjugates may also be made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCl), active esters (such as disuccinimidyl suberate), aldehydes (such as glutaraldehyde), bis-azido compounds (such as bis(p-azidobenzoyl)hexanediamine), bis-diazonium derivatives (such as bos(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). In some aspects, derivatization of immunoglobulins by selectively introducing sulfhydryl groups in the Fc region of an immunoglobulin, using reaction conditions that do not alter the antibody combining site, are contemplated. Antibody conjugates produced according to this methodology are disclosed to exhibit improved longevity, specificity, and sensitivity (U.S. Pat. No. 5,196,066, incorporated herein by reference). Site-specific attachment of effector or reporter molecules, wherein the reporter or effector molecule is conjugated to a carbohydrate residue in the Fc region has also been disclosed in the literature (O'Shannessy et al., 1987).


II. Antibody Production

A. Antibody Production


Methods for preparing and characterizing antibodies for use in diagnostic and detection assays, for purification, and for use as therapeutics are well known in the art as disclosed in, for example, U.S. Pat. Nos. 4,011,308; 4,722,890; 4,016,043; 3,876,504; 3,770,380; and 4,372,745 (see, e.g., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988; incorporated herein by reference). These antibodies may be polyclonal or monoclonal antibody preparations, monospecific antisera, human antibodies, hybrid or chimeric antibodies, such as humanized antibodies, altered antibodies, F(ab′)2 fragments, Fab fragments, Fv fragments, single-domain antibodies, dimeric or trimeric antibody fragment constructs, minibodies, or functional fragments thereof which bind to the antigen in question. In certain aspects, polypeptides, peptides, and proteins and immunogenic fragments thereof for use in various embodiments can also be synthesized in solution or on a solid support in accordance with conventional techniques. See, for example, Stewart and Young, (1984); Tarn et al, (1983); Merrifield, (1986); and Barany and Merrifield (1979), each incorporated herein by reference.


Briefly, a polyclonal antibody is prepared by immunizing an animal with an antigen or a portion thereof and collecting antisera from that immunized animal. The antigen may be altered compared to an antigen sequence found in nature. In some embodiments, a variant or altered antigenic peptide or polypeptide is employed to generate antibodies. Inocula are typically prepared by dispersing the antigenic composition in a physiologically tolerable diluent to form an aqueous composition. Anti sera is subsequently collected by methods known in the arts, and the serum may be used as-is for various applications or else the desired antibody fraction may be purified by well-known methods, such as affinity chromatography (Harlow and Lane, Antibodies: A Laboratory Manual 1988).


Methods of making monoclonal antibodies are also well known in the art (Kohler and Milstein, 1975; Harlow and Lane, 1988, U.S. Pat. No. 4,196,265, herein incorporated by reference in its entirety for all purposes). Typically, this technique involves immunizing a suitable animal with a selected immunogenic composition, e.g., a purified or partially purified protein, polypeptide, peptide or domain. Resulting antibody-producing B-cells from the immunized animal, or all dissociated splenocytes, are then induced to fuse with cells from an immortalized cell line to form hybridomas. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing and have high fusion efficiency and enzyme deficiencies that render then incapable of growing in certain selective media that support the growth of only the desired fused cells (hybridomas). Typically, the fusion partner includes a property that allows selection of the resulting hybridomas using specific media. For example, fusion partners can be hypoxanthine/aminopterin/thymidine (HAT)-sensitive. Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Next, selection of hybridomas can be performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants (after two to three weeks) for the desired reactivity. Fusion procedures for making hybridomas, immunization protocols, and techniques for isolation of immunized splenocytes for fusion are known in the art.


Other techniques for producing monoclonal antibodies include the viral or oncogenic transformation of B-lymphocytes, a molecular cloning approach may be used to generate a nucleic acid or polypeptide, the selected lymphocyte antibody method (SLAM) (see, e.g., Babcook et al., Proc. Natl. Acad. Sci. USA 93:7843-7848 (1996), the preparation of combinatorial immunoglobulin phagemid libraries from RNA isolated from the spleen of the immunized animal and selection of phagemids expressing appropriate antibodies, or producing a cell expressing an antibody from a genomic sequence of the cell comprising a modified immunoglobulin locus using Cre-mediated site-specific recombination (see, e.g., U.S. Pat. No. 6,091,001).


Monoclonal antibodies may be further purified using filtration, centrifugation, and various chromatographic methods such as HPLC or affinity chromatography. Monoclonal antibodies may be further screened or optimized for properties relating to specificity, avidity, half-life, immunogenicity, binding association, binding disassociation, or overall functional properties relative to being a treatment for infection. Thus, monoclonal antibodies may have alterations in the amino acid sequence of CDRs, including insertions, deletions, or substitutions with a conserved or non-conserved amino acid.


The immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Adjuvants that may be used in accordance with embodiments include, but are not limited to, IL-1, IL-2, IL-4, IL-7, IL-12, -interferon, GMCSP, BCG, aluminum hydroxide, MDP compounds, such as thur-MDP and nor-MDP, CGP (MTP-PE), lipid A, and monophosphoryl lipid A (MPL). Exemplary adjuvants may include complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis), incomplete Freund's adjuvants, and/or aluminum hydroxide adjuvant. In addition to adjuvants, it may be desirable to co-administer biologic response modifiers (BRM), such as but not limited to, Cimetidine (CIM; 1200 mg/d) (Smith/Kline, PA); low-dose Cyclophosphamide (CYP; 300 mg/m2) (Johnson/Mead, NJ), cytokines such as β-interferon, IL-2, or IL-12, or genes encoding proteins involved in immune helper functions, such as B-7.A phage-display system can be used to expand antibody molecule populations in vitro. Saiki, et al., Nature 324:163 (1986); Scharf et al., Science 233:1076 (1986); U.S. Pat. Nos. 4,683,195 and 4,683,202; Yang et al., J Mol Biol. 254:392 (1995); Barbas, III et al., Methods: Comp. Meth Enzymol. (1995) 8:94; Barbas, III et al., Proc Natl Acad Sci USA 88:7978 (1991).


B. Fully Human Antibody Production


Methods are available for making fully human antibodies. Using fully human antibodies can minimize the immunogenic and allergic responses that may be caused by administering non-human monoclonal antibodies to humans as therapeutic agents. In one embodiment, human antibodies may be produced in a non-human transgenic animal, e.g., a transgenic mouse capable of producing multiple isotypes of human antibodies to protein (e.g., IgG, IgA, and/or IgE) by undergoing V-D-J recombination and isotype switching. Accordingly, this aspect applies to antibodies, antibody fragments, and pharmaceutical compositions thereof, but also non-human transgenic animals, B-cells, host cells, and hybridomas that produce monoclonal antibodies. Applications of human antibodies include, but are not limited to, detect a cell expressing an anticipated protein, either in vivo or in vitro, pharmaceutical preparations containing the antibodies of the present invention, and methods of treating disorders by administering the antibodies.


Fully human antibodies can be produced by immunizing transgenic animals (usually mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten. See, for example, Jakobovits et al., Proc. Natl. Acad. Sci. USA 90:2551-2555 (1993); Jakobovits et al., Nature 362:255-258 (1993); Bruggermann et al., Year in Immunol. 7:33 (1993). In one example, transgenic animals are produced by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins. Partially modified animals, which have less than the full complement of human immunoglobulin loci, are then crossbred to obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies that are immunospecific for the immunogen but have human rather than murine amino acid sequences, including the variable regions. For further details of such methods, see, for example, International Patent Application Publication Nos. WO 96/33735 and WO 94/02602, which are hereby incorporated by reference in their entirety. Additional methods relating to transgenic mice for making human antibodies are described in U.S. Pat. Nos. 5,545,807; 6,713,610; 6,673,986; 6,162,963; 6,300,129; 6,255,458; 5,877,397; 5,874,299 and 5,545,806; in International Patent Application Publication Nos. WO 91/10741 and WO 90/04036; and in European Patent Nos. EP 546073B1 and EP 546073A1, all of which are hereby incorporated by reference in their entirety for all purposes.


The transgenic mice described above, referred to herein as “HuMAb” mice, contain a human immunoglobulin gene minilocus that encodes unrearranged human heavy (μ and γ) and κ light chain immunoglobulin sequences, together with targeted mutations that inactivate the endogenous μ and κ chain loci (Lonberg et al., Nature 368:856-859 (1994)). Accordingly, the mice exhibit reduced expression of mouse IgM or κ chains and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human IgG κ monoclonal antibodies (Lonberg et al., supra; Lonberg and Huszar, Intern. Ref. Immunol. 13:65-93 (1995); Harding and Lonberg, Ann. N.Y. Acad. Sci. 764:536-546 (1995)). The preparation of HuMAb mice is described in detail in Taylor et al., Nucl. Acids Res. 20:6287-6295 (1992); Chen et al., Int. Immunol. 5:647-656 (1993); Tuaillon et al., J. Immunol. 152:2912-2920 (1994); Lonberg et al., supra; Lonberg, Handbook of Exp. Pharmacol. 113:49-101 (1994); Taylor et al., Int. Immunol. 6:579-591 (1994); Lonberg and Huszar, Intern. Ref. Immunol. 13:65-93 (1995); Harding and Lonberg, Ann. N.Y. Acad. Sci. 764:536-546 (1995); Fishwild et al., Nat. Biotechnol. 14:845-851 (1996); the foregoing references are herein incorporated by reference in their entirety for all purposes. See further, U.S. Pat. Nos. 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,789,650; 5,877,397; 5,814,318; 5,874,299; 5,770,429; and 5,545,807; as well as International Patent Application Publication Nos. WO 93/1227; WO 92/22646; and WO 92/03918, the disclosures of all of which are hereby incorporated by reference in their entirety for all purposes. Technologies utilized for producing human antibodies in these transgenic mice are disclosed also in WO 98/24893, and Mendez et al., Nat. Genetics 15:146-156 (1997), which are herein incorporated by reference. For example, the HCo7 and HCo12 transgenic mice strains can be used to generate human antibodies.


Using hybridoma technology, antigen-specific humanized monoclonal antibodies with the desired specificity can be produced and selected from the transgenic mice such as those described above. Such antibodies may be cloned and expressed using a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells. Fully human antibodies can also be derived from phage-display libraries (as disclosed in Hoogenboom et al., J. Mol. Biol. 227:381 (1991); and Marks et al., J. Mol. Biol. 222:581 (1991)). One such technique is described in International Patent Application Publication No. WO 99/10494 (herein incorporated by reference), which describes the isolation of high affinity and functional agonistic antibodies for MPL- and msk-receptors using such an approach.


C. Antibody Fragments Production


Antibody fragments that retain the ability to recognize the antigen of interest will also find use herein. A number of antibody fragments are known in the art that comprise antigen-binding sites capable of exhibiting immunological binding properties of an intact antibody molecule and can be subsequently modified by methods known in the arts. Functional fragments, including only the variable regions of the heavy and light chains, can also be produced using standard techniques such as recombinant production or preferential proteolytic cleavage of immunoglobulin molecules. These fragments are known as Fv. See, e.g., Inbar et al., Proc. Nat. Acad. Sci. USA 69:2659-2662 (1972); Hochman et al., Biochem. 15:2706-2710 (1976); and Ehrlich et al., Biochem. 19:4091-4096 (1980).


Single-chain variable fragments (scFvs) may be prepared by fusing DNA encoding a peptide linker between DNAs encoding the two variable domain polypeptides (VL and VH). scFvs can form antigen-binding monomers, or they can form multimers (e.g., dimers, trimers, or tetramers), depending on the length of a flexible linker between the two variable domains (Kortt et al., Prot. Eng. 10:423 (1997); Kort et al., Biomol. Eng. 18:95-108 (2001)). By combining different VL- and VH-comprising polypeptides, one can form multimeric scFvs that bind to different epitopes (Kriangkum et al., Biomol. Eng. 18:31-40 (2001)). Antigen-binding fragments are typically produced by recombinant DNA methods known to those skilled in the art. Although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined using recombinant methods by a synthetic linker that enables them to be made as a single chain polypeptide (known as single chain Fv (sFv or scFv); see e.g., Bird et al., Science 242:423-426 (1988); and Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988). Design criteria include determining the appropriate length to span the distance between the C-terminus of one chain and the N-terminus of the other, wherein the linker is generally formed from small hydrophilic amino acid residues that do not tend to coil or form secondary structures. Suitable linkers generally comprise polypeptide chains of alternating sets of glycine and serine residues, and may include glutamic acid and lysine residues inserted to enhance solubility. Antigen-binding fragments are screened for utility in the same manner as intact antibodies. Such fragments include those obtained by amino-terminal and/or carboxy-terminal deletions, where the remaining amino acid sequence is substantially identical to the corresponding positions in the naturally occurring sequence deduced, for example, from a full-length cDNA sequence.


Antibodies may also be generated using peptide analogs of the epitopic determinants disclosed herein, which may consist of non-peptide compounds having properties analogous to those of the template peptide. These types of non-peptide compound are termed “peptide mimetics” or “peptidomimetics”. Fauchere, J. Adv. Drug Res. 15:29 (1986); Veber and Freidinger TINS p. 392 (1985); and Evans et al., J. Med. Chem. 30:1229 (1987). Liu et al. (2003) also describe “antibody like binding peptidomimetics” (ABiPs), which are peptides that act as pared-down antibodies and have certain advantages of longer serum half-life as well as less cumbersome synthesis methods. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Fauchere, Adv. Drug Res. 15:29 (1986); Veber and Freidiner, TINS p. 392 (1985); and Evans et al., J. Med. Chem. 30:1229 (1987), which are incorporated herein by reference in their entirety for any purpose. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce a similar therapeutic or prophylactic effect. Such compounds are often developed with the aid of computerized molecular modeling. Generally, peptidomimetics of the invention are proteins that are structurally similar to an antibody displaying a desired biological activity, such as the ability to bind a protein, but have one or more peptide linkages optionally replaced by a linkage selected from: —CH2NH—, —CH2S—, —CH2—CH2—, —CH═CH— (cis and trans), —COCH2—, —CH(OH)CH2—, and —CH2SO— by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may be used in certain embodiments of the invention to generate more stable proteins. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch, Ann. Rev. Biochem. 61:387 (1992), incorporated herein by reference), for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.


Once generated, a phage display library can be used to improve the immunological binding affinity of the Fab molecules using known techniques. See, e.g., Figini et al., J. Mol. Biol. 239:68 (1994). The coding sequences for the heavy and light chain portions of the Fab molecules selected from the phage display library can be isolated or synthesized and cloned into any suitable vector or replicon for expression. Any suitable expression system can be used.


III. Obtaining Encoded Antibodies

In some aspects, there are nucleic acid molecule encoding antibody polypeptides (e.g., heavy or light chain, variable domain only, or full-length). These may be generated by methods known in the art, e.g., isolated from B cells of mice that have been immunized and isolated, phage display, expressed in any suitable recombinant expression system and allowed to assemble to form antibody molecules.


A. Expression


The nucleic acid molecules may be used to express large quantities of recombinant antibodies or to produce chimeric antibodies, single chain antibodies, immunoadhesins, diabodies, mutated antibodies, and other antibody derivatives. If the nucleic acid molecules are derived from a non-human, non-transgenic animal, the nucleic acid molecules may be used for antibody humanization.


1. Vectors


In some aspects, contemplated are expression vectors comprising a nucleic acid molecule encoding a polypeptide of the desired sequence or a portion thereof (e.g., a fragment containing one or more CDRs or one or more variable region domains). Expression vectors comprising the nucleic acid molecules may encode the heavy chain, light chain, or the antigen-binding portion thereof. In some aspects, expression vectors comprising nucleic acid molecules may encode fusion proteins, modified antibodies, antibody fragments, and probes thereof. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well.


To express the antibodies, or antigen-binding fragments thereof, DNAs encoding partial or full-length light and heavy chains are inserted into expression vectors such that the gene area is operatively linked to transcriptional and translational control sequences. In some aspects, a vector that encodes a functionally complete human CH or CL immunoglobulin sequence with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. Typically, expression vectors used in any of the host cells contain sequences for plasmid or virus maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as “flanking sequences” typically include one or more of the following operatively linked nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element. Such sequences and methods of using the same are well known in the art.


2. Expression Systems


Numerous expression systems exist that comprise at least a part or all of the expression vectors discussed above. Prokaryote- and/or eukaryote-based systems can be employed for use with an embodiment to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Commercially and widely available systems include in but are not limited to bacterial, mammalian, yeast, and insect cell systems. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. Those skilled in the art are able to express a vector to produce a nucleic acid sequence or its cognate polypeptide, protein, or peptide using an appropriate expression system.


3. Methods of Gene Transfer


Suitable methods for nucleic acid delivery to effect expression of compositions are anticipated to include virtually any method by which a nucleic acid (e.g., DNA, including viral and nonviral vectors) can be introduced into a cell, a tissue or an organism, as described herein or as would be known to one of ordinary skill in the art. Such methods include, but are not limited to, direct delivery of DNA such as by injection (U.S. Pat. No. 5,994,624, 5,981,274, 5,945,100, 5,780,448, 5,736,524, 5,702,932, 5,656,610, 5,589,466 and 5,580,859, each incorporated herein by reference), including microinjection (Harland and Weintraub, 1985; U.S. Pat. No. 5,789,215, incorporated herein by reference); by electroporation (U.S. Pat. No. 5,384,253, incorporated herein by reference); by calcium phosphate precipitation (Graham and Van Der Eb, 1973; Chen and Okayama, 1987; Rippe et al., 1990); by using DEAF dextran followed by polyethylene glycol (Gopal, 1985); by direct sonic loading (Fechheimer et al., 1987); by liposome mediated transfection (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987; Wong et al., 1980; Kaneda et al., 1989; Kato et al., 1991); by microprojectile bombardment (PCT Application Nos. WO 94/09699 and 95/06128; U.S. Pat. Nos. 5,610,042; 5,322,783, 5,563,055, 5,550,318, 5,538,877 and 5,538,880, and each incorporated herein by reference); by agitation with silicon carbide fibers (Kaeppler et al., 1990; U.S. Pat. Nos. 5,302,523 and 5,464,765, each incorporated herein by reference); by Agrobacterium mediated transformation (U.S. Pat. Nos. 5,591,616 and 5,563,055, each incorporated herein by reference); or by PEG mediated transformation of protoplasts (Omirulleh et al., 1993; U.S. Pat. Nos. 4,684,611 and 4,952,500, each incorporated herein by reference); by desiccation/inhibition mediated DNA uptake (Potrykus et al., 1985). Other methods include viral transduction, such as gene transfer by lentiviral or retroviral transduction.


4. Host Cells


In another aspect, contemplated are the use of host cells into which a recombinant expression vector has been introduced. Antibodies can be expressed in a variety of cell types. An expression construct encoding an antibody can be transfected into cells according to a variety of methods known in the art. Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. Some vectors may employ control sequences that allow it to be replicated and/or expressed in both prokaryotic and eukaryotic cells. In certain aspects, the antibody expression construct can be placed under control of a promoter that is linked to T-cell activation, such as one that is controlled by NFAT-1 or NF-κB, both of which are transcription factors that can be activated upon T-cell activation. Control of antibody expression allows T cells, such as tumor-targeting T cells, to sense their surroundings and perform real-time modulation of cytokine signaling, both in the T cells themselves and in surrounding endogenous immune cells. One of skill in the art would understand the conditions under which to incubate host cells to maintain them and to permit replication of a vector. Also understood and known are techniques and conditions that would allow large-scale production of vectors, as well as production of the nucleic acids encoded by vectors and their cognate polypeptides, proteins, or peptides.


For stable transfection of mammalian cells, it is known, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die), among other methods known in the arts.


B. Isolation


The nucleic acid molecule encoding either or both of the entire heavy and light chains of an antibody or the variable regions thereof may be obtained from any source that produces antibodies. Methods of isolating mRNA encoding an antibody are well known in the art. See e.g., Sambrook et al., supra. The sequences of human heavy and light chain constant region genes are also known in the art. See, e.g., Kabat et al., 1991, supra. Nucleic acid molecules encoding the full-length heavy and/or light chains may then be expressed in a cell into which they have been introduced and the antibody isolated.


IV. Viruses

Aspects of the present disclosure relate to treatment, analysis, or use of a virus. In some embodiments, disclosed are methods for treatment or prevention of a viral infection. In some embodiments, disclosed are compositions comprising one or more anti-viral agents. In some embodiments, disclosed are methods for diagnosis of a viral infection. In some embodiments, disclosed are methods for detection of a virus in a sample.


A. Coronaviruses


In particular embodiments, the virus is from the family Coronaviridae. Coronaviridae is a family of enveloped, positive-sense, single-stranded RNA viruses. Coronavirus is the common name for Coronaviridae and Orthocoronavirinae (also referred to as Coronavirinae). The family Coronaviridae is organized in 2 sub-families, 5 genera, 23 sub-genera and approximately 40 species. They are enveloped viruses having a positive-sense single-stranded RNA genome and a nucleocapsid having helical symmetry. The genome size of coronaviruses ranges from approximately 26-32 kilobases.


The present disclosure encompasses treatment or prevention of infection of any virus in the Coronaviridae family. In certain embodiments, the disclosure encompasses treatment or prevention of infection of any virus in the subfamily Coronavirinae and including the four genera, Alpha-, Beta-, Gamma-, and Deltacoronavirus. In specific embodiments, the disclosure encompasses treatment or prevention of infection of any virus in the genus of Betacoronavirus, including the subgenus Sarbecovirus and including the species of severe acute respiratory syndrome-related coronavirus. In specific embodiments, the disclosure encompasses treatment or prevention of infection of any virus in the species of severe acute respiratory syndrome-related coronavirus, including the strains severe acute respiratory syndrome coronavirus (SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19). The disclosure encompasses treatment or prevention of infection any isolate, strain, type (including Type A, Type B and Type C; Forster et al., 2020, PNAS, available on the World Wide Web at doi.org/10.1073/pnas.2004999117), cluster, or sub-cluster of the species of severe acute respiratory syndrome-related coronavirus, including at least SARS-CoV-2. In specific embodiments, the virus has a genome length between 29000 to 30000, between 29100 and 29900, between 29200 and 29900, between 29300 and 29900, between 29400 and 29900, between 29500 and 29900, between 29600 and 29900, between 29700 and 29900, between 29800 and 29900, or between 29780 and 29900 base pairs in length.


Examples of specific SARS-CoV-2 viruses include the following listed in the NCBI GenBank® Database, and these GenBank® Accession sequences are incorporated by reference herein in their entirety: (a) LC534419 and LC534418 and LC528233 and LC529905 (examples of different strains from Japan); (b) MT281577 and MT226610 and NC_045512 and MN996531 and MN908947 (examples of different strains from China); (c) MT281530 (Iran); (d) MT126808 (Brazil); (e) MT020781 (Finland); (f) MT093571 (Sweden); (g) MT263074 (Peru); (h) MT292582 and MT292581 and MT292580 and MT292579 (examples of different strains from Spain); (i) examples from the United States, such as MT276331 (TX); MT276330 (FL); MT276328 (OR) MT276327 (GA); MT276325 (WA); MT276324 (CA); MT276323 (RI); MT188341 (MN); and (j) MT276598 (Israel). In particular embodiments, the disclosure encompasses treatment or prevention of infection of any of these or similar viruses, including viruses whose genome has at least 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, or 99.9% identity to any of these viruses. In particular embodiments, the disclosure encompasses treatment or prevention of infection of any of these or similar viruses, including viruses whose genome has its entire sequence that is greater than 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, or 99.9% identity to any of these viruses. As one specific example, the present disclosure includes methods of treatment or prevention of infection of a virus having a genome sequence represented by GenBank® Accession No. NC 045512; origin Wuhan, China and any virus having a genome sequence with at least 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, or 99.9% identity to a genome sequence represented by GenBank® Accession No. NC 045512.


SARS-CoV-2 proteins are described in detail in, for example, Yoshimoto F. K. (2020) The protein journal, 39(3), 198-216, incorporated herein by reference in its entirety.


V. Antibodies, Antigen Binding Fragments, and Polypeptides

As used herein, a “protein” or “polypeptide” refers to a molecule comprising at least five amino acid residues. As used herein, the term “wild-type” refers to the endogenous version of a molecule that occurs naturally in an organism. In some embodiments, wild-type versions of a protein or polypeptide are employed, however, in many embodiments of the disclosure, a modified protein or polypeptide is employed to generate an immune response. The terms described above may be used interchangeably. A “modified protein” or “modified polypeptide” or a “variant” refers to a protein or polypeptide whose chemical structure, particularly its amino acid sequence, is altered with respect to the wild-type protein or polypeptide. In some embodiments, a modified/variant protein or polypeptide has at least one modified activity or function (recognizing that proteins or polypeptides may have multiple activities or functions). It is specifically contemplated that a modified/variant protein or polypeptide may be altered with respect to one activity or function yet retain a wild-type activity or function in other respects, such as immunogenicity. The term polypeptide also includes and antibody fragment described herein as well as antibody domains, such as HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, LCDR3, HFRW1, HFRW2, HFRW3, FIFRW4, LFRW1, LFRW2, LFRW3, LFRW4, VH, VL, CH, or CL.


Where a protein is specifically mentioned herein, it is in general a reference to a native (wild-type) or recombinant (modified) protein or, optionally, a protein in which any signal sequence has been removed. The protein may be isolated directly from the organism of which it is native, produced by recombinant DNA/exogenous expression methods, or produced by solid-phase peptide synthesis (SPPS) or other in vitro methods. In particular embodiments, there are isolated nucleic acid segments and recombinant vectors incorporating nucleic acid sequences that encode a polypeptide (e.g., an antibody or fragment thereof). The term “recombinant” may be used in conjunction with a polypeptide or the name of a specific polypeptide, and this generally refers to a polypeptide produced from a nucleic acid molecule that has been manipulated in vitro or that is a replication product of such a molecule.


In certain embodiments the size of an antibody, antigen binding fragment, protein or polypeptide (wild-type or modified) may comprise, but is not limited to, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1100, 1200, 1300, 1400, 1500, 1750, 2000, 2250, 2500 amino acid residues or greater, and any range derivable therein, or derivative of a corresponding amino sequence described or referenced herein. It is contemplated that polypeptides may be mutated by truncation, rendering them shorter than their corresponding wild-type form, also, they might be altered by fusing or conjugating a heterologous protein or polypeptide sequence with a particular function (e.g., for targeting or localization, for enhanced immunogenicity, for purification purposes, etc.). As used herein, the term “domain” refers to any distinct functional or structural unit of a protein or polypeptide, and generally refers to a sequence of amino acids with a structure or function recognizable by one skilled in the art.


The antibody, antigen binding fragment, polypeptides, proteins, or polynucleotides encoding such polypeptides or proteins of the disclosure may include 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 (or any derivable range therein) or more variant amino acids or nucleic acid substitutions or be at least 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% (or any derivable range therein) similar, identical, or homologous with at least, or at most 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 300, 400, 500, 550, 1000 or more contiguous amino acids or nucleic acids, or any range derivable therein, of SEQ ID NO:1-2812.


In some embodiments, the antibody, antigen binding fragment, protein, or polypeptide may comprise amino acids 1 to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, or 1000, (or any derivable range therein) of SEQ ID NOS:1-2812.


In some embodiments, the antibody, antigen binding fragment, or polypeptide may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, or 1000, (or any derivable range therein) contiguous amino acids or nucleic acids of SEQ ID NOs:1-2812.


In some embodiments, the antibody, antigen binding fragment, protein, or polypeptide may comprise at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, or 1000 (or any derivable range therein) contiguous amino acids or nucleic acids of SEQ ID NOS:1-2812 that are at least, at most, or exactly 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% (or any derivable range therein) similar, identical, or homologous with one of SEQ ID NOS:1-2812.


In some aspects there is a nucleic acid molecule, antibody, antigen binding fragment, protein, or polypeptide starting at position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, or 1000 of any of SEQ ID NOS:1-2812 and comprising at least, at most, or exactly 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, or 1000 (or any derivable range therein) contiguous amino acids or nucleotides of any of SEQ ID NOS:1-2812.


In some embodiments, the amino acid at position 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, or 400 of the heavy chain, light chain, VH, VL, HCDR1, HCDR2, HCDR3, LCDR1, LCDR2, LCDR3, HFRW1, HFRW2, HFRW3, HFRW4, LFRW1, LFRW2, LFRW3, or LFRW4 identified in Table 1 and SEQ ID NOS:1-1620 or 1825-2706 is substituted with an alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, or valine.


In some embodiments, a polypeptide (e.g., antibody, antibody fragment, Fab, etc.) of the disclosure comprises a CDR that is at least 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100% identical (or any range derivable therein) in sequence to one of SEQ ID NOS:1-2804. In some embodiments, a polypeptide comprises 1, 2, and/or 3 CDRs from one of SEQ ID NOS:1-2804. The CDR may be one that has been determined by Kabat, IMGT, or Chothia. In further embodiments, a polypeptide may have CDRs that have 1, 2, and/or 3 amino acid changes (e.g., addition of 1 or 2 amino acids, deletions of 1 or 2 amino acids, substitution) with respect to these 1, 2, or 3 CDRs. In some aspects, a polypeptide comprises additionally or alternatively, an amino acid sequence that is at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, or 100% identical or homologous to the amino acid sequence of the variable region that is not a CDR sequence, i.e., the variable region framework.


From amino to carboxy terminus the CDRs are CDR1, CDR2, and CDR3. In some embodiments, a polypeptide may have CDRs that have 1, 2, and/or 3 amino acid changes (e.g., addition of 1 or 2 amino acids, deletions of 1 or 2 amino acids, substitution) with respect to CDR1, CDR2, or CDR3. In some embodiments, the CDRs of SEQ ID NOS:1-2804 may further comprise 1, 2, 3, 4, 5, or 6 additional amino acids at the amino or carboxy terminus of the CDR, The additional amino acids may be from the heavy and/or light chain framework regions of SEQ ID NOS:44-76, that are shown as immediately adjacent to the CDRs. Accordingly, embodiments relate to polypeptides comprising an HCDR1 (i.e., CDR-H1), HCDR2 (i e., CDR-H2), HCDR3 (i.e., CDR-H3), LCDR1 (i.e., CDR-L1), LCDR2 (i. e., CDR-L2), and/or LCDR3 (i.e., CDR-L3) with at least or at most or exactly 1, 2, 3, 4, 5, 6 or 7 amino acids at the amino end of the CDR or at the carboxy end of the CDR, wherein the additional amino acids are the 1, 2, 3, 4, 5, 6, or 7 amino acids of Table 1 or SEQ ID NOS:1-2804 that are shown as immediately adjacent to the CDRs. Other embodiments relate to antibodies comprising one or more CDRs, wherein the CDR is a fragment of Table 1 or SEQ ID NOS:1-2804 and wherein the fragment lacks 1, 2, 3, 4, or 5 amino acids from the amino or carboxy end of the CDR. In some embodiments, the CDR may lack one, 2, 3, 4, 5, 6, or 7 amino acids from the carboxy end and may further comprise 1, 2, 3, 4, 5, 6, 7, or 8 amino acids from the framework region of the amino end of the CDR. In some embodiments, the CDR may lack one, 2, 3, 4, 5, 6, or 7 amino acids from the amino end and may further comprise 1, 2, 3, 4, 5, 6, 7, or 8 amino acids from the framework region of the carboxy end of the CDR. In further embodiments, an antibody may be alternatively or additionally humanized in regions outside the CDR(s) and/or variable region(s). In some aspects, a polypeptide comprises additionally or alternatively, an amino acid sequence that is at least 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, or 100% identical or homologous to the amino acid sequence of the variable region that is not a CDR sequence, i.e., the variable region framework.


In other embodiments, a polypeptide or protein comprises 1, 2, 3, 4, 5, or 6 CDRs from either or both of the light and heavy variable regions of Table 1 or SEQ ID NOS:1-2804, and 1, 2, 3, 4, 5, or 6 CDRs may have 1, 2, and/or 3 amino acid changes with respect to these CDRs. In some embodiments, parts or all of the antibody sequence outside the variable region have been humanized. A protein may comprise one or more polypeptides. In some aspects, a protein may contain one or two polypeptides similar to a heavy chain polypeptide and/or 1 or 2 polypeptides similar to a light chain polypeptide.


The nucleotide as well as the protein, polypeptide, and peptide sequences for various genes have been previously disclosed, and may be found in the recognized computerized databases. Two commonly used databases are the National Center for Biotechnology Information's Genbank and GenPept databases (on the World Wide Web at ncbi.nlm.nih.gov/) and The Universal Protein Resource (UniProt; on the World Wide Web at uniprot.org). The coding regions for these genes may be amplified and/or expressed using the techniques disclosed herein or as would be known to those of ordinary skill in the art.


It is contemplated that in compositions of the disclosure, there is between about mg and about 10 mg of total polypeptide, peptide, and/or protein per ml. The concentration of protein in a composition can be about, at least about or at most about 0.001, 0.050, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 mg/ml or more (or any range derivable therein).


VI. Sequences

Polypeptide, antibody, and antigen binding fragment embodiments are shown below in the following tables.









TABLE 1







Antibody and antigen binding embodiments













SEQ ID


Clone
Description
Sequence
NO:













S20-15
Heavy Chain
QVQLQESGPGLVRPSETLSLTCTVSGGSISSHYWSWIRQPPGKGLEWI
1


(Spike/

GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLISVTAADTAVYYCA



RBD)

RAGGVFGVVLDFDHWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVRPSETLSLTCTVSGGSISSHYWSWIRQPPGKGLEWI
2



Variable
GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLISVTAADTAVYYCA




Region
RAGGVFGVVLDFDHWGRGTLVTVSS




HCDR1
SHYWS
3



HCDR2
YIYYSGSTNYNPSLKS
4



HCDR3
AGGVFGVVLDFDH
5



HFRW1
QVQLQESGPGLVRPSETLSLTCTVSGGSIS
6



HFRW2
WIRQPPGKGLEWIG
7



HFRW3
RVTISVDTSKNQFSLKLISVTAADTAVYYCAR
8



HFRW4
WGRGTLVTVSS
9



Light Chain
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVV
10




YDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSE





HYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASS




Light Chain
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVV
11



Variable
YDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSE




Region
HYVFGTGTKVTVL




LCDR1
GGNNIGSKSVH
12



LCDR2
DDSDRPS
13



LCDR3
QVWDSSSEHYV
14



LFRW1
SYVLTQPPSVSVAPGQTARITC
15



LFRW2
WYQQKPGQAPVLVVY
16



LFRW3
GIPERFSGSNSGNTATLTISRVEAGDEADYYC
17



LFRW4
FGTGTKVTVL
18





S20-22
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSFYWGWIRQPAGKGLEWI
19


(NP)

GRFHTSGSTNYNPSFKSRVTMSVDTSKNQFSLKLTSVTAADTAVYYC





ASGRGSSWYVGWFFDLWGRGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSFYWGWIRQPAGKGLEWI
20



Variable
GRFHTSGSTNYNPSFKSRVTMSVDTSKNQFSLKLTSVTAADTAVYYC




Region
ASGRGSSWYVGWFFDLWGRGTLVTVSS




HCDR1
SFYWG
21



HCDR2
RFHTSGSTNYNPSFKS
22



HCDR3
GRGSSWYVGWFFDL
23



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
24



HFRW2
WIRQPAGKGLEWIG
25



HFRW3
RVTMSVDTSKNQFSLKLTSVTAADTAVYYCAS
26



HFRW4
WGRGTLVTVSS
27



Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQTVLYSSNNKNYLAWYQQKPG
28




QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAGDVAVYYCQ





QYYNTPDTFGGGTKVEINRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDN




Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQTVLYSSNNKNYLAWYQQKPG
29



Variable
QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAGDVAVYYCQ




Region
QYYNTPDTFGGGTKVEI




LCDR1
KSSQTVLYSSNNKNYLA
30



LCDR2
WASTRES
31



LCDR3
QQYYNTPDT
32



LFRW1
DIVMTQSPDSLAVSLGERATINC
33



LFRW2
WYQQKPGQPPKLLIY
34



LFRW3
GVPDRFSGSGSGTDFTLTISSLQAGDVAVYYC
35



LFRW4
FGGGTKVEI
36





S20-31
Heavy Chain
QVQLIQSGAEVKKPGASVKVSCTASGYSLNELPIQWVRQAPGKGLEW
37


(NP)

MGEFDPEDGETIYAEKFQGRVTLTEETSTNTAYMELSSLKSEDTAAYF





CSTGSTIGVVIYAFAIWGQGTMVTVSSASTKGPSVFPLAPCSRSTSEST





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLIQSGAEVKKPGASVKVSCTASGYSLNELPIQWVRQAPGKGLEW
38



Variable
MGEFDPEDGETIYAEKFQGRVTLTEETSTNTAYMELSSLKSEDTAAYF




Region
CSTGSTIGVVIYAFAIWGQGTMVTVSS




HCDR1
ELPIQ
39



HCDR2
EFDPEDGETIYAEKFQG
40



HCDR3
GSTIGVVIYAFAI
41



HFRW1
QVQLIQSGAEVKKPGASVKVSCTASGYSLN
42



HFRW2
WVRQAPGKGLEWMG
43



HFRW3
RVTLTEETSTNTAYMELSSLKSEDTAAYFCST
44



HFRW4
WGQGTMVTVSS
45



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQDITNNFLAWYQQKAGQAPKLFI
46




YGASRRAPGIPHRFSGSGSGTDFTLTISSLEPEDFAVYYCQQYGPSPTF





GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQDITNNFLAWYQQKAGQAPKLFI
47



Variable
YGASRRAPGIPHRFSGSGSGTDFTLTISSLEPEDFAVYYCQQYGPSPTF




Region
GQGTKVEIK




LCDR1
RASQDITNNFLA
48



LCDR2
GASRRAP
49



LCDR3
QQYGPSPT
50



LFRW1
EIVLTQSPGTLSLSPGERATLSC
51



LFRW2
WYQQKAGQAPKLFIY
52



LFRW3
GIPHRFSGSGSGTDFTLTISSLEPEDFAVYYC
53



LFRW4
FGQGTKVEIK
54





S20-40
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPAGKGLEWI
55


(NP)

GRIYTSGSTNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC





ARGGSGWRFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTSSV




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPAGKGLEWI
56



Variable
GRIYTSGSTNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC




Region
ARGGSGWRFDYWGQGTLVTVSS




HCDR1
SYYWS
57



HCDR2
RIYTSGSTNYNPSLKS
58



HCDR3
GGSGWRFDY
59



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
60



HFRW2
WIRQPAGKGLEWIG
61



HFRW3
RVTMSVDTSKNQFSLKLSSVTAADTAVYYCAR
62



HFRW4
WGQGTLVTVSS
63



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
64




MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSS





STLGVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
65



Variable
MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSS




Region
STLGVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
66



LCDR2
DVSNRPS
67



LCDR3
SSYTSSSTLGV
68



LFRW1
QSALTQPASVSGSPGQSITISC
69



LFRW2
WYQQHPGKAPKLMIY
70



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
71



LFRW4
FGGGTKLTVL
72





S20-58
Heavy Chain
QVQLQESGPGLVKPSQTLSLTCTVSGGSINSGDYYWSWIRQPPGKGLE
73


(Spike/

WIGYIYFSGSTYYNPSLKSRVTISLDRSKNQFSLKLSSVTAADTAVYY



RBD)

CAREESMITLGGVIVDWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGG





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSQTLSLTCTVSGGSINSGDYYWSWIRQPPGKGLE
74



Variable
WIGYIYFSGSTYYNPSLKSRVTISLDRSKNQFSLKLSSVTAADTAVYY




Region
CAREESMITLGGVIVDWGQGTLVTVSS




HCDR1
SGDYYWS
75



HCDR2
YIYFSGSTYYNPSLKS
76



HCDR3
EESMITLGGVIVD
77



HFRW1
QVQLQESGPGLVKPSQTLSLTCTVSGGSIN
78



HFRW2
WIRQPPGKGLEWIG
79



HFRW3
RVTISLDRSKNQFSLKLSSVTAADTAVYYCAR
80



HFRW4
WGQGTLVTVSS
81



Light Chain
DIVMTQTPLSSPVTLGQPASISCRSSQSLVHSDGDTYLSWLQQRPGQP
82




PRLLIYKISNRFSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQA





TQFPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFY





PREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIVMTQTPLSSPVTLGQPASISCRSSQSLVHSDGDTYLSWLQQRPGQP
83



Variable
PRLLIYKISNRFSGVPDRFSGSGAGTDFTLKISRVEAEDVGVYYCMQA




Region
TQFPLTFGGGTKVEIK




LCDR1
RSSQSLVHSDGDTYLS
84



LCDR2
KISNRFS
85



LCDR3
MQATQFPLT
86



LFRW1
DIVMTQTPLSSPVTLGQPASISC
87



LFRW2
WLQQRPGQPPRLLIY
88



LFRW3
GVPDRFSGSGAGTDFTLKISRVEAEDVGVYYC
89



LFRW4
FGGGTKVEIK
90





S20-74
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSHYWSWIRQPPGKGLEQI
91


(Spike/

GYMYYSGSTNYNPSLKSRVIISVDTSKNQFSLKLSSVTAADTAVYYC



RBD)

AGRDQLLYGADGFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGG





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSHYWSWIRQPPGKGLEQI
92



Variable
GYMYYSGSTNYNPSLKSRVIISVDTSKNQFSLKLSSVTAADTAVYYC




Region
AGRDQLLYGADGFDIWGQGTMVTVSS




HCDR1
SHYWS
93



HCDR2
YMYYSGSTNYNPSLKS
94



HCDR3
RDQLLYGADGFDI
95



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
96



HFRW2
WIRQPPGKGLEQIG
97



HFRW3
RVIISVDTSKNQFSLKLSSVTAADTAVYYCAG
98



HFRW4
WGQGTMVTVSS
99



Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
100




LMIYEVSKRPSGVPDRYSGSKSGNTASLTVSGLQAEDEADYYCSSYA





GSSNHVIFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISD





FYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
101



Variable
LMIYEVSKRPSGVPDRYSGSKSGNTASLTVSGLQAEDEADYYCSSYA




Region
GSSNHVIFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
102



LCDR2
EVSKRPS
103



LCDR3
SSYAGSSNHVI
104



LFRW1
QSALTQPPSASGSPGQSVTISC
105



LFRW2
WYQQHPGKAPKLMIY
106



LFRW3
GVPDRYSGSKSGNTASLTVSGLQAEDEADYYC
107



LFRW4
FGGGTKLTVL
108





S20-86
Heavy Chain
EVQLVESGGGLVQPGRSLRLSCAASGFTFGDYAMYWVRQPPGKGLE
109


(Spike)

WVSGISWNRGTIGYADSVKGRFTISRDNAKNSLYLQMNSLTPEDTAL





YYCAKDMLPASRFFYYMDVWGKGTTVIVSSASTKGPSVFPLAPSSKS





TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGRSLRLSCAASGFTFGDYAMYWVRQPPGKGLE
110



Variable
WVSGISWNRGTIGYADSVKGRFTISRDNAKNSLYLQMNSLTPEDTAL




Region
YYCAKDMLPASRFFYYMDVWGKGTTVIVSS




HCDR1
DYAMY
111



HCDR2
GISWNRGTIGYADSVKG
112



HCDR3
DMLPASRFFYYMDV
113



HFRW1
EVQLVESGGGLVQPGRSLRLSCAASGFTFG
114



HFRW2
WVRQPPGKGLEWVS
115



HFRW3
RFTISRDNAKNSLYLQMNSLTPEDTALYYCAK
116



HFRW4
WGKGTTVIVSS
117



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
118




MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSS





STLGVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASS




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
119



Variable
MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSS




Region
STLGVFGTGTKVTVL




LCDR1
TGTSSDVGGYNYVS
120



LCDR2
DVSNRPS
121



LCDR3
SSYTSSSTLGV
122



LFRW1
QSALTQPASVSGSPGQSITISC
123



LFRW2
WYQQHPGKAPKLMIY
124



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
125



LFRW4
FGTGTKVTVL
126





S24-68
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSITSYYWSWIRQPPGKGLEWI
127


(ORF8)

EYIHYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RLLKYSRGGCYFDHWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSITSYYWSWIRQPPGKGLEWI
128



Variable
EYIHYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA




Region
RLLKYSRGGCYFDHWGQGTLVTVSS




HCDR1
SYYWS
129



HCDR2
YIHYSGSTNYNPSLKS
130



HCDR3
LLKYSRGGCYFDH
131



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIT
132



HFRW2
WIRQPPGKGLEWIE
133



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
134



HFRW4
WGQGTLVTVSS
135



Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGGNPVNWYQQLPGTAPKLLI
136




YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSL





KGPVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK





SH




Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGGNPVNWYQQLPGTAPKLLI
137



Variable
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSL




Region
KGPVFGGGTKLTVL




LCDR1
SGSSSNIGGNPVN
138



LCDR2
SNNQRPS
139



LCDR3
AAWDDSLKGPV
140



LFRW1
QSVLTQPPSASGTPGQRVTISC
141



LFRW2
WYQQLPGTAPKLLIY
142



LFRW3
GVPDRFSGSKSGTSASLAISGLQSEDEADYYC
143



LFRW4
FGGGTKLTVL
144





S24-105
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSYSMNWVRQAPGKGLE
145


(ORF8)

WVSYISSSSSTIYYADSVKGRFTISKDNAKNSLYLQMNSLRAEDTAVY





YCAVGRGYFVYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAAL





GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSYSMNWVRQAPGKGLE
146



Variable
WVSYISSSSSTIYYADSVKGRFTISKDNAKNSLYLQMNSLRAEDTAVY




Region
YCAVGRGYFVYWGQGTLVTVSS




HCDR1
SYSMN
147



HCDR2
YISSSSSTIYYADSVKG
148



HCDR3
GRGYFVY
149



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTLS
150



HFRW2
WVRQAPGKGLEWVS
151



HFRW3
RFTISKDNAKNSLYLQMNSLRAEDTAVYYCAV
152



HFRW4
WGQGTLVTVSS
153



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSGYLAWYQQKPGQAPRLLI
154




FGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSRTF





GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSGYLAWYQQKPGQAPRLLI
155



Variable
FGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYGSSRTF




Region
GQGTKVEIK




LCDR1
RASQSVSSGYLA
156



LCDR2
GASSRAT
157



LCDR3
QQYGSSRT
158



LFRW1
EIVLTQSPGTLSLSPGERATLSC
159



LFRW2
WYQQKPGQAPRLLIF
160



LFRW3
GIPDRFSGSGSGTDFTLTINRLEPEDFAVYYC
161



LFRW4
FGQGTKVEIK
162





S24-178
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
163


(NP)

WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARIEGYSYGDVRVYYYYGMDVWGQGTTVTVSSASTKGPSVFP





LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL





QSSG




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
164



Variable
WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARIEGYSYGDVRVYYYYGMDVWGQGTTVTVSS




HCDR1
SYGMH
165



HCDR2
VIWYDGSNKYYADSVKG
166



HCDR3
IEGYSYGDVRVYYYYGMDV
167



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
168



HFRW2
WVRQAPGKGLEWVA
169



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
170



HFRW4
WGQGTTVTVSS
171



Light Chain
QSALTQPASVSGSPGQSITISCTGTTSDVGGYDYVSWYQQHPGKAPKL
172




ILSEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYPSSS





TLVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADGSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSALTQPASVSGSPGQSITISCTGTTSDVGGYDYVSWYQQHPGKAPKL
173



Variable
ILSEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYPSSS




Region
TLVFGTGTKVTVL




LCDR1
TGTTSDVGGYDYVS
174



LCDR2
EVSNRPS
175



LCDR3
SSYPSSSTLV
176



LFRW1
QSALTQPASVSGSPGQSITISC
177



LFRW2
WYQQHPGKAPKLILS
178



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
179



LFRW4
FGTGTKVTVL
180





S24-188
Heavy Chain
QVHLVQSGAEVKKPGSSVKVSCKASGGTFSSCAISWVRQAPGQGLE
181


(NP)

WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY





YCARGWEFGSGSYYRTDYYYYAMDVWGQGTTVTVSSASTKGPSVF





PLAPCSRSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV





LQSSG




Heavy Chain
QVHLVQSGAEVKKPGSSVKVSCKASGGTFSSCAISWVRQAPGQGLE
182



Variable
WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY




Region
YCARGWEFGSGSYYRTDYYYYAMDVWGQGTTVTVSS




HCDR1
SCAIS
183



HCDR2
RIIPILGIANYAQKFQG
184



HCDR3
GWEFGSGSYYRTDYYYYAMDV
185



HFRW1
QVHLVQSGAEVKKPGSSVKVSCKASGGTFS
186



HFRW2
WVRQAPGQGLEWMG
187



HFRW3
RVTITADKSTSTAYMELSSLRSEDTAVYYCAR
188



HFRW4
WGQGTTVTVSS
189



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
190




MIYEVTNRPSGVSNRFSGSRSGNTASLTISGLQAEDEADYYCSSYTSSS





LYVFGTGTKVAVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADSSPVKAGVETTKPSKQSNNKYAASS




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
191



Variable
MIYEVTNRPSGVSNRFSGSRSGNTASLTISGLQAEDEADYYCSSYTSSS




Region
LYVFGTGTKVAVL




LCDR1
TGTSSDVGGYNYVS
192



LCDR2
EVTNRPS
193



LCDR3
SSYTSSSLYV
194



LFRW1
QSALTQPASVSGSPGQSITISC
195



LFRW2
WYQQHPGKAPKLMIY
196



LFRW3
GVSNRFSGSRSGNTASLTISGLQAEDEADYYC
197



LFRW4
FGTGTKVAVL
198





S24-202
Heavy Chain
EVQLVQSGAEVKKPGESLRISCKGSGYSFSSYWISWVRQMPGKGLEW



(NP)

MGRIDPSDSNTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYY





CARLSVRVWFGELPHYGMDVWGQGTTVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
199



Heavy Chain
EVQLVQSGAEVKKPGESLRISCKGSGYSFSSYWISWVRQMPGKGLEW
200



Variable
MGRIDPSDSNTNYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMYY




Region
CARLSVRVWFGELPHYGMDVWGQGTTVTVSS




HCDR1
SYWIS
201



HCDR2
RIDPSDSNTNYSPSFQG
202



HCDR3
LSVRVWFGELPHYGMDV
203



HFRW1
EVQLVQSGAEVKKPGESLRISCKGSGYSFS
204



HFRW2
WVRQMPGKGLEWMG
205



HFRW3
HVTISADKSISTAYLQWSSLKASDTAMYYCAR
206



HFRW4
WGQGTTVTVSS
207



Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY
208




DASNRASGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRNWPLTF





GGGTKVETKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDN




Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY
209



Variable
DASNRASGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRNWPLTF




Region
GGGTKVETK




LCDR1
RASQSVSSYLA
210



LCDR2
DASNRAS
211



LCDR3
QQRRNWPLT
212



LFRW1
EIVLTQSPATLSLSPGERATLSC
213



LFRW2
WYQQKPGQAPRLLIY
214



LFRW3
GIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
215



LFRW4
FGGGTKVETK
216





S24-278
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
217


(ORF8)

EWMGWINPNSGDTNYAQKFQGWVTMTRDTSLSTAYMELSRLKSDD





TAVYYCARVGVGEYSGRHYYYYGMDVWGQGTTVTVSSASTKGPSV





FPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAV





LQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
218



Variable
EWMGWINPNSGDTNYAQKFQGWVTMTRDTSLSTAYMELSRLKSDD




Region
TAVYYCARVGVGEYSGRHYYYYGMDVWGQGTTVTVSS




HCDR1
GYYMH
219



HCDR2
WINPNSGDTNYAQKFQG
220



HCDR3
VGVGEYSGRHYYYYGMDV
221



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
222



HFRW2
WVRQAPGQGLEWMG
223



HFRW3
WVTMTRDTSLSTAYMELSRLKSDDTAVYYCAR
224



HFRW4
WGQGTTVTVSS
225



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSISSSYLAWYQQKPGQAPRLLI
226




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSLTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDN




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSISSSYLAWYQQKPGQAPRLLI
227



Variable
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSLTF




Region
GGGTKVEIK




LCDR1
RASQSISSSYLA
228



LCDR2
GASSRAT
229



LCDR3
QQYGSSLT
230



LFRW1
EIVLTQSPGTLSLSPGERATLSC
231



LFRW2
WYQQKPGQAPRLLIY
232



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
233



LFRW4
FGGGTKVEIK
234





S24-339
Heavy Chain
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLE
235


(Spike/

WVGFIRSKAYGGTTQHAASVKGRFTISRDDSKSIAYLQMNSLKTEDT



RBD)

AVYHCARDGYDCSGGRCYSHIFDYWGQGTLVTVSSGESSPPPL*VHL





GRLSLPGSQGQSLV




Heavy Chain
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLE
236



Variable
WVGFIRSKAYGGTTQHAASVKGRFTISRDDSKSIAYLQMNSLKTEDT




Region
AVYHCARDGYDCSGGRCYSHIFDYWGQGTLVTVSS




HCDR1
DYAMS
237



HCDR2
FIRSKAYGGTTQHAASVKG
238



HCDR3
DGYDCSGGRCYSHIFDY
239



HFRW1
EVQLVESGGGLVQPGRSLRLSCTASGFTFG
240



HFRW2
WFRQAPGKGLEWVG
241



HFRW3
RFTISRDDSKSIAYLQMNSLKTEDTAVYHCAR
242



HFRW4
WGQGTLVTVSS
243



Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLI
244




YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYDNWWT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLI
245



Variable
YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYDNWWT




Region
FGQGTKVEIK




LCDR1
RASQSVSSNLA
246



LCDR2
GASTRAT
247



LCDR3
QQYDNWWT
248



LFRW1
EIVMTQSPATLSVSPGERATLSC
249



LFRW2
WYQQKPGQAPRLLIY
250



LFRW3
GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC
251



LFRW4
FGQGTKVEIK
252





S24-472
Heavy Chain
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSINWWSWVRQPPGKGLE
253


(ORF8)

WIGEIYHSGNTNYNPSLKSRVTISGDKSKNQFSLKLSSVTAADTAVYY





CARGYYDSSPYYEPQGIDYWGQGILVTVSSASTKGPSVFPLAPSSKST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSGTLSLTCAVSGGSISSINWWSWVRQPPGKGLE
254



Variable
WIGEIYHSGNTNYNPSLKSRVTISGDKSKNQFSLKLSSVTAADTAVYY




Region
CARGYYDSSPYYEPQGIDYWGQGILVTVSS




HCDR1
SINWWS
255



HCDR2
EIYHSGNTNYNPSLKS
256



HCDR3
GYYDSSPYYEPQGIDY
257



HFRW1
QVQLQESGPGLVKPSGTLSLTCAVSGGSIS
258



HFRW2
WVRQPPGKGLEWIG
259



HFRW3
RVTISGDKSKNQFSLKLSSVTAADTAVYYCAR
260



HFRW4
WGQGILVTVSS
261



Light Chain
QLVLTQSPSASASLGASVKLTCTLSSGHSSYTIAWHQQQPEKGPRYL
262




MKVNSDGSHTKGDGIPDRFSGSSSGAERYLTISSLQSEDEADYYCQT





WGTGIRVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLIS





DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QLVLTQSPSASASLGASVKLTCTLSSGHSSYTIAWHQQQPEKGPRYL
263



Variable
MKVNSDGSHTKGDGIPDRFSGSSSGAERYLTISSLQSEDEADYYCQT




Region
WGTGIRVFGGGTKLTVL




LCDR1
TLSSGHSSYTIA
264



LCDR2
VNSDGSHTKGD
265



LCDR3
QTWGTGIRV
266



LFRW1
QLVLTQSPSASASLGASVKLTC
267



LFRW2
WHQQQPEKGPRYLMK
268



LFRW3
GIPDRFSGSSSGAERYLTISSLQSEDEADYYC
269



LFRW4
FGGGTKLTVL
270





S24-490
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYFIHWVRQAPGQGLE
271


(ORF8)

WMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV





YYCARHTTPTRYFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTS





SV




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYFIHWVRQAPGQGLE
272



Variable
WMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAV




Region
YYCARHTTPTRYFDYWGQGTLVTVSS




HCDR1
SYFIH
273



HCDR2
IINPSGGSTSYAQKFQG
274



HCDR3
HTTPTRYFDY
275



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
276



HFRW2
WVRQAPGQGLEWMG
277



HFRW3
RVTMTRDTSTSTVYMELSSLRSEDTAVYYCAR
278



HFRW4
WGQGTLVTVSS
279



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVTSSYLAWYQQRRGQAPRLLI
280




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLT





FGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVTSSYLAWYQQRRGQAPRLLI
281



Variable
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLT




Region
FGGGTKVEIK




LCDR1
RASQSVTSSYLA
282



LCDR2
GASSRAT
283



LCDR3
QQYGSSPLT
284



LFRW1
EIVLTQSPGTLSLSPGERATLSC
285



LFRW2
WYQQRRGQAPRLLIY
286



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
287



LFRW4
FGGGTKVEIK
288





S24-494
Heavy Chain
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
289


(Spike/

WIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY



RBD)

CARKPRSDYGYFDLWGRGTLVTVSSASTKGPSV




Heavy Chain
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
290



Variable
WIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




Region
CARKPRSDYGYFDLWGRGTLVTVSS




HCDR1
SSSYYWG
291



HCDR2
SIYYSGSTYYNPSLKS
292



HCDR3
KPRSDYGYFDL
293



HFRW1
QLQLQESGPGLVKPSETLSLTCTVSGGSIS
294



HFRW2
WIRQPPGKGLEWIG
295



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
296



HFRW4
WGRGTLVTVSS
297



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
298




AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPQLT





FGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
299



Variable
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPQLT




Region
FGGGTKVEIK




LCDR1
RASQSISSYLN
300



LCDR2
AASSLQS
301



LCDR3
QQSYSTPQLT
302



LFRW1
DIQMTQSPSSLSASVGDRVTITC
303



LFRW2
WYQQKPGKAPKLLIY
304



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
305



LFRW4
FGGGTKVEIK
306





S24-566
Heavy Chain
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLE
307


(ORF8)

WVGFTRRKAYGGTTEYAASVKGRFTISRDDSKSIAYLQMNSLKTEDT





AVYYCTRIKVGRFDLTDSGSYRYFDYWGQGTLVTVSSASTKGPSVFP





LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL





QSSG




Heavy Chain
EVQLVESGGGLVKPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLE
308



Variable
WVGFTRRKAYGGTTEYAASVKGRFTISRDDSKSIAYLQMNSLKTEDT




Region
AVYYCTRIKVGRFDLTDSGSYRYFDYWGQGTLVTVSS




HCDR1
DYAMS
309



HCDR2
FTRRKAYGGTTEYAASVKG
310



HCDR3
IKVGRFDLTDSGSYRYFDY
311



HFRW1
EVQLVESGGGLVKPGRSLRLSCTASGFTFG
312



HFRW2
WFRQAPGKGLEWVG
313



HFRW3
RFTISRDDSKSIAYLQMNSLKTEDTAVYYCTR
314



HFRW4
WGQGTLVTVSS
315



Light Chain
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS
316




PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQP





LQTPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF





YPREAKVQWKVDN




Light Chain
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS
317



Variable
PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQP




Region
LQTPWTFGQGTKVEIK




LCDR1
RSSQSLLHSNGYNYLD
318



LCDR2
LGSNRAS
319



LCDR3
MQPLQTPWT
320



LFRW1
DIVMTQSPLSLPVTPGEPASISC
321



LFRW2
WYLQKPGQSPQLLIY
322



LFRW3
GVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
323



LFRW4
FGQGTKVEIK
324





S24-636
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSYWMSWVRQAPGKGLE
325


(20)

WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA





VYYCARDLTATWFDPWGQGTLVTVSSAPTKAPDVFPIISGCRHPKDN





SPVVLACLITGYH




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTLSSYWMSWVRQAPGKGLE
326



Variable
WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARDLTATWFDPWGQGTLVTVSS




HCDR1
SYWMS
327



HCDR2
NIKQDGSEKYYVDSVKG
328



HCDR3
DLTATWFDP
329



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTLS
330



HFRW2
WVRQAPGKGLEWVA
331



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
332



HFRW4
WGQGTLVTVSS
333



Light Chain
QTVVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSWYQQTPGQAPRT
334




LIYSTNKRSSGVPDRFSGSILGNKAALTITGAQADDESDYYCVLYMGS





GMSVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QTVVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSWYQQTPGQAPRT
335



Variable
LIYSTNKRSSGVPDRFSGSILGNKAALTITGAQADDESDYYCVLYMGS




Region
GMSVFGGGTKLTVL




LCDR1
GLSSGSVSTSYYPS
336



LCDR2
STNKRSS
337



LCDR3
VLYMGSGMSV
338



LFRW1
QTVVTQEPSFSVSPGGTVTLTC
339



LFRW2
WYQQTPGQAPRTLIY
340



LFRW3
GVPDRFSGSILGNKAALTITGAQADDESDYYC
341



LFRW4
FGGGTKLTVL
342





S24-740
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYALHWVRQAPGQRLE
343


(ORF8)

WMGWINAGNGNTKYSQRFQGRVTIIRDTSASTTYMELSSLRSEDTAV





YYCARGYARAGVITIKESLHHWGQGTLVTVSSASTKGPSVFPLAPSSK





STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYALHWVRQAPGQRLE
344



Variable
WMGWINAGNGNTKYSQRFQGRVTIIRDTSASTTYMELSSLRSEDTAV




Region
YYCARGYARAGVITIKESLHHWGQGTLVTVSS




HCDR1
SYALH
345



HCDR2
WINAGNGNTKYSQRFQG
346



HCDR3
GYARAGVITIKESLHH
347



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
348



HFRW2
WVRQAPGQRLEWMG
349



HFRW3
RVTIIRDTSASTTYMELSSLRSEDTAVYYCAR
350



HFRW4
WGQGTLVTVSS
351



Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPG
352




QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ





QYYSTPPLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDN




Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPG
353



Variable
QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ




Region
QYYSTPPLTFGGGTKVEIK




LCDR1
KSSQSVLYSSNNKNYLA
354



LCDR2
WASTRES
355



LCDR3
QQYYSTPPLT
356



LFRW1
DIVMTQSPDSLAVSLGERATINC
357



LFRW2
WYQQKPGQPPKLLIY
358



LFRW3
GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC
359



LFRW4
FGGGTKVEIK
360





S24-791
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYWSWIRQPPGKGLEWI
361


(NP)

GYIYYSGNTNYNPSLKSRVTLSIDTSKNQFSLKLSSVTAADTAVYYCA





CSVTIFGVVTPAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSSYWSWIRQPPGKGLEWI
362



Variable
GYIYYSGNTNYNPSLKSRVTLSIDTSKNQFSLKLSSVTAADTAVYYCA




Region
CSVTIFGVVTPAFDIWGQGTMVTVSS




HCDR1
SSYWS
363



HCDR2
YIYYSGNTNYNPSLKS
364



HCDR3
SVTIFGVVTPAFDI
365



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
366



HFRW2
WIRQPPGKGLEWIG
367



HFRW3
RVTLSIDTSKNQFSLKLSSVTAADTAVYYCAC
368



HFRW4
WGQGTMVTVSS
369



Light Chain
EIVLTHSPGTLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLI
370




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPDDFAVYYCQQYGSSPW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTHSPGTLSLSPGERATLSCRASQSVRSYLAWYQQKPGQAPRLLI
371



Variable
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPDDFAVYYCQQYGSSPW




Region
TFGQGTKVEIK




LCDR1
RASQSVRSYLA
372



LCDR2
GASSRAT
373



LCDR3
QQYGSSPWT
374



LFRW1
EIVLTHSPGTLSLSPGERATLSC
375



LFRW2
WYQQKPGQAPRLLIY
376



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPDDFAVYYC
377



LFRW4
FGQGTKVEIK
378





S24-902
Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLE
379


(Spike/

WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY



RBD)

YCARWDFGVVIQYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTS





GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS





SVVTVPSSSL




Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLE
380



Variable
WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY




Region
YCARWDFGVVIQYGMDVWGQGTTVTVSS




HCDR1
SYAIS
381



HCDR2
RIIPILGIANYAQKFQG
382



HCDR3
WDFGVVIQYGMDV
383



HFRW1
QVQLVQSGAEVKKPGSSVKVSCKASGGTFS
384



HFRW2
WVRQAPGQGLEWMG
385



HFRW3
RVTITADKSTSTAYMELSSLRSEDTAVYYCAR
386



HFRW4
WGQGTTVTVSS
387



Light Chain
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPR
388




TLIYDTSNKHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYS





GWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKPGQAPR
389



Variable
TLIYDTSNKHSWTPARFSGSLLGGKAALTLSGAQPEDEAEYYCLLSYS




Region
GWVFGGGTKLTVL




LCDR1
GSSTGAVTSGHYPY
390



LCDR2
DTSNKHS
391



LCDR3
LLSYSGWV
392



LFRW1
QAVVTQEPSLTVSPGGTVTLTC
393



LFRW2
WFQQKPGQAPRTLIY
394



LFRW3
WTPARFSGSLLGGKAALTLSGAQPEDEAEYYC
395



LFRW4
FGGGTKLTVL
396





S24-921
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSINSFYWNWIRQPPGKGLEWI
397


(NP)

GYIYYSGNTKYNPSLKSRVTISVDTSNSQFSLKLSSVTAADTAVYYCA





ALKKQELVSLQAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSINSFYWNWIRQPPGKGLEWI
398



Variable
GYIYYSGNTKYNPSLKSRVTISVDTSNSQFSLKLSSVTAADTAVYYCA




Region
ALKKQELVSLQAFDIWGQGTMVTVSS




HCDR1
SFYWN
399



HCDR2
YIYYSGNTKYNPSLKS
400



HCDR3
LKKQELVSLQAFDI
401



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIN
402



HFRW2
WIRQPPGKGLEWIG
403



HFRW3
RVTISVDTSNSQFSLKLSSVTAADTAVYYCAA
404



HFRW4
WGQGTMVTVSS
405



Light Chain
DIQMTQSPSSLSASLGDGVTITCRASQSISSYLSWYQQKPGKAPKLLIY
406




AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYNTPVTF





GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNADRKS




Light Chain
DIQMTQSPSSLSASLGDGVTITCRASQSISSYLSWYQQKPGKAPKLLIY
407



Variable
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYNTPVTF




Region
GQGTKVEIK




LCDR1
RASQSISSYLS
408



LCDR2
AASSLQS
409



LCDR3
QQSYNTPVT
410



LFRW1
DIQMTQSPSSLSASLGDGVTITC
411



LFRW2
WYQQKPGKAPKLLIY
412



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
413



LFRW4
FGQGTKVEIK
414





S24-1063
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
415


(NP)

GYIYYSGSTKYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCA





RIYDSSGYYHPVFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
416



Variable
GYIYYSGSTKYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCA




Region
RIYDSSGYYHPVFDYWGQGTLVTVSS




HCDR1
SYYWS
417



HCDR2
YIYYSGSTKYNPSLKS
418



HCDR3
IYDSSGYYHPVFDY
419



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
420



HFRW2
WIRQPPGKGLEWIG
421



HFRW3
RVTISVDTSKNQFSLKLTSVTAADTAVYYCAR
422



HFRW4
WGQGTLVTVSS
423



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLI
424




YGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLI
425



Variable
YGASSRATDIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWT




Region
FGQGTKVEIK




LCDR1
RASQSVSSSYLA
426



LCDR2
GASSRAT
427



LCDR3
QQYGSSPWT
428



LFRW1
EIVLTQSPGTLSLSPGERATLSC
429



LFRW2
WYQQKPGQAPRLLIY
430



LFRW3
DIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
431



LFRW4
FGQGTKVEIK
432





S24-1224
Heavy Chain
QVQLVQSGAEVKKPGASVRVSCKASGYTFTSYYIYWVRQAPGQGLE
433


(Spike/

WMGVINPSGGSTSYAQKFQGRVTLTRDTSTSTVYMDLSSLRSEDTAV



RBD)

YYCARDPIMWEVVTRGRGNWFDPWGQGTLVTVSSASTKGPSVFPLA





PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS





G




Heavy Chain
QVQLVQSGAEVKKPGASVRVSCKASGYTFTSYYIYWVRQAPGQGLE
434



Variable
WMGVINPSGGSTSYAQKFQGRVTLTRDTSTSTVYMDLSSLRSEDTAV




Region
YYCARDPIMWEVVTRGRGNWFDPWGQGTLVTVSS




HCDR1
SYYIY
435



HCDR2
VINPSGGSTSYAQKFQG
436



HCDR3
DPIMWEVVTRGRGNWFDP
437



HFRW1
QVQLVQSGAEVKKPGASVRVSCKASGYTFT
438



HFRW2
WVRQAPGQGLEWMG
439



HFRW3
RVTLTRDTSTSTVYMDLSSLRSEDTAVYYCAR
440



HFRW4
WGQGTLVTVSS
441



Light Chain
QSVLTQPPSVSGAPGQRVTIPCTGSSFNIGAGYDVHWYQQLPGTAPKL
442




LIFGNSNRPSGVPDRFSGSRSGTSASLAITGLQAEDEADYYCQSYDSSL





SGVVFGGGTTLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK





SH




Light Chain
QSVLTQPPSVSGAPGQRVTIPCTGSSFNIGAGYDVHWYQQLPGTAPKL
443



Variable
LIFGNSNRPSGVPDRFSGSRSGTSASLAITGLQAEDEADYYCQSYDSSL




Region
SGVVFGGGTTLTVL




LCDR1
TGSSFNIGAGYDVH
444



LCDR2
GNSNRPS
445



LCDR3
QSYDSSLSGVV
446



LFRW1
QSVLTQPPSVSGAPGQRVTIPC
447



LFRW2
WYQQLPGTAPKLLIF
448



LFRW3
GVPDRFSGSRSGTSASLAITGLQAEDEADYYC
449



LFRW4
FGGGTTLTVL
450





S24-1271
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLE
451


(Spike/

WVSVIYSDGNTYYADSVKGRFTISRDNSKNMLYLQMNSLRAEDTAV



RBD)

YYCARDPGQGYCSGGSCAPSYSLDYWGQGTLVTVSSGSASAPTLFPL





VSCENSPSDTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLE
452



Variable
WVSVIYSDGNTYYADSVKGRFTISRDNSKNMLYLQMNSLRAEDTAV




Region
YYCARDPGQGYCSGGSCAPSYSLDYWGQGTLVTVSS




HCDR1
SNYMS
453



HCDR2
VIYSDGNTYYADSVKG
454



HCDR3
DPGQGYCSGGSCAPSYSLDY
455



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTVS
456



HFRW2
WVRQAPGKGLEWVS
457



HFRW3
RFTISRDNSKNMLYLQMNSLRAEDTAVYYCAR
458



HFRW4
WGQGTLVTVSS
459



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDRYVCWYQQKPGQSPVLVIY
460




QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTW





VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDRYVCWYQQKPGQSPVLVIY
461



Variable
QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTW




Region
VFGGGTKLTVL




LCDR1
SGDKLGDRYVC
462



LCDR2
QDTKRPS
463



LCDR3
QAWDSSTWV
464



LFRW1
SYELTQPPSVSVSPGQTASITC
465



LFRW2
WYQQKPGQSPVLVIY
466



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
467



LFRW4
FGGGTKLTVL
468





S24-1339
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLE
469


(Spike/

WVSDIYSGGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVY



RBD)

YCARDRRGYSYGLHHGMDVWGQGTTVTVSSASTKGPSVFPLAPSSK





STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLE
470



Variable
WVSDIYSGGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVY




Region
YCARDRRGYSYGLHHGMDVWGQGTTVTVSS




HCDR1
SNYMS
471



HCDR2
DIYSGGSTYYADSVKG
472



HCDR3
DRRGYSYGLHHGMDV
473



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTVS
474



HFRW2
WVRQAPGKGLEWVS
475



HFRW3
RFTISRHNSKNTLYLQMNSLRAEDTAVYYCAR
476



HFRW4
WGQGTTVTVSS
477



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPDQAPRLLI
478




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPNT





FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPDQAPRLLI
479



Variable
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPNT




Region
FGQGTKLEIK




LCDR1
RASQSVSSSYLA
480



LCDR2
GASSRAT
481



LCDR3
QQYGSSPNT
482



LFRW1
EIVLTQSPGTLSLSPGERATLSC
483



LFRW2
WYQQKPDQAPRLLIY
484



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
485



LFRW4
FGQGTKLEIK
486





S24-1345
Heavy Chain
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
487


(Spike/

WIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY



RBD)

CARRIRRPTSEVVITYVFDYWGQGTLVTVSSAPTKAPDVFPIISGCRHP





KDNSPVVLACLITGYH




Heavy Chain
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
488



Variable
WIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




Region
CARRIRRPTSEVVITYVFDYWGQGTLVTVSS




HCDR1
SSSYYWG
489



HCDR2
SIYYSGSTYYNPSLKS
490



HCDR3
RIRRPTSEVVITYVFDY
491



HFRW1
QLQLQESGPGLVKPSETLSLTCTVSGGSIS
492



HFRW2
WIRQPPGKGLEWIG
493



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
494



HFRW4
WGQGTLVTVSS
495



Light Chain
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIY
496




DASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYLTFG





GGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ





WKVDNALQSGNSQESVTEQDSKDSTYSLS




Light Chain
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQKPGKAPKLLIY
497



Variable
DASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQFNSYLTFG




Region
GGTKVEIK




LCDR1
RASQGISSALA
498



LCDR2
DASSLES
499



LCDR3
QQFNSYLT
500



LFRW1
AIQLTQSPSSLSASVGDRVTITC
501



LFRW2
WYQQKPGKAPKLLIY
502



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
503



LFRW4
FGGGTKVEIK
504





S24-1378
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLE
505


(ORF8)

WVSVIYSGGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVY





YCAREGYCTNGVCYRHAFDIWGQGTMVTVSSGSASAPTLFPLVSCEN





SPSDTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLE
506



Variable
WVSVIYSGGSTYYADSVKGRFTISRHNSKNTLYLQMNSLRAEDTAVY




Region
YCAREGYCTNGVCYRHAFDIWGQGTMVTVSS




HCDR1
SNYMS
507



HCDR2
VIYSGGSTYYADSVKG
508



HCDR3
EGYCTNGVCYRHAFDI
509



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTVS
510



HFRW2
WVRQAPGKGLEWVS
511



HFRW3
RFTISRHNSKNTLYLQMNSLRAEDTAVYYCAR
512



HFRW4
WGQGTMVTVSS
513



Light Chain
QTVVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSWYQQTPGQAPRT
514




LIYSTNTRSSGVPDRFSGSILGNKAALTITGAQADDESDYYCVLYMGS





GISVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QTVVTQEPSFSVSPGGTVTLTCGLSSGSVSTSYYPSWYQQTPGQAPRT
515



Variable
LIYSTNTRSSGVPDRFSGSILGNKAALTITGAQADDESDYYCVLYMGS




Region
GISVFGGGTKLTVL




LCDR1
GLSSGSVSTSYYPS
516



LCDR2
STNTRSS
517



LCDR3
VLYMGSGISV
518



LFRW1
QTVVTQEPSFSVSPGGTVTLTC
519



LFRW2
WYQQTPGQAPRTLIY
520



LFRW3
GVPDRFSGSILGNKAALTITGAQADDESDYYC
521



LFRW4
FGGGTKLTVL
522





S24-1379
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
523


(NP)

GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RDYYQLPMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALG





CLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
524



Variable
GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA




Region
RDYYQLPMDVWGQGTTVTVSS




HCDR1
SYYWS
525



HCDR2
YIYYSGSTNYNPSLKS
526



HCDR3
DYYQLPMDV
527



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
528



HFRW2
WIRQPPGKGLEWIG
529



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
530



HFRW4
WGQGTTVTVSS
531



Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI
532




YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSL





SGRVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI
533



Variable
YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSL




Region
SGRVFGGGTKLTVL




LCDR1
SGSSSNIGSNYVY
534



LCDR2
RNNQRPS
535



LCDR3
AAWDDSLSGRV
536



LFRW1
QSVLTQPPSASGTPGQRVTISC
537



LFRW2
WYQQLPGTAPKLLIY
538



LFRW3
GVPDRFSGSKSGTSASLAISGLRSEDEADYYC
539



LFRW4
FGGGTKLTVL
540



Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAVSGFTFSSYSMNWVRQAPGKGLE
541




WVSYISSSSSIIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY





YCARDFLDYSRSYSYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKS





TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAVSGFTFSSYSMNWVRQAPGKGLE
542



Variable
WVSYISSSSSIIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY




Region
YCARDFLDYSRSYSYGMDVWGQGTTVTVSS




HCDR1
SYSMN
543



HCDR2
YISSSSSIIYYADSVKG
544



HCDR3
DFLDYSRSYSYGMDV
545



HFRW1
EVQLVESGGGLVQPGGSLRLSCAVSGFTFS
546



HFRW2
WVRQAPGKGLEWVS
547



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
548



HFRW4
WGQGTTVTVSS
549



Light Chain
SYVLTQPPSVSVAPGQTARITCGGDNIGSKNVHWYQQKPGQAPVLVV
550




FDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSD





HYVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSY




Light Chain
SYVLTQPPSVSVAPGQTARITCGGDNIGSKNVHWYQQKPGQAPVLVV
551



Variable
FDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSD




Region
HYVVFGGGTKLTVL




LCDR1
GGDNIGSKNVH
552



LCDR2
DDSDRPS
553



LCDR3
QVWDSSSDHYVV
554



LFRW1
SYVLTQPPSVSVAPGQTARITC
555



LFRW2
WYQQKPGQAPVLVVF
556



LFRW3
GIPERFSGSNSGNTATLTISRVEAGDEADYYC
557



LFRW4
FGGGTKLTVL
558





S24-1476
Heavy Chain
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLE
559


(Spike/

WVGFIRSKAYGGTTQYAASVKGRFTISRDDSKSIAYLQMNSLKTEDT



RBD)

AVYYCTRVRYCTNGVCYGYHFDYWGQGTVVTVSSAST




Heavy Chain
EVQLVESGGGLVQPGRSLRLSCTASGFTFGDYAMSWFRQAPGKGLE
560



Variable
WVGFIRSKAYGGTTQYAASVKGRFTISRDDSKSIAYLQMNSLKTEDT




Region
AVYYCTRVRYCTNGVCYGYHFDYWGQGTVVTVSS




HCDR1
DYAMS
561



HCDR2
FIRSKAYGGTTQYAASVKG
562



HCDR3
VRYCTNGVCYGYHFDY
563



HFRW1
EVQLVESGGGLVQPGRSLRLSCTASGFTFG
564



HFRW2
WFRQAPGKGLEWVG
565



HFRW3
RFTISRDDSKSIAYLQMNSLKTEDTAVYYCTR
566



HFRW4
WGQGTVVTVSS
567



Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLI
568




YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWWT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLI
569



Variable
YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWWT




Region
FGQGTKVEIK




LCDR1
RASQSVSSNLA
570



LCDR2
GASTRAT
571



LCDR3
QQYNNWWT
572



LFRW1
EIVMTQSPATLSVSPGERATLSC
573



LFRW2
WYQQKPGQAPRLLIY
574



LFRW3
GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC
575



LFRW4
FGQGTKVEIK
576





S24-1564
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
577


(NP)

GYVYYSGNTKYNPSLKSRVTISVDTSKNQFSLKLGSVTAADTAVYYC





ARHSRIEVAGTLDFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGG





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
578



Variable
GYVYYSGNTKYNPSLKSRVTISVDTSKNQFSLKLGSVTAADTAVYYC




Region
ARHSRIEVAGTLDFDYWGQGTLVTVSS




HCDR1
SYYWS
579



HCDR2
YVYYSGNTKYNPSLKS
580



HCDR3
HSRIEVAGTLDFDY
581



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
582



HFRW2
WIRQPPGKGLEWIG
583



HFRW3
RVTISVDTSKNQFSLKLGSVTAADTAVYYCAR
584



HFRW4
WGQGTLVTVSS
585



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKRGKAPKLLI
586




YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKRGKAPKLLI
587



Variable
YAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPT




Region
FGQGTKVEIK




LCDR1
RASQSIRSYLN
588



LCDR2
AASSLQS
589



LCDR3
QQSYSTPPT
590



LFRW1
DIQMTQSPSSLSASVGDRVTITC
591



LFRW2
WYQQKRGKAPKLLIY
592



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
593



LFRW4
FGQGTKVEIK
594





S24-1636
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLE
595


(NP)

WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARGDCTNGVCHPLLIYYDSSGLDYWGQGTLVTVSSASTKGPS





VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA





VLQSSG




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLE
596



Variable
WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARGDCTNGVCHPLLIYYDSSGLDYWGQGTLVTVSS




HCDR1
NYGMH
597



HCDR2
VIWYDGSNKYYADSVKG
598



HCDR3
GDCTNGVCHPLLIYYDSSGLDY
599



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
600



HFRW2
WVRQAPGKGLEWVA
601



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
602



HFRW4
WGQGTLVTVSS
603



Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY
604




DASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPIT





FGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSL




Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY
605



Variable
DASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPPIT




Region
FGPGTKVDIK




LCDR1
RASQSVSSYLA
606



LCDR2
DASNRAT
607



LCDR3
QQRSNWPPIT
608



LFRW1
EIVLTQSPATLSLSPGERATLSC
609



LFRW2
WYQQKPGQAPRLLIY
610



LFRW3
GIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
611



LFRW4
FGPGTKVDIK
612





S24-1002
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFTSYAMHWVRQAPGKGLE
613


(Spike/

WVAVISYDGGSKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA



RBD)

VYYCARTTPGITAAGTGTLGRYYYYGMDVWGQGTTVTVSSGSASAP





TLFPLVSCENSPSDTSSV




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFTSYAMHWVRQAPGKGLE
614



Variable
WVAVISYDGGSKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARTTPGITAAGTGTLGRYYYYGMDVWGQGTTVTVSS




HCDR1
SYAMH
615



HCDR2
VISYDGGSKYYADSVKG
616



HCDR3
TTPGITAAGTGTLGRYYYYGMDV
617



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFT
618



HFRW2
WVRQAPGKGLEWVA
619



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
620



HFRW4
WGQGTTVTVSS
621



Light Chain
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQTPGKAPKLLIY
622




DASSLESGVPSRFSGSGSGTDFSLTIGSLQPEDFASYYCQQFNSYPLTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
AIQLTQSPSSLSASVGDRVTITCRASQGISSALAWYQQTPGKAPKLLIY
623



Variable
DASSLESGVPSRFSGSGSGTDFSLTIGSLQPEDFASYYCQQFNSYPLTF




Region
GGGTKVEIK




LCDR1
RASQGISSALA
624



LCDR2
DASSLES
625



LCDR3
QQFNSYPLT
626



LFRW1
AIQLTQSPSSLSASVGDRVTITC
627



LFRW2
WYQQTPGKAPKLLIY
628



LFRW3
GVPSRFSGSGSGTDFSLTIGSLQPEDFASYYC
629



LFRW4
FGGGTKVEIK
630





S24-1301
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKVSGYTLIELSMHWVRQAPGKGLE
631


(Spike)

WMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMALSSLTSEDTA





VYYCATAYAYYYASGGYYTLDYWGQGTLVTVSSASTKGPSVFPLAP





SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS





G




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKVSGYTLIELSMHWVRQAPGKGLE
632



Variable
WMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMALSSLTSEDTA




Region
VYYCATAYAYYYASGGYYTLDYWGQGTLVTVSS




HCDR1
ELSMH
633



HCDR2
GFDPEDGETIYAQKFQG
634



HCDR3
AYAYYYASGGYYTLDY
635



HFRW1
QVQLVQSGAEVKKPGASVKVSCKVSGYTLI
636



HFRW2
WVRQAPGKGLEWMG
637



HFRW3
RVTMTEDTSTDTAYMALSSLTSEDTAVYYCAT
638



HFRW4
WGQGTLVTVSS
639



Light Chain
QAGLTQPPSVSKGLRQTATLTCTGSSNNVGNQGAAWLQQHQGHPPK
640




LLSYRNNNRPSGISERFSASRSGNTASLTITGLQPEDEADYYCSAWDSS





LSNWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QAGLTQPPSVSKGLRQTATLTCTGSSNNVGNQGAAWLQQHQGHPPK
641



Variable
LLSYRNNNRPSGISERFSASRSGNTASLTITGLQPEDEADYYCSAWDSS




Region
LSNWVFGGGTKLTVL




LCDR1
TGSSNNVGNQGAA
642



LCDR2
RNNNRPS
643



LCDR3
SAWDSSLSNWV
644



LFRW1
QAGLTQPPSVSKGLRQTATLTC
645



LFRW2
WLQQHQGHPPKLLSY
646



LFRW3
GISERFSASRSGNTASLTITGLQPEDEADYYC
647



LFRW4
FGGGTKLTVL
648





S24-223
Heavy Chain
QITLKESGPTLVKPTQTLTLTCTFSGFSLNTSGVGVGWIRQPPGKALE
649


(Spike/

WLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTAT



RBD)

YYCAHHTIVPIFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTSSV




Heavy Chain
QITLKESGPTLVKPTQTLTLTCTFSGFSLNTSGVGVGWIRQPPGKALE
650



Variable
WLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTAT




Region
YYCAHHTIVPIFDYWGQGTLVTVSS




HCDR1
TSGVGVG
651



HCDR2
LIYWDDDKRYSPSLKS
652



HCDR3
HTIVPIFDY
653



HFRW1
QITLKESGPTLVKPTQTLTLTCTFSGFSLN
654



HFRW2
WIRQPPGKALEWLA
655



HFRW3
RLTITKDTSKNQVVLTMTNMDPVDTATYYCAH
656



HFRW4
WGQGTLVTVSS
657



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
658




MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSS





STLVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLT




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
659



Variable
MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSS




Region
STLVVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
660



LCDR2
DVSNRPS
661



LCDR3
NSYTSSSTLVV
662



LFRW1
QSALTQPASVSGSPGQSITISC
663



LFRW2
WYQQHPGKAPKLMIY
664



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
665



LFRW4
FGGGTKLTVL
666





S24-461
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
667


(Spike/

GNIYNSGSTNYNPSLKSRLTISVDTSKNHFSLKLSSVTAADTAVYYCA



RBD)

RGGLEHDGDYVYYYGMDVWGQGTTITVSSASTKGPSVFPLAPSSKST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
668



Variable
GNIYNSGSTNYNPSLKSRLTISVDTSKNHFSLKLSSVTAADTAVYYCA




Region
RGGLEHDGDYVYYYGMDVWGQGTTITVSS




HCDR1
SYYWS
669



HCDR2
NIYNSGSTNYNPSLKS
670



HCDR3
GGLEHDGDYVYYYGMDV
671



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
672



HFRW2
WIRQPPGKGLEWIG
673



HFRW3
RLTISVDTSKNHFSLKLSSVTAADTAVYYCAR
674



HFRW4
WGQGTTITVSS
675



Light Chain
SYELTQPPSVSVSLGQMARITCSGEALPKKYAYWYQQKPGQFPILVIY
676




KDSERPSGIPERFSGSSSGTIVTLTISGVQAEDEADYYCLSEDSSGTWV





FGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAV





TVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
SYELTQPPSVSVSLGQMARITCSGEALPKKYAYWYQQKPGQFPILVIY
677



Variable
KDSERPSGIPERFSGSSSGTIVTLTISGVQAEDEADYYCLSEDSSGTWV




Region
FGGGTKLTVL




LCDR1
SGEALPKKYAY
678



LCDR2
KDSERPS
679



LCDR3
LSEDSSGTWV
680



LFRW1
SYELTQPPSVSVSLGQMARITC
681



LFRW2
WYQQKPGQFPILVIY
682



LFRW3
GIPERFSGSSSGTIVTLTISGVQAEDEADYYC
683



LFRW4
FGGGTKLTVL
684





S24-511
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
685


(NP)

WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCAKYTSTVTTNYYYGMDVWGQGTTVTVSSAPTKAPDVFPIISGC





RHPKDNSPVVLACLITGYH




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
686



Variable
WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKYTSTVTTNYYYGMDVWGQGTTVTVSS




HCDR1
SYGMH
687



HCDR2
VISYDGSNKYYADSVKG
688



HCDR3
YTSTVTTNYYYGMDV
689



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
690



HFRW2
WVRQAPGKGLEWVA
691



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
692



HFRW4
WGQGTTVTVSS
693



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
694




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV





VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASSY




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
695



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV




Region
VFGGGTKLTVL




LCDR1
SGDKLGDKYAC
696



LCDR2
QDSKRPS
697



LCDR3
QAWDSSTVV
698



LFRW1
SYELTQPPSVSVSPGQTASITC
699



LFRW2
WYQQKPGQSPVLVIY
700



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
701



LFRW4
FGGGTKLTVL
702





S24-788
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
703


(Spike/

WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA



RBD)

VYYCARGRSPGGGHYYGMDVWGQGTTVTVSSGSASAPTLFPLVSCE





NSPSDTSSV




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
704



Variable
WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARGRSPGGGHYYGMDVWGQGTTVTVSS




HCDR1
SYGMH
705



HCDR2
VIWYDGSNKYYADSVKG
706



HCDR3
GRSPGGGHYYGMDV
707



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
708



HFRW2
WVRQAPGKGLEWVA
709



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
710



HFRW4
WGQGTTVTVSS
711



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
712




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSSV





VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
713



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSSV




Region
VFGGGTKLTVL




LCDR1
SGDKLGDKYAC
714



LCDR2
QDSKRPS
715



LCDR3
QAWDSSSVV
716



LFRW1
SYELTQPPSVSVSPGQTASITC
717



LFRW2
WYQQKPGQSPVLVIY
718



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
719



LFRW4
FGGGTKLTVL
720





S24-821
Heavy Chain
QVTLRESGPALVKPTQTLTLTCTFSGLSLSSSGMCVSWIRQPPGKALE
721


(Spike/

WLARIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTAT



RBD)

YYCARICTMVRGLHDAFDIWGQGTMVTVSSGSASAPTLFPLVSCENS





PSDTSSV




Heavy Chain
QVTLRESGPALVKPTQTLTLTCTFSGLSLSSSGMCVSWIRQPPGKALE
722



Variable
WLARIDWDDDKYYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTAT




Region
YYCARICTMVRGLHDAFDIWGQGTMVTVSS




HCDR1
SSGMCVS
723



HCDR2
RIDWDDDKYYSTSLKT
724



HCDR3
ICTMVRGLHDAFDI
725



HFRW1
QVTLRESGPALVKPTQTLTLTCTFSGLSLS
726



HFRW2
WIRQPPGKALEWLA
727



HFRW3
RLTISKDTSKNQVVLTMTNMDPVDTATYYCAR
728



HFRW4
WGQGTMVTVSS
729



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
730




YKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDN




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
731



Variable
YKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSW




Region
TFGQGTKVEIK




LCDR1
RASQSISSWLA
732



LCDR2
KASSLES
733



LCDR3
QQYNSYSWT
734



LFRW1
DIQMTQSPSTLSASVGDRVTITC
735



LFRW2
WYQQKPGKAPKLLIY
736



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
737



LFRW4
FGQGTKVEIK
738





S144-67
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYWIAWVRQMPGKGLE
739


(Spike/

WVGIIYPDDSDTRYSPSFQGQVTISADKSIGTAYLQWSSLKASDTAMY



RBD)

YCARGQYYDFWSGAGGVDVWGQGTTVTVSSASTKGPSVFPLAPSSK





STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYSFTTYWIAWVRQMPGKGLE
740



Variable
WVGIIYPDDSDTRYSPSFQGQVTISADKSIGTAYLQWSSLKASDTAMY




Region
YCARGQYYDFWSGAGGVDVWGQGTTVTVSS




HCDR1
TYWIA
741



HCDR2
IIYPDDSDTRYSPSFQG
742



HCDR3
GQYYDFWSGAGGVDV
743



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSGYSFT
744



HFRW2
WVRQMPGKGLEWVG
745



HFRW3
QVTISADKSIGTAYLQWSSLKASDTAMYYCAR
746



HFRW4
WGQGTTVTVSS
747



Light Chain
QSVLTQPPSVSGAPGQRVTISCTGSRSNIGAGYDVQWYQQVPGTAPK
748




LLISGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSS





LSGLRVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISD





FYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ





WKSH




Light Chain
QSVLTQPPSVSGAPGQRVTISCTGSRSNIGAGYDVQWYQQVPGTAPK
749



Variable
LLISGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSS




Region
LSGLRVFGGGTKLTVL




LCDR1
TGSRSNIGAGYDVQ
750



LCDR2
GNSNRPS
751



LCDR3
QSYDSSLSGLRV
752



LFRW1
QSVLTQPPSVSGAPGQRVTISC
753



LFRW2
WYQQVPGTAPKLLIS
754



LFRW3
GVPDRFSGSKSGTSASLAITGLQAEDEADYYC
755



LFRW4
FGGGTKLTVL
756





S144-69
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLE
757


(Spike/

WMGIIYPGDSDTRYSPSFQGQVTISADKSITTAYLQWSSLKASDTAMY



RBD)

YCARTQTTNWFDSWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA





ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLE
758



Variable
WMGIIYPGDSDTRYSPSFQGQVTISADKSITTAYLQWSSLKASDTAMY




Region
YCARTQTTNWFDSWGQGTLVTVSS




HCDR1
SYWIG
759



HCDR2
IIYPGDSDTRYSPSFQG
760



HCDR3
TQTTNWFDS
761



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSGYSFT
762



HFRW2
WVRQMPGKGLEWMG
763



HFRW3
QVTISADKSITTAYLQWSSLKASDTAMYYCAR
764



HFRW4
WGQGTLVTVSS
765



Light Chain
DIQMTQSPSTLSVSVGDRVTITCRASQSVSSWLAWYQQKPGKAPKLLI
766




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSFYTF





GQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSVSVGDRVTITCRASQSVSSWLAWYQQKPGKAPKLLI
767



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSFYTF




Region
GQGTKLEIK




LCDR1
RASQSVSSWLA
768



LCDR2
DASSLES
769



LCDR3
QQYNSFYT
770



LFRW1
DIQMTQSPSTLSVSVGDRVTITC
771



LFRW2
WYQQKPGKAPKLLIY
772



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
773



LFRW4
FGQGTKLEIK
774





S144-94
Heavy Chain
QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
775


(ORF8)

WVTFTRYDGSNKFYADSVKGRFSISRDNSKNTLYLQMNSLRAEDTA





VYYCAKESRVAFGGAIAIYYFGMDVWGQGTTVTVSSASTKGPSVFPL





APCSRSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ





SSG




Heavy Chain
QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
776



Variable
WVTFTRYDGSNKFYADSVKGRFSISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKESRVAFGGAIAIYYFGMDVWGQGTTVTVSS




HCDR1
SYGMH
777



HCDR2
FTRYDGSNKFYADSVKG
778



HCDR3
ESRVAFGGAIAIYYFGMDV
779



HFRW1
QVQLVESGGGVVQPGGSLRLSCAASGFTFS
780



HFRW2
WVRQAPGKGLEWVT
781



HFRW3
RFSISRDNSKNTLYLQMNSLRAEDTAVYYCAK
782



HFRW4
WGQGTTVTVSS
783



Light Chain
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS
784




PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA





LQTPQYTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNF





YPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADY





E




Light Chain
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS
785



Variable
PQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQA




Region
LQTPQYTFGQGTKLEIK




LCDR1
RSSQSLLHSNGYNYLD
786



LCDR2
LGSNRAS
787



LCDR3
MQALQTPQYT
788



LFRW1
DIVMTQSPLSLPVTPGEPASISC
789



LFRW2
WYLQKPGQSPQLLIY
790



LFRW3
GVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC
791



LFRW4
FGQGTKLEIK
792





S144-113
Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLE
793


(ORF8)

WVSAIRNSGSSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDSAV





YYCAKVGGTAAGHPFYDYWGQGTLVTVSSASTKGPSVFPLAPSSKST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLE
794



Variable
WVSAIRNSGSSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDSAV




Region
YYCAKVGGTAAGHPFYDYWGQGTLVTVSS




HCDR1
NYAMS
795



HCDR2
AIRNSGSSTYYADSVKG
796



HCDR3
VGGTAAGHPFYDY
797



HFRW1
EVQLLESGGGLVQPGGSLRLSCAASGFTFS
798



HFRW2
WVRQAPGKGLEWVS
799



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDSAVYYCAK
800



HFRW4
WGQGTLVTVSS
801



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPDLLI
802




YAASSLQSGVPLRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSAPTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPDLLI
803



Variable
YAASSLQSGVPLRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSAPTF




Region
GGGTKVEIK




LCDR1
RASQSISNYLN
804



LCDR2
AASSLQS
805



LCDR3
QQTYSAPT
806



LFRW1
DIQMTQSPSSLSASVGDRVTITC
807



LFRW2
WYQQKPGKAPDLLIY
808



LFRW3
GVPLRFSGSGSGTDFTLTISSLQPEDFATYYC
809



LFRW4
FGGGTKVEIK
810





S144-175
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
811


(ORF8)

EWMGRINPNSGGTNFAQRFQGRVSMTRDTSISTAYMELSSLRSDDTA





VYYCARGAKFEHLPFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
812



Variable
EWMGRINPNSGGTNFAQRFQGRVSMTRDTSISTAYMELSSLRSDDTA




Region
VYYCARGAKFEHLPFDIWGQGTMVTVSS




HCDR1
GYYMH
813



HCDR2
RINPNSGGTNFAQRFQG
814



HCDR3
GAKFEHLPFDI
815



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
816



HFRW2
WVRQAPGQGLEWMG
817



HFRW3
RVSMTRDTSISTAYMELSSLRSDDTAVYYCAR
818



HFRW4
WGQGTMVTVSS
819



Light Chain
QSMLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI
820




YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDRR





WVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPG





AVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSMLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI
821



Variable
YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDRR




Region
WVFGGGTKLTVL




LCDR1
SGSSSNIGSNYVY
822



LCDR2
RNNQRPS
823



LCDR3
AAWDDRRWV
824



LFRW1
QSMLTQPPSASGTPGQRVTISC
825



LFRW2
WYQQLPGTAPKLLIY
826



LFRW3
GVPDRFSGSKSGTSASLAISGLRSEDEADYYC
827



LFRW4
FGGGTKLTVL
828





S144-208
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKSSGYTFTGYYMHWVRQAPGQGL
829


(ORF8)

EWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDT





AVYYCARGARGGAGCSGWSCFDFWGQGTLVTVSSASTKGPSVFPLA





PSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS





G




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKSSGYTFTGYYMHWVRQAPGQGL
830



Variable
EWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDT




Region
AVYYCARGARGGAGCSGWSCFDFWGQGTLVTVSS




HCDR1
GYYMH
831



HCDR2
RINPNSGGTNYAQKFQG
832



HCDR3
GARGGAGCSGWSCFDF
833



HFRW1
QVQLVQSGAEVKKPGASVKVSCKSSGYTFT
834



HFRW2
WVRQAPGQGLEWMG
835



HFRW3
RVTMTRDTSISTAYMELSRLRSDDTAVYYCAR
836



HFRW4
WGQGTLVTVSS
837



Light Chain
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYKYVSWYQQHPGKAPK
838




LMIYDVSKRPSGVPDRFSGSKSGNTASLTISGLQAEDEGDYYCCSYAG





TYSLVFGGGTKVTVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLIS





DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ





WKSH




Light Chain
QSALTQPRSVSGSPGQSVTISCTGTSSDVGGYKYVSWYQQHPGKAPK
839



Variable
LMIYDVSKRPSGVPDRFSGSKSGNTASLTISGLQAEDEGDYYCCSYAG




Region
TYSLVFGGGTKVTV




LCDR1
TGTSSDVGGYKYVS
840



LCDR2
DVSKRPS
841



LCDR3
CSYAGTYSLV
842



LFRW1
QSALTQPRSVSGSPGQSVTISC
843



LFRW2
WYQQHPGKAPKLMIY
844



LFRW3
GVPDRFSGSKSGNTASLTISGLQAEDEGDYYC
845



LFRW4
FGGGTKVTV
846





S144-339
Heavy Chain
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYTMNWVRQAPGKGLE



(NP)

WVSSITRSSTYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY





YCARDPYYDILTGYWNYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS





GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG
847



Heavy Chain
EVQLVESGGGLVKPGGSLRLSCAASGFTFSDYTMNWVRQAPGKGLE
848



Variable
WVSSITRSSTYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY




Region
YCARDPYYDILTGYWNYWGQGTLVTVSS




HCDR1
DYTMN
849



HCDR2
SITRSSTYIYYADSVKG
850



HCDR3
DPYYDILTGYWNY
851



HFRW1
EVQLVESGGGLVKPGGSLRLSCAASGFTFS
852



HFRW2
WVRQAPGKGLEWVS
853



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
854



HFRW4
WGQGTLVTVSS
855



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSLSSSYLAWYQQKPGQSPRLLI
856




YGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYRTSPRG





TFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSLSSSYLAWYQQKPGQSPRLLI
857



Variable
YGASSRATGIPDRFSGSGSGTDFTLTINRLEPEDFAVYYCQQYRTSPRG




Region
TFGGGTKVEIK




LCDR1
RASQSLSSSYLA
858



LCDR2
GASSRAT
859



LCDR3
QQYRTSPRGT
860



LFRW1
EIVLTQSPGTLSLSPGERATLSC
861



LFRW2
WYQQKPGQSPRLLIY
862



LFRW3
GIPDRFSGSGSGTDFTLTINRLEPEDFAVYYC
863



LFRW4
FGGGTKVEIK
864





S144-359
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLE
865


(ORF8)

WVSSIRGSGGSTYYADSVKGRFTISRDNSKYTLYLQMNSLRAEDTAV





YYCAKITGAVGGENWFDPWGQGTLVTVSSASTKGPSVFPLAPCSRST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLE
866



Variable
WVSSIRGSGGSTYYADSVKGRFTISRDNSKYTLYLQMNSLRAEDTAV




Region
YYCAKITGAVGGENWFDPWGQGTLVTVSS




HCDR1
SYAMS
867



HCDR2
SIRGSGGSTYYADSVKG
868



HCDR3
ITGAVGGENWFDP
869



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
870



HFRW2
WVRQAPGKGLEWVS
871



HFRW3
RFTISRDNSKYTLYLQMNSLRAEDTAVYYCAK
872



HFRW4
WGQGTLVTVSS
873



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
874




AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQTSRTPLTFG





GGTKVEVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ





WKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
875



Variable
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQTSRTPLTFG




Region
GGTKVEVK




LCDR1
RASQSISSYLN
876



LCDR2
AASSLQS
877



LCDR3
QQTSRTPLT
878



LFRW1
DIQMTQSPSSLSASVGDRVTITC
879



LFRW2
WYQQKPGKAPKLLIY
880



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYC
881



LFRW4
FGGGTKVEVK
882





S144-460
Heavy Chain
EVRLVQSGGGLVKPGGSLRLSCAASGFTFSTAWVRWVRQAPGKGLE
883


(Spike/

CVGRIKSKNDGDRAEYAAPARGRFIISRDDAENILYLQMNNLKTEDT



RBD)

AFYYCTTDQGNSSAFYSADYWGQGTLVTVSSASPTSPKVFPLSLDSTP





QDGNVVVACLVQGFFPQEPLSVTWSESGQNVTARNF




Heavy Chain
EVRLVQSGGGLVKPGGSLRLSCAASGFTFSTAWVRWVRQAPGKGLE
884



Variable
CVGRIKSKNDGDRAEYAAPARGRFIISRDDAENILYLQMNNLKTEDT




Region
AFYYCTTDQGNSSAFYSADYWGQGTLVTVSS




HCDR1
TAWVR
885



HCDR2
RIKSKNDGDRAEYAAPARG
886



HCDR3
DQGNSSAFYSADY
887



HFRW1
EVRLVQSGGGLVKPGGSLRLSCAASGFTFS
888



HFRW2
WVRQAPGKGLECVG
889



HFRW3
RFIISRDDAENILYLQMNNLKTEDTAFYYCTT
890



HFRW4
WGQGTLVTVSS
891



Light Chain
DIQMTQSPSAMSASVGDRVTITCRASQDINTFLTWFQQKPGKVPQRLI
892




FAAYRLQSGVPSRFSGSGSGTEFTLTINSLQPEDVATYYCLHHKTYPY





TFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSAMSASVGDRVTITCRASQDINTFLTWFQQKPGKVPQRLI
893



Variable
FAAYRLQSGVPSRFSGSGSGTEFTLTINSLQPEDVATYYCLHHKTYPY




Region
TFGQGTKLEIK




LCDR1
RASQDINTFLT
894



LCDR2
AAYRLQS
895



LCDR3
LHHKTYPYT
896



LFRW1
DIQMTQSPSAMSASVGDRVTITC
897



LFRW2
WFQQKPGKVPQRLIF
898



LFRW3
GVPSRFSGSGSGTEFTLTINSLQPEDVATYYC
899



LFRW4
FGQGTKLEIK
900





S144-466
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYRFTRYWIGWVRQMPGKGLE
901


(Spike/

WMGIIYLGDSETRYSPSFQGQVTISADNSISTAYLQWSSLKASDTAMY



RBD)

YCARSSNWNYGDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSGGTA





ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYRFTRYWIGWVRQMPGKGLE
902



Variable
WMGIIYLGDSETRYSPSFQGQVTISADNSISTAYLQWSSLKASDTAMY




Region
YCARSSNWNYGDYWGQGTLVTVSS




HCDR1
RYWIG
903



HCDR2
IIYLGDSETRYSPSFQG
904



HCDR3
SSNWNYGDY
905



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSGYRFT
906



HFRW2
WVRQMPGKGLEWMG
907



HFRW3
QVTISADNSISTAYLQWSSLKASDTAMYYCAR
908



HFRW4
WGQGTLVTVSS
909



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSITSWLAWYQQKSGKAPKLLI
910




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSITSWLAWYQQKSGKAPKLLI
911



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPW




Region
TFGQGTKVEIK




LCDR1
RASQSITSWLA
912



LCDR2
DASSLES
913



LCDR3
QQYNSYPWT
914



LFRW1
DIQMTQSPSTLSASVGDRVTITC
915



LFRW2
WYQQKSGKAPKLLIY
916



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
917



LFRW4
FGQGTKVEIK
918





S144-469
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSDYWSWIRQPPGKGLEWI
919


(ORF8)

GYMYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYC





ARWDRGSRPHYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKS





TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSDYWSWIRQPPGKGLEWI
920



Variable
GYMYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYC




Region
ARWDRGSRPHYYYYGMDVWGQGTTVTVSS




HCDR1
SDYWS
921



HCDR2
YMYYSGSTNYNPSLKS
922



HCDR3
WDRGSRPHYYYYGMDV
923



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
924



HFRW2
WIRQPPGKGLEWIG
925



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
926



HFRW4
WGQGTTVTVSS
927



Light Chain
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS
928




PQLLIYLGSNRASGVPDRFSGSASGTDFTLKISRVEAEDVGVYYCMQA





LQAFTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP





REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQS
929



Variable
PQLLIYLGSNRASGVPDRFSGSASGTDFTLKISRVEAEDVGVYYCMQA




Region
LQAFTFGPGTKVDIK




LCDR1
RSSQSLLHSNGYNYLD
930



LCDR2
LGSNRAS
931



LCDR3
MQALQAFT
932



LFRW1
DIVMTQSPLSLPVTPGEPASISC
933



LFRW2
WYLQKPGQSPQLLIY
934



LFRW3
GVPDRFSGSASGTDFTLKISRVEAEDVGVYYC
935



LFRW4
FGPGTKVDIK
936





S144-509
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSAYTFTTYWIGWVRQMPGKGLE
937


(Spike/

WMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMY



RBD)

YCARLLLVAGPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV





TVPSSSLGTQTYICNVNHKPSNTKVD




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSAYTFTTYWIGWVRQMPGKGLE
938



Variable
WMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMY




Region
YCARLLLVAGPFDYWGQGTLVTVSS




HCDR1
TYWIG
939



HCDR2
IIYPGDSDTRYSPSFQG
940



HCDR3
LLLVAGPFDY
941



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSAYTFT
942



HFRW2
WVRQMPGKGLEWMG
943



HFRW3
QVTISADKSISTAYLQWSSLKASDTAMYYCAR
944



HFRW4
WGQGTLVTVSS
945



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPNLLI
946




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDN




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPNLLI
947



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPW




Region
TFGQGTKVEIK




LCDR1
RASQSISSWLA
948



LCDR2
DASSLES
949



LCDR3
QQYNSYPWT
950



LFRW1
DIQMTQSPSTLSASVGDRVTITC
951



LFRW2
WYQQKPGKAPNLLIY
952



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
953



LFRW4
FGQGTKVEIK
954





S144-516
Heavy Chain
QVQLLQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
955


(ORF8)

EWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLTSDDTA





VYYCATKTGIDRYYYYYMDVWGKGTTVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLLQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
956



Variable
EWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLTSDDTA




Region
VYYCATKTGIDRYYYYYMDVWGKGTTVTVSS




HCDR1
GYYMH
957



HCDR2
RINPNSGGTNYAQKFQG
958



HCDR3
KTGIDRYYYYYMDV
959



HFRW1
QVQLLQSGAEVKKPGASVKVSCKASGYTFT
960



HFRW2
WVRQAPGQGLEWMG
961



HFRW3
RVTMTRDTSISTAYMELSRLTSDDTAVYYCAT
962



HFRW4
WGKGTTVTVSS
963



Light Chain
QSVLTQPPSVSEAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKL
964




LIYGNINRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDNS





LNGSVFGGGTKLTVLRQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSVLTQPPSVSEAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKL
965



Variable
LIYGNINRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDNS




Region
LNGSVFGGGTKLTVL




LCDR1
TGSSSNIGAGYDVH
966



LCDR2
GNINRPS
967



LCDR3
QSYDNSLNGSV
968



LFRW1
QSVLTQPPSVSEAPGQRVTISC
969



LFRW2
WYQQLPGTAPKLLIY
970



LFRW3
GVPDRFSGSKSGTSASLAITGLQAEDEADYYC
971



LFRW4
FGGGTKLTVL
972





S144-568
Heavy Chain
QVQLQESGPGLVKPSETLSLTCSVSGGSISDYYWSWIRQPPGKGLEWI
973


(Spike/

GYIYNSGSTNYNPSLKSRVTISADPSKNQFSLKLSSVTAADTAVYYCA



RBD)

RPHGGDYAFDIWGQGTMVTVSSASPTSPKVFPLSLDSTPQDGNVVVA





CLVQGFFPQEPLSVTWSESGQNVTARNF




Heavy Chain
QVQLQESGPGLVKPSETLSLTCSVSGGSISDYYWSWIRQPPGKGLEWI
974



Variable
GYIYNSGSTNYNPSLKSRVTISADPSKNQFSLKLSSVTAADTAVYYCA




Region
RPHGGDYAFDIWGQGTMVTVSS




HCDR1
DYYWS
975



HCDR2
YIYNSGSTNYNPSLKS
976



HCDR3
PHGGDYAFDI
977



HFRW1
QVQLQESGPGLVKPSETLSLTCSVSGGSIS
978



HFRW2
WIRQPPGKGLEWIG
979



HFRW3
RVTISADPSKNQFSLKLSSVTAADTAVYYCAR
980



HFRW4
WGQGTMVTVSS
981



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNFLAWYQQKPGQPPRLLI
982




YGASVRATGIPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQQYGSLPRT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNFLAWYQQKPGQPPRLLI
983



Variable
YGASVRATGIPDRFSGSGSGTDFTLTITRLEPEDFAVYYCQQYGSLPRT




Region
FGQGTKVEIK




LCDR1
RASQSVSSNFLA
984



LCDR2
GASVRAT
985



LCDR3
QQYGSLPRT
986



LFRW1
EIVLTQSPGTLSLSPGERATLSC
987



LFRW2
WYQQKPGQPPRLLIY
988



LFRW3
GIPDRFSGSGSGTDFTLTITRLEPEDFAVYYC
989



LFRW4
FGQGTKVEIK
990





S144-576
Heavy Chain
QVQLVQSGAEVMKPGSSVKVSCKASGGTFSSYSITWVRQAPGQGLE
991


(Spike/

WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY



RBD)

YCARGYSGSPSNLDGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVMKPGSSVKVSCKASGGTFSSYSITWVRQAPGQGLE
992



Variable
WMGRIIPILGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY




Region
YCARGYSGSPSNLDGMDVWGQGTTVTVSS




HCDR1
SYSIT
993



HCDR2
RIIPILGIANYAQKFQG
994



HCDR3
GYSGSPSNLDGMDV
995



HFRW1
QVQLVQSGAEVMKPGSSVKVSCKASGGTFS
996



HFRW2
WVRQAPGQGLEWMG
997



HFRW3
RVTITADKSTSTAYMELSSLRSEDTAVYYCAR
998



HFRW4
WGQGTTVTVSS
999



Light Chain
IQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIY
1000




DASSLQSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSPITF





GQGTRLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
IQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIY
1001



Variable
DASSLQSGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSPITF




Region
GQGTRLEIK




LCDR1
RASQSISSWLA
1002



LCDR2
DASSLQS
1003



LCDR3
QQYNSYSPIT
1004



LFRW1
IQMTQSPSTLSASVGDRVTITC
1005



LFRW2
WYQQKPGKAPKLLIY
1006



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
1007



LFRW4
FGQGTRLEIK
1008





S144-588
Heavy Chain
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
1009


(ORF8)

WIGSIYYSGSTYYNPSLKSRFTISVDTSKNQFSLKLSSVTAADTAVYYC





AAYQRKLGYCRGNSCFSCFDPWGQGTLVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLE
1010



Variable
WIGSIYYSGSTYYNPSLKSRFTISVDTSKNQFSLKLSSVTAADTAVYYC




Region
AAYQRKLGYCRGNSCFSCFDPWGQGTLVTVSS




HCDR1
SSSYYWG
1011



HCDR2
SIYYSGSTYYNPSLKS
1012



HCDR3
YQRKLGYCRGNSCFSCFDP
1013



HFRW1
QLQLQESGPGLVKPSETLSLTCTVSGGSIS
1014



HFRW2
WIRQPPGKGLEWIG
1015



HFRW3
RFTISVDTSKNQFSLKLSSVTAADTAVYYCAA
1016



HFRW4
WGQGTLVTVSS
1017



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
1018




QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV





LFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSH




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
1019



Variable
QDTKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV




Region
LFGGGTKLTVL




LCDR1
SGDKLGDKYAC
1020



LCDR2
QDTKRPS
1021



LCDR3
QAWDSSTVL
1022



LFRW1
SYELTQPPSVSVSPGQTASITC
1023



LFRW2
WYQQKPGQSPVLVIY
1024



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
1025



LFRW4
FGGGTKLTVL
1026





S144-628
Heavy Chain
EVHLVQSGAEVKQPGESLKISCKGSGYNFATYWIAWVRQMPGKGLE
1027


(Spike/

WMGIIYPGDSDTRYSPSFQGQVIISADKSIGTAFLQWSSLKASDTAMY



RBD)

YCARRGYSSSNYRVDEYYYYGMDVWGQGTTVTVSSASPTSPKVFPL





SLCSTQPDGNVVIACLVQGFFPQEPLSVTWSESGQGVTARNFP




Heavy Chain
EVHLVQSGAEVKQPGESLKISCKGSGYNFATYWIAWVRQMPGKGLE
1028



Variable
WMGIIYPGDSDTRYSPSFQGQVIISADKSIGTAFLQWSSLKASDTAMY




Region
YCARRGYSSSNYRVDEYYYYGMDVWGQGTTVTVSS




HCDR1
TYWIA
1029



HCDR2
IIYPGDSDTRYSPSFQG
1030



HCDR3
RGYSSSNYRVDEYYYYGMDV
1031



HFRW1
EVHLVQSGAEVKQPGESLKISCKGSGYNFA
1032



HFRW2
WVRQMPGKGLEWMG
1033



HFRW3
QVIISADKSIGTAFLQWSSLKASDTAMYYCAR
1034



HFRW4
WGQGTTVTVSS
1035



Light Chain
QSVLTQPPSMSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGAAPK
1036




LLIYGDTSRPSGVPDRFSGSKSDTSASLAITGLQAEDEADYYCQSFDRS





LSGLVIFGGGTRLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS*DRKS




Light Chain
QSVLTQPPSMSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGAAPK
1037



Variable
LLIYGDTSRPSGVPDRFSGSKSDTSASLAITGLQAEDEADYYCQSFDRS




Region
LSGLVIFGGGTRLTVL




LCDR1
TGSSSNIGAGYDVH
1038



LCDR2
GDTSRPS
1039



LCDR3
QSFDRSLSGLVI
1040



LFRW1
QSVLTQPPSMSGAPGQRVTISC
1041



LFRW2
WYQQLPGAAPKLLIY
1042



LFRW3
GVPDRFSGSKSDTSASLAITGLQAEDEADYYC
1043



LFRW4
FGGGTRLTVL
1044





S144-740
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1045


(ORF8)

EWMGRINPNSGDTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDT





AVYYCARLGKGMAAARTVFDSWGQGTLVTVSSASTKGPSVFPLAPS





SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1046



Variable
EWMGRINPNSGDTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDT




Region
AVYYCARLGKGMAAARTVFDSWGQGTLVTVSS




HCDR1
GYYMH
1047



HCDR2
RINPNSGDTNYAQKFQG
1048



HCDR3
LGKGMAAARTVFDS
1049



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1050



HFRW2
WVRQAPGQGLEWMG
1051



HFRW3
RVTMTRDTSISTAYMELSRLRSDDTAVYYCAR
1052



HFRW4
WGQGTLVTVSS
1053



Light Chain
EVVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLV
1054




IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQFGSSPTF





GRGTRLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EVVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLV
1055



Variable
IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQFGSSPTF




Region
GRGTRLEIK




LCDR1
RASQSVSSSYLA
1056



LCDR2
GASSRAT
1057



LCDR3
QQFGSSPT
1058



LFRW1
EVVLTQSPGTLSLSPGERATLSC
1059



LFRW2
WYQQKPGQAPRLVIY
1060



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
1061



LFRW4
FGRGTRLEIK
1062





S144-741
Heavy Chain
QVHLVQSGAEVKKPGASVKVSCKASGYTFTGYYMNWVRQAPGQGL
1063


(ORF8)

EWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDA





AVYYCARAERYSSSWYNLYYWGQGTLVTVSSASTKGPSVFPLAPSSK





STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVHLVQSGAEVKKPGASVKVSCKASGYTFTGYYMNWVRQAPGQGL
1064



Variable
EWMGRINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDA




Region
AVYYCARAERYSSSWYNLYYWGQGTLVTVSS




HCDR1
GYYMN
1065



HCDR2
RINPNSGGTNYAQKFQG
1066



HCDR3
AERYSSSWYNLYY
1067



HFRW1
QVHLVQSGAEVKKPGASVKVSCKASGYTFT
1068



HFRW2
WVRQAPGQGLEWMG
1069



HFRW3
RVTMTRDTSISTAYMELSRLRSDDAAVYYCAR
1070



HFRW4
WGQGTLVTVSS
1071



Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLI
1072




YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSL





NGVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK





SH




Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLI
1073



Variable
YSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSL




Region
NGVVFGGGTKLTVL




LCDR1
SGSSSNIGSNTVN
1074



LCDR2
SNNQRPS
1075



LCDR3
AAWDDSLNGVV
1076



LFRW1
QSVLTQPPSASGTPGQRVTISC
1077



LFRW2
WYQQLPGTAPKLLIY
1078



LFRW3
GVPDRFSGSKSGTSASLAISGLQSEDEADYYC
1079



LFRW4
FGGGTKLTVL
1080





S144-803
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSRYSFTRYWIAWVRQMPGKGLE
1081


(Spike/

WMGIIYPGDSDTRYSPSFQGPVTISADKSISTAYLQWSSLKASDTAIYY



RBD)

CARLPNSNYVDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA





LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSSLGTQTYICNVNHKPSNTKVD




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSRYSFTRYWIAWVRQMPGKGLE
1082



Variable
WMGIIYPGDSDTRYSPSFQGPVTISADKSISTAYLQWSSLKASDTAIYY




Region
CARLPNSNYVDYWGQGTLVTVSS




HCDR1
RYWIA
1083



HCDR2
IIYPGDSDTRYSPSFQG
1084



HCDR3
LPNSNYVDY
1085



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSRYSFT
1086



HFRW2
WVRQMPGKGLEWMG
1087



HFRW3
PVTISADKSISTAYLQWSSLKASDTAIYYCAR
1088



HFRW4
WGQGTLVTVSS
1089



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1090




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNIYPYT





FGQGTKLDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1091



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNIYPYT




Region
FGQGTKLDIK




LCDR1
RASQSISSWLA
1092



LCDR2
DASSLES
1093



LCDR3
QQYNIYPYT
1094



LFRW1
DIQMTQSPSTLSASVGDRVTITC
1095



LFRW2
WYQQKPGKAPKLLIY
1096



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
1097



LFRW4
FGQGTKLDIK
1098





S144-843
Heavy Chain
QVQLVESGGGVVQPGGSVRLSCAASGFDFTNNGMYWVRQAPGKGL
1099


(ORF8)

EWVAFIRYDGNKQDYADSVKGRFTISRDNSKNTLYLQMSSLRPEDTA





VYYCAKGVYTENYGWGQGTLVTVSSGTTVTVSSASTKGPSVFPLAPC





SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL





YSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVD




Heavy Chain
QVQLVESGGGVVQPGGSVRLSCAASGFDFTNNGMYWVRQAPGKGL
1100



Variable
EWVAFIRYDGNKQDYADSVKGRFTISRDNSKNTLYLQMSSLRPEDTA




Region
VYYCAKGVYTENYGWGQGTLVTVSS




HCDR1
NNGMY
1101



HCDR2
FIRYDGNKQDYADSVKG
1102



HCDR3
GVYTENYG
1103



HFRW1
QVQLVESGGGVVQPGGSVRLSCAASGFDFT
1104



HFRW2
WVRQAPGKGLEWVA
1105



HFRW3
RFTISRDNSKNTLYLQMSSLRPEDTAVYYCAK
1106



HFRW4
WGQGTLVTVSS
1107



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQTVTSRYLAWYQQKPGQAPRLL
1108




IYGASTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSPP





YTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQTVTSRYLAWYQQKPGQAPRLL
1109



Variable
IYGASTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSPP




Region
YTFGQGTKLEIK




LCDR1
RASQTVTSRYLA
1110



LCDR2
GASTRAT
1111



LCDR3
QQYGNSPPYT
1112



LFRW1
EIVLTQSPGTLSLSPGERATLSC
1113



LFRW2
WYQQKPGQAPRLLIY
1114



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
1115



LFRW4
FGQGTKLEIK
1116





S144-877
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLE
1117


(Spike/

WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA



RBD)

VYYCAKQQGTYCSGGNCYSGYFDYWGQGTLVTVSSASTKGPSVFPL





APSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ





SSGLYSLSSVVTVPSSSLGTQTYIC




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLE
1118



Variable
WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKQQGTYCSGGNCYSGYFDYWGQGTLVTVSS




HCDR1
TYGMH
1119



HCDR2
VISYDGSNKYYADSVKG
1120



HCDR3
QQGTYCSGGNCYSGYFDY
1121



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
1122



HFRW2
WVRQAPGKGLEWVA
1123



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
1124



HFRW4
WGQGTLVTVSS
1125



Light Chain
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLI
1126




YDASNLETGVPSRFSGSGSGTDFSFSISSLQPEDIATYYCQQYDNVPLT





FGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLI
1127



Variable
YDASNLETGVPSRFSGSGSGTDFSFSISSLQPEDIATYYCQQYDNVPLT




Region
FGGGTKVEIK




LCDR1
QASQDISNYLN
1128



LCDR2
DASNLET
1129



LCDR3
QQYDNVPLT
1130



LFRW1
DIQMTQSPSSLSASVGDRVTITC
1131



LFRW2
WYQQKPGKAPKLLIY
1132



LFRW3
GVPSRFSGSGSGTDFSFSISSLQPEDIATYYC
1133



LFRW4
FGGGTKVEIK
1134





S144-952
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCTASGYTVTSYGISWVRQAPGQGLE
1135


(NP)

WMGWISTYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDT





AVYYCAREYSYGYRLAYFDYWGQGTLVTVSSGSASAPTLFPLVSCEN





SPSDTSSVAVGCLAQDFLPDSITFSWKYKNNSDISSTRGFPSVLRGGK





YAATSQVLLPSKDVM




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCTASGYTVTSYGISWVRQAPGQGLE
1136



Variable
WMGWISTYNGNTNYAQKLQGRVTMTTDTSTSTAYMELRSLRSDDT




Region
AVYYCAREYSYGYRLAYFDYWGQGTLVTVSS




HCDR1
SYGIS
1137



HCDR2
WISTYNGNTNYAQKLQG
1138



HCDR3
EYSYGYRLAYFDY
1139



HFRW1
QVQLVQSGAEVKKPGASVKVSCTASGYTVT
1140



HFRW2
WVRQAPGQGLEWMG
1141



HFRW3
RVTMTTDTSTSTAYMELRSLRSDDTAVYYCAR
1142



HFRW4
WGQGTLVTVSS
1143



Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQSVLNSSNNKNYLAWYQQKPG
1144




QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ





QYYSTPQTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA





DYE




Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQSVLNSSNNKNYLAWYQQKPG
1145



Variable
QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ




Region
QYYSTPQTFGQGTKVEIK




LCDR1
KSSQSVLNSSNNKNYLA
1146



LCDR2
WASTRES
1147



LCDR3
QQYYSTPQT
1148



LFRW1
DIVMTQSPDSLAVSLGERATINC
1149



LFRW2
WYQQKPGQPPKLLIY
1150



LFRW3
GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC
1151



LFRW4
FGQGTKVEIK
1152





S144-971
Heavy Chain
EVQLVESGGGLVQPGGSLRISCSASGFTFSRYAMHWVRQAPGKGLEY
1153


(ORF8)

VSAIRSNGGSTYYADSVRGRFTISRDNSRNTLYLQMSSLRAEDTAVY





YCVIINNLAAAGTRFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRISCSASGFTFSRYAMHWVRQAPGKGLEY
1154



Variable
VSAIRSNGGSTYYADSVRGRFTISRDNSRNTLYLQMSSLRAEDTAVY




Region
YCVIINNLAAAGTRFDYWGQGTLVTVSS




HCDR1
RYAMH
1155



HCDR2
AIRSNGGSTYYADSVRG
1156



HCDR3
INNLAAAGTRFDY
1157



HFRW1
EVQLVESGGGLVQPGGSLRISCSASGFTFS
1158



HFRW2
WVRQAPGKGLEYVS
1159



HFRW3
RFTISRDNSRNTLYLQMSSLRAEDTAVYYCVI
1160



HFRW4
WGQGTLVTVSS
1161



Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNFLTWYQQKPG
1162




QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ





QYYTTPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA





DYE




Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNFLTWYQQKPG
1163



Variable
QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ




Region
QYYTTPWTFGQGTKVEIK




LCDR1
KSSQSVLYSSNNKNFLT
1164



LCDR2
WASTRES
1165



LCDR3
QQYYTTPWT
1166



LFRW1
DIVMTQSPDSLAVSLGERATINC
1167



LFRW2
WYQQKPGQPPKLLIY
1168



LFRW3
GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC
1169



LFRW4
FGQGTKVEIK
1170





S144-1036
Heavy Chain
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYFWSWIRQPPGKGLE
1171


(NP)

WIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY





CARAPYYDFLREGNWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSSLGTQTYICNVNHKPS




Heavy Chain
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYFWSWIRQPPGKGLE
1172



Variable
WIGEINHSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




Region
CARAPYYDFLREGNWFDPWGQGTLVTVSS




HCDR1
GYFWS
1173



HCDR2
EINHSGSTNYNPSLKS
1174



HCDR3
APYYDFLREGNWFDP
1175



HFRW1
QVQLQQWGAGLLKPSETLSLTCAVYGGSFS
1176



HFRW2
WIRQPPGKGLEWIG
1177



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
1178



HFRW4
WGQGTLVTVSS
1179



Light Chain
DIVMTQSPDSLAVSLGERATINCNSSQSVLYSSINKNYLAWYQQKPA
1180




QPPKVLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ





QYYRTPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA





DYE




Light Chain
DIVMTQSPDSLAVSLGERATINCNSSQSVLYSSINKNYLAWYQQKPA
1181



Variable
QPPKVLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQ




Region
QYYRTPWTFGQGTKVEIK




LCDR1
NSSQSVLYSSINKNYLA
1182



LCDR2
WASTRES
1183



LCDR3
QQYYRTPWT
1184



LFRW1
DIVMTQSPDSLAVSLGERATINC
1185



LFRW2
WYQQKPAQPPKVLIY
1186



LFRW3
GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC
1187



LFRW4
FGQGTKVEIK
1188





S144-1079
Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGDTFGSYSITWVRQAPGQGLE
1189


(Spike/

WMGRIIPVLGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY



RBD)

YCAGGGCSGGNCYSWYNWFDPWGQGSLVTVSSASTKGPSVFPLAPS





SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGDTFGSYSITWVRQAPGQGLE
1190



Variable
WMGRIIPVLGIANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVY




Region
YCAGGGCSGGNCYSWYNWFDPWGQGSLVTVSS




HCDR1
SYSIT
1191



HCDR2
RIIPVLGIANYAQKFQG
1192



HCDR3
GGCSGGNCYSWYNWFDP
1193



HFRW1
QVQLVQSGAEVKKPGSSVKVSCKASGDTFG
1194



HFRW2
WVRQAPGQGLEWMG
1195



HFRW3
RVTITADKSTSTAYMELSSLRSEDTAVYYCAG
1196



HFRW4
WGQGSLVTVSS
1197



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNYLAWYQQKPGQAPRLLI
1198




YGASSRATGIPERFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGRSPYT





FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSNYLAWYQQKPGQAPRLLI
1199



Variable
YGASSRATGIPERFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGRSPYT




Region
FGQGTKLEIK




LCDR1
RASQSVSSNYLA
1200



LCDR2
GASSRAT
1201



LCDR3
QQYGRSPYT
1202



LFRW1
EIVLTQSPGTLSLSPGERATLSC
1203



LFRW2
WYQQKPGQAPRLLIY
1204



LFRW3
GIPERFSGSGSGTDFTLTISRLEPEDFAVYYC
1205



LFRW4
FGQGTKLEIK
1206





S144-1299
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1207


(ORF8)

GYINYRGITNYNPSLKSRVTISVDMSKNQFSLKLSSVTAADTAVYSCA





RLAVASRGTVDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA





LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVD




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1208



Variable
GYINYRGITNYNPSLKSRVTISVDMSKNQFSLKLSSVTAADTAVYSCA




Region
RLAVASRGTVDYWGQGTLVTVSS




HCDR1
SYYWS
1209



HCDR2
YINYRGITNYNPSLKS
1210



HCDR3
LAVASRGTVDY
1211



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
1212



HFRW2
WIRQPPGKGLEWIG
1213



HFRW3
RVTISVDMSKNQFSLKLSSVTAADTAVYSCAR
1214



HFRW4
WGQGTLVTVSS
1215



Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI
1216




YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSL





SVNVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQW





KSH




Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLI
1217



Variable
YRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSL




Region
SVNVVFGGGTKLTVL




LCDR1
SGSSSNIGSNYVY
1218



LCDR2
RNNQRPS
1219



LCDR3
AAWDDSLSVNVV
1220



LFRW1
QSVLTQPPSASGTPGQRVTISC
1221



LFRW2
WYQQLPGTAPKLLIY
1222



LFRW3
GVPDRFSGSKSGTSASLAISGLRSEDEADYYC
1223



LFRW4
FGGGTKLTVL
1224





S144-1339
Heavy Chain
QVQLVQSGTEVKKPGASVKVSCKASGYTFTDYYMHWVRQAPGQGL
1225


(Spike/

EWMGRINPTSGGTNYPQKFQGSVTMTRDTSLSTVYMELSGLRSDDTA



RBD)

VYYCARERVTLIQGKNHYYMDVWGTGTTVTVSSASTKGPSVFPLAPS





SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGTEVKKPGASVKVSCKASGYTFTDYYMHWVRQAPGQGL
1226



Variable
EWMGRINPTSGGTNYPQKFQGSVTMTRDTSLSTVYMELSGLRSDDTA




Region
VYYCARERVTLIQGKNHYYMDVWGTGTTVTVSS




HCDR1
DYYMH
1227



HCDR2
RINPTSGGTNYPQKFQG
1228



HCDR3
ERVTLIQGKNHYYMDV
1229



HFRW1
QVQLVQSGTEVKKPGASVKVSCKASGYTFT
1230



HFRW2
WVRQAPGQGLEWMG
1231



HFRW3
SVTMTRDTSLSTVYMELSGLRSDDTAVYYCAR
1232



HFRW4
WGTGTTVTVSS
1233



Light Chain
QSALTQPASVSGSPGQSITISCTGTNSDVGGYNYVSWYQQHPGKAPR
1234




LMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTS





SSTLVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQW





KSH




Light Chain
QSALTQPASVSGSPGQSITISCTGTNSDVGGYNYVSWYQQHPGKAPR
1235



Variable
LMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTS




Region
SSTLVVFGGGTKLTVL




LCDR1
TGTNSDVGGYNYVS
1236



LCDR2
DVSNRPS
1237



LCDR3
SSYTSSSTLVV
1238



LFRW1
QSALTQPASVSGSPGQSITISC
1239



LFRW2
WYQQHPGKAPRLMIY
1240



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
1241



LFRW4
FGGGTKLTVL
1242





S144-1406
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYAMHWVRQAPGQRL
1243


(Spike/

EWMGWINAGNGNTKYSQNFQGRVTITRDTSASTAYMELSSLRSEDT



RBD)

AVYYCASLVGGDSSSWYDYMDVWGKGTTVTVSSASTKGPSVFPLAP





CSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG





LYSLSSVVTVPSSNF




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTYAMHWVRQAPGQRL
1244



Variable
EWMGWINAGNGNTKYSQNFQGRVTITRDTSASTAYMELSSLRSEDT




Region
AVYYCASLVGGDSSSWYDYMDVWGKGTTVTVSS




HCDR1
TYAMH
1245



HCDR2
WINAGNGNTKYSQNFQG
1246



HCDR3
LVGGDSSSWYDYMDV
1247



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1248



HFRW2
WVRQAPGQRLEWMG
1249



HFRW3
RVTITRDTSASTAYMELSSLRSEDTAVYYCAS
1250



HFRW4
WGKGTTVTVSS
1251



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1252




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1253



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPW




Region
TFGQGTKVEIK




LCDR1
RASQSISSWLA
1254



LCDR2
DASSLES
1255



LCDR3
QQYNSYPWT
1256



LFRW1
DIQMTQSPSTLSASVGDRVTITC
1257



LFRW2
WYQQKPGKAPKLLIY
1258



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
1259



LFRW4
FGQGTKVEIK
1260





S144-1407
Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLE
1261


(Spike/

WMGRIIPVRDIANYAQKFQGRVTITADKSTRTAYMEVSSLRSEDTAV



RBD)

YYCAATELRSDGLDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYTISWVRQAPGQGLE
1262



Variable
WMGRIIPVRDIANYAQKFQGRVTITADKSTRTAYMEVSSLRSEDTAV




Region
YYCAATELRSDGLDIWGQGTMVTVSS




HCDR1
SYTIS
1263



HCDR2
RIIPVRDIANYAQKFQG
1264



HCDR3
TELRSDGLDI
1265



HFRW1
QVQLVQSGAEVKKPGSSVKVSCKASGGTFS
1266



HFRW2
WVRQAPGQGLEWMG
1267



HFRW3
RVTITADKSTRTAYMEVSSLRSEDTAVYYCAA
1268



HFRW4
WGQGTMVTVSS
1269



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1270




YDASSLESGVPSRFSGSGSGTEFTLTVSSLQPDDFATYYCQQYNNYSPI





TFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1271



Variable
YDASSLESGVPSRFSGSGSGTEFTLTVSSLQPDDFATYYCQQYNNYSPI




Region
TFGQGTKLEIK




LCDR1
RASQSISSWLA
1272



LCDR2
DASSLES
1273



LCDR3
QQYNNYSPIT
1274



LFRW1
DIQMTQSPSTLSASVGDRVTITC
1275



LFRW2
WYQQKPGKAPKLLIY
1276



LFRW3
GVPSRFSGSGSGTEFTLTVSSLQPDDFATYYC
1277



LFRW4
FGQGTKLEIK
1278





S144-1569
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGISWVRQAPGQGLE
1279


(ORF8)

WMGWISAYNGNTKYPQKLQGRVTMSTDTSTSTAYMELRSLRSDDTA





VYYCARETRYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFSNYGISWVRQAPGQGLE
1280



Variable
WMGWISAYNGNTKYPQKLQGRVTMSTDTSTSTAYMELRSLRSDDTA




Region
VYYCARETRYGMDVWGQGTTVTVSS




HCDR1
NYGIS
1281



HCDR2
WISAYNGNTKYPQKLQG
1282



HCDR3
ETRYGMDV
1283



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFS
1284



HFRW2
WVRQAPGQGLEWMG
1285



HFRW3
RVTMSTDTSTSTAYMELRSLRSDDTAVYYCAR
1286



HFRW4
WGQGTTVTVSS
1287



Light Chain
QPVLTQPPSASASLGASVTLTCTLSSGYSNYKVDWYQQRPGKGPQFV
1288




MRVGTGGIVGSKGDGIPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGA





DHGSGSNFVRVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATL





VCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLS





LTPEQWKSH




Light Chain
QPVLTQPPSASASLGASVTLTCTLSSGYSNYKVDWYQQRPGKGPQFV
1289



Variable
MRVGTGGIVGSKGDGIPDRFSVLGSGLNRYLTIKNIQEEDESDYHCGA




Region
DHGSGSNFVRVFGGGTKLTVL




LCDR1
TLSSGYSNYKVD
1290



LCDR2
VGTGGIVGSKGD
1291



LCDR3
GADHGSGSNFVRV
1292



LFRW1
QPVLTQPPSASASLGASVTLTC
1293



LFRW2
WYQQRPGKGPQFVMR
1294



LFRW3
GIPDRFSVLGSGLNRYLTIKNIQEEDESDYHC
1295



LFRW4
FGGGTKLTVL
1296





S144-1641
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYTFTSYWIGWVRQMPGKGLE
1297


(Spike/

WMGIIYLGDSDTRYSPSFQGQVTISADKSISTAYLQWNSLKASDTAM



RBD)

YYCARQVTGTTSWFDPWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYTFTSYWIGWVRQMPGKGLE
1298



Variable
WMGIIYLGDSDTRYSPSFQGQVTISADKSISTAYLQWNSLKASDTAM




Region
YYCARQVTGTTSWFDPWGQGTLVTVSS




HCDR1
SYWIG
1299



HCDR2
IIYLGDSDTRYSPSFQG
1300



HCDR3
QVTGTTSWFDP
1301



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSGYTFT
1302



HFRW2
WVRQMPGKGLEWMG
1303



HFRW3
QVTISADKSISTAYLQWNSLKASDTAMYYCAR
1304



HFRW4
WGQGTLVTVSS
1305



Light Chain
DIQMTQSPSTLSASVGERVTITCRASQSISRWLAWYQQKPGKAPKLLI
1306




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYHCHQYSTYSLT





FGGGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGERVTITCRASQSISRWLAWYQQKPGKAPKLLI
1307



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYHCHQYSTYSLT




Region
FGGGTKVDIK




LCDR1
RASQSISRWLA
1308



LCDR2
DASSLES
1309



LCDR3
HQYSTYSLT
1310



LFRW1
DIQMTQSPSTLSASVGERVTITC
1311



LFRW2
WYQQKPGKAPKLLIY
1312



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYHC
1313



LFRW4
FGGGTKVDIK
1314





S144-1827
Heavy Chain
EVQLVESGGDVVQPGGSLRLSCAASGITFSNYWMTWVRQAPGKGLE
1315


(Spike/

WVATIKKDGGEQYYVDSVKGRFTISRDNARNSLYLQINSLRAEDTAV



RBD)

YYCARGGSSSSYYWIYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDT





SSV




Heavy Chain
EVQLVESGGDVVQPGGSLRLSCAASGITFSNYWMTWVRQAPGKGLE
1316



Variable
WVATIKKDGGEQYYVDSVKGRFTISRDNARNSLYLQINSLRAEDTAV




Region
YYCARGGSSSSYYWIYWGQGTLVTVSS




HCDR1
NYWMT
1317



HCDR2
TIKKDGGEQYYVDSVKG
1318



HCDR3
GGSSSSYYWIY
1319



HFRW1
EVQLVESGGDVVQPGGSLRLSCAASGITFS
1320



HFRW2
WVRQAPGKGLEWVA
1321



HFRW3
RFTISRDNARNSLYLQINSLRAEDTAVYYCAR
1322



HFRW4
WGQGTLVTVSS
1323



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSISNSYLVWYQQKPGQAPRLLI
1324




YGASTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPW





TFGQGTTVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSISNSYLVWYQQKPGQAPRLLI
1325



Variable
YGASTRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPW




Region
TFGQGTTVEIK




LCDR1
RASQSISNSYLV
1326



LCDR2
GASTRAT
1327



LCDR3
QQYGSSPWT
1328



LFRW1
EIVLTQSPGTLSLSPGERATLSC
1329



LFRW2
WYQQKPGQAPRLLIY
1330



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
1331



LFRW4
FGQGTTVEIK
1332





S144-1848
Heavy Chain
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLE
1333


(NP)

WVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQLNSLRAEDTAVY





YCARDRDQLIFSAAFDIWGQGTMVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLE
1334



Variable
WVSSISSSSSYIYYADSVKGRFTISRDNAKNSLYLQLNSLRAEDTAVY




Region
YCARDRDQLIFSAAFDIWGQGTMVTVSS




HCDR1
SYSMN
1335



HCDR2
SISSSSSYIYYADSVKG
1336



HCDR3
DRDQLIFSAAFDI
1337



HFRW1
EVQLVESGGGLVKPGGSLRLSCAASGFTFS
1338



HFRW2
WVRQAPGKGLEWVS
1339



HFRW3
RFTISRDNAKNSLYLQLNSLRAEDTAVYYCAR
1340



HFRW4
WGQGTMVTVSS
1341



Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIEHNYVFWYQQLPGTAPKLLI
1342




YSNNHRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDASLS





GPVVFAGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSVLTQPPSASGTPGQRVTISCSGSSSNIEHNYVFWYQQLPGTAPKLLI
1343



Variable
YSNNHRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDASLS




Region
GPVVFAGGTKLTVL




LCDR1
SGSSSNIEHNYVF
1344



LCDR2
SNNHRPS
1345



LCDR3
AAWDASLSGPVV
1346



LFRW1
QSVLTQPPSASGTPGQRVTISC
1347



LFRW2
WYQQLPGTAPKLLIY
1348



LFRW3
GVPDRFSGSKSGTSASLAISGLRSEDEADYYC
1349



LFRW4
FAGGTKLTVL
1350





S144-1850
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLE
1351


(Spike/

WVSAISGSGGSTYYADSVKGRFTISRANSKNTLYLQMNSLRAEDTAV



RBD)

YYCAKGPRFSRDYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLE
1352



Variable
WVSAISGSGGSTYYADSVKGRFTISRANSKNTLYLQMNSLRAEDTAV




Region
YYCAKGPRFSRDYFDYWGQGTLVTVSS




HCDR1
SYAMS
1353



HCDR2
AISGSGGSTYYADSVKG
1354



HCDR3
GPRFSRDYFDY
1355



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
1356



HFRW2
WVRQAPGKGLEWVS
1357



HFRW3
RFTISRANSKNTLYLQMNSLRAEDTAVYYCAK
1358



HFRW4
WGQGTLVTVSS
1359



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSITSWLAWYQQKPGKAPKLLI
1360




YDASNLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNNYLG





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSITSWLAWYQQKPGKAPKLLI
1361



Variable
YDASNLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNNYLG




Region
TFGQGTKVEIK




LCDR1
RASQSITSWLA
1362



LCDR2
DASNLES
1363



LCDR3
QQYNNYLGT
1364



LFRW1
DIQMTQSPSTLSASVGDRVTITC
1365



LFRW2
WYQQKPGKAPKLLIY
1366



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
1367



LFRW4
FGQGTKVEIK
1368





S144-2234
Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYTISWVRQAPGQGLE
1369


(ORF8)

WMGRIIPILGTANYAQNFQGRVTITADKSTSTAYMELSSLRSEDTAVY





YCARHGYSYGPFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSRYTISWVRQAPGQGLE
1370



Variable
WMGRIIPILGTANYAQNFQGRVTITADKSTSTAYMELSSLRSEDTAVY




Region
YCARHGYSYGPFDYWGQGTLVTVSS




HCDR1
RYTIS
1371



HCDR2
RIIPILGTANYAQNFQG
1372



HCDR3
HGYSYGPFDY
1373



HFRW1
QVQLVQSGAEVKKPGSSVKVSCKASGGTFS
1374



HFRW2
WVRQAPGQGLEWMG
1375



HFRW3
RVTITADKSTSTAYMELSSLRSEDTAVYYCAR
1376



HFRW4
WGQGTLVTVSS
1377



Light Chain
DIVMTQSPDSLTVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPG
1378




QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTVSSLQAEDVAVYYCQ





QYYSTPGTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKA





DYE




Light Chain
DIVMTQSPDSLTVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPG
1379



Variable
QPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTVSSLQAEDVAVYYCQ




Region
QYYSTPGTFGQGTKVEIK




LCDR1
KSSQSVLYSSNNKNYLA
1380



LCDR2
WASTRES
1381



LCDR3
QQYYSTPGT
1382



LFRW1
DIVMTQSPDSLTVSLGERATINC
1383



LFRW2
WYQQKPGQPPKLLIY
1384



LFRW3
GVPDRFSGSGSGTDFTLTVSSLQAEDVAVYYC
1385



LFRW4
FGQGTKVEIK
1386





S564-105
Heavy Chain
QVRLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLE
1387


(NP)

WIGRFHTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY





CARDLKGKTWIQTPFDYWGQGILVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVRLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLE
1388



Variable
WIGRFHTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




Region
CARDLKGKTWIQTPFDYWGQGILVTVSS




HCDR1
SGSYYWS
1389



HCDR2
RFHTSGSTNYNPSLKS
1390



HCDR3
DLKGKTWIQTPFDY
1391



HFRW1
QVRLQESGPGLVKPSQTLSLTCTVSGGSIS
1392



HFRW2
WIRQPAGKGLEWIG
1393



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
1394



HFRW4
WGQGILVTVSS
1395



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNYVSWYQQHPGKAPKL
1396




MIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSST





FFGTGTTVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADGSPVKAGVETTTPSKQSNNKYAASSY




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNYVSWYQQHPGKAPKL
1397



Variable
MIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSST




Region
FFGTGTTVTVL




LCDR1
TGTSSDVGAYNYVS
1398



LCDR2
EVSNRPS
1399



LCDR3
SSYTSSTF
1400



LFRW1
QSALTQPASVSGSPGQSITISC
1401



LFRW2
WYQQHPGKAPKLMIY
1402



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
1403



LFRW4
FGTGTTVTVL
1404





S564-14
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSYWMSWARQAPGKGLE
1405


(Spike/

WVANIKKDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRVEDTA



RBD)

VYYCASEPPHYGGNSGAEYFQHWGQGTLVTVSSAPTKAPDVFPIISG





CRHPKDNSPVVLACLITGYH




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSYWMSWARQAPGKGLE
1406



Variable
WVANIKKDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRVEDTA




Region
VYYCASEPPHYGGNSGAEYFQHWGQGTLVTVSS




HCDR1
SYWMS
1407



HCDR2
NIKKDGSEKYYVDSVKG
1408



HCDR3
EPPHYGGNSGAEYFQH
1409



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGLTFS
1410



HFRW2
WARQAPGKGLEWVA
1411



HFRW3
RFTISRDNAKNSLYLQMNSLRVEDTAVYYCAS
1412



HFRW4
WGQGTLVTVSS
1413



Light Chain
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQRPGQAPVLVI
1414




YYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSD





HHYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTKPSKQSNNKYAASS




Light Chain
SYVLTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQRPGQAPVLVI
1415



Variable
YYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSD




Region
HHYVFGTGTKVTVL




LCDR1
GGNNIGSKSVH
1416



LCDR2
YDSDRPS
1417



LCDR3
QVWDSSSDHHYV
1418



LFRW1
SYVLTQPPSVSVAPGKTARITC
1419



LFRW2
WYQQRPGQAPVLVIY
1420



LFRW3
GIPERFSGSNSGNTATLTISRVEAGDEADYYC
1421



LFRW4
FGTGTKVTVL
1422





S564-68
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYIFTGYYMHWVRQAPGQGL
1423


(Spike/

EWMGWINPNSGGTNYAQKFQGRVTMTRDTSITTAYMELSRLRSDDT



RBD)

AFYYCARVKRFSIFGVELDYWGQGTLVTVSSASTKGPSVFPLAPSSKS





TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYIFTGYYMHWVRQAPGQGL
1424



Variable
EWMGWINPNSGGTNYAQKFQGRVTMTRDTSITTAYMELSRLRSDDT




Region
AFYYCARVKRFSIFGVELDYWGQGTLVTVSS




HCDR1
GYYMH
1425



HCDR2
WINPNSGGTNYAQKFQG
1426



HCDR3
VKRFSIFGVELDY
1427



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYIFT
1428



HFRW2
WVRQAPGQGLEWMG
1429



HFRW3
RVTMTRDTSITTAYMELSRLRSDDTAFYYCAR
1430



HFRW4
WGQGTLVTVSS
1431



Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
1432




LMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYFCSSYAD





SNNLVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





CPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSY




Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
1433



Variable
LMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYFCSSYAD




Region
SNNLVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
1434



LCDR2
EVSKRPS
1435



LCDR3
SSYADSNNLV
1436



LFRW1
QSALTQPPSASGSPGQSVTISC
1437



LFRW2
WYQQHPGKAPKLMIY
1438



LFRW3
GVPDRFSGSKSGNTASLTVSGLQAEDEADYFC
1439



LFRW4
FGGGTKLTVL
1440





S564-98
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1441


(NP)

GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RHQSRWNIVATMDFDYWGQGTLVTVSSASTKGPSVFPL




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1442



Variable
GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA




Region
RHQSRWNIVATMDFDYWGQGTLVTVSS




HCDR1
SYYWS
1443



HCDR2
YIYYSGSTNYNPSLKS
1444



HCDR3
HQSRWNIVATMDFDY
1445



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
1446



HFRW2
WIRQPPGKGLEWIG
1447



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
1448



HFRW4
WGQGTLVTVSS
1449



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLI
1450




YAASSLQSGVPSRFSGSGSGTDFTLTIGSLQPEDFATYYCQQSYSTSVA





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLI
1451



Variable
YAASSLQSGVPSRFSGSGSGTDFTLTIGSLQPEDFATYYCQQSYSTSVA




Region
FGQGTKVEIK




LCDR1
RASQSIRSYLN
1452



LCDR2
AASSLQS
1453



LCDR3
QQSYSTSVA
1454



LFRW1
DIQMTQSPSSLSASVGDRVTITC
1455



LFRW2
WYQQKPGKAPKLLIY
1456



LFRW3
GVPSRFSGSGSGTDFTLTIGSLQPEDFATYYC
1457



LFRW4
FGQGTKVEIK
1458





S564-105
Heavy Chain
QVRLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLE
1459


(NP)

WIGRFHTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY





CARDLKGKTWIQTPFDYWGQGILVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVRLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLE
1460



Variable
WIGRFHTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




Region
CARDLKGKTWIQTPFDYWGQGILVTVSS




HCDR1
SGSYYWS
1461



HCDR2
RFHTSGSTNYNPSLKS
1462



HCDR3
DLKGKTWIQTPFDY
1463



HFRW1
QVRLQESGPGLVKPSQTLSLTCTVSGGSIS
1464



HFRW2
WIRQPAGKGLEWIG
1465



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
1466



HFRW4
WGQGILVTVSS
1467



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNYVSWYQQHPGKAPKL
1468




MIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSST





FFGTGTTVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADGSPVKAGVETTTPSKQSNNKYAASSY




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNYVSWYQQHPGKAPKL
1469



Variable
MIYEVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSST




Region
FFGTGTTVTVL




LCDR1
TGTSSDVGAYNYVS
1470



LCDR2
EVSNRPS
1471



LCDR3
SSYTSSTF
1472



LFRW1
QSALTQPASVSGSPGQSITISC
1473



LFRW2
WYQQHPGKAPKLMIY
1474



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
1475



LFRW4
FGTGTTVTVL
1476





S564-134
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1477


(Spike/

EWMGWINPNSGGTNYAQKFQGRVTMTRDTSINTAYMELSRLRSDDT



RBD)

AVYYCTRVGRFSIFGVELDYWGQGTLVTVSSASTKGPSVFPLAPSSKS





TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1478



Variable
EWMGWINPNSGGTNYAQKFQGRVTMTRDTSINTAYMELSRLRSDDT




Region
AVYYCTRVGRFSIFGVELDYWGQGTLVTVSS




HCDR1
GYYMH
1479



HCDR2
WINPNSGGTNYAQKFQG
1480



HCDR3
VGRFSIFGVELDY
1481



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1482



HFRW2
WVRQAPGQGLEWMG
1483



HFRW3
RVTMTRDTSINTAYMELSRLRSDDTAVYYCTR
1484



HFRW4
WGQGTLVTVSS
1485



Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
1486




LMIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQADDEADYYCSSYA





GSNNLVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISD





FYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
1487



Variable
LMIYEVNKRPSGVPDRFSGSKSGNTASLTVSGLQADDEADYYCSSYA




Region
GSNNLVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
1488



LCDR2
EVNKRPS
1489



LCDR3
SSYAGSNNLV
1490



LFRW1
QSALTQPPSASGSPGQSVTISC
1491



LFRW2
WYQQHPGKAPKLMIY
1492



LFRW3
GVPDRFSGSKSGNTASLTVSGLQADDEADYYC
1493



LFRW4
FGGGTKLTVL
1494





S564-138
Heavy Chain
QVLLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLE
1495


(Spike/

WMGWINPISGGTNYAQNFQDRVTMTRDTSIITAYMELSRLRSDDTAV



RBD)

YYCARLAYYYDSSAYRGAFDIWGQGTMVTVSSASTKGPSVFPLAPSS





KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS




Heavy Chain
QVLLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLE
1496



Variable
WMGWINPISGGTNYAQNFQDRVTMTRDTSIITAYMELSRLRSDDTAV




Region
YYCARLAYYYDSSAYRGAFDIWGQGTMVTVSS




HCDR1
GYYLH
1497



HCDR2
WINPISGGTNYAQNFQD
1498



HCDR3
LAYYYDSSAYRGAFDI
1499



HFRW1
QVLLVQSGAEVKKPGASVKVSCKASGYTFT
1500



HFRW2
WVRQAPGQGLEWMG
1501



HFRW3
RVTMTRDTSIITAYMELSRLRSDDTAVYYCAR
1502



HFRW4
WGQGTMVTVSS
1503



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
1504




MIYEVSNRPSGVSDRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSS





TYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASS




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
1505



Variable
MIYEVSNRPSGVSDRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSS




Region
TYVFGTGTKVTVL




LCDR1
TGTSSDVGGYNYVS
1506



LCDR2
EVSNRPS
1507



LCDR3
SSYTSSSTYV
1508



LFRW1
QSALTQPASVSGSPGQSITISC
1509



LFRW2
WYQQHPGKAPKLMIY
1510



LFRW3
GVSDRFSGSKSGNTASLTISGLQAEDEADYYC
1511



LFRW4
FGTGTKVTVL
1512





S564-152
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLE
1513


(Spike/

WVAVIWYDGSNKHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA



RBD)

VYYCAKNAAPYCSGGSCYGTYFDYWGQGTLVTVSSASTKGPSVFPL





APSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ





SSG




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLE
1514



Variable
WVAVIWYDGSNKHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKNAAPYCSGGSCYGTYFDYWGQGTLVTVSS




HCDR1
YYGMH
1515



HCDR2
VIWYDGSNKHYADSVKG
1516



HCDR3
NAAPYCSGGSCYGTYFDY
1517



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
1518



HFRW2
WVRQAPGKGLEWVA
1519



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
1520



HFRW4
WGQGTLVTVSS
1521



Light Chain
DIQMTQSPSSLSASVGDRVTITCQASQDINNYLNWYQQKPGKAPKLLI
1522




YDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNVPPH





TFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSSLSASVGDRVTITCQASQDINNYLNWYQQKPGKAPKLLI
1523



Variable
YDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNVPPH




Region
TFGQGTKLEIK




LCDR1
QASQDINNYLN
1524



LCDR2
DASNLET
1525



LCDR3
QQYDNVPPHT
1526



LFRW1
DIQMTQSPSSLSASVGDRVTITC
1527



LFRW2
WYQQKPGKAPKLLIY
1528



LFRW3
GVPSRFSGSGSGTDFTFTISSLQPEDIATYYC
1529



LFRW4
FGQGTKLEIK
1530





S564-218
Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLE
1531


(Spike/

WMGGIIPIFGTAKYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVY



RBD)

YCARGKDGYNPWGAFDIWGQGTMVTVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLE
1532



Variable
WMGGIIPIFGTAKYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVY




Region
YCARGKDGYNPWGAFDIWGQGTMVTVSS




HCDR1
SYAIS
1533



HCDR2
GIIPIFGTAKYAQKFQG
1534



HCDR3
GKDGYNPWGAFDI
1535



HFRW1
QVQLVQSGAEVKKPGSSVKVSCKASGGTFS
1536



HFRW2
WVRQAPGQGLEWMG
1537



HFRW3
RVTITADESTSTAYMELSSLRSEDTAVYYCAR
1538



HFRW4
WGQGTMVTVSS
1539



Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
1540




LMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYA





GSNNFGVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLIS





DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ





WKSH




Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPK
1541



Variable
LMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYA




Region
GSNNFGVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
1542



LCDR2
EVSKRPS
1543



LCDR3
SSYAGSNNFGV
1544



LFRW1
QSALTQPPSASGSPGQSVTISC
1545



LFRW2
WYQQHPGKAPKLMIY
1546



LFRW3
GVPDRFSGSKSGNTASLTVSGLQAEDEADYYC
1547



LFRW4
FGGGTKLTVL
1548





S564-249
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCVASGFTFSDYAMHWVRQAPGKGLE
1549


(NP)

YIAAISSNGGRTYYADSVKDKFTISRDNSKNILYLHMGSLRAEDTAVY





FCARDPQSWVTSTTAHFQHWGQGTLVTVSSASPTSPKVFPLSLCSTQP





DGNVVIACLVQGFFPQEPLSVTWSESGQGVTARNF




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCVASGFTFSDYAMHWVRQAPGKGLE
1550



Variable
YIAAISSNGGRTYYADSVKDKFTISRDNSKNILYLHMGSLRAEDTAVY




Region
FCARDPQSWVTSTTAHFQHWGQGTLVTVSS




HCDR1
DYAMH
1551



HCDR2
AISSNGGRTYYADSVKD
1552



HCDR3
DPQSWVTSTTAHFQH
1553



HFRW1
EVQLVESGGGLVQPGGSLRLSCVASGFTFS
1554



HFRW2
WVRQAPGKGLEYIA
1555



HFRW3
KFTISRDNSKNILYLHMGSLRAEDTAVYFCAR
1556



HFRW4
WGQGTLVTVSS
1557



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDIGGYNYVSWYQQHPGKAPKLI
1558




ISDVSNRPSGVSSRFSGSKSGNTASLTISGLQTEDEAHYYCSSFRSGITL





GVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPG





AVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDIGGYNYVSWYQQHPGKAPKLI
1559



Variable
ISDVSNRPSGVSSRFSGSKSGNTASLTISGLQTEDEAHYYCSSFRSGITL




Region
GVFGGGTKLTVL




LCDR1
TGTSSDIGGYNYVS
1560



LCDR2
DVSNRPS
1561



LCDR3
SSFRSGITLGV
1562



LFRW1
QSALTQPASVSGSPGQSITISC
1563



LFRW2
WYQQHPGKAPKLIIS
1564



LFRW3
GVSSRFSGSKSGNTASLTISGLQTEDEAHYYC
1565



LFRW4
FGGGTKLTVL
1566





S564-265
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1567


(Spike/

EWMGWINPNSGAINYAQKFQGRVTMTRDTSISTAYMELSSLRSDDTA



RBD)

VYYCARVGRFSIFGVELDNWGQGTLVTVSSASTKGPSVFPLAPSSKST





SGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1568



Variable
EWMGWINPNSGAINYAQKFQGRVTMTRDTSISTAYMELSSLRSDDTA




Region
VYYCARVGRFSIFGVELDNWGQGTLVTVSS




HCDR1
GYYMH
1569



HCDR2
WINPNSGAINYAQKFQG
1570



HCDR3
VGRFSIFGVELDN
1571



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1572



HFRW2
WVRQAPGQGLEWMG
1573



HFRW3
RVTMTRDTSISTAYMELSSLRSDDTAVYYCAR
1574



HFRW4
WGQGTLVTVSS
1575



Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNFVSWYQQHPGKAPKL
1576




MIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYGG





SNNLIFGGGTRLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWK





SH




Light Chain
QSALTQPPSASGSPGQSVTISCTGTSSDVGGYNFVSWYQQHPGKAPKL
1577



Variable
MIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYGG




Region
SNNLIFGGGTRLTVL




LCDR1
TGTSSDVGGYNFVS
1578



LCDR2
EVSKRPS
1579



LCDR3
SSYGGSNNLI
1580



LFRW1
QSALTQPPSASGSPGQSVTISC
1581



LFRW2
WYQQHPGKAPKLMIY
1582



LFRW3
GVPDRFSGSKSGNTASLTVSGLQAEDEADYYC
1583



LFRW4
FGGGTRLTVL
1584





S564-275
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1585


(NP)

GYIYYSGSTKYNPSLKSRVTISVDTSKKQFSLKLSSVTAADTAVYYCA





RHIKIGVVGGLTFDFWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTSS





V




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1586



Variable
GYIYYSGSTKYNPSLKSRVTISVDTSKKQFSLKLSSVTAADTAVYYCA




Region
RHIKIGVVGGLTFDFWGQGTLVTVSS




HCDR1
SYYWS
1587



HCDR2
YIYYSGSTKYNPSLKS
1588



HCDR3
HIKIGVVGGLTFDF
1589



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
1590



HFRW2
WIRQPPGKGLEWIG
1591



HFRW3
RVTISVDTSKKQFSLKLSSVTAADTAVYYCAR
1592



HFRW4
WGQGTLVTVSS
1593



Light Chain
DIQMTQSPSSLSASIGDRVTITCRASQSISTYLNWYQQKPGKAPKLLIY
1594




AASSLQSGVPSRFSGSGSGADFTLTISSLQPEDFATYYCQQSYSTPLTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNA




Light Chain
DIQMTQSPSSLSASIGDRVTITCRASQSISTYLNWYQQKPGKAPKLLIY
1595



Variable
AASSLQSGVPSRFSGSGSGADFTLTISSLQPEDFATYYCQQSYSTPLTF




Region
GGGTKVEIK




LCDR1
RASQSISTYLN
1596



LCDR2
AASSLQS
1597



LCDR3
QQSYSTPLT
1598



LFRW1
DIQMTQSPSSLSASIGDRVTITC
1599



LFRW2
WYQQKPGKAPKLLIY
1600



LFRW3
GVPSRFSGSGSGADFTLTISSLQPEDFATYYC
1601



LFRW4
FGGGTKVEIK
1602





S564-287
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1603


(ORF8)

EWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRCDDT





AVYYCARASTPYSSGSWADYWGQGTLVTVSSGSASAPTLFPLVSCEN





SPSDTSSV




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGL
1604



Variable
EWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRCDDT




Region
AVYYCARASTPYSSGSWADYWGQGTLVTVSS




HCDR1
GYYMH
1605



HCDR2
WINPNSGGTNYAQKFQG
1606



HCDR3
ASTPYSSGSWADY
1607



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
1608



HFRW2
WVRQAPGQGLEWMG
1609



HFRW3
RVTMTRDTSISTAYMELSRLRCDDTAVYYCAR
1610



HFRW4
WGQGTLVTVSS
1611



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
1612




MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYASS





STWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLT




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
1613



Variable
MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYASS




Region
STWVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
1614



LCDR2
DVSNRPS
1615



LCDR3
SSYASSSTWV
1616



LFRW1
QSALTQPASVSGSPGQSITISC
1617



LFRW2
WYQQHPGKAPKLMIY
1618



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
1619



LFRW4
FGGGTKLTVL
1620





S116-2822
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
1825


(Spike)

WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCAKGDYYGSGSQYYFDYWGQGTLVTVSSGSASAPTLFPLVSCE





NSPSDTSSV




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
1826



Variable
WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKGDYYGSGSQYYFDYWGQGTLVTVSS




HCDR1
SYGMH
1827



HCDR2
VISYDGSNKYYADSVKG
1828



HCDR3
GDYYGSGSQYYFDY
1829



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
1830



HFRW2
WVRQAPGKGLEWVA
1831



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
1832



HFRW4
WGQGTLVTVSS
1833



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1834




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSQT





FGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN~




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
1835



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSQT




Region
FGQGTKLEIK




LCDR1
RASQSISSWLA
1836



LCDR2
DASSLES
1837



LCDR3
QQYNSYSQT
1838



LFRW1
DIQMTQSPSTLSASVGDRVTITC
1839



LFRW2
WYQQKPGKAPKLLIY
1840



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
1841



LFRW4
FGQGTKLEIK
1842





S116-2825
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV
1843


(Spike)

WVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAV





YYCARVVLTYYYDSSGYQNAFDIWGQGTMVTVSSGSASAPTLFPLVS





CENSPSDTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMHWVRQAPGKGLV
1844



Variable
WVSRINSDGSSTSYADSVKGRFTISRDNAKNTLYLQMNSLRAEDTAV




Region
YYCARVVLTYYYDSSGYQNAFDIWGQGTMVTVSS




HCDR1
SYWMH
1845



HCDR2
RINSDGSSTSYADSVKG
1846



HCDR3
VVLTYYYDSSGYQNAFDI
1847



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
1848



HFRW2
WVRQAPGKGLVWVS
1849



HFRW3
RFTISRDNAKNTLYLQMNSLRAEDTAVYYCAR
1850



HFRW4
WGQGTMVTVSS
1851



Light Chain
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVI
1852




YGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGN





LVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADSSPVKAGVETTKPSKQSNNKYAASS~




Light Chain
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVI
1853



Variable
YGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGN




Region
LVVFGGGTKLTVL




LCDR1
QGDSLRSYYAS
1854



LCDR2
GKNNRPS
1855



LCDR3
NSRDSSGNLVV
1856



LFRW1
SSELTQDPAVSVALGQTVRITC
1857



LFRW2
WYQQKPGQAPVLVIY
1858



LFRW3
GIPDRFSGSSSGNTASLTITGAQAEDEADYYC
1859



LFRW4
FGGGTKLTVL
1860





S116-3179
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1861


(Spike)

GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCA





RCALLLGNAFDIWGQGTMVTVSSASTKGPSVFPLAPCSR~




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWI
1862



Variable
GYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCA




Region
RCALLLGNAFDIWGQGTMVTVSS




HCDR1
SYYWS
1863



HCDR2
YIYYSGSTNYNPSLKS
1864



HCDR3
CALLLGNAFDI
1865



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
1866



HFRW2
WIRQPPGKGLEWIG
1867



HFRW3
RVTISVDTSKNQFSLKLTSVTAADTAVYYCAR
1868



HFRW4
WGQGTMVTVSS
1869



Light Chain
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLI
1870




YAAFSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPRG





LSFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDN~




Light Chain
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLI
1871



Variable
YAAFSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPRG




Region
LSFGGGTKVEIK




LCDR1
RASQGISSWLA
1872



LCDR2
AAFSLQS
1873



LCDR3
QQANSFPRGLS
1874



LFRW1
DIQMTQSPSSVSASVGDRVTITC
1875



LFRW2
WYQQKPGKAPKLLIY
1876



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
1877



LFRW4
FGGGTKVEIK
1878





S144-121
Heavy Chain
EVHLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQTPGKGLE
1879


(Spike/

WISAITASGSDTFHADSVKGRFTISRDNSKDTLYLQMNSLRVEDTAIY



RBD)

YCAKGSSTARPYYFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDT





SSV




Heavy Chain
EVHLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQTPGKGLE
1880



Variable
WISAITASGSDTFHADSVKGRFTISRDNSKDTLYLQMNSLRVEDTAIY




Region
YCAKGSSTARPYYFDYWGQGTLVTVSS




HCDR1
SYAMS
1881



HCDR2
AITASGSDTFHADSVKG
1882



HCDR3
GSSTARPYYFDY
1883



HFRW1
EVHLLESGGGLVQPGGSLRLSCAASGFTFS
1884



HFRW2
WVRQTPGKGLEWIS
1885



HFRW3
RFTISRDNSKDTLYLQMNSLRVEDTAIYYCAK
1886



HFRW4
WGQGTLVTVSS
1887



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSHLAWYQQKPGQSPRLLI
1888




YGTSNRATGIPDRFSGSGSGTDFTLSISRLEPEDFAVYYCQEYGSSRMF





GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSHLAWYQQKPGQSPRLLI
1889



Variable
YGTSNRATGIPDRFSGSGSGTDFTLSISRLEPEDFAVYYCQEYGSSRMF




Region
GQGTKVEIK




LCDR1
RASQSVSSSHLA
1890



LCDR2
GTSNRAT
1891



LCDR3
QEYGSSRM
1892



LFRW1
EIVLTQSPGTLSLSPGERATLSC
1893



LFRW2
WYQQKPGQSPRLLIY
1894



LFRW3
GIPDRFSGSGSGTDFTLSISRLEPEDFAVYYC
1895



LFRW4
FGQGTKVEIK
1896





S144-1364
Heavy Chain
EVQLVQSGAEMKKPGESLKISCKASGYYFPSYWIAWVRQMPGRGLE
1897


(Spike)

WMGIIYPVDSETTYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMY





YCARPNYYGSGSPPGYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDT





SSVAVG~




Heavy Chain
EVQLVQSGAEMKKPGESLKISCKASGYYFPSYWIAWVRQMPGRGLE
1898



Variable
WMGIIYPVDSETTYSPSFQGHVTISADKSISTAYLQWSSLKASDTAMY




Region
YCARPNYYGSGSPPGYWGQGTLVTVSS




HCDR1
SYWIA
1899



HCDR2
IIYPVDSETTYSPSFQG
1900



HCDR3
PNYYGSGSPPGY
1901



HFRW1
EVQLVQSGAEMKKPGESLKISCKASGYYFP
1902



HFRW2
WVRQMPGRGLEWMG
1903



HFRW3
HVTISADKSISTAYLQWSSLKASDTAMYYCAR
1904



HFRW4
WGQGTLVTVSS
1905



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQGVSSNYLAWYQQKPGQAPRLL
1906




IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTTPN





TFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQGVSSNYLAWYQQKPGQAPRLL
1907



Variable
IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTTPN




Region
TFGGGTKVEIK




LCDR1
RASQGVSSNYLA
1908



LCDR2
GASSRAT
1909



LCDR3
QQYGTTPNT
1910



LFRW1
EIVLTQSPGTLSLSPGERATLSC
1911



LFRW2
WYQQKPGQAPRLLIY
1912



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
1913



LFRW4
FGGGTKVEIK
1914





S144-292
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYTFTNYWIGWVRQMPGKGLE
1915


(Spike)

WMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMY





YCARLFCGGDCPFDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSGG





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYTFTNYWIGWVRQMPGKGLE
1916



Variable
WMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMY




Region
YCARLFCGGDCPFDYWGQGTLVTVSS




HCDR1
NYWIG
1917



HCDR2
IIYPGDSDTRYSPSFQG
1918



HCDR3
LFCGGDCPFDY
1919



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSGYTFT
1920



HFRW2
WVRQMPGKGLEWMG
1921



HFRW3
QVTISADKSISTAYLQWSSLKASDTAMYYCAR
1922



HFRW4
WGQGTLVTVSS
1923



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPNLLI
1924




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNTYPRT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPNLLI
1925



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNTYPRT




Region
FGQGTKVEIK




LCDR1
RASQSISSWLA
1926



LCDR2
DASSLES
1927



LCDR3
QQYNTYPRT
1928



LFRW1
DIQMTQSPSTLSASVGDRVTITC
1929



LFRW2
WYQQKPGKAPNLLIY
1930



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
1931



LFRW4
FGQGTKVEIK
1932





S155-37
Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFSFSNYAMSWVRQAPGKGLE
1933


(Spike/

WVSAVSGNGVGTFHADSVKGRFTISRDNSKDTFYLQMSGLTVDDTA



RBD)

LYYCVKGSAAARPYYFDYWGQGILVAVSSGSASAPTLFPLVSCENSP





SDTSSV




Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFSFSNYAMSWVRQAPGKGLE
1934



Variable
WVSAVSGNGVGTFHADSVKGRFTISRDNSKDTFYLQMSGLTVDDTA




Region
LYYCVKGSAAARPYYFDYWGQGILVAVSS




HCDR1
NYAMS
1935



HCDR2
AVSGNGVGTFHADSVKG
1936



HCDR3
GSAAARPYYFDY
1937



HFRW1
EVQLLESGGGLVQPGGSLRLSCAASGFSFS
1938



HFRW2
WVRQAPGKGLEWVS
1939



HFRW3
RFTISRDNSKDTFYLQMSGLTVDDTALYYCVK
1940



HFRW4
WGQGILVAVSS
1941



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQTVSSNYLAWYQQKPAQGPRLV
1942




IYGASNRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSRI





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN~




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQTVSSNYLAWYQQKPAQGPRLV
1943



Variable
IYGASNRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGNSRI




Region
FGQGTKVEIK




LCDR1
RASQTVSSNYLA
1944



LCDR2
GASNRAT
1945



LCDR3
QQYGNSRI
1946



LFRW1
EIVLTQSPGTLSLSPGERATLSC
1947



LFRW2
WYQQKPAQGPRLVIY
1948



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
1949



LFRW4
FGQGTKVEIK
1950





S166-1318
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFTIYWMSWVRQAPGKGLE
1951


(Spike)

WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA





VYYCARDGIAVAGGFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFTIYWMSWVRQAPGKGLE
1952



Variable
WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARDGIAVAGGFDYWGQGTLVTVSS




HCDR1
IYWMS
1953



HCDR2
NIKQDGSEKYYVDSVKG
1954



HCDR3
DGIAVAGGFDY
1955



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFT
1956



HFRW2
WVRQAPGKGLEWVA
1957



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
1958



HFRW4
WGQGTLVTVSS
1959



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
1960




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV





VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
1961



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV




Region
VFGGGTKLTVL




LCDR1
SGDKLGDKYAC
1962



LCDR2
QDSKRPS
1963



LCDR3
QAWDSSTVV
1964



LFRW1
SYELTQPPSVSVSPGQTASITC
1965



LFRW2
WYQQKPGQSPVLVIY
1966



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
1967



LFRW4
FGGGTKLTVL
1968





S166-1366
Heavy Chain
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALE
1969


(Spike)

WLALIYWDDDKRYRPSLKSRLSITKDTSKNQVVLTMTNMDPVDTAT





YYCAHHHPILDFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTSS





V




Heavy Chain
QITLKESGPTLVKPTQTLTLTCTFSGFSLSTSGVGVGWIRQPPGKALE
1970



Variable
WLALIYWDDDKRYRPSLKSRLSITKDTSKNQVVLTMTNMDPVDTAT




Region
YYCAHHHPILDFDYWGQGTLVTVSS




HCDR1
TSGVGVG
1971



HCDR2
LIYWDDDKRYRPSLKS
1972



HCDR3
HHPILDFDY
1973



HFRW1
QITLKESGPTLVKPTQTLTLTCTFSGFSLS
1974



HFRW2
WIRQPPGKALEWLA
1975



HFRW3
RLSITKDTSKNQVVLTMTNMDPVDTATYYCAH
1976



HFRW4
WGQGTLVTVSS
1977



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
1978




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTR





DYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASS~




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
1979



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTR




Region
DYVFGTGTKVTVL




LCDR1
SGDKLGDKYAC
1980



LCDR2
QDSKRPS
1981



LCDR3
QAWDSSTRDYV
1982



LFRW1
SYELTQPPSVSVSPGQTASITC
1983



LFRW2
WYQQKPGQSPVLVIY
1984



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
1985



LFRW4
FGTGTKVTVL
1986





S166-2395
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISTYYWSWIRQPAGKGLEWI
1987


(Spike)

GRIYTSGSTNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC





AREVTMIVLGYNWFDPWGQGTLVTVSSAPTKAPDVFPIISGCRHPKD





NSPVVLACLITGYH




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSISTYYWSWIRQPAGKGLEWI
1988



Variable
GRIYTSGSTNYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC




Region
AREVTMIVLGYNWFDPWGQGTLVTVSS




HCDR1
TYYWS
1989



HCDR2
RIYTSGSTNYNPSLKS
1990



HCDR3
EVTMIVLGYNWFDP
1991



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSIS
1992



HFRW2
WIRQPAGKGLEWIG
1993



HFRW3
RVTMSVDTSKNQFSLKLSSVTAADTAVYYCAR
1994



HFRW4
WGQGTLVTVSS
1995



Light Chain
SYVLTQTPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVV
1996




HDESDRPSGIPERFFGSNSGNTATLTISRVEAGDEADYYCQVWDSSSD





HLHVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFY





PGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASS




Light Chain
SYVLTQTPSVSVAPGQTARITCGGNNIGSKSVHWYQQKPGQAPVLVV
1997



Variable
HDESDRPSGIPERFFGSNSGNTATLTISRVEAGDEADYYCQVWDSSSD




Region
HLHVFGTGTKVTVL




LCDR1
GGNNIGSKSVH
1998



LCDR2
DESDRPS
1999



LCDR3
QVWDSSSDHLHV
2000



LFRW1
SYVLTQTPSVSVAPGQTARITC
2001



LFRW2
WYQQKPGQAPVLVVH
2002



LFRW3
GIPERFFGSNSGNTATLTISRVEAGDEADYYC
2003



LFRW4
FGTGTKVTVL
2004





S166-2620
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLE
2005


(Spike)

WVANIKQDGSEKYYVASVKGRFTISRDNAKNSLYLQMNSLRAEDTA





VYYCARDSIAVAGGLDYWGQGTLVTVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLE
2006



Variable
WVANIKQDGSEKYYVASVKGRFTISRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARDSIAVAGGLDYWGQGTLVTVSS




HCDR1
SYWMS
2007



HCDR2
NIKQDGSEKYYVASVKG
2008



HCDR3
DSIAVAGGLDY
2009



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
2010



HFRW2
WVRQAPGKGLEWVA
2011



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
2012



HFRW4
WGQGTLVTVSS
2013



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
2014




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYFCQAWDSSTVV





FGGGTKLTVLRQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAV





TVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
2015



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYFCQAWDSSTVV




Region
FGGGTKLTVL




LCDR1
SGDKLGDKYAC
2016



LCDR2
QDSKRPS
2017



LCDR3
QAWDSSTVV
2018



LFRW1
SYELTQPPSVSVSPGQTASITC
2019



LFRW2
WYQQKPGQSPVLVIY
2020



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYFC
2021



LFRW4
FGGGTKLTVL
2022





S166-32
Heavy Chain
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLE
2023


(Spike)

WVSYISISDTTIYYADAVQGRFTMSRDNAKNSLYLQMNSLKAEDTAV





YYCARASPYCGGDCSFGNAFDIWGLGTMVTVSSASTKGPSVFPLAPS





SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVESGGGLVKPGGSLRLSCAASGFTFSDYYMSWIRQAPGKGLE
2024



Variable
WVSYISISDTTIYYADAVQGRFTMSRDNAKNSLYLQMNSLKAEDTAV




Region
YYCARASPYCGGDCSFGNAFDIWGLGTMVTVSS




HCDR1
DYYMS
2025



HCDR2
YISISDTTIYYADAVQG
2026



HCDR3
ASPYCGGDCSFGNAFDI
2027



HFRW1
QVQLVESGGGLVKPGGSLRLSCAASGFTFS
2028



HFRW2
WIRQAPGKGLEWVS
2029



HFRW3
RFTMSRDNAKNSLYLQMNSLKAEDTAVYYCAR
2030



HFRW4
WGLGTMVTVSS
2031



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSIFSWLAWYQQKPGKAPKLLI
2032




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYWT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSIFSWLAWYQQKPGKAPKLLI
2033



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYWT




Region
FGQGTKVEIK




LCDR1
RASQSIFSWLA
2034



LCDR2
DASSLES
2035



LCDR3
QQYNSYWT
2036



LFRW1
DIQMTQSPSTLSASVGDRVTITC
2037



LFRW2
WYQQKPGKAPKLLIY
2038



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
2039



LFRW4
FGQGTKVEIK
2040





S171-1150
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLE
2041


(Spike)

WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA





VYYCARDGIAVAGGLDYWGQGTLVTVSSAPTKAPDVFPIISGCRHPK





DNSPVVLACLITGYH~




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLE
2042



Variable
WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARDGIAVAGGLDYWGQGTLVTVSS




HCDR1
SYWMS
2043



HCDR2
NIKQDGSEKYYVDSVKG
2044



HCDR3
DGIAVAGGLDY
2045



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
2046



HFRW2
WVRQAPGKGLEWVA
2047



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
2048



HFRW4
WGQGTLVTVSS
2049



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
2050




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV





VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
2051



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTV




Region
VFGGGTKLTVL




LCDR1
SGDKLGDKYAC
2052



LCDR2
QDSKRPS
2053



LCDR3
QAWDSSTVV
2054



LFRW1
SYELTQPPSVSVSPGQTASITC
2055



LFRW2
WYQQKPGQSPVLVIY
2056



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
2057



LFRW4
FGGGTKLTVL
2058





S171-1285
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFIFSNNALHWVRQAPGKGLE
2059


(Spike)

WVAIISYDGSNKNYAASVKGRFTISRDNSQNTVFLQMNSLRAEDTAV





YYCARDHIAGAAKYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS





GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFIFSNNALHWVRQAPGKGLE
2060



Variable
WVAIISYDGSNKNYAASVKGRFTISRDNSQNTVFLQMNSLRAEDTAV




Region
YYCARDHIAGAAKYFDYWGQGTLVTVSS




HCDR1
NNALH
2061



HCDR2
IISYDGSNKNYAASVKG
2062



HCDR3
DHIAGAAKYFDY
2063



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFIFS
2064



HFRW2
WVRQAPGKGLEWVA
2065



HFRW3
RFTISRDNSQNTVFLQMNSLRAEDTAVYYCAR
2066



HFRW4
WGQGTLVTVSS
2067



Light Chain
SYELTQPPSVSVSPGQTARITCSGDALPKKFVHWYQQKSGQAPVLVIY
2068




EDSKRPSGIPERFSGSSSGTTATLTISGAQVEDEGDYYCYSTDSSGRGV





FGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAV





TVAWKADSSPVKAGVETTTPSKQSNNKYAASS




Light Chain
SYELTQPPSVSVSPGQTARITCSGDALPKKFVHWYQQKSGQAPVLVIY
2069



Variable
EDSKRPSGIPERFSGSSSGTTATLTISGAQVEDEGDYYCYSTDSSGRGV




Region
FGGGTKLTVL




LCDR1
SGDALPKKFVH
2070



LCDR2
EDSKRPS
2071



LCDR3
YSTDSSGRGV
2072



LFRW1
SYELTQPPSVSVSPGQTARITC
2073



LFRW2
WYQQKSGQAPVLVIY
2074



LFRW3
GIPERFSGSSSGTTATLTISGAQVEDEGDYYC
2075



LFRW4
FGGGTKLTVL
2076





S171-692
Heavy Chain
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLE
2077


(Spike)

WIGRIYTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY





CARESKVTMVRGGLAYYYMDVWGKGTTVTVSSAPTKAPDVFPIISG





CRHPKDNSPVVLACLITGYH




Heavy Chain
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGSYYWSWIRQPAGKGLE
2078



Variable
WIGRIYTSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYY




Region
CARESKVTMVRGGLAYYYMDVWGKGTTVTVSS




HCDR1
SGSYYWS
2079



HCDR2
RIYTSGSTNYNPSLKS
2080



HCDR3
ESKVTMVRGGLAYYYMDV
2081



HFRW1
QVQLQESGPGLVKPSQTLSLTCTVSGGSIS
2082



HFRW2
WIRQPAGKGLEWIG
2083



HFRW3
RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
2084



HFRW4
WGKGTTVTVSS
2085



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
2086




AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSKNTFG





QGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ





WKVDN~




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIY
2087



Variable
AASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSKNTFG




Region
QGTKLEIK




LCDR1
RASQSISSYLN
2088



LCDR2
AASSLQS
2089



LCDR3
QQSYSKNT
2090



LFRW1
DIQMTQSPSSLSASVGDRVTITC
2091



LFRW2
WYQQKPGKAPKLLIY
2092



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
2093



LFRW4
FGQGTKLEIK
2094





S179-122
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYWMSWVRQAPGKGLE
2095


(Spike/

WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA



RBD)

VYYCASKLWLRGNFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYWMSWVRQAPGKGLE
2096



Variable
WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA




Region
VYYCASKLWLRGNFDYWGQGTLVTVSS




HCDR1
TYWMS
2097



HCDR2
NIKQDGSEKYYVDSVKG
2098



HCDR3
KLWLRGNFDY
2099



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
2100



HFRW2
WVRQAPGKGLEWVA
2101



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAS
2102



HFRW4
WGQGTLVTVSS
2103



Light Chain
NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVI
2104




YEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSN





LVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPG





AVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSH




Light Chain
NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVI
2105



Variable
YEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSN




Region
LVFGGGTKLTVL




LCDR1
TGSSGSIASNYVQ
2106



LCDR2
EDNQRPS
2107



LCDR3
QSYDSSNLV
2108



LFRW1
NFMLTQPHSVSESPGKTVTISC
2109



LFRW2
WYQQRPGSAPTTVIY
2110



LFRW3
GVPDRFSGSIDSSSNSASLTISGLKTEDEADYYC
2111



LFRW4
FGGGTKLTVL
2112





S179-20
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSGYGMHWVRQAPGKGLE
2113


(Spike/

WVAVIWFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA



RBD)

VYYCARDARYYDTSGYLGTTEFDYWGQGTLVTVSSGSASAPTLFPLV





SCENSPSDTSSVA




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSGYGMHWVRQAPGKGLE
2114



Variable
WVAVIWFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARDARYYDTSGYLGTTEFDYWGQGTLVTVSS




HCDR1
GYGMH
2115



HCDR2
VIWFDGSNKYYADSVKG
2116



HCDR3
DARYYDTSGYLGTTEFDY
2117



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
2118



HFRW2
WVRQAPGKGLEWVA
2119



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
2120



HFRW4
WGQGTLVTVSS
2121



Light Chain
EVVLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLI
2122




YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPR





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
EVVLTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLI
2123



Variable
YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPR




Region
TFGQGTKVEIK




LCDR1
RASQSVSSNLA
2124



LCDR2
GASTRAT
2125



LCDR3
QQYNNWPRT
2126



LFRW1
EVVLTQSPATLSVSPGERATLSC
2127



LFRW2
WYQQKPGQAPRLLIY
2128



LFRW3
GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC
2129



LFRW4
FGQGTKVEIK
2130





S179-27
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFRSYGMHWVRQAPGKGLE
2131


(Spike/

WVAVISYDGSNKNYADSVKGRLTISRDNSKNTLYLQMNSLRAEDTA



RBD)

VYYCAKDRGGYSSGWTYYYYGMDVWGQGTTVTVSSASTKGPSVFP





LAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL





QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD~




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFRSYGMHWVRQAPGKGLE
2132



Variable
WVAVISYDGSNKNYADSVKGRLTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKDRGGYSSGWTYYYYGMDVWGQGTTVTVSS




HCDR1
SYGMH
2133



HCDR2
VISYDGSNKNYADSVKG
2134



HCDR3
DRGGYSSGWTYYYYGMDV
2135



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFR
2136



HFRW2
WVRQAPGKGLEWVA
2137



HFRW3
RLTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
2138



HFRW4
WGQGTTVTVSS
2139



Light Chain
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLI
2140




YDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLT





FGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLI
2141



Variable
YDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLT




Region
FGGGTKVEIK




LCDR1
QASQDISNYLN
2142



LCDR2
DASNLET
2143



LCDR3
QQYDNLPLT
2144



LFRW1
DIQMTQSPSSLSASVGDRVTITC
2145



LFRW2
WYQQKPGKAPKLLIY
2146



LFRW3
GVPSRFSGSGSGTDFTFTISSLQPEDIATYYC
2147



LFRW4
FGGGTKVEIK
2148





S179-28
Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLE
2149


(Spike/

WVSAIRGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV



RBD)

YYCAKGVRSSDDYFEYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS





VVTVPSSSLGTQTYICNVNHKPSNTKVD~




Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLE
2150



Variable
WVSAIRGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV




Region
YYCAKGVRSSDDYFEYWGQGTLVTVSS




HCDR1
SYAMS
2151



HCDR2
AIRGSGGSTYYADSVKG
2152



HCDR3
GVRSSDDYFEY
2153



HFRW1
EVQLLESGGGLVQPGGSLRLSCAASGFTFS
2154



HFRW2
WVRQAPGKGLEWVS
2155



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
2156



HFRW4
WGQGTLVTVSS
2157



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSITSWLAWYQQKPGKAPKLLI
2158




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQHYNSYPW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSITSWLAWYQQKPGKAPKLLI
2159



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQHYNSYPW




Region
TFGQGTKVEIK




LCDR1
RASQSITSWLA
2160



LCDR2
DASSLES
2161



LCDR3
QHYNSYPWT
2162



LFRW1
DIQMTQSPSTLSASVGDRVTITC
2163



LFRW2
WYQQKPGKAPKLLIY
2164



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
2165



LFRW4
FGQGTKVEIK
2166





S210-1139
Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYYFPSYWIGWVRQKPGNGPE
2167


(Spike)

WMGIIHPGDSESTYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMY





YCARPFYYGSESPPGYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDT





SSV




Heavy Chain
EVQLVQSGAEVKKPGESLKISCKGSGYYFPSYWIGWVRQKPGNGPE
2168



Variable
WMGIIHPGDSESTYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMY




Region
YCARPFYYGSESPPGYWGQGTLVTVSS




HCDR1
SYWIG
2169



HCDR2
IIHPGDSESTYSPSFQG
2170



HCDR3
PFYYGSESPPGY
2171



HFRW1
EVQLVQSGAEVKKPGESLKISCKGSGYYFP
2172



HFRW2
WVRQKPGNGPEWMG
2173



HFRW3
QVTISADKSISTAYLQWSSLKASDTAMYYCAR
2174



HFRW4
WGQGTLVTVSS
2175



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLI
2176




YGASSRATGIPDRFSGSGSGTDFTLTISRLEAEDFAVYYCQLFGSSPTW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDN~




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLI
2177



Variable
YGASSRATGIPDRFSGSGSGTDFTLTISRLEAEDFAVYYCQLFGSSPTW




Region
TFGQGTKVEIK




LCDR1
RASQSVSSSYLA
2178



LCDR2
GASSRAT
2179



LCDR3
QLFGSSPTWT
2180



LFRW1
EIVLTQSPGTLSLSPGERATLSC
2181



LFRW2
WYQQKPGQAPRLLIY
2182



LFRW3
GIPDRFSGSGSGTDFTLTISRLEAEDFAVYYC
2183



LFRW4
FGQGTKVEIK
2184





S210-1262
Heavy Chain
QLQLQESGPGLMKPSETLSLTCTVSGGSISRSNYYWGWIRQPPGKGLE
2185


(Spike)

WIGSIYYSGSTYYNPSLKSRVTISVDTSQNQFSLKMSSVTAADTAVYY





CASLFDYGDNYWGQGTLVTVSSASTKGPSVFPLAPSSKS~




Heavy Chain
QLQLQESGPGLMKPSETLSLTCTVSGGSISRSNYYWGWIRQPPGKGLE
2186



Variable
WIGSIYYSGSTYYNPSLKSRVTISVDTSQNQFSLKMSSVTAADTAVYY




Region
CASLFDYGDNYWGQGTLVTVSS




HCDR1
RSNYYWG
2187



HCDR2
SIYYSGSTYYNPSLKS
2188



HCDR3
LFDYGDNY
2189



HFRW1
QLQLQESGPGLMKPSETLSLTCTVSGGSIS
2190



HFRW2
WIRQPPGKGLEWIG
2191



HFRW3
RVTISVDTSQNQFSLKMSSVTAADTAVYYCAS
2192



HFRW4
WGQGTLVTVSS
2193



Light Chain
QLVLTQSPSASASLGASVKLTCTLSSGHSSYAIAWHQQQPERGPRYL
2194




MKLNGDGSHSKGDGIPDRFSGSSSGAERYLTISSLQSEDEADYYCQT





WGTDIQVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLIS





DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
QLVLTQSPSASASLGASVKLTCTLSSGHSSYAIAWHQQQPERGPRYL
2195



Variable
MKLNGDGSHSKGDGIPDRFSGSSSGAERYLTISSLQSEDEADYYCQT




Region
WGTDIQVFGGGTKLTVL




LCDR1
TLSSGHSSYAIA
2196



LCDR2
LNGDGSHSKGD
2197



LCDR3
QTWGTDIQV
2198



LFRW1
QLVLTQSPSASASLGASVKLTC
2199



LFRW2
WHQQQPERGPRYLMK
2200



LFRW3
GIPDRFSGSSSGAERYLTISSLQSEDEADYYC
2201



LFRW4
FGGGTKLTVL
2202





S210-1611
Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQARGQGLE
2203


(Spike)

WMGGIIPIFGTANYPQKFQGRVTITADESTSTAYMELSSLRSEDTAVY





YCARYHAYDSSGYYVDYWGQGTLVTVSSASPTSPKVFPLSLCSTQPD





GNVVIACLVQGFFPQEPLSVTWSESGQGVTARNF~




Heavy Chain
QVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQARGQGLE
2204



Variable
WMGGIIPIFGTANYPQKFQGRVTITADESTSTAYMELSSLRSEDTAVY




Region
YCARYHAYDSSGYYVDYWGQGTLVTVSS




HCDR1
SYAIS
2205



HCDR2
GIIPIFGTANYPQKFQG
2206



HCDR3
YHAYDSSGYYVDY
2207



HFRW1
QVQLVQSGAEVKKPGSSVKVSCKASGGTFS
2208



HFRW2
WVRQARGQGLEWMG
2209



HFRW3
RVTITADESTSTAYMELSSLRSEDTAVYYCAR
2210



HFRW4
WGQGTLVTVSS
2211



Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSISSFLAWYQQKPGQAPRLLIY
2212




DASNRATGIPARFSGSGSGTDFILTINNLEPEDFAVYYCQQRSNWPPK





LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDN~




Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSISSFLAWYQQKPGQAPRLLIY
2213



Variable
DASNRATGIPARFSGSGSGTDFILTINNLEPEDFAVYYCQQRSNWPPK




Region
LTFGGGTKVEIK




LCDR1
RASQSISSFLA
2214



LCDR2
DASNRAT
2215



LCDR3
QQRSNWPPKLT
2216



LFRW1
EIVLTQSPATLSLSPGERATLSC
2217



LFRW2
WYQQKPGQAPRLLIY
2218



LFRW3
GIPARFSGSGSGTDFILTINNLEPEDFAVYYC
2219



LFRW4
FGGGTKVEIK
2220





S210-727
Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSMSSSYWSWIRQPPGKGLEWI
2221


(Spike)

GYIYYRGSTNYNPSLKTRVTMSVDTSKNQFSMKMTFMTAADTAVYY





CAREAAFNWFDSWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTSSV




Heavy Chain
QVQLQESGPGLVKPSETLSLTCTVSGGSMSSSYWSWIRQPPGKGLEWI
2222



Variable
GYIYYRGSTNYNPSLKTRVTMSVDTSKNQFSMKMTFMTAADTAVYY




Region
CAREAAFNWFDSWGQGTLVTVSS




HCDR1
SSYWS
2223



HCDR2
YIYYRGSTNYNPSLKT
2224



HCDR3
EAAFNWFDS
2225



HFRW1
QVQLQESGPGLVKPSETLSLTCTVSGGSMS
2226



HFRW2
WIRQPPGKGLEWIG
2227



HFRW3
RVTMSVDTSKNQFSMKMTFMTAADTAVYYCAR
2228



HFRW4
WGQGTLVTVSS
2229



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQGISSYLAWFQQKPGKAPKSLIY
2230




AASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYNRYPPTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDN~




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQGISSYLAWFQQKPGKAPKSLIY
2231



Variable
AASSLQSGVPSKFSGSGSGTDFTLTISSLQPEDFATYYCQQYNRYPPTF




Region
GGGTKVEI




LCDR1
RASQGISSYLA
2232



LCDR2
AASSLQS
2233



LCDR3
QQYNRYPPT
2234



LFRW1
DIQMTQSPSSLSASVGDRVTITC
2235



LFRW2
WFQQKPGKAPKSLIY
2236



LFRW3
GVPSKFSGSGSGTDFTLTISSLQPEDFATYYC
2237



LFRW4
FGGGTKVEI
2238





S210-852
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTLSIYWMSWVRQAPGKGLE
2239


(Spike)

WVANIKQDGREKYHVDSVKGRFTISRDNANNSLYLQMNNLRAEDTA





VYFCARDGIAVAGGFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTLSIYWMSWVRQAPGKGLE
2240



Variable
WVANIKQDGREKYHVDSVKGRFTISRDNANNSLYLQMNNLRAEDTA




Region
VYFCARDGIAVAGGFDYWGQGTLVTVSS




HCDR1
IYWMS
2241



HCDR2
NIKQDGREKYHVDSVKG
2242



HCDR3
DGIAVAGGFDY
2243



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTLS
2244



HFRW2
WVRQAPGKGLEWVA
2245



HFRW3
RFTISRDNANNSLYLQMNNLRAEDTAVYFCAR
2246



HFRW4
WGQGTLVTVSS
2247



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDTYACWYQQKPGQSPVLVIY
2248




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTSV





VFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDTYACWYQQKPGQSPVLVIY
2249



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTSV




Region
VFGGGTKLTVL




LCDR1
SGDKLGDTYAC
2250



LCDR2
QDSKRPS
2251



LCDR3
QAWDSSTSVV
2252



LFRW1
SYELTQPPSVSVSPGQTASITC
2253



LFRW2
WYQQKPGQSPVLVIY
2254



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
2255



LFRW4
FGGGTKLTVL
2256





S210-896
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLE
2257


(Spike)

WVAVISYDGGNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARGHGNYLTYFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLE
2258



Variable
WVAVISYDGGNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARGHGNYLTYFDYWGQGTLVTVSS




HCDR1
SYAMH
2259



HCDR2
VISYDGGNKYYADSVKG
2260



HCDR3
GHGNYLTYFDY
2261



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
2262



HFRW2
WVRQAPGKGLEWVA
2263



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
2264



HFRW4
WGQGTLVTVSS
2265



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSISSNYLAWYQQKPGQAPRLLI
2266




YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLT





FGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSISSNYLAWYQQKPGQAPRLLI
2267



Variable
YGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLT




Region
FGPGTKVDIK




LCDR1
RASQSISSNYLA
2268



LCDR2
GASSRAT
2269



LCDR3
QQYGSSPLT
2270



LFRW1
EIVLTQSPGTLSLSPGERATLSC
2271



LFRW2
WYQQKPGQAPRLLIY
2272



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
2273



LFRW4
FGPGTKVDIK
2274





S2141-113
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSSWIHWVRQAPGKGLV
2275


(Spike/

WVSRINSDGSSTTYADSVKGRFTISRDNAKNTLFLQMNSLRAEDTAV



RBD)

YYCARAEWLRGQFDYWGQGTLVTVSSPPTKAPDVFPIISGCRHPKDN





SPVVLACLITGYHPTSVTVTWYMGTQSQPQRTFPEIQRRDSYYMTSSQ





LSTPLQQWRQGEYKCVVQ~




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSSWIHWVRQAPGKGLV
2276



Variable
WVSRINSDGSSTTYADSVKGRFTISRDNAKNTLFLQMNSLRAEDTAV




Region
YYCARAEWLRGQFDYWGQGTLVTVSS




HCDR1
SSWIH
2277



HCDR2
RINSDGSSTTYADSVKG
2278



HCDR3
AEWLRGQFDY
2279



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
2280



HFRW2
WVRQAPGKGLVWVS
2281



HFRW3
RFTISRDNAKNTLFLQMNSLRAEDTAVYYCAR
2282



HFRW4
WGQGTLVTVSS
2283



Light Chain
NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVI
2284




YEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDTSN





HVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYP





GAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKS





H~




Light Chain
NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVI
2285



Variable
YEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDTSN




Region
HVVFGGGTKLTVL




LCDR1
TGSSGSIASNYVQ
2286



LCDR2
EDNQRPS
2287



LCDR3
QSYDTSNHVV
2288



LFRW1
NFMLTQPHSVSESPGKTVTISC
2289



LFRW2
WYQQRPGSAPTTVIY
2290



LFRW3
GVPDRFSGSIDSSSNSASLTISGLKTEDEADYYC
2291



LFRW4
FGGGTKLTVL
2292





S2141-126
Heavy Chain
EVQLVQSGAEVKNPGESLKISCKGSGYRFTTYWIGWVRQMPGKGLE
2293


(Spike/

WMGIIYPGDSDTRYSPSFEGQVTISADKSISTAYLQWSSLKASDTAMY



RBD)

YCARHPLGLGGSIDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGT





AALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV





TVPSSSLGTQTYICNVNHKPTLVLLGL*F~




Heavy Chain
EVQLVQSGAEVKNPGESLKISCKGSGYRFTTYWIGWVRQMPGKGLE
2294



Variable
WMGIIYPGDSDTRYSPSFEGQVTISADKSISTAYLQWSSLKASDTAMY




Region
YCARHPLGLGGSIDYWGQGTLVTVSS




HCDR1
TYWIG
2295



HCDR2
IIYPGDSDTRYSPSFEG
2296



HCDR3
HPLGLGGSIDY
2297



HFRW1
EVQLVQSGAEVKNPGESLKISCKGSGYRFT
2298



HFRW2
WVRQMPGKGLEWMG
2299



HFRW3
QVTISADKSISTAYLQWSSLKASDTAMYYCAR
2300



HFRW4
WGQGTLVTVSS
2301



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
2302




YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSHWT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
2303



Variable
YDASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSHWT




Region
FGQGTKVEIK




LCDR1
RASQSISSWLA
2304



LCDR2
DASSLES
2305



LCDR3
QQYNSHWT
2306



LFRW1
DIQMTQSPSTLSASVGDRVTITC
2307



LFRW2
WYQQKPGKAPKLLIY
2308



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
2309



LFRW4
FGQGTKVEIK
2310





S2141-16
Heavy Chain
QVQLQQWGAGLLKPSETLSRTCAVYGGSFSGYYWSWIRQTPGKGLE
2311


(Spike)

WIGEINHDGSTIYNPSLKSRVTISIDTSKNQFSLQLSSVTAADTAVYYC





ARGSNPGDYWGQGALVTVSSAPTKAPDVFPIISGCRHPKDNSPVVLA





CLITGYHPT~




Heavy Chain
QVQLQQWGAGLLKPSETLSRTCAVYGGSFSGYYWSWIRQTPGKGLE
2312



Variable
WIGEINHDGSTIYNPSLKSRVTISIDTSKNQFSLQLSSVTAADTAVYYC




Region
ARGSNPGDYWGQGALVTVSS




HCDR1
GYYWS
2313



HCDR2
EINHDGSTIYNPSLKS
2314



HCDR3
GSNPGDY
2315



HFRW1
QVQLQQWGAGLLKPSETLSRTCAVYGGSFS
2316



HFRW2
WIRQTPGKGLEWIG
2317



HFRW3
RVTISIDTSKNQFSLQLSSVTAADTAVYYCAR
2318



HFRW4
WGQGALVTVSS
2319



Light Chain
SYELTQSLSVSVALGQTARIPCGGNNIGSKNVHWYQQKPGQAPVLVI
2320




YSDRNRPSGIPERFSGSNSGNTATLTISRAQAGDEADYYCQVWDSSSV





VFGGGTKLTVLRQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA





VTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSH~




Light Chain
SYELTQSLSVSVALGQTARIPCGGNNIGSKNVHWYQQKPGQAPVLVI
2321



Variable
YSDRNRPSGIPERFSGSNSGNTATLTISRAQAGDEADYYCQVWDSSSV




Region
VFGGGTKLTVL




LCDR1
GGNNIGSKNVH
2322



LCDR2
SDRNRPS
2323



LCDR3
QVWDSSSVV
2324



LFRW1
SYELTQSLSVSVALGQTARIPC
2325



LFRW2
WYQQKPGQAPVLVIY
2326



LFRW3
GIPERFSGSNSGNTATLTISRAQAGDEADYYC
2327



LFRW4
FGGGTKLTVL
2328





S2141-62
Heavy Chain
QVHLQESGPGLVKPSQTLSLTCTVSGVSITTSGSYWSWIRQCPGKGLE
2329


(Spike/

WIGYIYSTGTTYYSPSLKSRLTISLDTSRNQFSLNLSSVTAADTAVFFC



RBD)

ARKTYMDYFDYWGQGALITVSSASTKGPSVFPLAPSSKSTSGGTAAL





GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVHLQESGPGLVKPSQTLSLTCTVSGVSITTSGSYWSWIRQCPGKGLE
2330



Variable
WIGYIYSTGTTYYSPSLKSRLTISLDTSRNQFSLNLSSVTAADTAVFFC




Region
ARKTYMDYFDYWGQGALITVSS




HCDR1
TSGSYWS
2331



HCDR2
YIYSTGTTYYSPSLKS
2332



HCDR3
KTYMDYFDY
2333



HFRW1
QVHLQESGPGLVKPSQTLSLTCTVSGVSIT
2334



HFRW2
WIRQCPGKGLEWIG
2335



HFRW3
RLTISLDTSRNQFSLNLSSVTAADTAVFFCAR
2336



HFRW4
WGQGALITVSS
2337



Light Chain
QSALTQPTSVSGSPGQSITISCTGTSSDVGRYNLVSWYQQYPGKAPKLI
2338




IFEVSKRPSGVSDRFSASKSGNTASLTISGLQADDEADYYCCTYALTFL





FGGGTKVTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAV





TVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSH




Light Chain
QSALTQPTSVSGSPGQSITISCTGTSSDVGRYNLVSWYQQYPGKAPKLI
2339



Variable
IFEVSKRPSGVSDRFSASKSGNTASLTISGLQADDEADYYCCTYALTFL




Region
FGGGTKVTVL




LCDR1
TGTSSDVGRYNLVS
2340



LCDR2
EVSKRPS
2341



LCDR3
CTYALTFL
2342



LFRW1
QSALTQPTSVSGSPGQSITISC
2343



LFRW2
WYQQYPGKAPKLIIF
2344



LFRW3
GVSDRFSASKSGNTASLTISGLQADDEADYYC
2345



LFRW4
FGGGTKVTVL
2346





S2141-63
Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFTFYDYAMNWVRQTPGEGLE
2347


(Spike/

WVSAISGSGDPTYYADSVNGRFTISRDNSKNTLYLQMNSLRAEDTAI



RBD)

YYCAKDMEDFGFSWGQGTLVTVSSAPTKAPDVFPIISGCRHPKDNSP





VVLACLITGYHPTSVTVTWYM~




Heavy Chain
EVQLLESGGGLVQPGGSLRLSCAASGFTFYDYAMNWVRQTPGEGLE
2348



Variable
WVSAISGSGDPTYYADSVNGRFTISRDNSKNTLYLQMNSLRAEDTAI




Region
YYCAKDMEDFGFSWGQGTLVTVSS




HCDR1
DYAMN
2349



HCDR2
AISGSGDPTYYADSVNG
2350



HCDR3
DMEDFGFS
2351



HFRW1
EVQLLESGGGLVQPGGSLRLSCAASGFTFY
2352



HFRW2
WVRQTPGEGLEWVS
2353



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAIYYCAK
2354



HFRW4
WGQGTLVTVSS
2355



Light Chain
DIQMTQSPSSLSASVGDRVTITCRSGQSISTYLNWYQQKPGKAPKLLI
2356




YASSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFLPPRTF





GQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
DIQMTQSPSSLSASVGDRVTITCRSGQSISTYLNWYQQKPGKAPKLLI
2357



Variable
YASSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFLPPRTF




Region
GQGTKLEIK




LCDR1
RSGQSISTYLN
2358



LCDR2
ASSSLQS
2359



LCDR3
QQSFLPPRT
2360



LFRW1
DIQMTQSPSSLSASVGDRVTITC
2361



LFRW2
WYQQKPGKAPKLLIY
2362



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC
2363



LFRW4
FGQGTKLEIK
2364





S2141-65
Heavy Chain
DVQLVQSGAEVTKPGESLKISCKGSGYSFTTYWIGWVRQMPGKGLE
2365


(Spike)

WMGIIYPGDSDTRYSPSFQGQVTISVDKSISTAYLQWSSLKASDTAMY





YCARQFCGGDCPFDYWGRGTLVTVSSASTKGPSVFPLAPCSRSTSGG





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSSLGTQTYTCNVNHKPSNTKVD~




Heavy Chain
DVQLVQSGAEVTKPGESLKISCKGSGYSFTTYWIGWVRQMPGKGLE
2366



Variable
WMGIIYPGDSDTRYSPSFQGQVTISVDKSISTAYLQWSSLKASDTAMY




Region
YCARQFCGGDCPFDYWGRGTLVTVSS




HCDR1
TYWIG
2367



HCDR2
IIYPGDSDTRYSPSFQG
2368



HCDR3
QFCGGDCPFDY
2369



HFRW1
DVQLVQSGAEVTKPGESLKISCKGSGYSFT
2370



HFRW2
WVRQMPGKGLEWMG
2371



HFRW3
QVTISVDKSISTAYLQWSSLKASDTAMYYCAR
2372



HFRW4
WGRGTLVTVSS
2373



Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
2374




YDASSLEGGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPRT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLI
2375



Variable
YDASSLEGGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPRT




Region
FGQGTKVEIK




LCDR1
RASQSISSWLA
2376



LCDR2
DASSLEG
2377



LCDR3
QQYNSYPRT
2378



LFRW1
DIQMTQSPSTLSASVGDRVTITC
2379



LFRW2
WYQQKPGKAPKLLIY
2380



LFRW3
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
2381



LFRW4
FGQGTKVEIK
2382





S2141-97
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTRYGMHWVRQAPGQRL
2383


(Spike/

KWMGWINAGNGNTKYSQKFQGRLTISRDTSASTAYMEVSSLRSEDT



RBD)

AVYYCARSGIAAAGSKVIYYYDMDVWGQGTTVTVSSAPTKAPDVFPI





ISGCRHPKDNSPVVLACLITGYHPTSVTVTWYMGTQSQPQRTFPEIQR





RDSYYMTSSQLSTPLQQWRQGEYKCVVQ~




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKASGYTFTRYGMHWVRQAPGQRL
2384



Variable
KWMGWINAGNGNTKYSQKFQGRLTISRDTSASTAYMEVSSLRSEDT




Region
AVYYCARSGIAAAGSKVIYYYDMDVWGQGTTVTVSS




HCDR1
RYGMH
2385



HCDR2
WINAGNGNTKYSQKFQG
2386



HCDR3
SGIAAAGSKVIYYYDMDV
2387



HFRW1
QVQLVQSGAEVKKPGASVKVSCKASGYTFT
2388



HFRW2
WVRQAPGQRLKWMG
2389



HFRW3
RLTISRDTSASTAYMEVSSLRSEDTAVYYCAR
2390



HFRW4
WGQGTTVTVSS
2391



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQRVSSSYIAWYQQKPGQAPRLLI
2392




FGTSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFALYYCQQYGSSPYTF





GQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQRVSSSYIAWYQQKPGQAPRLLI
2393



Variable
FGTSSRATGIPDRFSGSGSGTDFTLTISRLEPEDFALYYCQQYGSSPYTF




Region
GQGTKLEIK




LCDR1
RASQRVSSSYIA
2394



LCDR2
GTSSRAT
2395



LCDR3
QQYGSSPYT
2396



LFRW1
EIVLTQSPGTLSLSPGERATLSC
2397



LFRW2
WYQQKPGQAPRLLIF
2398



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFALYYC
2399



LFRW4
FGQGTKLEIK
2400





S24_342
Heavy Chain
QVQLVQSGAEVKMPGASVIVSCKASGYTFSTYYIHWVRQAPGQGLE
2401


(Spike/

WMGRITPRDGDTTYAQVLQGRVTLTRDTSASTAYMELSSLTYEDTA



RBD)

VYYCARDGHHWDFDFWGRGTLVAVSSASTKGPSVFPLAPCSRSTSES





TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS




Heavy Chain
QVQLVQSGAEVKMPGASVIVSCKASGYTFSTYYIHWVRQAPGQGLE
2402



Variable
WMGRITPRDGDTTYAQVLQGRVTLTRDTSASTAYMELSSLTYEDTA




Region
VYYCARDGHHWDFDFWGRGTLVAVSS




HCDR1
TYYIH
2403



HCDR2
RITPRDGDTTYAQVLQG
2404



HCDR3
DGHHWDFDF
2405



HFRW1
QVQLVQSGAEVKMPGASVIVSCKASGYTFS
2406



HFRW2
WVRQAPGQGLEWMG
2407



HFRW3
RVTLTRDTSASTAYMELSSLTYEDTAVYYCAR
2408



HFRW4
WGRGTLVAVSS
2409



Light Chain
HSALTQPPSASGSPGQSVTISCTGTSSDVGGYNHVSWYQQHPGKAPK
2410




LMVYEVNQRPSGVPDRFTGSKSGNTASLTVSGLQAEDEADYYCNSY





TDRNKWVFGGGTRLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLIS





DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
HSALTQPPSASGSPGQSVTISCTGTSSDVGGYNHVSWYQQHPGKAPK
2411



Variable
LMVYEVNQRPSGVPDRFTGSKSGNTASLTVSGLQAEDEADYYCNSY




Region
TDRNKWVFGGGTRLTVL




LCDR1
TGTSSDVGGYNHVS
2412



LCDR2
EVNQRPS
2413



LCDR3
NSYTDRNKWV
2414



LFRW1
HSALTQPPSASGSPGQSVTISC
2415



LFRW2
WYQQHPGKAPKLMVY
2416



LFRW3
GVPDRFTGSKSGNTASLTVSGLQAEDEADYYC
2417



LFRW4
FGGGTRLTVL
2418





S24-1047
Heavy Chain
QVQLKQSGAEVKEPGGSVKLSCKASGYTFTSRYIHWVRQAPGQGLE
2419


(Spike/

WVGRLIPSDGGTTYAQKFRGRVTMTSDTSATTAYMELSSLGSGDTAV



RBD)

YYCARDGTHWDFDFWGQGTLVTVSSASPTSPKVFPLSLDSTPQDGNV





VVACLVQGFFPQEPLSVTWSESGQNVTARNF~




Heavy Chain
QVQLKQSGAEVKEPGGSVKLSCKASGYTFTSRYIHWVRQAPGQGLE
2420



Variable
WVGRLIPSDGGTTYAQKFRGRVTMTSDTSATTAYMELSSLGSGDTAV




Region
YYCARDGTHWDFDFWGQGTLVTVSS




HCDR1
SRYIH
2421



HCDR2
RLIPSDGGTTYAQKFRG
2422



HCDR3
DGTHWDFDF
2423



HFRW1
QVQLKQSGAEVKEPGGSVKLSCKASGYTFT
2424



HFRW2
WVRQAPGQGLEWVG
2425



HFRW3
RVTMTSDTSATTAYMELSSLGSGDTAVYYCAR
2426



HFRW4
WGQGTLVTVSS
2427



Light Chain
HSALTQPPSASGSPGQSVTISCTGTSDDVGGYNHVSWYQQHPGKAPK
2428




LVIYEVTERPSGVPDRFTGSKSGNTASLTVSGLQAEDEADYYCNSYK





RGNTWVFGGGTRLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISD





FYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
HSALTQPPSASGSPGQSVTISCTGTSDDVGGYNHVSWYQQHPGKAPK
2429



Variable
LVIYEVTERPSGVPDRFTGSKSGNTASLTVSGLQAEDEADYYCNSYK




Region
RGNTWVFGGGTRLTVL




LCDR1
TGTSDDVGGYNHVS
2430



LCDR2
EVTERPS
2431



LCDR3
NSYKRGNTWV
2432



LFRW1
HSALTQPPSASGSPGQSVTISC
2433



LFRW2
WYQQHPGKAPKLVIY
2434



LFRW3
GVPDRFTGSKSGNTASLTVSGLQAEDEADYYC
2435



LFRW4
FGGGTRLTVL
2436





S24-223
Heavy Chain
QITLKESGPTLVKPTQTLTLTCTFSGFSLNTSGVGVGWIRQPPGKALE
2437


(Spike/

WLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTAT



RBD)

YYCAHHTIVPIFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTSSV




Heavy Chain
QITLKESGPTLVKPTQTLTLTCTFSGFSLNTSGVGVGWIRQPPGKALE
2438



Variable
WLALIYWDDDKRYSPSLKSRLTITKDTSKNQVVLTMTNMDPVDTAT




Region
YYCAHHTIVPIFDYWGQGTLVTVSS




HCDR1
TSGVGVG
2439



HCDR2
LIYWDDDKRYSPSLKS
2440



HCDR3
HTIVPIFDY
2441



HFRW1
QITLKESGPTLVKPTQTLTLTCTFSGFSLN
2442



HFRW2
WIRQPPGKALEWLA
2443



HFRW3
RLTITKDTSKNQVVLTMTNMDPVDTATYYCAH
2444



HFRW4
WGQGTLVTVSS
2445



Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
2446




MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSS





STLVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLT~




Light Chain
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKL
2447



Variable
MIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSS




Region
STLVVFGGGTKLTVL




LCDR1
TGTSSDVGGYNYVS
2448



LCDR2
DVSNRPS
2449



LCDR3
NSYTSSSTLVV
2450



LFRW1
QSALTQPASVSGSPGQSITISC
2451



LFRW2
WYQQHPGKAPKLMIY
2452



LFRW3
GVSNRFSGSKSGNTASLTISGLQAEDEADYYC
2453



LFRW4
FGGGTKLTVL
2454





S24-237
Heavy Chain
QVQLQESGPGLVKPSGTLSLTCSVSGGSINSSFWSWIRQPPGKGLEWI
2455


(Spike/

GYIYYRGSTNYNPSLKSRVTISVDTSNNQFSLKLTSMTAADSAVYYC



RBD)

ARETRYNWFDSWGQGTRVTVSSASTKGPSVFPLAPCSRSTSESTAAL





GCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
QVQLQESGPGLVKPSGTLSLTCSVSGGSINSSFWSWIRQPPGKGLEWI
2456



Variable
GYIYYRGSTNYNPSLKSRVTISVDTSNNQFSLKLTSMTAADSAVYYC




Region
ARETRYNWFDSWGQGTRVTVSS




HCDR1
SSFWS
2457



HCDR2
YIYYRGSTNYNPSLKS
2458



HCDR3
ETRYNWFDS
2459



HFRW1
QVQLQESGPGLVKPSGTLSLTCSVSGGSIN
2460



HFRW2
WIRQPPGKGLEWIG
2461



HFRW3
RVTISVDTSNNQFSLKLTSMTAADSAVYYCAR
2462



HFRW4
WGQGTRVTVSS
2463



Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQTVSYTSNNKNYLAWYQQKPG
2464




QPPNLLIYWASTRESGVPDRFSGSGSGTDFTLTINSLQAEDVAVYYCQ





QYYTTPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLN





NFYPREAKVQWKVDN




Light Chain
DIVMTQSPDSLAVSLGERATINCKSSQTVSYTSNNKNYLAWYQQKPG
2465



Variable
QPPNLLIYWASTRESGVPDRFSGSGSGTDFTLTINSLQAEDVAVYYCQ




Region
QYYTTPWTFGQGTKVEIK




LCDR1
KSSQTVSYTSNNKNYLA
2466



LCDR2
WASTRES
2467



LCDR3
QQYYTTPWT
2468



LFRW1
DIVMTQSPDSLAVSLGERATINC
2469



LFRW2
WYQQKPGQPPNLLIY
2470



LFRW3
GVPDRFSGSGSGTDFTLTINSLQAEDVAVYYC
2471



LFRW4
FGQGTKVEIK
2472





S305-1456
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGL
2473


(Spike)

EWMGGFDPEDAETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDT





AVYYCATGGFPVNSLYDILTGYLDYWGQGTLVTVSSASTKGPSVFPL





APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS





SG




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGL
2474



Variable
EWMGGFDPEDAETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDT




Region
AVYYCATGGFPVNSLYDILTGYLDYWGQGTLVTVSS




HCDR1
ELSMH
2475



HCDR2
GFDPEDAETIYAQKFQG
2476



HCDR3
GGFPVNSLYDILTGYLDY
2477



HFRW1
QVQLVQSGAEVKKPGASVKVSCKVSGYTLT
2478



HFRW2
WVRQAPGKGLEWMG
2479



HFRW3
RVTMTEDTSTDTAYMELSSLRSEDTAVYYCAT
2480



HFRW4
WGQGTLVTVSS
2481



Light Chain
EIVMTQSPATLSVSPGERATLSCRASQNVSSNLAWYQQKPGQAPRLLI
2482




YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPH





TFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN~




Light Chain
EIVMTQSPATLSVSPGERATLSCRASQNVSSNLAWYQQKPGQAPRLLI
2483



Variable
YGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPH




Region
TFGPGTKVDIK




LCDR1
RASQNVSSNLA
2484



LCDR2
GASTRAT
2485



LCDR3
QQYNNWPHT
2486



LFRW1
EIVMTQSPATLSVSPGERATLSC
2487



LFRW2
WYQQKPGQAPRLLIY
2488



LFRW3
GIPARFSGSGSGTEFTLTISSLQSEDFAVYYC
2489



LFRW4
FGPGTKVDIK
2490





S305-223
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFRNFGMHWVRQAPGKGLE
2491


(Spike)

WVAFIWTAESDKFYADSVKGRFTVSRDNSKNTLYLEMNSLRAEDTA





VYYCTKAMDVWGRGTTVTVSSASPTSPKVFPLSLCSTQPDGNVVIAC





LVQGFFPQEPLSVTWSESGQGVTARNF~




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFRNFGMHWVRQAPGKGLE
2492



Variable
WVAFIWTAESDKFYADSVKGRFTVSRDNSKNTLYLEMNSLRAEDTA




Region
VYYCTKAMDVWGRGTTVTVSS




HCDR1
NFGMH
2493



HCDR2
FIWTAESDKFYADSVKG
2494



HCDR3
AMDV
2495



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFR
2496



HFRW2
WVRQAPGKGLEWVA
2497



HFRW3
RFTVSRDNSKNTLYLEMNSLRAEDTAVYYCTK
2498



HFRW4
WGRGTTVTVSS
2499



Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSTSLAWYQQKCGQAPRLLIY
2500




DASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRGNWPFTF





GPGTRVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDN~




Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSTSLAWYQQKCGQAPRLLIY
2501



Variable
DASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRGNWPFTF




Region
GPGTRVDIK




LCDR1
RASQSVSTSLA
2502



LCDR2
DASNRAT
2503



LCDR3
QQRGNWPFT
2504



LFRW1
EIVLTQSPATLSLSPGERATLSC
2505



LFRW2
WYQQKCGQAPRLLIY
2506



LFRW3
GIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
2507



LFRW4
FGPGTRVDIK
2508





S305-399
Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGL
2509


(Spike)

EWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDT





AVYYCATGGLGCSNGVCNNWFDPWGLGTLVTVSSGSASAPTLFPLV





SCENSPSDTSSV




Heavy Chain
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTELSMHWVRQAPGKGL
2510



Variable
EWMGGFDPEDGETIYAQKFQGRVTMTEDTSTDTAYMELSSLRSEDT




Region
AVYYCATGGLGCSNGVCNNWFDPWGLGTLVTVSS




HCDR1
ELSMH
2511



HCDR2
GFDPEDGETIYAQKFQG
2512



HCDR3
GGLGCSNGVCNNWFDP
2513



HFRW1
QVQLVQSGAEVKKPGASVKVSCKVSGYTLT
2514



HFRW2
WVRQAPGKGLEWMG
2515



HFRW3
RVTMTEDTSTDTAYMELSSLRSEDTAVYYCAT
2516



HFRW4
WGLGTLVTVSS
2517



Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSITSNLAWYQQKPGQAPRLLI
2518




YGASTRATGIPARFSGSGSGTEFTLTISNLQSEDFAVYYCQQYNNWPL





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA





KVQWKVDNALQSGNSQESVTEQDS~




Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSITSNLAWYQQKPGQAPRLLI
2519



Variable
YGASTRATGIPARFSGSGSGTEFTLTISNLQSEDFAVYYCQQYNNWPL




Region
TFGQGTKVEIK




LCDR1
RASQSITSNLA
2520



LCDR2
GASTRAT
2521



LCDR3
QQYNNWPLT
2522



LFRW1
EIVMTQSPATLSVSPGERATLSC
2523



LFRW2
WYQQKPGQAPRLLIY
2524



LFRW3
GIPARFSGSGSGTEFTLTISNLQSEDFAVYYC
2525



LFRW4
FGQGTKVEIK
2526





S305-968
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLE
2527


(Spike)

WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA





VYYCARDSIAVAGGFDYWGQGTLVTVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLE
2528



Variable
WVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARDSIAVAGGFDYWGQGTLVTVSS




HCDR1
SYWMS
2529



HCDR2
NIKQDGSEKYYVDSVKG
2530



HCDR3
DSIAVAGGFDY
2531



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
2532



HFRW2
WVRQAPGKGLEWVA
2533



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
2534



HFRW4
WGQGTLVTVSS
2535



Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
2536




QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTN





VVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPG





AVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSH




Light Chain
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWYQQKPGQSPVLVIY
2537



Variable
QDSKRPSGIPERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSSTN




Region
VVFGGGTKLTVL




LCDR1
SGDKLGDKYAC
2538



LCDR2
QDSKRPS
2539



LCDR3
QAWDSSTNVV
2540



LFRW1
SYELTQPPSVSVSPGQTASITC
2541



LFRW2
WYQQKPGQSPVLVIY
2542



LFRW3
GIPERFSGSNSGNTATLTISGTQAMDEADYYC
2543



LFRW4
FGGGTKLTVL
2544





S376-1070
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
2545


(Spike)

WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCARMRPEYSSGFDPWGQGTLVTVSSGSASAPTLFPLVSCENSPSD





TSSV




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
2546



Variable
WVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCARMRPEYSSGFDPWGQGTLVTVSS




HCDR1
SYGMH
2547



HCDR2
VIWYDGSNKYYADSVKG
2548



HCDR3
MRPEYSSGFDP
2549



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
2550



HFRW2
WVRQAPGKGLEWVA
2551



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
2552



HFRW4
WGQGTLVTVSS
2553



Light Chain
QSALTQPRSVSGSPGQSVTISCTGSSSDVGRYNYVSWYQQHPGKAPK
2554




LMTYDVTRRPSGVPARFSGSKSDNTASLTISGLQAEDEADYYCCSFA





GSYTVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDF





YPGAVTVAWKADGSPVKVGVETTKPSKQSNNKYAASSYLSLTPEQW





KS~




Light Chain
QSALTQPRSVSGSPGQSVTISCTGSSSDVGRYNYVSWYQQHPGKAPK
2555



Variable
LMTYDVTRRPSGVPARFSGSKSDNTASLTISGLQAEDEADYYCCSFA




Region
GSYTVFGGGTKLTVL




LCDR1
TGSSSDVGRYNYVS
2556



LCDR2
DVTRRPS
2557



LCDR3
CSFAGSYTV
2558



LFRW1
QSALTQPRSVSGSPGQSVTISC
2559



LFRW2
WYQQHPGKAPKLMTY
2560



LFRW3
GVPARFSGSKSDNTASLTISGLQAEDEADYYC
2561



LFRW4
FGGGTKLTVL
2562





S376-1721
Heavy Chain
QVQLVQSGTEVREPGASVKVSCKASGYTFTGYYVHWVRQAPGQGLE
2563


(Spike)

WMGWVNPGSGDTLYAQKFQGRFTLTRDMSITTAYMELSSLRSDDSA





VYFCFRGYSYATFDYWGQGTLVTVSSASPTSPKVFPLSLCSTQPDGN





VVIACLVQGFFPQEPLSVTWSESGQGVTARNF~




Heavy Chain
QVQLVQSGTEVREPGASVKVSCKASGYTFTGYYVHWVRQAPGQGLE
2564



Variable
WMGWVNPGSGDTLYAQKFQGRFTLTRDMSITTAYMELSSLRSDDSA




Region
VYFCFRGYSYATFDYWGQGTLVTVSS




HCDR1
GYYVH
2565



HCDR2
WVNPGSGDTLYAQKFQG
2566



HCDR3
GYSYATFDY
2567



HFRW1
QVQLVQSGTEVREPGASVKVSCKASGYTFT
2568



HFRW2
WVRQAPGQGLEWMG
2569



HFRW3
RFTLTRDMSITTAYMELSSLRSDDSAVYFCFR
2570



HFRW4
WGQGTLVTVSS
2571



Light Chain
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKL
2572




LIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSS





LSGSFYVFGTGTKVTVLGQPKANPTVTLFPPSSEELQANKATLVCLIS





DFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
QSVLTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQLPGTAPKL
2573



Variable
LIYGNSNRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSS




Region
LSGSFYVFGTGTKVTVL




LCDR1
TGSSSNIGAGYDVH
2574



LCDR2
GNSNRPS
2575



LCDR3
QSYDSSLSGSFYV
2576



LFRW1
QSVLTQPPSVSGAPGQRVTISC
2577



LFRW2
WYQQLPGTAPKLLIY
2578



LFRW3
GVPDRFSGSKSGTSASLAITGLQAEDEADYYC
2579



LFRW4
FGTGTKVTVL
2580





S376-2486
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAVSGFTFSSYAMHWVRQAPGKGLE
2581


(Spike)

WVAVISYDGSNKYFADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV





YYCARGRGNYFTYFDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG





GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS~




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAVSGFTFSSYAMHWVRQAPGKGLE
2582



Variable
WVAVISYDGSNKYFADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV




Region
YYCARGRGNYFTYFDYWGQGTLVTVSS




HCDR1
SYAMH
2583



HCDR2
VISYDGSNKYFADSVKG
2584



HCDR3
GRGNYFTYFDY
2585



HFRW1
QVQLVESGGGVVQPGRSLRLSCAVSGFTFS
2586



HFRW2
WVRQAPGKGLEWVA
2587



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
2588



HFRW4
WGQGTLVTVSS
2589



Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSRNYLAWYQQKPGQAPRLL
2590




IYSASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGGSLTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDN~




Light Chain
EIVLTQSPGTLSLSPGERATLSCRASQSVSRNYLAWYQQKPGQAPRLL
2591



Variable
IYSASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGGSLTF




Region
GGGTKVEIK




LCDR1
RASQSVSRNYLA
2592



LCDR2
SASSRAT
2593



LCDR3
QQYGGSLT
2594



LFRW1
EIVLTQSPGTLSLSPGERATLSC
2595



LFRW2
WYQQKPGQAPRLLIY
2596



LFRW3
GIPDRFSGSGSGTDFTLTISRLEPEDFAVYYC
2597



LFRW4
FGGGTKVEIK
2598





S376-780
Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
2599


(Spike)

WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA





VYYCAKEGGSYSYYYYGMDVWGQGTTVTVSSGSASAPTLFPLVSCE





NSPSDTSSV




Heavy Chain
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE
2600



Variable
WVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTA




Region
VYYCAKEGGSYSYYYYGMDVWGQGTTVTVSS




HCDR1
SYGMH
2601



HCDR2
VISYDGSNKYYADSVKG
2602



HCDR3
EGGSYSYYYYGMDV
2603



HFRW1
QVQLVESGGGVVQPGRSLRLSCAASGFTFS
2604



HFRW2
WVRQAPGKGLEWVA
2605



HFRW3
RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
2606



HFRW4
WGQGTTVTVSS
2607



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLI
2608




YAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPR





TFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK





VQWKVDN~




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLI
2609



Variable
YAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQKYNSAPR




Region
TFGPGTKVDIK




LCDR1
RASQGISNYLA
2610



LCDR2
AASTLQS
2611



LCDR3
QKYNSAPRT
2612



LFRW1
DIQMTQSPSSLSASVGDRVTITC
2613



LFRW2
WYQQKPGKVPKLLIY
2614



LFRW3
GVPSRFSGSGSGTDFTLTISSLQPEDVATYYC
2615



LFRW4
FGPGTKVDIK
2616





S469-373
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCVVSGFTFSRYWMSWVRQTPGKGLQ
2617


(NP)

WVANIKQDDTNKFYEDSVKGRFTTSRDNAKNSLYLQMNSLRAEDTA





VYYCARGGGSSSGLYFESWGQGTLVIVSSGSASAPTLFPLVSCENSPS





DTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCVVSGFTFSRYWMSWVRQTPGKGLQ
2618



Variable
WVANIKQDDTNKFYEDSVKGRFTTSRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARGGGSSSGLYFESWGQGTLVIVSS




HCDR1
RYWMS
2619



HCDR2
NIKQDDTNKFYEDSVKG
2620



HCDR3
GGGSSSGLYFES
2621



HFRW1
EVQLVESGGGLVQPGGSLRLSCVVSGFTFS
2622



HFRW2
WVRQTPGKGLQWVA
2623



HFRW3
RFTTSRDNAKNSLYLQMNSLRAEDTAVYYCAR
2624



HFRW4
WGQGTLVIVSS
2625



Light Chain
EVQLVESGGGLVQPGGSLRLSCVVSGFTFSRYWMSWVRQTPGKGLQ
2626




WVANIKQDDTNKFYEDSVKGRFTTSRDNAKNSLYLQMNSLRAEDTA





VYYCARGGGSSSGLYFESWGQGTLVIVSSGSASAPTLFPLVSCENSPS





DTSSV




Light Chain
EVQLVESGGGLVQPGGSLRLSCVVSGFTFSRYWMSWVRQTPGKGLQ
2627



Variable
WVANIKQDDTNKFYEDSVKGRFTTSRDNAKNSLYLQMNSLRAEDTA




Region
VYYCARGGGSSSGLYFESWGQGTLVIVSS




LCDR1
RYWMS
2628



LCDR2
NIKQDDTNKFYEDSVKG
2629



LCDR3
GGGSSSGLYFES
2630



LFRW1
EVQLVESGGGLVQPGGSLRLSCVVSGFTFS
2631



LFRW2
WVRQTPGKGLQWVA
2632



LFRW3
RFTTSRDNAKNSLYLQMNSLRAEDTAVYYCAR
2633



LFRW4
WGQGTLVIVSS
2634





S48-144
Heavy Chain
EVQLVESGGDLVQPGRSLRLSCTASAFNFGDYAMSWVRQAPGKGLE
2635


(Spike)

WVGFIRSKGYGGTTEYAASVKGRFTISRDDSNRIAYLQMNSLKSEDT





AVYYCSRGYQLPNLWGQGTLVTVSSASPTSPKVFPLSLCSTQPDGNV





VIACLVQGFFPQEPLSVTWSESGQGVTARNF~




Heavy Chain
EVQLVESGGDLVQPGRSLRLSCTASAFNFGDYAMSWVRQAPGKGLE
2636



Variable
WVGFIRSKGYGGTTEYAASVKGRFTISRDDSNRIAYLQMNSLKSEDT




Region
AVYYCSRGYQLPNLWGQGTLVTVSS




HCDR1
DYAMS
2637



HCDR2
FIRSKGYGGTTEYAASVKG
2638



HCDR3
GYQLPNL
2639



HFRW1
EVQLVESGGDLVQPGRSLRLSCTASAFNFG
2640



HFRW2
WVRQAPGKGLEWVG
2641



HFRW3
RFTISRDDSNRIAYLQMNSLKSEDTAVYYCSR
2642



HFRW4
WGQGTLVTVSS
2643



Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISTFLNWYQQKPGKAPSLLIY
2644




AASSLQSGVPSRFSGSESGTDFTLTISSLQPEDFATYYCQQSYSTPLTFG





GGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ





WKVDN~




Light Chain
DIQMTQSPSSLSASVGDRVTITCRASQSISTFLNWYQQKPGKAPSLLIY
2645



Variable
AASSLQSGVPSRFSGSESGTDFTLTISSLQPEDFATYYCQQSYSTPLTFG




Region
GGTKVEIK




LCDR1
RASQSISTFLN
2646



LCDR2
AASSLQS
2647



LCDR3
QQSYSTPLT
2648



LFRW1
DIQMTQSPSSLSASVGDRVTITC
2649



LFRW2
WYQQKPGKAPSLLIY
2650



LFRW3
GVPSRFSGSESGTDFTLTISSLQPEDFATYYC
2651



LFRW4
FGGGTKVEIK
2652





S564-128
Heavy Chain
EVHLVESGGGWVQPGGSLRLSCAASGFTLSTYWMSWVRQTPGEGLQ
2653


(NP)

WVANIKQDGSSKYYVDSVKGRFTISRDNAKNSVYLQMNSLRGEDTA





VYYCARGDGSNSGIYFDSWGQGTLVTVSSASTKGPSVFPLAPCSRSTS





ESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG




Heavy Chain
EVHLVESGGGWVQPGGSLRLSCAASGFTLSTYWMSWVRQTPGEGLQ
2654



Variable
WVANIKQDGSSKYYVDSVKGRFTISRDNAKNSVYLQMNSLRGEDTA




Region
VYYCARGDGSNSGIYFDSWGQGTLVTVSS




HCDR1
TYWMS
2655



HCDR2
NIKQDGSSKYYVDSVKG
2656



HCDR3
GDGSNSGIYFDS
2657



HFRW1
EVHLVESGGGWVQPGGSLRLSCAASGFTLS
2658



HFRW2
WVRQTPGEGLQWVA
2659



HFRW3
RFTISRDNAKNSVYLQMNSLRGEDTAVYYCAR
2660



HFRW4
WGQGTLVTVSS
2661



Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSISSKLAWYQQKPGQAPRLLIY
2662




GASTRATGIPARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNYWYTF





GQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYE~




Light Chain
EIVMTQSPATLSVSPGERATLSCRASQSISSKLAWYQQKPGQAPRLLIY
2663



Variable
GASTRATGIPARFSGSGSGTEFTLTISSMQSEDFAVYYCQQYNYWYTF




Region
GQGTKLEIK




LCDR1
RASQSISSKLA
2664



LCDR2
GASTRAT
2665



LCDR3
QQYNYWYT
2666



LFRW1
EIVMTQSPATLSVSPGERATLSC
2667



LFRW2
WYQQKPGQAPRLLIY
2668



LFRW3
GIPARFSGSGSGTEFTLTISSMQSEDFAVYYC
2669



LFRW4
FGQGTKLEIK
2670





S92-110
Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLE
2671


(NP)

WVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY





YCARDRRGDYGRYYYGMDVWGQGTTVTVSSGSASAPTLFPLVSCEN





SPSDTSSV




Heavy Chain
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLE
2672



Variable
WVSYISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVY




Region
YCARDRRGDYGRYYYGMDVWGQGTTVTVSS




HCDR1
SYEMN
2673



HCDR2
YISSSGSTIYYADSVKG
2674



HCDR3
DRRGDYGRYYYGMDV
2675



HFRW1
EVQLVESGGGLVQPGGSLRLSCAASGFTFS
2676



HFRW2
WVRQAPGKGLEWVS
2677



HFRW3
RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR
2678



HFRW4
WGQGTTVTVSS
2679



Light Chain
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVI
2680




YGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGN





RVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPG





AVTVAWKADSSPVKAGVETTTPSKQSNNKYAASS~




Light Chain
SSELTQDPAVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVI
2681



Variable
YGKNNRPSGIPDRFSGSSSGNTASLTITGAQAEDEADYYCNSRDSSGN




Region
RVFGGGTKLTVL




LCDR1
QGDSLRSYYAS
2682



LCDR2
GKNNRPS
2683



LCDR3
NSRDSSGNRV
2684



LFRW1
SSELTQDPAVSVALGQTVRITC
2685



LFRW2
WYQQKPGQAPVLVIY
2686



LFRW3
GIPDRFSGSSSGNTASLTITGAQAEDEADYYC
2687



LFRW4
FGGGTKLTVL
2688





S92-2329
Heavy Chain
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLE
2689


(Spike)

WVSSISSSGTYIYYADSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVY





YCAQSIAARLDWFDPWGQGTLVTVSSGSASAPTLFPLVSCENSPSDTS





SV




Heavy Chain
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLE
2690



Variable
WVSSISSSGTYIYYADSVKGRFTISRDNAKNSLYLQMNSLRVEDTAVY




Region
YCAQSIAARLDWFDPWGQGTLVTVSS




HCDR1
SYSMN
2691



HCDR2
SISSSGTYIYYADSVKG
2692



HCDR3
SIAARLDWFDP
2693



HFRW1
EVQLVESGGGLVKPGGSLRLSCAASGFTFS
2694



HFRW2
WVRQAPGKGLEWVS
2695



HFRW3
RFTISRDNAKNSLYLQMNSLRVEDTAVYYCAQ
2696



HFRW4
WGQGTLVTVSS
2697



Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY
2698




DAFNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPRTF





GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKV





QWKVDN~




Light Chain
EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIY
2699



Variable
DAFNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPRTF




Region
GGGTKVEIK




LCDR1
RASQSVSSYLA
2700



LCDR2
DAFNRAT
2701



LCDR3
QQRSNWPRT
2702



LFRW1
EIVLTQSPATLSLSPGERATLSC
2703



LFRW2
WYQQKPGQAPRLLIY
2704



LFRW3
GIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
2705



LFRW4
FGGGTKVEIK
2706
















TABLE 2







Nucleic Acid Sequences













SEQ

SEQ




ID

ID


Clone
HC Sequence
NO:
LC Sequence
NO:





S20-15
CAGGTGCAGCTGCAGGAGTCGGGCC
1621
TCCTATGTGCTGACTCAGCCACCCT
1711



CAGGACTGGTGAGGCCTTCGGAGAC

CGGTGTCAGTGGCCCCAGGACAGA




CCTGTCCCTCACCTGCACTGTCTCTG

CGGCCAGGATTACCTGTGGGGGAA




GTGGCTCCATCAGTAGTCACTACTG

ACAACATTGGAAGTAAAAGTGTGC




GAGCTGGATCCGGCAGCCCCCCGGG

ACTGGTACCAGCAGAAGCCAGGCC




AAGGGACTGGAGTGGATTGGGTATA

AGGCCCCTGTGCTGGTCGTCTATGA




TCTATTATAGTGGGAGCACCAATTA

TGATAGCGACCGGCCCTCAGGGAT




CAACCCCTCCCTCAAGAGTCGAGTC

CCCTGAGCGATTCTCTGGCTCCAAC




ACCATATCAGTAGACACGTCCAAGA

TCTGGGAACACGGCCACCCTGACC




ACCAGTTCTCCCTGAAACTTATCTCT

ATCAGCAGGGTCGAAGCCGGGGAT




GTGACCGCTGCGGACACGGCCGTGT

GAGGCCGACTATTACTGTCAGGTG




ATTACTGTGCGAGAGCCGGGGGCGT

TGGGATAGTAGTAGTGAGCATTAT




TTTTGGAGTGGTTCTGGACTTTGACC

GTCTTCGGAACTGGGACCAAGGTC




ACTGGGGCCGGGGAACCCTGGTCAC

ACCGTCCTAGGTCAGCCCAAGGCC




CGTCTCCTCAGCCTCCACCAAGGGC

AACCCCACTGTCACTCTGTTCCCGC




CCATCGGTCTTCCCCCTGGCACCCTC

CCTCCTCTGAGGAGCTCCAAGCCA




CTCCAAGAGCACCTCTGGGGGCACA

ACAAGGCCACACTAGTGTGTCTGA




GCGGCCCTGGGCTGCCTGGTCAAGG

TCAGTGACTTCTACCCGGGAGCTGT




ACTACTTCCCCGAACCGGTGACGGT

GACAGTGGCCTGGAAGGCAGATGG




GTCGTGGAACTCAGGCGCCCTGACC

CAGCCCCGTCAAGGCGGGAGTGGA




AGCGGCGTGCACACCTTCCCGGCTG

GACCACCAAACCCTCCAAACAGAG




TCCTACAGTCCTCAGGA

CAACAACAAGTACGCGGCCAGCAG






CTA






S20-22
CAGGTGCAGCTGCAGGAGTCGGGCC
1622
GACATCGTGATGACCCAGTCTCCA
1712



CAGGACTGGTGAAGCCTTCGGAGAC

GACTCCCTGGCTGTGTCTCTGGGCG




CCTGTCCCTCACCTGCACTGTCTCTG

AGAGGGCCACCATCAACTGCAAGT




GTGGCTCCATCAGTAGTTTCTACTG

CCAGCCAGACTGTTTTATACAGCTC




GGGCTGGATCCGGCAGCCCGCCGGG

CAACAATAAGAACTACTTAGCTTG




AAGGGACTGGAGTGGATTGGGCGTT

GTACCAGCAGAAACCAGGACAGCC




TCCATACTAGTGGGAGCACCAACTA

TCCTAAGTTGCTCATTTACTGGGCA




CAACCCCTCCTTCAAGAGTCGAGTC

TCTACCCGGGAATCCGGGGTCCCT




ACCATGTCAGTAGACACGTCCAAGA

GACCGATTCAGTGGCAGCGGGTCT




ACCAGTTCTCCCTGAAGCTGACCTC

GGGACAGATTTCACTCTCACCATC




TGTGACCGCCGCGGACACGGCCGTG

AGCAGCCTGCAGGCTGGAGATGTG




TATTACTGTGCGAGCGGCCGGGGCA

GCAGTTTATTACTGTCAGCAATATT




GCAGCTGGTACGTAGGCTGGTTCTT

ATAATACTCCGGACACTTTCGGCG




CGATCTCTGGGGCCGTGGCACCCTG

GAGGGACCAAGGTGGAGATCAATC




GTCACTGTCTCCTCAGCCTCCACCA

GAACTGTGGCTGCACCATCTGTCTT




AGGGCCCATCGGTCTTCCCCCTGGC

CATCTTCCCGCCATCTGATGAGCAG




ACCCTCCTCCAAGAGCACCTCTGGG

TTGAAATCTGGAACTGCCTCTGTTG




GGCACAGCAGCCCTGGGCTGCCTGG

TGTGCCTGCTGAATAACTTCTATCC




TCAAGGACTACTTCCCCGAACCGGT

CAGAGAGGCCAAAGTACAGTGGAA




GACGGTGTCGTGGAACTCAGGCGCC

GGTGGATAACGC




CTGACCAGCGGCGTGCACACCTTCC






CGGCTGTCCTACAGTCCTCAGGA








S20-31
CAGGTCCAACTCATACAGTCAGGGG
1623
GAAATTGTGTTGACGCAGTCCCCA
1713



CTGAGGTGAAGAAGCCTGGGGCCTC

GGCACCCTGTCTTTGTCTCCAGGGG




AGTGAAGGTCTCCTGCACGGCCTCC

AAAGAGCCACCCTCTCCTGCAGGG




GGATACTCCCTCAATGAGTTGCCCA

CCAGTCAGGATATTACCAACAACT




TACAGTGGGTGCGGCAGGCTCCTGG

TCTTAGCCTGGTACCAGCAGAAAG




TAAAGGGCTTGAGTGGATGGGAGA

CCGGCCAGGCTCCCAAACTCTTCAT




ATTTGATCCCGAAGATGGTGAAACA

CTATGGTGCATCCAGGAGGGCCCC




ATCTACGCAGAGAAATTCCAGGGCA

TGGCATCCCACACAGGTTCAGTGG




GAGTCACCCTGACCGAGGAAACATC

CAGTGGGTCTGGGACAGACTTCAC




TACAAACACAGCCTACATGGAGTTG

TCTCACCATCAGCAGCCTGGAGCC




AGCAGCCTGAAATCTGAGGACACG

TGAAGATTTTGCAGTATATTACTGT




GCCGCGTATTTTTGTTCAACCGGCTC

CAGCAGTACGGTCCCTCTCCGACG




GACTATTGGCGTCGTCATTTATGCTT

TTCGGCCAAGGGACCAAGGTGGAA




TTGCTATCTGGGGCCAAGGGACAAT

ATCAAACGAACTGTGGCTGCACCA




GGTCACCGTCTCTTCAGCTTCCACC

TCTGTCTTCATCTTCCCGCCATCTG




AAGGGCCCATCGGTCTTCCCCCTGG

ATGAGCAGTTGAAATCTGGAACTG




CGCCCTGCTCCAGGAGCACCTCCGA

CCTCTGTTGTGTGCCTGCTGAATAA




GAGCACAGCCGCCCTGGGCTGCCTG

CTTCTATCCCAGAGAGGCCAAAGT




GTCAAGGACTACTTCCCCGAACCGG

ACAGTGGAAGGTGGATAACGCCCT




TGACGGTGTCGTGGAACTCAGGCGC

CCAATCGGGTAACTCCCAGGAGAG




CCTGACCAGCGGCGTGCACACCTTC

TGTCACAGAGCAGGACAGCAAGGA




CCGGCTGTCCTACAGTCCTCAGGA

CAGCACCTACAGCCTCAGCAGCAC






CCTGACGCTGAGCAAAGCAGACTA






CGAGAA






S20-40
CAGGTGCAGCTGCAGGAGTCGGGCC
1624
CAGTCTGCCCTGACTCAGCCTGCCT
1714



CAGGACTGGTGAAGCCTTCGGAGAC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGTCCCTCACCTGCACTGTCTCTG

GATCACCATCTCCTGCACTGGAAC




GTGGCTCCATCAGTAGTTACTACTG

CAGCAGTGACGTTGGTGGTTATAA




GAGCTGGATCCGGCAGCCCGCCGGG

CTATGTCTCCTGGTACCAACAGCAC




AAGGGACTGGAGTGGATTGGGCGT

CCAGGCAAAGCCCCCAAACTCATG




ATCTATACCAGTGGGAGCACCAACT

ATTTATGATGTCAGTAATCGGCCCT




ACAACCCCTCCCTCAAGAGTCGAGT

CAGGGGTTTCTAATCGCTTCTCTGG




CACCATGTCAGTAGACACGTCCAAG

CTCCAAGTCTGGCAACACGGCCTC




AACCAGTTCTCCCTGAAGCTGAGCT

CCTGACCATCTCTGGGCTCCAGGCT




CTGTGACCGCCGCGGACACGGCCGT

GAGGACGAGGCTGATTATTACTGC




GTATTACTGTGCGAGAGGGGGCAGT

AGCTCATATACAAGCAGCAGCACT




GGCTGGCGCTTTGACTACTGGGGCC

CTCGGAGTGTTCGGCGGAGGGACC




AGGGAACCCTGGTCACCGTCTCCTC

AAGCTGACCGTCCTAGGTCAGCCC




AGGGAGTGCATCCGCCCCAACCCTT

AAGGCTGCCCCCTCGGTCACTCTGT




TTCCCCCTCGTCTCCTGTGAGAATTC

TCCCACCCTCCTCTGAGGAGCTTCA




CCCGTCGGATACGAGCAGCGTG

AGCCAACAAGGCCACACTGGTGTG






TCTCATAAGTGACTTCTACCCGGGA






GCCGTGACAGTGGCCTGGAAGGCA






GATAGCAGCCCCGTCAAGGCGGGA






GTGGAGACCACCACACCCTCCAAA






CAAAGCAACAACAAGTACGCGGCC






AGCAGCTA






S20-58
CAGGTGCAGCTGCAGGAGTCGGGCC
1625
GATATTGTGATGACCCAGACTCCA
1715



CAGGACTGGTGAAGCCTTCACAGAC

CTCTCCTCACCTGTCACCCTTGGAC




CCTGTCCCTCACCTGCACTGTCTCTG

AGCCGGCCTCCATCTCCTGCAGGTC




GTGGCTCCATCAACAGTGGTGATTA

TAGTCAAAGCCTCGTACACAGTGA




CTACTGGAGCTGGATCCGCCAGCCC

TGGAGACACCTACTTGAGTTGGCTT




CCAGGGAAGGGCCTGGAGTGGATT

CAGCAGAGGCCAGGCCAGCCTCCA




GGGTACATCTATTTCAGTGGGAGCA

AGACTCCTAATTTACAAGATTTCTA




CCTACTACAACCCGTCCCTCAAGAG

ACCGGTTCTCTGGGGTCCCAGACA




TCGAGTTACCATATCACTAGACAGG

GATTCAGTGGCAGTGGGGCAGGGA




TCCAAGAACCAGTTCTCCCTGAAGC

CAGATTTCACACTGAAAATCAGCA




TGAGCTCTGTGACTGCCGCAGACAC

GGGTGGAAGCTGAGGATGTCGGGG




GGCCGTGTATTACTGTGCCAGAGAG

TTTATTACTGCATGCAAGCTACACA




GAAAGTATGATTACGCTTGGGGGAG

ATTTCCTCTCACTTTCGGCGGAGGG




TTATCGTCGACTGGGGCCAGGGAAC

ACCAAGGTGGAGATCAAACGAACT




CCTGGTCACCGTCTCCTCAGCCTCC

GTGGCTGCACCATCTGTCTTCATCT




ACCAAGGGCCCATCGGTCTTCCCCC

TCCCGCCATCTGATGAGCAGTTGA




TGGCACCCTCCTCCAAGAGCACCTC

AATCTGGAACTGCCTCTGTTGTGTG




TGGGGGCACAGCAGCCCTGGGCTGC

CCTGCTGAATAACTTCTATCCCAGA




CTGGTCAAGGACTACTTCCCCGAAC

GAGGCCAAAGTACAGTGGAAGGTG




CGGTGACGGTGTCGTGGAACTCAGG

GATAACGCCCTCCAATCGGGTAAC




CGCCCTGACCAGCGGCGTGCACACC

TCCCAGGAGAGTGTCACAGAGCAG




TTCCCGGCTGTCCTACAGTCCTCAG

GACAGCAAGGACAGCACCTACAGC




GA

CTCAGCAGCACCCTGACGCTGAGC






AAAGCAGACTACGAGAA






S20-74
CAGGTGCAGCTGCAGGAGTCGGGCC
1626
CAGTCTGCCCTGACTCAGCCTCCCT
1716



CAGGACTGGTGAAGCCTTCGGAGAC

CCGCGTCCGGGTCTCCTGGACAGT




CCTGTCCCTCACCTGCACTGTCTCTG

CAGTCACCATCTCCTGCACTGGAA




GTGGCTCCATCAGTAGTCACTACTG

CCAGCAGTGACGTTGGTGGTTATA




GAGCTGGATCCGGCAGCCCCCAGGG

ACTATGTCTCCTGGTACCAACAGC




AAGGGACTGGAGCAGATTGGGTAT

ACCCAGGCAAAGCCCCCAAACTCA




ATGTATTACAGTGGGAGCACCAACT

TGATTTATGAGGTCAGTAAGCGGC




ACAACCCCTCCCTCAAGAGTCGAGT

CCTCAGGGGTCCCTGATCGCTACTC




CATCATATCAGTAGACACGTCCAAG

TGGCTCCAAGTCTGGCAACACGGC




AACCAGTTCTCCCTGAAGTTGAGCT

CTCCCTGACCGTCTCTGGGCTCCAG




CTGTGACCGCTGCGGACACGGCCGT

GCTGAGGATGAGGCTGATTATTAC




GTATTACTGTGCGGGTCGTGACCAG

TGCAGCTCATATGCAGGCAGCAGC




CTGTTATACGGGGCCGATGGTTTTG

AATCATGTGATATTCGGCGGAGGG




ATATCTGGGGCCAAGGGACAATGGT

ACCAAGCTGACCGTCCTAGGTCAG




CACCGTCTCTTCAGCCTCCACCAAG

CCCAAGGCTGCCCCCTCGGTCACTC




GGCCCATCGGTCTTCCCCCTGGCAC

TGTTCCCGCCCTCCTCTGAGGAGCT




CCTCCTCCAAGAGCACCTCTGGGGG

TCAAGCCAACAAGGCCACACTGGT




CACAGCGGCCCTGGGCTGCCTGGTC

GTGTCTCATAAGTGACTTCTACCCG




AAGGACTACTTCCCCGAACCGGTGA

GGAGCCGTGACAGTGGCCTGGAAG




CGGTGTCGTGGAACTCAGGCGCCCT

GCAGATAGCAGCCCCGTCAAGGCG




GACCAGCGGCGTGCACACCTTCCCG

GGAGTGGAGACCACCACACCCTCC




GCTGTCCTACAGTCCTCAGGA

AAACAAAGCAACAACAAGTACGCG






GCCAGCAGCTA






S20-86
GAAGTGCAGCTGGTGGAGTCTGGGG
1627
CAGTCTGCCCTGACTCAGCCTGCCT
1717



GAGGCTTGGTACAGCCTGGCAGGTC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGAGACTCTCCTGTGCAGCCTCT

GATCACCATCTCCTGCACTGGAAC




GGATTCACCTTTGGTGACTATGCCA

CAGCAGTGACGTTGGTGGTTATAA




TGTACTGGGTCCGGCAACCTCCAGG

CTATGTCTCCTGGTACCAACAACAC




GAAGGGCCTGGAGTGGGTCTCAGGT

CCAGGCAAAGCCCCCAAACTCATG




ATTAGTTGGAATAGAGGTACTATAG

ATTTATGATGTCAGTAATCGGCCCT




GCTATGCGGACTCTGTGAAGGGCCG

CAGGGGTTTCTAATCGCTTCTCTGG




ATTCACCATCTCCAGAGACAACGCC

CTCCAAGTCTGGCAACACGGCCTC




AAGAACTCCCTGTATCTGCAAATGA

CCTGACCATCTCTGGGCTCCAGGCT




ACAGTCTGACACCTGAGGACACGGC

GAGGACGAGGCTGATTATTACTGC




CTTGTATTACTGTGCAAAAGATATG

AGCTCATATACAAGCAGCAGCACT




CTACCAGCTAGTAGGTTCTTCTACT

CTCGGCGTCTTCGGAACTGGGACC




ACATGGACGTCTGGGGCAAAGGGA

AAGGTCACCGTCCTAGGTCAGCCC




CCACGGTCATCGTCTCCTCAGCCTC

AAGGCCAACCCCACTGTCACTCTG




CACCAAGGGCCCATCGGTCTTCCCC

TTCCCGCCCTCCTCTGAGGAGCTCC




CTGGCACCCTCCTCCAAGAGCACCT

AAGCCAACAAGGCCACACTAGTGT




CTGGGGGCACAGCAGCCCTGGGCTG

GTCTGATCAGTGACTTCTACCCGGG




CCTGGTCAAGGACTACTTCCCCGAA

AGCTGTGACAGTGGCCTGGAAGGC




CCGGTGACGGTGTCGTGGAACTCAG

AGATGGCAGCCCCGTCAAGGCGGG




GCGCCCTGACCAGCGGCGTGCACAC

AGTGGAGACCACCAAACCCTCCAA




CTTCCCGGCTGTCCTACAGTCCTCA

ACAGAGCAACAACAAGTACGCGGC




GGA

CAGCAGCTA






S24-68
CAGGTGCAGCTGCAGGAGTCGGGCC
1628
CAGTCTGTGCTGACTCAGCCACCCT
1718



CAGGACTGGTGAAGCCTTCGGAGAC

CAGCGTCTGGGACCCCCGGGCAGA




CCTGTCCCTCACCTGCACTGTCTCTG

GGGTCACCATCTCTTGTTCTGGAAG




GTGGCTCCATCACTAGTTACTACTG

CAGCTCCAACATCGGAGGTAATCC




GAGCTGGATCCGGCAGCCCCCAGGG

TGTAAACTGGTACCAGCAGCTCCC




AAGGGACTGGAGTGGATTGAATATA

AGGAACGGCCCCCAAACTCCTCAT




TCCATTACAGTGGGAGCACCAACTA

CTATAGTAATAATCAGCGGCCCTC




CAACCCCTCCCTCAAGAGTCGAGTC

AGGGGTCCCTGACCGATTCTCTGG




ACCATATCAGTAGACACGTCCAAGA

CTCCAAGTCTGGCACCTCAGCCTCC




ACCAGTTCTCCCTGAAGCTGAGCTC

CTGGCCATCAGTGGGCTCCAGTCT




TGTGACCGCTGCGGACACGGCCGTG

GAGGATGAGGCTGATTATTACTGT




TATTACTGTGCGAGATTGCTCAAGT

GCAGCATGGGATGACAGCCTGAAG




ATAGCAGGGGGGGGTGCTACTTTGA

GGTCCGGTATTCGGCGGAGGGACC




CCACTGGGGCCAGGGAACCCTGGTC

AAGCTGACCGTCCTAGGTCAGCCC




ACCGTCTCCTCAGCCTCCACCAAGG

AAGGCTGCCCCCTCGGTCACTCTGT




GCCCATCGGTCTTCCCCCTGGCACC

TCCCGCCCTCCTCTGAGGAGCTTCA




CTCCTCCAAGAGCACCTCTGGGGGC

AGCCAACAAGGCCACACTGGTGTG




ACAGCGGCCCTGGGCTGCCTGGTCA

TCTCATAAGTGACTTCTACCCGGGA




AGGACTACTTCCCCGAACCGGTGAC

GCCGTGACAGTGGCCTGGAAGGCA




GGTGTCGTGGAACTCAGGCGCCCTG

GATAGCAGCCCCGTCAAGGCGGGA




ACCAGCGGCGTGCACACCTTCCCGG

GTGGAGACCACCACACCCTCCAAA




CTGTCCTACAGTCCTCAGGA

CAAAGCAACAACAAGTACGCGGCC






AGCAGCTACCTGAGCCTGACGCCT






GAGCAGTGGAAGTCCCACA






S24-105
GAGGTGCAGCTGGTGGAGTCTGGGG
1629
GAAATTGTGTTGACGCAGTCTCCA
1719



GAGGCTTGGTACAGCCGGGGGGGTC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCCTCAGCAGCTATAGCA

CCAGTCAGAGTGTTAGCAGCGGTT




TGAACTGGGTCCGCCAGGCTCCAGG

ACTTAGCCTGGTACCAGCAAAAAC




GAAGGGGCTGGAGTGGGTTTCATAC

CTGGCCAGGCTCCCAGGCTCCTCAT




ATTAGTAGTAGTAGTAGCACCATAT

CTTTGGTGCATCCAGCAGGGCCAC




ACTACGCAGACTCTGTGAAGGGCCG

TGGCATCCCAGACAGGTTCAGTGG




ATTCACCATCTCCAAAGACAACGCC

CAGTGGGTCTGGGACAGACTTCAC




AAGAACTCACTGTATCTGCAAATGA

TCTCACCATCAACAGACTGGAGCC




ACAGCCTGAGAGCCGAGGACACGG

TGAAGATTTTGCAGTGTATTACTGT




CTGTCTATTACTGTGCGGTCGGACG

CAGCAGTATGGTAGCTCACGGACG




GGGATACTTTGTCTACTGGGGCCAG

TTCGGCCAAGGGACCAAGGTGGAA




GGAACCCTGGTCACCGTCTCCTCAG

ATCAAACGAACTGTGGCTGCACCA




CCTCCACCAAGGGCCCATCGGTCTT

TCTGTCTTCATCTTCCCGCCATCTG




CCCCCTGGCACCCTCCTCCAAGAGC

ATGAGCAGTTGAAATCTGGAACTG




ACCTCTGGGGGCACAGCGGCCCTGG

CCTCTGTTGTGTGCCTGCTGAATAA




GCTGCCTGGTCAAGGACTACTTCCC

CTTCTATCCCAGAGAGGCCAAAGT




CGAACCGGTGACGGTGTCGTGGAAC

ACAGTGGAAGGTGGATAACGCCCT




TCAGGCGCCCTGACCAGCGGCGTGC

CCAATCGGGTAACTCCCAGGAGAG




ACACCTTCCCGGCTGTCCTACAGTC

TGTCACAGAGCAGGACAGCAAGGA




CTCAGGA

CAGCACCTACAGCCTCAGCAGCAC






CCTGACGCTGAGCAAAGCAGACTA






CGAGA






S24-178
CAGGTGCAGCTGGTGGAGTCTGGGG
1630
CAGTCTGCCCTGACTCAGCCTGCCT
1720



GAGGCGTGGTCCAGCCTGGGAGGTC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGAGACTCTCCTGTGCAGCCTCT

GATCACCATCTCCTGCACTGGAAC




GGATTCACCTTCAGTAGCTATGGCA

CACCAGTGACGTTGGTGGTTATGA




TGCACTGGGTCCGCCAGGCTCCAGG

CTATGTCTCCTGGTACCAACAGCAC




CAAGGGGCTGGAGTGGGTGGCAGTT

CCAGGCAAAGCCCCCAAACTCATA




ATATGGTATGATGGAAGTAATAAAT

CTTTCTGAGGTCAGTAATCGGCCCT




ATTATGCAGACTCCGTGAAGGGCCG

CAGGGGTTTCTAATCGCTTCTCTGG




ATTCACCATCTCCAGAGACAATTCC

CTCCAAGTCTGGCAACACGGCCTC




AAGAACACGCTGTATCTGCAAATGA

CCTGACCATCTCTGGGCTCCAGGCT




ACAGCCTGAGAGCCGAGGACACGG

GAGGACGAGGCTGATTATTACTGC




CTGTGTATTACTGTGCGAGAATCGA

AGCTCATATCCAAGCAGCAGCACT




GGGATACAGCTATGGCGACGTGAG

CTAGTCTTCGGAACTGGGACCAAG




GGTCTACTACTACTACGGTATGGAC

GTCACCGTCTTAGGTCAGCCCAAG




GTCTGGGGCCAAGGGACCACGGTCA

GCCAACCCCACTGTCACTCTGTTCC




CCGTCTCCTCAGCCTCCACCAAGGG

CGCCCTCCTCTGAGGAGCTCCAAG




CCCATCGGTCTTCCCCCTGGCACCCT

CCAACAAGGCCACACTAGTGTGTC




CCTCCAAGAGCACCTCTGGGGGCAC

TGATCAGTGACTTCTACCCGGGAG




AGCGGCCCTGGGCTGCCTGGTCAAG

CTGTGACAGTGGCCTGGAAGGCAG




GACTACTTCCCCGAACCGGTGACGG

ATGGCAGCCCCGTCAAGGCGGGAG




TGTCGTGGAACTCAGGCGCCCTGAC

TGGAGACCACCACACCCTCCAAAC




CAGCGGCGTGCACACCTTCCCGGCT

AAAGCAACAACAAGTACGCGGCCA




GTCCTACAGTCCTCAGGA

GCAGCTA






S24-188
CAGGTCCACCTGGTGCAGTCTGGGG
1631
CAGTCTGCCCTGACTCAGCCTGCCT
1721



CTGAGGTGAAGAAGCCTGGGTCCTC

CCGTGTCTGGGTCTCCTGGACAGTC




GGTGAAGGTCTCCTGCAAGGCTTCT

GATCACCATCTCCTGCACTGGAAC




GGAGGCACCTTCAGCAGCTGTGCTA

CAGCAGTGACGTTGGTGGTTATAA




TCAGCTGGGTGCGACAGGCCCCTGG

CTATGTCTCCTGGTACCAACAGCAC




ACAAGGGCTTGAGTGGATGGGAAG

CCAGGCAAAGCCCCCAAACTCATG




GATCATCCCTATCCTTGGTATAGCA

ATTTATGAGGTCACTAATCGGCCCT




AACTACGCACAGAAGTTCCAGGGCA

CAGGGGTTTCTAATCGCTTCTCTGG




GAGTCACGATTACCGCGGACAAATC

CTCCAGGTCTGGCAACACGGCCTC




CACGAGCACAGCCTACATGGAGCTG

CCTGACCATCTCTGGGCTCCAGGCT




AGCAGCCTGAGATCTGAGGACACG

GAGGACGAGGCTGATTATTACTGC




GCCGTGTATTACTGTGCGAGAGGAT

AGCTCATATACAAGCAGCAGCCTT




GGGAGTTTGGTTCGGGGAGTTATTA

TATGTCTTCGGAACTGGGACCAAG




TCGAACTGATTACTACTACTACGCT

GTCGCCGTCCTAGGTCAGCCCAAG




ATGGACGTCTGGGGCCAAGGGACC

GCCAACCCCACTGTCACTCTGTTCC




ACGGTCACCGTCTCCTCAGCCTCCA

CGCCCTCCTCTGAGGAGCTTCAAG




CCAAGGGCCCATCGGTCTTCCCCCT

CCAACAAGGCCACACTGGTGTGTC




GGCGCCCTGCTCCAGGAGCACCTCT

TCATAAGTGACTTCTACCCGGGAG




GGGGGCACAGCGGCCCTGGGCTGCC

CCGTGACAGTGGCCTGGAAGGCAG




TGGTCAAGGACTACTTCCCCGAACC

ATAGCAGCCCCGTCAAGGCGGGAG




GGTGACGGTGTCGTGGAACTCAGGC

TGGAGACCACCAAACCCTCCAAAC




GCCCTGACCAGCGGCGTGCACACCT

AGAGCAACAACAAGTACGCGGCCA




TCCCGGCTGTCCTACAGTCCTCAGG

GCAGCTA




A








S24-202
GAAGTGCAGCTGGTGCAGTCTGGAG
1632
GAAATTGTGTTGACACAGTCTCCA
1722



CAGAGGTGAAAAAGCCCGGGGAGT

GCCACCCTGTCTTTGTCTCCAGGGG




CTCTGAGGATCTCCTGTAAGGGTTC

AAAGAGCCACCCTCTCCTGCAGGG




TGGATACAGCTTTAGCAGCTACTGG

CCAGTCAGAGTGTTAGCAGCTACC




ATCAGCTGGGTGCGCCAGATGCCCG

TAGCCTGGTACCAACAGAAACCTG




GGAAAGGCCTGGAGTGGATGGGGA

GCCAGGCTCCCAGGCTCCTCATCTA




GGATTGATCCTAGTGACTCTAACAC

TGATGCATCCAACAGGGCCTCTGG




CAACTACAGCCCGTCCTTCCAAGGC

CATCCCAGCCAGGTTCAGTGGCAG




CACGTCACCATCTCAGCTGACAAGT

TGGGTCAGGGACAGACTTCACTCT




CCATCAGCACTGCCTACCTGCAGTG

CACCATCAGCAGCCTAGAGCCTGA




GAGCAGCCTGAAGGCCTCGGACACC

AGATTTTGCAGTTTATTACTGTCAG




GCCATGTATTACTGTGCGAGACTCT

CAACGTCGCAACTGGCCTCTCACTT




CCGTCCGGGTATGGTTCGGGGAGTT

TCGGCGGAGGGACCAAGGTGGAGA




ACCCCATTACGGTATGGACGTCTGG

CCAAACGAACTGTGGCTGCACCAT




GGCCAAGGGACCACGGTCACCGTCT

CTGTCTTCATCTTCCCGCCATCTGA




CCTCAGCCTCCACCAAGGGCCCATC

TGAGCAGTTGAAATCTGGAACTGC




GGTCTTCCCCCTGGCACCCTCCTCCA

CTCTGTTGTGTGCCTGCTGAATAAC




AGAGCACCTCTGGGGGCACAGCGG

TTCTATCCCAGAGAGGCCAAAGTA




CCCTGGGCTGCCTGGTCAAGGACTA

CAGTGGAAGGTGGATAACGC




CTTCCCCGAACCGGTGACGGTGTCG






TGGAACTCAGGCGCCCTGACCAGCG






GCGTGCACACCTTCCCGGCTGTCCT






ACAGTCCTCAGGA








S24-278
CAGGTGCAGCTGGTGCAGTCTGGGG
1633
GAAATTGTGTTGACGCAGTCTCCA
1723



CTGAGGTGAAGAAGCCTGGGGCCTC

GGCACCCTGTCTTTGTCTCCAGGGG




AGTGAAGGTCTCCTGCAAGGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATACACCTTCACCGGCTACTATA

CCAGTCAGAGTATTAGCAGCAGCT




TGCACTGGGTGCGACAGGCCCCTGG

ACTTAGCCTGGTACCAGCAGAAAC




ACAAGGGCTTGAGTGGATGGGATG

CTGGCCAGGCTCCCAGGCTCCTCAT




GATCAACCCTAACAGTGGTGACACA

CTATGGTGCATCCAGCAGGGCCAC




AACTATGCACAGAAGTTTCAGGGCT

TGGCATCCCAGACAGGTTCAGTGG




GGGTCACCATGACCAGGGACACGTC

CAGTGGGTCTGGGACAGACTTCAC




CCTCAGCACAGCCTACATGGAGCTG

TCTCACCATCAGCAGACTGGAGCC




AGCAGGCTGAAATCTGACGACACG

TGAAGATTTTGCAGTGTATTACTGT




GCCGTGTATTACTGTGCGAGAGTAG

CAGCAGTATGGTAGCTCACTCACTT




GGGTTGGTGAATATAGTGGGAGGCA

TCGGCGGAGGGACCAAGGTGGAGA




CTACTACTACTACGGTATGGACGTC

TCAAACGAACTGTGGCTGCACCAT




TGGGGCCAAGGGACCACGGTCACC

CTGTCTTCATCTTCCCGCCATCTGA




GTCTCCTCAGCCTCCACCAAGGGCC

TGAGCAGTTGAAATCTGGAACTGC




CATCGGTCTTCCCCCTGGCACCCTCC

CTCTGTTGTGTGCCTGCTGAATAAC




TCCAAGAGCACCTCTGGGGGCACAG

TTCTATCCCAGAGAGGCCAAAGTA




CGGCCCTGGGCTGCCTGGTCAAGGA

CAGTGGAAGGTGGATAACGC




CTACTTCCCCGAACCGGTGACGGTG






TCGTGGAACTCAGGCGCCCTGACCA






GCGGCGTGCACACCTTCCCGGCTGT






CCTACAGTCCTCAGGA








S24-339
GAGGTGCAGCTGGTGGAGTCTGGGG
1634
GAAATAGTGATGACGCAGTCTCCA
1724



GAGGCTTGGTACAGCCAGGGCGGTC

GCCACCCTGTCTGTGTCTCCAGGGG




CCTGAGACTCTCCTGTACAGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTTGGTGATTATGCTAT

CCAGTCAGAGTGTTAGCAGCAACT




GAGCTGGTTCCGCCAGGCTCCAGGG

TAGCCTGGTACCAGCAGAAACCTG




AAGGGGCTGGAGTGGGTAGGTTTCA

GCCAGGCTCCCAGGCTCCTCATCTA




TTAGAAGCAAAGCTTATGGTGGGAC

TGGTGCATCCACCAGGGCCACTGG




AACACAACACGCCGCCTCTGTGAAA

TATCCCAGCCAGGTTCAGTGGCAG




GGCAGATTCACCATCTCAAGAGATG

TGGGTCTGGGACAGAGTTCACTCT




ATTCCAAAAGCATCGCCTATCTGCA

CACCATCAGCAGCCTGCAGTCTGA




AATGAACAGCCTGAAAACCGAGGA

AGATTTTGCAGTTTATTACTGTCAG




CACAGCCGTGTATCACTGTGCTAGA

CAGTATGATAACTGGTGGACGTTC




GATGGATATGATTGTAGTGGTGGTA

GGCCAAGGGACCAAGGTGGAAATC




GATGCTACTCCCATATATTTGACTA

AAACGAACTGTGGCTGCACCATCT




CTGGGGCCAGGGAACCCTGGTCACC

GTCTTCATCTTCCCGCCATCTGATG




GTCTCCTCAGGTGAGTCCTCACCAC

AGCAGTTGAAATCTGGAACTGCCT




CCCCTCTCTGAGTCCACTTAGGGAG

CTGTTGTGTGCCTGCTGAATAACTT




ACTCAGCTTGCCAGGGTCTCAGGGT

CTATCCCAGAGAGGCCAAAGTACA




CAGAGTCTTGTAG

GTGGAAGGTGGATAACGC






S24-472
CAGGTGCAGCTGCAGGAGTCGGGCC
1635
CAGCTTGTGCTGACTCAATCGCCCT
1725



CAGGACTGGTGAAGCCTTCGGGGAC

CTGCCTCTGCCTCCCTGGGAGCCTC




CCTGTCCCTCACCTGCGCTGTCTCTG

GGTCAAGCTCACCTGCACTCTGAG




GTGGCTCCATCAGCAGTATTAACTG

CAGTGGGCACAGCAGCTACACCAT




GTGGAGTTGGGTCCGCCAGCCCCCA

CGCATGGCATCAGCAGCAGCCAGA




GGGAAGGGGCTGGAGTGGATCGGG

GAAGGGCCCTCGGTACTTGATGAA




GAAATCTATCATAGTGGGAACACCA

AGTTAACAGTGATGGCAGCCACAC




ACTATAACCCGTCCCTCAAGAGTCG

CAAGGGGGACGGGATCCCTGATCG




AGTCACCATATCAGGAGACAAGTCC

CTTCTCAGGCTCCAGCTCTGGGGCT




AAGAACCAGTTCTCCCTGAAGCTGA

GAGCGCTACCTCACCATCTCCAGC




GCTCTGTGACCGCCGCGGACACGGC

CTCCAGTCTGAGGATGAGGCTGAC




CGTGTATTACTGTGCGAGAGGTTAC

TATTACTGTCAGACCTGGGGCACT




TATGATAGTAGTCCTTATTACGAGC

GGCATTCGAGTATTCGGCGGAGGG




CACAGGGAATTGACTACTGGGGCCA

ACCAAGCTGACCGTCCTAGGTCAG




GGGAATCCTGGTCACCGTCTCCTCA

CCCAAGGCTGCCCCCTCGGTCACTC




GCCTCCACCAAGGGCCCATCGGTCT

TGTTCCCGCCCTCCTCTGAGGAGCT




TCCCCCTGGCACCCTCCTCCAAGAG

TCAAGCCAACAAGGCCACACTGGT




CACCTCTGGGGGCACAGCGGCCCTG

GTGTCTCATAAGTGACTTCTACCCG




GGCTGCCTGGTCAAGGACTACTTCC

GGAGCCGTGACAGTGGCCTGGAAG




CCGAACCGGTGACGGTGTCGTGGAA

GCAGATAGCAGCCCCGTCAAGGCG




CTCAGGCGCCCTGACCAGCGGCGTG

GGAGTGGAGACCACCACACCCTCC




CACACCTTCCCGGCTGTCCTACAGT

AAACAAAGCAACAACAAGTACGCG




CCTCAGGA

GCCAGCAGCTA






S24-490
CAGGTGCAGCTGGTGCAGTCTGGGG
1636
GAAATTGTGTTGACGCAGTCTCCA
1726



CTGAGGTGAAGAAGCCTGGGGCCTC

GGCACCCTGTCTTTGTCTCCAGGGG




AGTGAAGGTTTCCTGCAAGGCATCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATACACCTTCACCAGCTACTTTA

CCAGTCAGAGTGTTACCAGCAGCT




TTCACTGGGTGCGACAGGCCCCTGG

ACTTAGCCTGGTACCAGCAGAGAC




ACAAGGGCTTGAGTGGATGGGAAT

GTGGCCAGGCTCCCAGGCTCCTCA




AATCAACCCTAGTGGTGGTAGCACA

TCTATGGTGCATCCAGCAGGGCCA




AGCTACGCACAGAAGTTCCAGGGCA

CTGGCATCCCAGACAGGTTCAGTG




GAGTCACCATGACCAGGGACACGTC

GCAGTGGGTCTGGGACAGACTTCA




CACGAGCACAGTCTACATGGAGCTG

CTCTCACCATCAGCAGACTGGAGC




AGCAGCCTGAGATCTGAGGACACG

CTGAAGATTTTGCAGTGTATTACTG




GCCGTGTATTACTGTGCGAGACACA

TCAGCAGTATGGTAGCTCACCTCTC




CAACCCCGACAAGATACTTTGACTA

ACTTTCGGCGGAGGGACCAAGGTG




CTGGGGCCAGGGAACCCTGGTCACC

GAGATCAAACGAACTGTGGCTGCA




GTCTCCTCAGGGAGTGCATCCGCCC

CCATCTGTCTTCATCTTCCCGCCAT




CAACCCTTTTCCCCCTCGTCTCCTGT

CTGATGAGCAGTTGAAATCTGGAA




GAGAATTCCCCGTCGGATACGAGCA

CTGCCTCTGTTGTGTGCCTGCTGAA




GCGTG

TAACTTCTATCCCAGAGAGGCCAA






AGTACAGTGGAAGGTGGATAACGC






S24-494
CAGCTGCAGCTGCAGGAGTCGGGCC
1637
GACATCCAGATGACCCAGTCTCCA
1727



CAGGACTGGTGAAGCCTTCGGAGAC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACAGAGTCACCATCACTTGCCGGG




GTGGCTCCATCAGCAGTAGTAGTTA

CAAGTCAGAGCATTAGCAGCTATT




CTACTGGGGCTGGATCCGCCAGCCC

TAAATTGGTATCAGCAGAAACCAG




CCAGGGAAGGGGCTGGAGTGGATT

GGAAAGCCCCTAAGCTCCTGATCT




GGGAGTATCTATTATAGTGGGAGCA

ATGCTGCATCCAGTTTGCAAAGTG




CCTACTACAACCCGTCCCTCAAGAG

GGGTCCCATCAAGGTTCAGTGGCA




TCGAGTCACCATATCCGTAGACACG

GTGGATCTGGGACAGATTTCACTCT




TCCAAGAACCAGTTCTCCCTGAAGC

CACCATCAGCAGTCTGCAACCTGA




TGAGCTCTGTGACCGCCGCAGACAC

AGATTTTGCAACTTACTACTGTCAA




GGCTGTGTATTACTGTGCGAGAAAG

CAGAGTTACAGTACCCCTCAACTC




CCACGTAGTGACTACGGGTACTTCG

ACTTTCGGCGGAGGGACCAAGGTG




ATCTCTGGGGCCGTGGCACCCTGGT

GAGATCAAACGAACTGTGGCTGCA




CACTGTCTCCTCAGCCTCCACCAAG

CCATCTGTCTTCATCTTCCCGCCAT




GGCCCATCGGTC

CTGATGAGCAGTTGAAATCTGGAA






CTGCCTCTGTTGTGTGCCTGCTGAA






TAACTTCTATCCCAGAGAGGCCAA






AGTACAGTGGAAGGTGGATAACGC






S24-566
GAGGTGCAGCTGGTGGAGTCTGGGG
1638
GATATTGTGATGACTCAGTCTCCAC
1728



GAGGCTTGGTAAAGCCAGGGCGGTC

TCTCCCTGCCCGTCACCCCTGGAGA




CCTGAGACTCTCCTGTACAGCTTCT

GCCGGCCTCCATCTCCTGCAGGTCT




GGATTCACCTTTGGTGATTATGCTAT

AGTCAGAGCCTCCTGCATAGTAAT




GAGCTGGTTCCGCCAGGCTCCAGGG

GGATACAACTATTTGGATTGGTAC




AAGGGGCTGGAGTGGGTAGGTTTCA

CTGCAGAAGCCAGGGCAGTCTCCA




CTAGAAGGAAAGCTTATGGTGGGAC

CAGCTCCTGATCTATTTGGGTTCTA




AACAGAGTACGCCGCGTCTGTGAAA

ATCGGGCCTCCGGGGTCCCTGACA




GGCAGATTCACCATCTCAAGAGATG

GGTTCAGTGGCAGTGGATCAGGCA




ATTCCAAAAGCATCGCCTATCTGCA

CAGATTTTACACTGAAAATCAGCA




AATGAACAGCCTGAAAACCGAGGA

GAGTGGAGGCTGAGGATGTTGGGG




CACAGCCGTGTATTACTGTACTAGA

TTTATTACTGCATGCAACCTCTACA




ATTAAGGTGGGCCGTTTCGATCTTA

AACTCCTTGGACGTTCGGCCAAGG




CCGACAGTGGGAGCTACCGATACTT

GACCAAGGTGGAAATCAAACGAAC




TGACTACTGGGGCCAGGGAACCCTG

TGTGGCTGCACCATCTGTCTTCATC




GTCACCGTCTCCTCAGCCTCCACCA

TTCCCGCCATCTGATGAGCAGTTGA




AGGGCCCATCGGTCTTCCCCCTGGC

AATCTGGAACTGCCTCTGTTGTGTG




ACCCTCCTCCAAGAGCACCTCTGGG

CCTGCTGAATAACTTCTATCCCAGA




GGCACAGCGGCCCTGGGCTGCCTGG

GAGGCCAAAGTACAGTGGAAGGTG




TCAAGGACTACTTCCCCGAACCGGT

GATAACGC




GACGGTGTCGTGGAACTCAGGCGCC






CTGACCAGCGGCGTGCACACCTTCC






CGGCTGTCCTACAGTCCTCAGGA








S24-636
GAGGTGCAGCTGGTGGAGTCTGGGG
1639
CAGACTGTGGTGACCCAGGAGCCA
1729



GAGGCTTGGTCCAGCCTGGGGGGTC

TCGTTCTCAGTGTCCCCTGGAGGGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGTCACACTCACTTGTGGCTTGAG




GGATTCACCTTAAGTAGCTATTGGA

CTCTGGCTCAGTCTCTACTAGTTAC




TGAGCTGGGTCCGCCAGGCTCCAGG

TACCCCAGCTGGTACCAGCAGACC




GAAGGGGCTGGAGTGGGTGGCCAA

CCAGGCCAGGCTCCACGCACGCTC




CATAAAGCAAGATGGAAGTGAGAA

ATCTACAGCACAAACAAACGCTCT




ATACTATGTGGACTCTGTGAAGGGC

TCTGGGGTCCCTGATCGCTTCTCTG




CGATTCACCATCTCCAGAGACAACG

GCTCCATCCTTGGGAACAAAGCTG




CCAAGAACTCACTGTATCTGCAAAT

CCCTCACCATCACGGGGGCCCAGG




GAACAGCCTGAGAGCCGAGGACAC

CAGATGATGAATCTGATTATTACTG




GGCCGTGTATTACTGTGCGAGAGAT

TGTGCTCTATATGGGTAGTGGCATG




CTAACTGCCACCTGGTTCGACCCCT

TCGGTGTTCGGCGGAGGGACCAAG




GGGGCCAGGGAACCCTGGTCACCGT

CTGACCGTCCTAGGTCAGCCCAAG




CTCCTCAGCACCCACCAAGGCTCCG

GCTGCCCCCTCGGTCACTCTGTTCC




GATGTGTTCCCCATCATATCAGGGT

CGCCCTCCTCTGAGGAGCTTCAAG




GCAGACACCCAAAGGATAACAGCC

CCAACAAGGCCACACTGGTGTGTC




CTGTGGTCCTGGCATGCTTGATAAC

TCATAAGTGACTTCTACCCGGGAG




TGGGTACCACC

CCGTGACAGTGGCCTGGAAGGCAG






ATAGCAGCCCCGTCAAGGCGGGAG






TGGAGACCACCACACCCTCCAAAC






AAAGCAACAACAAGTACGCGGCCA






GCAGCTA






S24-740
CAGGTCCAGCTTGTGCAGTCTGGGG
1640
GACATCGTGATGACCCAGTCTCCA
1730



CTGAGGTGAAGAAGCCTGGGGCCTC

GACTCCCTGGCTGTGTCTCTGGGCG




AGTGAAGGTTTCCTGCAAGGCTTCT

AGAGGGCCACCATCAACTGCAAGT




GGATACACCTTCACTAGCTATGCTT

CCAGCCAGAGTGTTTTATACAGCTC




TGCATTGGGTGCGCCAGGCCCCCGG

CAACAATAAGAACTACTTAGCCTG




ACAAAGGCTTGAGTGGATGGGATG

GTACCAGCAGAAACCAGGACAGCC




GATCAACGCTGGCAATGGTAACACA

TCCTAAGCTGCTCATTTACTGGGCA




AAATATTCACAGAGGTTCCAGGGCA

TCTACCCGGGAATCCGGGGTCCCT




GAGTCACCATTATTAGGGACACATC

GACCGATTCAGTGGCAGCGGGTCT




CGCGAGCACAACCTACATGGAGCTG

GGGACAGATTTCACTCTCACCATC




AGCAGCCTGAGATCTGAAGACACG

AGCAGCCTGCAGGCTGAAGATGTG




GCTGTGTATTACTGTGCGAGAGGCT

GCAGTTTATTACTGTCAGCAATATT




ATGCCCGAGCCGGGGTTATTACTAT

ATAGTACTCCTCCCCTCACTTTCGG




CAAAGAATCACTCCACCACTGGGGC

CGGAGGGACCAAGGTGGAGATCAA




CAGGGCACCCTGGTCACCGTCTCCT

ACGAACTGTGGCTGCACCATCTGT




CAGCCTCCACCAAGGGCCCATCGGT

CTTCATCTTCCCGCCATCTGATGAG




CTTCCCCCTGGCACCCTCCTCCAAG

CAGTTGAAATCTGGAACTGCCTCT




AGCACCTCTGGGGGCACAGCGGCCC

GTTGTGTGCCTGCTGAATAACTTCT




TGGGCTGCCTGGTCAAGGACTACTT

ATCCCAGAGAGGCCAAAGTACAGT




CCCCGAACCGGTGACGGTGTCGTGG

GGAAGGTGGATAACGC




AACTCAGGCGCCCTGACCAGCGGCG






TGCACACCTTCCCGGCTGTCCTACA






GTCCTCAGGA








S24-791
CAGGTGCAGCTGCAGGAGTCGGGCC
1641
GAGATTGTGTTGACGCACTCTCCA
1731



CAGGACTGGTGAAGCCTTCGGAGAC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGTCCCTCACCTGCACTGTCTCTG

AAAGAGCCACCCTCTCCTGCAGGG




GTGGCTCCATCAGTAGTTCCTACTG

CCAGTCAGAGTGTCCGCAGCTACT




GAGCTGGATCCGGCAGCCCCCAGGG

TAGCCTGGTACCAGCAGAAACCTG




AAGGGACTGGAGTGGATTGGGTATA

GCCAGGCTCCCAGGCTCCTCATCTA




TCTATTACAGTGGGAACACCAACTA

TGGTGCATCCAGCAGGGCCACTGG




CAACCCCTCCCTCAAGAGTCGAGTC

CATCCCAGACAGGTTCAGTGGCAG




ACCCTATCAATAGACACGTCCAAGA

TGGGTCTGGGACAGACTTCACTCTC




ACCAGTTCTCCCTGAAGCTGAGCTC

ACCATCAGCAGACTGGAGCCTGAC




TGTGACCGCTGCGGACACGGCCGTG

GATTTTGCAGTGTATTACTGTCAGC




TATTACTGTGCGTGCAGTGTTACGA

AGTATGGTAGCTCACCTTGGACGTT




TTTTTGGAGTGGTTACCCCTGCTTTT

CGGCCAAGGGACCAAGGTGGAAAT




GATATCTGGGGCCAAGGGACAATG

CAAACGAACTGTGGCTGCACCATC




GTCACCGTCTCTTCAGCCTCCACCA

TGTCTTCATCTTCCCGCCATCTGAT




AGGGCCCATCGGTCTTCCCCCTGGC

GAGCAGTTGAAATCTGGAACTGCC




ACCCTCCTCCAAGAGCACCTCTGGG

TCTGTTGTGTGCCTGCTGAATAACT




GGCACAGCGGCCCTGGGCTGCCTGG

TCTATCCCAGAGAGGCCAAAGTAC




TCAAGGACTACTTCCCCGAACCGGT

AGTGGAAGGTGGATAACGCCCTCC




GACGGTGTCGTGGAACTCAGGCGCC

AATCGGGTAACTCCCAGGAGAGTG




CTGACCAGCGGCGTGCACACCTTCC

TCACAGAGCAGGACAGCAAGGACA




CGGCTGTCCTACAGTCCTCAGGA

GCACCTACAGCCTCAGCAGCACCC






TGACGCTGAGCAAAGCAGACTACG






AG






S24-902
CAGGTCCAGCTGGTGCAGTCTGGGG
1642
CAGGCTGTGGTGACTCAGGAGCCC
1732



CTGAGGTGAAGAAGCCTGGGTCCTC

TCACTGACTGTGTCCCCAGGAGGG




GGTGAAGGTCTCCTGCAAGGCTTCT

ACAGTCACTCTCACCTGTGGCTCCA




GGAGGCACCTTCAGCAGCTATGCTA

GCACTGGAGCTGTCACCAGTGGTC




TCAGCTGGGTGCGACAGGCCCCTGG

ATTATCCCTACTGGTTCCAGCAGAA




ACAAGGGCTTGAGTGGATGGGAAG

GCCTGGCCAAGCCCCCAGGACACT




GATCATCCCTATCCTTGGTATAGCA

GATTTATGATACAAGCAACAAACA




AACTACGCACAGAAGTTCCAGGGCA

CTCCTGGACACCTGCCCGGTTCTCA




GAGTCACGATTACCGCGGACAAATC

GGCTCCCTCCTTGGGGGCAAAGCT




CACGAGCACAGCCTACATGGAGCTG

GCCCTGACCCTTTCGGGTGCGCAG




AGCAGCCTGAGATCTGAGGACACG

CCTGAGGATGAGGCTGAGTATTAC




GCCGTGTATTACTGTGCGAGATGGG

TGCTTGCTCTCCTATAGTGGTTGGG




ATTTTGGAGTGGTTATTCAATACGG

TGTTCGGCGGAGGGACCAAGCTGA




TATGGACGTCTGGGGCCAAGGGACC

CCGTCCTAGGTCAGCCCAAGGCTG




ACGGTCACCGTCTCCTCAGCCTCCA

CCCCCTCGGTCACTCTGTTCCCGCC




CCAAGGGCCCATCGGTCTTCCCCCT

CTCCTCTGAGGAGCTTCAAGCCAA




GGCACCCTCCTCCAAGAGCACCTCT

CAAGGCCACACTGGTGTGTCTCAT




GGGGGCACAGCGGCCCTGGGCTGCC

AAGTGACTTCTACCCGGGAGCCGT




TGGTCAAGGACTACTTCCCCGAACC

GACAGTGGCCTGGAAGGCAGATAG




GGTGACGGTGTCGTGGAACTCAGGC

CAGCCCCGTCAAGGCGGGAGTGGA




GCCCTGACCAGCGGCGTGCACACCT

GACCACCACACCCTCCAAACAAAG




TCCCGGCTGTCCTACAGTCCTCAGG

CAACAACAAGTACGCGGCCAGCAG




ACTCTACTCCCTCAGCAGCGTGGTG

CTA




ACCGTGCCCTCCAGCAGCTTGGG








S24-921
CAGGTGCAGCTGCAGGAGTCGGGCC
1643
GACATCCAGATGACCCAGTCTCCA
1733



CAGGACTGGTGAAGCCTTCGGAGAC

TCCTCCCTGTCTGCATCTCTGGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACGGGGTCACCATCACTTGCCGGG




GTGGCTCCATCAATAGTTTCTACTG

CAAGTCAGAGCATTAGCAGCTATT




GAACTGGATCCGGCAGCCCCCCGGG

TAAGTTGGTATCAGCAGAAACCCG




AAGGGACTGGAGTGGATTGGGTATA

GGAAAGCCCCTAAGCTCCTGATCT




TCTATTACAGTGGGAACACCAAGTA

ATGCTGCATCCAGTTTGCAAAGTG




CAACCCCTCCCTCAAGAGTCGAGTC

GGGTCCCATCAAGGTTCAGTGGCA




ACCATATCAGTAGACACGTCCAACA

GTGGATCTGGGACAGATTTCACTCT




GCCAGTTCTCCCTGAAGCTGAGCTC

CACCATCAGCAGTCTGCAACCTGA




TGTGACCGCTGCGGACACGGCCGTG

AGATTTTGCAACTTACTACTGTCAA




TATTACTGTGCGGCGCTCAAAAAGC

CAGAGTTACAATACCCCCGTGACG




AGGAGCTGGTATCGTTGCAGGCTTT

TTCGGCCAAGGGACCAAGGTGGAA




TGATATCTGGGGCCAAGGGACAATG

ATCAAACGAACTGTGGCTGCACCA




GTCACCGTCTCTTCAGCCTCCACCA

TCTGTCTTCATCTTCCCGCCATCTG




AGGGCCCATCGGTCTTCCCCCTGGC

ATGAGCAGTTGAAATCTGGAACTG




ACCCTCCTCCAAGAGCACCTCTGGG

CCTCTGTTGTGTGCCTGCTGAATAA




GGCACAGCGGCCCTGGGCTGCCTGG

CTTCTATCCCAGAGAGGCCAAAGT




TCAAGGACTACTTCCCCGAACCGGT

ACAGTGGAAGGTGGATAACGCAGA




GACGGTGTCGTGGAACTCAGGCGCC

TCGGAAGAGC




CTGACCAGCGGCGTGCACACCTTCC






CGGCTGTCCTACAGTCCTCAGGA








S24-1063
CAGGTGCAGCTGCAGGAGTCGGGCC
1644
GAAATTGTGTTGACGCAGTCTCCA
1734



CAGGACTGGTGAAGCCTTCGGAGAC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGTCCCTCACCTGCACTGTCTCTG

AAAGAGCCACCCTCTCCTGCAGGG




GTGGCTCCATCAGTAGTTACTACTG

CCAGTCAGAGTGTTAGCAGCAGCT




GAGCTGGATCCGGCAGCCCCCAGGG

ACTTAGCCTGGTACCAGCAGAAAC




AAGGGACTGGAGTGGATTGGATATA

CTGGCCAGGCTCCCAGGCTCCTCAT




TCTATTACAGTGGGAGCACCAAGTA

CTATGGTGCATCCAGCAGGGCCAC




CAACCCCTCCCTCAAGAGTCGAGTC

TGACATCCCAGACAGGTTCAGTGG




ACCATATCAGTAGACACGTCCAAGA

CAGTGGGTCTGGGACAGACTTCAC




ACCAGTTCTCCCTGAAGCTGACCTC

TCTCACCATCAGCAGACTGGAGCC




TGTGACCGCTGCGGACACGGCCGTG

TGAAGATTTTGCAGTGTATTACTGT




TATTACTGTGCGAGAATCTATGATA

CAGCAGTATGGTAGCTCACCGTGG




GTAGTGGTTATTACCATCCCGTCTTT

ACGTTCGGCCAAGGGACCAAGGTG




GACTACTGGGGCCAGGGAACCCTGG

GAAATCAAACGAACTGTGGCTGCA




TCACCGTCTCCTCAGCCTCCACCAA

CCATCTGTCTTCATCTTCCCGCCAT




GGGCCCATCGGTCTTCCCCCTGGCA

CTGATGAGCAGTTGAAATCTGGAA




CCCTCCTCCAAGAGCACCTCTGGGG

CTGCCTCTGTTGTGTGCCTGCTGAA




GCACAGCGGCCCTGGGCTGCCTGGT

TAACTTCTATCCCAGAGAGGCCAA




CAAGGACTACTTCCCCGAACCGGTG

AGTACAGTGGAAGGTGGATAACGC




ACGGTGTCGTGGAACTCAGGCGCCC






TGACCAGCGGCGTGCACACCTTCCC






GGCTGTCCTACAGTCCTCAGGA








S24-1224
CAGGTGCAGCTGGTGCAGTCTGGGG
1645
CAGTCTGTGCTGACGCAGCCGCCC
1735



CTGAGGTGAAGAAGCCTGGGGCCTC

TCAGTGTCTGGGGCCCCAGGGCAG




AGTGAGGGTTTCCTGCAAGGCATCT

AGGGTCACCATCCCCTGCACTGGG




GGATACACCTTCACCAGCTACTATA

AGCAGCTTCAACATCGGGGCAGGT




TCTACTGGGTGCGACAGGCCCCTGG

TATGATGTACACTGGTACCAGCAG




ACAAGGGCTTGAGTGGATGGGAGT

CTTCCAGGAACAGCCCCCAAACTC




AATCAACCCTAGTGGTGGTAGCACA

CTCATCTTTGGTAACAGCAATCGGC




AGCTACGCACAGAAGTTCCAGGGCA

CCTCAGGGGTCCCTGACCGATTCTC




GAGTCACCTTGACCAGGGACACGTC

TGGCTCCAGGTCTGGCACCTCAGC




CACGAGCACAGTCTACATGGACCTG

CTCCCTGGCCATCACTGGGCTCCAG




AGCAGTCTGAGATCTGAGGACACGG

GCTGAGGATGAGGCTGATTATTAC




CCGTGTATTACTGTGCGAGAGATCC

TGCCAGTCCTATGACAGTAGCCTG




TATAATGTGGGAGGTAGTAACTCGG

AGTGGTGTGGTATTCGGCGGAGGG




GGGAGGGGCAACTGGTTCGACCCCT

ACTACGCTGACCGTCCTAGGTCAG




GGGGCCAGGGAACCCTGGTCACCGT

CCCAAGGCTGCCCCCTCGGTCACTC




CTCCTCAGCCTCCACCAAGGGCCCA

TGTTCCCGCCCTCCTCTGAGGAGCT




TCGGTCTTCCCCCTGGCACCCTCCTC

TCAAGCCAACAAGGCCACACTGGT




CAAGAGCACCTCTGGGGGCACAGC

GTGTCTCATAAGTGACTTCTACCCG




GGCCCTGGGCTGCCTGGTCAAGGAC

GGAGCCGTGACAGTGGCCTGGAAG




TACTTCCCCGAACCGGTGACGGTGT

GCAGATAGCAGCCCCGTCAAGGCG




CGTGGAACTCAGGCGCCCTGACCAG

GGAGTGGAGACCACCACACCCTCC




CGGCGTGCACACCTTCCCGGCTGTC

AAACAAAGCAACAACAAGTACGCG




CTACAGTCCTCAGGA

GCCAGCAGCTACCTGAGCCTGACG






CCTGAGCAGTGGAAGTCCCAC






S24-1271
GAGGTGCAGCTGGTGGAGTCTGGGG
1646
TCCTATGAGCTGACTCAGCCACCCT
1736



GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGGG




GGATTCACCGTCAGTAGCAACTACA

ATAAATTGGGGGATAGATATGTTT




TGAGCTGGGTCCGCCAGGCTCCAGG

GTTGGTATCAGCAGAAGCCAGGTC




GAAGGGGCTGGAGTGGGTCTCAGTT

AGTCCCCTGTGCTGGTCATCTATCA




ATTTATAGCGATGGTAACACATACT

AGATACCAAGCGGCCCTCAGGGAT




ATGCAGACTCCGTGAAGGGCAGATT

CCCTGAGCGATTCTCTGGCTCCAAC




CACCATCTCCAGAGACAATTCCAAG

TCTGGGAACACAGCCACTCTGACC




AACATGTTATATCTTCAAATGAACA

ATCAGCGGGACCCAGGCTATGGAT




GCCTGAGAGCCGAGGACACGGCTGT

GAGGCTGACTATTACTGTCAGGCG




GTATTACTGTGCGAGAGACCCCGGC

TGGGACAGCAGCACTTGGGTGTTC




CAGGGGTATTGTAGTGGTGGTAGCT

GGCGGAGGGACCAAGCTGACCGTC




GCGCTCCGTCCTATTCTCTTGACTAC

CTGGGTCAGCCCAAGGCTGCCCCC




TGGGGCCAGGGAACCCTGGTCACTG

TCGGTCACTCTGTTCCCGCCCTCCT




TCTCCTCAGGGAGTGCATCCGCCCC

CTGAGGAGCTTCAAGCCAACAAGG




AACCCTTTTCCCCCTCGTCTCCTGTG

CCACACTGGTGTGTCTCATAAGTG




AGAATTCCCCGTCGGATACGAGCAG

ACTTCTACCCGGGAGCCGTGACAG




CGTG

TGGCCTGGAAGGCAGATAGCAGCC






CCGTCAAGGCGGGAGTGGAGACCA






CCACACCCTCCAAACAAAGCAACA






ACAAGTACGCGGCCAGCAGCTA






S24-1339
GAGGTGCAGCTGGTGGAGTCTGGAG
1647
GAAATTGTGTTGACGCAGTCTCCA
1737



GAGGCTTGGTCCAGCCTGGGGGGTC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGGTTCACCGTCAGTAGCAACTACA

CCAGTCAGAGTGTTAGCAGCAGCT




TGAGCTGGGTCCGCCAGGCTCCAGG

ACTTAGCCTGGTACCAGCAGAAAC




GAAGGGGCTGGAGTGGGTCTCAGAT

CTGACCAGGCTCCCAGGCTCCTCAT




ATTTATAGCGGTGGTAGCACATACT

CTATGGTGCATCCAGCAGGGCCAC




ACGCAGACTCCGTGAAGGGCCGATT

TGGCATCCCAGACAGGTTCAGTGG




CACCATCTCCAGACACAATTCCAAG

CAGTGGGTCTGGGACAGACTTCAC




AACACGCTGTATCTTCAAATGAACA

TCTCACCATCAGCAGACTGGAGCC




GCCTGAGAGCTGAGGACACGGCCGT

TGAAGATTTTGCAGTGTATTACTGT




GTATTACTGTGCGAGAGATCGACGG

CAGCAGTATGGTAGCTCACCTAAC




GGATACAGCTATGGTTTGCACCACG

ACTTTTGGCCAGGGGACCAAGCTG




GTATGGACGTCTGGGGCCAAGGGAC

GAGATCAAACGAACTGTGGCTGCA




CACGGTCACCGTCTCCTCAGCCTCC

CCATCTGTCTTCATCTTCCCGCCAT




ACCAAGGGCCCATCGGTCTTCCCCC

CTGATGAGCAGTTGAAATCTGGAA




TGGCACCCTCCTCCAAGAGCACCTC

CTGCCTCTGTTGTGTGCCTGCTGAA




TGGGGGCACAGCGGCCCTGGGCTGC

TAACTTCTATCCCAGAGAGGCCAA




CTGGTCAAGGACTACTTCCCCGAAC

AGTACAGTGGAAGGTGGATAACGC




CGGTGACGGTGTCGTGGAACTCAGG






CGCCCTGACCAGCGGCGTGCACACC






TTCCCGGCTGTCCTACAGTCCTCAG






GA








S24-1345
CAGCTGCAGCTGCAGGAGTCGGGCC
1648
GCCATCCAGTTGACCCAGTCTCCAT
1738



CAGGACTGGTGAAGCCTTCGGAGAC

CCTCCCTGTCTGCATCTGTAGGAGA




CCTGTCCCTCACCTGCACTGTCTCTG

CAGAGTCACCATCACTTGCCGGGC




GTGGCTCCATCAGCAGTAGTAGTTA

AAGTCAGGGCATTAGCAGTGCTTT




CTACTGGGGCTGGATCCGCCAGCCC

AGCCTGGTATCAGCAGAAACCAGG




CCAGGGAAGGGGCTGGAGTGGATT

GAAAGCTCCTAAGCTCCTGATCTAT




GGGAGTATCTATTATAGTGGGAGCA

GATGCCTCCAGTTTGGAAAGTGGG




CCTACTACAACCCGTCCCTCAAGAG

GTCCCATCAAGGTTCAGCGGCAGT




TCGAGTCACCATATCCGTAGACACG

GGATCTGGGACAGATTTCACTCTC




TCCAAGAACCAGTTCTCCCTGAAGC

ACCATCAGCAGCCTGCAGCCTGAA




TGAGCTCTGTGACCGCCGCAGACAC

GATTTTGCAACTTATTACTGTCAAC




GGCTGTGTATTACTGTGCGAGACGA

AGTTTAATAGTTACCTCACTTTCGG




ATCAGACGCCCCACCTCGGAAGTGG

CGGAGGGACCAAGGTGGAGATCAA




TTATTACTTATGTCTTTGACTACTGG

ACGAACTGTGGCTGCACCATCTGT




GGCCAGGGAACCCTGGTCACCGTCT

CTTCATCTTCCCGCCATCTGATGAG




CCTCAGCACCCACCAAGGCTCCGGA

CAGTTGAAATCTGGAACTGCCTCT




TGTGTTCCCCATCATATCAGGGTGC

GTTGTGTGCCTGCTGAATAACTTCT




AGACACCCAAAGGATAACAGCCCT

ATCCCAGAGAGGCCAAAGTACAGT




GTGGTCCTGGCATGCTTGATAACTG

GGAAGGTGGATAACGCCCTCCAAT




GGTACCACC

CGGGTAACTCCCAGGAGAGTGTCA






CAGAGCAGGACAGCAAGGACAGC






ACCTACAGCCTCAGC






S24-
GAGGTGCAGCTGGTGGAGTCTGGAG
1649
CAGACTGTGGTGACCCAGGAGCCA
1739


1378
GAGGCTTGGTCCAGCCTGGGGGGTC

TCGTTCTCAGTGTCCCCTGGAGGGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGTCACACTCACTTGTGGCTTGAG




GGGTTCACCGTCAGTAGCAACTACA

CTCTGGCTCAGTCTCTACTAGTTAC




TGAGCTGGGTCCGCCAGGCTCCAGG

TACCCCAGCTGGTACCAGCAGACC




GAAGGGGCTGGAGTGGGTCTCAGTT

CCAGGCCAGGCTCCACGCACGCTC




ATTTATAGCGGTGGTAGCACATACT

ATCTACAGCACAAACACTCGCTCTT




ACGCAGACTCCGTGAAGGGCCGATT

CTGGGGTCCCTGATCGCTTCTCTGG




CACCATCTCCAGACACAATTCCAAG

CTCCATCCTTGGGAACAAAGCTGC




AACACGCTGTATCTTCAAATGAACA

CCTCACCATCACGGGGGCCCAGGC




GCCTGAGAGCTGAGGACACGGCCGT

AGATGATGAATCTGATTATTACTGT




GTATTACTGTGCGAGAGAAGGATAT

GTGCTGTATATGGGTAGTGGCATTT




TGTACTAATGGTGTATGCTATAGGC

CGGTGTTCGGCGGAGGGACCAAGC




ATGCTTTTGATATCTGGGGCCAAGG

TGACCGTCCTAGGTCAGCCCAAGG




GACAATGGTCACCGTCTCTTCAGGG

CTGCCCCCTCGGTCACTCTGTTCCC




AGTGCATCCGCCCCAACCCTTTTCC

GCCCTCCTCTGAGGAGCTTCAAGC




CCCTCGTCTCCTGTGAGAATTCCCC

CAACAAGGCCACACTGGTGTGTCT




GTCGGATACGAGCAGCGTG

CATAAGTGACTTCTACCCGGGAGC






CGTGACAGTGGCCTGGAAGGCAGA






TAGCAGCCCCGTCAAGGCGGGAGT






GGAGACCACCACACCCTCCAAACA






AAGCAACAACAAGTACGCGGCCAG






CAGCTA






S24-1379
CAGGTGCAGCTGCAGGAGTCGGGCC
1650
CAGTCTGTGCTGACTCAGCCACCCT
1740



CAGGACTGGTGAAGCCTTCGGAGAC

CAGCGTCTGGGACCCCCGGGCAGA




CCTGTCCCTCACCTGCACTGTCTCTG

GGGTCACCATCTCTTGTTCTGGAAG




GTGGCTCCATCAGTAGTTACTACTG

CAGCTCCAACATCGGAAGTAATTA




GAGCTGGATCCGGCAGCCCCCAGGG

TGTATACTGGTACCAGCAGCTCCC




AAGGGACTGGAGTGGATTGGGTATA

AGGAACGGCCCCCAAACTCCTCAT




TCTATTACAGTGGGAGCACCAACTA

CTATAGGAATAATCAGCGGCCCTC




CAACCCCTCCCTCAAGAGTCGAGTC

AGGGGTCCCTGACCGATTCTCTGG




ACCATATCAGTAGACACGTCCAAGA

CTCCAAGTCTGGCACCTCAGCCTCC




ACCAGTTCTCCCTGAAGCTGAGCTC

CTGGCCATCAGTGGGCTCCGGTCC




TGTGACCGCTGCGGACACGGCCGTG

GAGGATGAGGCTGATTATTACTGT




TATTACTGTGCGAGAGATTACTATC

GCAGCATGGGATGACAGCCTGAGT




AACTCCCTATGGACGTCTGGGGCCA

GGTCGGGTGTTCGGCGGAGGGACC




AGGGACCACGGTCACCGTCTCCTCA

AAGCTGACCGTCCTAGGTCAGCCC




GCCTCCACCAAGGGCCCATCGGTCT

AAGGCTGCCCCCTCGGTCACTCTGT




TCCCCCTGGCACCCTCCTCCAAGAG

TCCCGCCCTCCTCTGAGGAGCTTCA




CACCTCTGGGGGCACAGCGGCCCTG

AGCCAACAAGGCCACACTGGTGTG




GGCTGCCTGGTCAAGGACTACTTCC

TCTCATAAGTGACTTCTACCCGGGA




CCGAACCGGTGACGGTGTCGTGGAA

GCCGTGACAGTGGCCTGGAAGGCA




CTCAGGCGCCCTGACCAGCGGCGTG

GATAGCAGCCCCGTCAAGGCGGGA




CACACCTTCCCGGCTGTCCTACAGT

GTGGAGACCACCACACCCTCCAAA




CCTCAGGA

CAAAGCAACAACAAGTACGCGGCC






AGCAGCTA






S24-1384
GAGGTGCAGCTGGTGGAGTCTGGGG
1651
TCCTATGTGCTGACTCAGCCACCCT
1741



GAGGCTTGGTACAGCCTGGGGGGTC

CGGTGTCAGTGGCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGTCTCT

CGGCCAGGATTACCTGTGGGGGAG




GGATTCACCTTCAGTAGCTATAGCA

ACAACATTGGAAGTAAAAATGTGC




TGAACTGGGTCCGCCAGGCTCCAGG

ACTGGTACCAGCAGAAGCCCGGCC




GAAGGGGCTGGAGTGGGTTTCATAC

AGGCCCCTGTGCTGGTCGTCTTTGA




ATTAGTAGTAGTAGTAGTATCATAT

TGATAGCGACCGGCCCTCAGGGAT




ACTACGCAGACTCTGTGAAGGGCCG

CCCTGAGCGATTCTCTGGCTCCAAC




ATTCACCATCTCCAGAGACAACGCC

TCTGGGAACACGGCCACCCTGACC




AAGAACTCACTGTATCTGCAAATGA

ATCAGCAGGGTCGAAGCCGGGGAT




ACAGCCTGAGAGCCGAGGACACGG

GAGGCCGACTATTACTGTCAGGTG




CTGTGTATTACTGTGCGAGAGATTT

TGGGATAGTAGTAGTGATCACTAT




CCTCGACTATAGCAGGTCGTATTCG

GTGGTATTCGGCGGAGGGACCAAG




TACGGTATGGACGTCTGGGGCCAAG

CTGACCGTCCTAGGTCAGCCCAAG




GGACCACGGTCACCGTCTCCTCAGC

GCTGCCCCCTCGGTCACTCTGTTCC




CTCCACCAAGGGCCCATCGGTCTTC

CGCCCTCCTCTGAGGAGCTTCAAG




CCCCTGGCACCCTCCTCCAAGAGCA

CCAACAAGGCCACACTGGTGTGTC




CCTCTGGGGGCACAGCGGCCCTGGG

TCATAAGTGACTTCTACCCGGGAG




CTGCCTGGTCAAGGACTACTTCCCC

CCGTGACAGTGGCCTGGAAGGCAG




GAACCGGTGACGGTGTCGTGGAACT

ATAGCAGCCCCGTCAAGGCGGGAG




CAGGCGCCCTGACCAGCGGCGTGCA

TGGAGACCACCACACCCTCCAAAC




CACCTTCCCGGCTGTCCTACAGTCCT

AAAGCAACAACAAGTACGCGGCCA




CAGGA

GCAGCTACC






S24-1476
GAGGTGCAGCTGGTGGAGTCTGGGG
1652
GAAATAGTGATGACGCAGTCTCCA
1742



GAGGCTTGGTACAGCCAGGGCGGTC

GCCACCCTGTCTGTGTCTCCAGGGG




CCTGAGACTCTCCTGTACAGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTTGGTGATTATGCTAT

CCAGTCAGAGTGTTAGCAGCAACT




GAGCTGGTTCCGCCAGGCTCCAGGG

TAGCCTGGTACCAGCAGAAACCTG




AAGGGGCTGGAGTGGGTAGGTTTCA

GCCAGGCTCCCAGGCTCCTCATCTA




TTAGAAGCAAAGCTTATGGTGGGAC

TGGTGCATCCACCAGGGCCACTGG




AACACAATACGCCGCCTCTGTGAAA

TATCCCAGCCAGGTTCAGTGGCAG




GGCAGATTCACCATCTCAAGAGATG

TGGGTCTGGGACAGAGTTCACTCT




ATTCCAAAAGCATCGCCTATCTGCA

CACCATCAGCAGCCTGCAGTCTGA




AATGAACAGCCTGAAAACCGAGGA

AGATTTTGCAGTTTATTACTGTCAG




CACAGCCGTGTATTACTGTACTAGA

CAGTATAATAACTGGTGGACGTTC




GTACGATATTGTACTAATGGTGTAT

GGCCAAGGGACCAAGGTGGAAATC




GCTATGGCTACCACTTTGACTACTG

AAACGAACTGTGGCTGCACCATCT




GGGCCAGGGAACCGTGGTCACCGTC

GTCTTCATCTTCCCGCCATCTGATG




TCCTCAGCCTCCACC

AGCAGTTGAAATCTGGAACTGCCT






CTGTTGTGTGCCTGCTGAATAACTT






CTATCCCAGAGAGGCCAAAGTACA






GTGGAAGGTGGATAACGC






S24-1564
CAGGTGCAGCTGCAGGAGTCGGGCC
1653
GACATCCAGATGACCCAGTCTCCA
1743



CAGGACTGGTGAAGCCTTCGGAGAC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACCGGGTCACCATCACTTGCCGGG




GTGGCTCCATCAGTAGTTACTACTG

CAAGTCAGAGCATTAGAAGCTATT




GAGCTGGATCCGTCAGCCCCCAGGG

TAAATTGGTATCAGCAGAAACGAG




AAGGGGCTGGAGTGGATTGGCTATG

GGAAAGCCCCTAAGCTCCTGATCT




TCTATTACAGTGGGAACACCAAATA

ATGCTGCATCCAGTTTGCAAAGTG




CAACCCCTCCCTCAAGAGTCGAGTC

GGGTCCCATCAAGGTTCAGTGGCA




ACCATATCAGTAGACACGTCCAAGA

GTGGATCTGGGACAGATTTCACTCT




ACCAGTTCTCCCTGAAGCTGGGCTC

CACCATCAGCAGTCTGCAACCTGA




TGTGACCGCCGCGGACACGGCCGTT

AGATTTTGCAACTTACTACTGTCAA




TATTATTGTGCGAGACATTCGAGGA

CAGAGTTACAGTACCCCTCCGACG




TAGAAGTGGCTGGTACTCTAGACTT

TTCGGCCAAGGGACCAAGGTGGAA




TGACTACTGGGGCCAGGGAACCCTG

ATCAAACGAACTGTGGCTGCACCA




GTCACCGTCTCCTCAGCCTCCACCA

TCTGTCTTCATCTTCCCGCCATCTG




AGGGCCCATCGGTCTTCCCCCTGGC

ATGAGCAGTTGAAATCTGGAACTG




ACCCTCCTCCAAGAGCACCTCTGGG

CCTCTGTTGTGTGCCTGCTGAATAA




GGCACAGCGGCCCTGGGCTGCCTGG

CTTCTATCCCAGAGAGGCCAAAGT




TCAAGGACTACTTCCCCGAACCGGT

ACAGTGGAAGGTGGATAACGC




GACGGTGTCGTGGAACTCAGGCGCC






CTGACCAGCGGCGTGCACACCTTCC






CGGCTGTCCTACAGTCCTCAGGA








S24-1636
CAGGTGCAGCTGGTGGAGTCTGGGG
1654
GAAATTGTGTTGACACAGTCTCCA
1744



GAGGCGTGGTCCAGCCTGGGAGGTC

GCCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTCAGTAACTATGGCA

CCAGTCAGAGTGTTAGCAGCTACT




TGCACTGGGTCCGCCAGGCTCCAGG

TAGCCTGGTACCAACAGAAACCTG




CAAGGGGCTGGAGTGGGTGGCCGTT

GCCAGGCTCCCAGGCTCCTCATCTA




ATATGGTATGATGGAAGTAATAAAT

TGATGCATCCAACAGGGCCACTGG




ACTATGCAGACTCCGTGAAGGGCCG

CATCCCAGCCAGGTTCAGTGGCAG




ATTCACCATCTCCAGAGACAATTCC

TGGGTCTGGGACAGACTTCACTCTC




AAGAACACGCTGTATCTGCAAATGA

ACCATCAGCAGCCTAGAGCCTGAA




ACAGCCTGAGAGCCGAGGACACGG

GATTTTGCAGTTTATTACTGTCAGC




CTGTGTATTACTGTGCGAGAGGAGA

AGCGTAGCAACTGGCCTCCGATCA




TTGTACTAATGGTGTATGCCATCCC

CTTTCGGCCCTGGGACCAAAGTGG




CTTCTAATTTATTATGATAGTAGTGG

ATATCAAACGAACTGTGGCTGCAC




TTTAGACTACTGGGGCCAGGGAACC

CATCTGTCTTCATCTTCCCGCCATC




CTGGTCACCGTCTCCTCAGCCTCCA

TGATGAGCAGTTGAAATCTGGAAC




CCAAGGGCCCATCGGTCTTCCCCCT

TGCCTCTGTTGTGTGCCTGCTGAAT




GGCACCCTCCTCCAAGAGCACCTCT

AACTTCTATCCCAGAGAGGCCAAA




GGGGGCACAGCGGCCCTGGGCTGCC

GTACAGTGGAAGGTGGATAACGCC




TGGTCAAGGACTACTTCCCCGAACC

CTCCAATCGGGTAACTCCCAGGAG




GGTGACGGTGTCGTGGAACTCAGGC

AGTGTCACAGAGCAGGACAGCAAG




GCCCTGACCAGCGGCGTGCACACCT

GACAGCACCTACAGCCTC




TCCCGGCTGTCCTACAGTCCTCAGG






A








S24-1002
CAGGTGCAGCTGGTGGAGTCTGGGG
1655
GCCATCCAGTTGACCCAGTCTCCAT
1745



GAGGCGTGGTCCAGCCTGGGAGGTC

CCTCCCTGTCTGCATCTGTAGGAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGAGTCACCATCACTTGCCGGGC




GGATTCACCTTCACTAGCTATGCTA

AAGTCAGGGCATTAGCAGTGCTTT




TGCACTGGGTCCGCCAGGCTCCAGG

AGCCTGGTATCAGCAGACACCAGG




CAAGGGGCTGGAGTGGGTGGCAGTT

GAAAGCTCCTAAGCTCCTGATCTAT




ATATCATATGATGGAGGCAGTAAAT

GATGCCTCCAGTTTGGAAAGTGGG




ACTACGCAGACTCCGTGAAGGGCCG

GTCCCGTCAAGGTTCAGCGGCAGT




ATTCACCATCTCCAGAGACAATTCC

GGATCTGGGACAGATTTCTCTCTCA




AAGAACACGCTGTATCTGCAAATGA

CCATCGGCAGCCTGCAGCCTGAAG




ACAGCCTGAGAGCTGAGGACACGG

ATTTTGCAAGTTATTACTGTCAACA




CTGTGTATTACTGTGCGAGGACTAC

GTTTAATAGTTACCCTCTCACTTTC




ACCGGGTATAACAGCAGCTGGAAC

GGCGGAGGGACCAAGGTGGAGATC




AGGGACCCTAGGGAGATACTACTAC

AAACGAACTGTGGCTGCACCATCT




TACGGTATGGACGTCTGGGGCCAAG

GTCTTCATCTTCCCGCCATCTGATG




GGACCACGGTCACCGTCTCCTCAGG

AGCAGTTGAAATCTGGAACTGCCT




GAGTGCATCCGCCCCAACCCTTTTC

CTGTTGTGTGCCTGCTGAATAACTT




CCCCTCGTCTCCTGTGAGAATTCCCC

CTATCCCAGAGAGGCCAAAGTACA




GTCGGATACGAGCAGCGTG

GTGGAAGGTGGATAACGCCCTCCA






ATCGGGTAACTCCCAGGAGAGTGT






CACAGAGCAGGACAGCAAGGACA






GCACCTACAGCCTCAGCAGCACCC






TGACGCTGAGCAAAGCAGACTACG






AGA






S24-1301
CAGGTCCAACTGGTACAGTCTGGGG
1656
CAGGCAGGGCTGACTCAGCCACCC
1746



CTGAGGTGAAGAAGCCTGGGGCCTC

TCGGTGTCCAAGGGCTTGAGACAG




AGTGAAGGTCTCCTGCAAGGTTTCC

ACCGCCACACTCACCTGCACTGGG




GGATACACCCTCATTGAATTATCCA

AGCAGCAACAATGTTGGCAACCAA




TGCACTGGGTGCGACAGGCTCCTGG

GGAGCAGCTTGGTTGCAGCAGCAC




AAAAGGGCTTGAGTGGATGGGAGG

CAGGGCCACCCTCCCAAACTCCTA




TTTTGATCCTGAAGATGGTGAAACA

TCCTACAGGAATAACAACCGGCCC




ATCTACGCACAGAAGTTCCAGGGCA

TCAGGGATCTCAGAGAGATTCTCT




GAGTCACCATGACCGAGGACACATC

GCATCCAGGTCAGGAAACACAGCC




TACAGACACAGCCTACATGGCGCTG

TCCCTGACCATTACTGGACTCCAGC




AGCAGCCTGACATCTGAGGACACGG

CTGAGGACGAGGCAGACTATTACT




CCGTGTATTACTGTGCAACAGCCTA

GCTCAGCATGGGACAGCAGCCTCT




CGCGTATTACTATGCTTCGGGGGGT

CTAATTGGGTGTTCGGCGGAGGGA




TATTATACCCTTGACTACTGGGGCC

CCAAGCTGACCGTCCTAGGTCAGC




AGGGAACCCTGGTCACCGTCTCCTC

CCAAGGCTGCCCCCTCGGTCACTCT




AGCCTCCACCAAGGGCCCATCGGTC

GTTCCCGCCCTCCTCTGAGGAGCTT




TTCCCCCTGGCACCCTCCTCCAAGA

CAAGCCAACAAGGCCACACTGGTG




GCACCTCTGGGGGCACAGCGGCCCT

TGTCTCATAAGTGACTTCTACCCGG




GGGCTGCCTGGTCAAGGACTACTTC

GAGCCGTGACAGTGGCCTGGAAGG




CCCGAACCGGTGACGGTGTCGTGGA

CAGATAGCAGCCCCGTCAAGGCGG




ACTCAGGCGCCCTGACCAGCGGCGT

GAGTGGAGACCACCACACCCTCCA




GCACACCTTCCCGGCTGTCCTACAG

AACAAAGCAACAACAAGTACGCGG




TCCTCAGGA

CCAGCAGCTA






S24-223
CAGATCACCTTGAAGGAGTCTGGTC
1657
CAGTCTGCCCTGACTCAGCCTGCCT
1747



CTACGCTGGTGAAACCCACACAGAC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTCACGCTGACCTGCACCTTCTCTG

GATCACCATCTCCTGCACTGGAAC




GGTTCTCACTCAACACTAGTGGAGT

CAGCAGTGACGTTGGTGGTTATAA




GGGTGTGGGCTGGATCCGTCAGCCC

CTATGTCTCCTGGTACCAACAACAC




CCAGGAAAGGCCCTGGAGTGGCTTG

CCAGGCAAAGCCCCCAAACTCATG




CACTCATTTATTGGGATGATGATAA

ATTTATGATGTCAGTAATCGGCCCT




GCGCTACAGCCCATCTCTGAAGAGC

CAGGGGTTTCTAATCGCTTCTCTGG




AGGCTCACCATCACCAAGGACACCT

CTCCAAGTCTGGCAACACGGCCTC




CCAAAAACCAGGTGGTCCTTACAAT

CCTGACCATCTCTGGGCTCCAGGCT




GACCAACATGGACCCTGTGGACACA

GAGGACGAGGCTGATTATTACTGC




GCCACATATTACTGTGCACACCATA

AACTCATATACAAGCAGCAGCACT




CGATTGTTCCAATTTTTGACTACTGG

CTCGTGGTATTCGGCGGAGGGACC




GGCCAGGGAACCCTGGTCACCGTCT

AAGCTGACCGTCCTAGGTCAGCCC




CCTCAGGGAGTGCATCCGCCCCAAC

AAGGCTGCCCCCTCGGTCACTCTGT




CCTTTTCCCCCTCGTCTCCTGTGAGA

TCCCGCCCTCCTCTGAGGAGCTTCA




ATTCCCCGTCGGATACGAGCAGCGT

AGCCAACAAGGCCACACTGGTGTG




G

TCTCATAAGTGACTTCTACCCGGGA






GCCGTGACAGTGGCCTGGAAGGCA






GATAGCAGCCCCGTCAAGGCGGGA






GTGGAGACCACCACACCCTCCAAA






CAAAGCAACAACAAGTACGCGGCC






AGCAGCTATCTGAGCCTGACGCC






S24-461
CAGGTGCAGCTGCAGGAGTCGGGCC
1658
TCCTATGAGCTGACACAGCCACCC
1748



CAGGACTGGTGAAGCCTTCGGAGAC

TCGGTGTCAGTGTCCCTAGGACAG




CCTGTCCCTCACGTGCACTGTCTCTG

ATGGCCAGGATCACCTGCTCTGGA




GTGGCTCCATCAGTAGTTACTACTG

GAAGCATTGCCAAAAAAATATGCT




GAGCTGGATCCGGCAGCCCCCCGGG

TATTGGTACCAGCAGAAGCCAGGC




AAGGGACTGGAGTGGATTGGGAAT

CAGTTCCCTATACTGGTGATATATA




ATCTATAACAGTGGGAGCACCAACT

AAGACAGCGAGAGGCCCTCAGGGA




ACAACCCCTCCCTCAAGAGTCGACT

TCCCTGAGCGATTCTCTGGCTCCAG




CACCATATCAGTTGACACGTCCAAG

CTCAGGGACAATAGTCACATTGAC




AACCACTTCTCCCTGAAGCTGAGCT

CATCAGTGGAGTCCAGGCAGAAGA




CTGTGACCGCTGCGGACACGGCCGT

CGAGGCTGACTATTACTGTCTATCA




GTATTACTGTGCGAGAGGAGGACTA

GAAGACAGCAGTGGTACTTGGGTG




GAGCACGACGGTGACTACGTCTACT

TTCGGCGGAGGGACCAAGCTGACC




ACTACGGTATGGACGTCTGGGGCCA

GTCCTAGGTCAGCCCAAGGCTGCC




AGGGACCACGATCACCGTCTCCTCA

CCCTCGGTCACTCTGTTCCCGCCCT




GCCTCCACCAAGGGCCCATCGGTCT

CCTCTGAGGAGCTTCAAGCCAACA




TCCCCCTGGCACCCTCCTCCAAGAG

AGGCCACACTGGTGTGTCTCATAA




CACCTCTGGGGGCACAGCGGCCCTG

GTGACTTCTACCCGGGAGCCGTGA




GGCTGCCTGGTCAAGGACTACTTCC

CAGTGGCCTGGAAGGCAGATAGCA




CCGAACCGGTGACGGTGTCGTGGAA

GCCCCGTCAAGGCGGGAGTGGAGA




CTCAGGCGCCCTGACCAGCGGCGTG

CCACCACACCCTCCAAACAAAGCA




CACACCTTCCCGGCTGTCCTACAGT

ACAACAAGTACGCGGCCAGCAGCT




CCTCAGGA

A






S24-511
CAGGTGCAGCTGGTGGAGTCTGGGG
1659
TCCTATGAGCTGACTCAGCCACCCT
1749



GAGGCGTGGTCCAGCCTGGGAGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTCAGTAGCTATGGCA

ATAAATTGGGGGATAAATATGCTT




TGCACTGGGTCCGCCAGGCTCCAGG

GCTGGTATCAGCAGAAGCCAGGCC




CAAGGGGCTGGAGTGGGTGGCAGTT

AGTCCCCTGTGCTGGTCATCTATCA




ATATCATATGATGGAAGTAATAAAT

AGATAGCAAGCGGCCCTCAGGGAT




ACTATGCAGACTCCGTGAAGGGCCG

CCCTGAGCGATTCTCTGGCTCCAAC




ATTCACCATCTCCAGAGACAATTCC

TCTGGGAACACAGCCACTCTGACC




AAGAACACGCTGTATCTGCAAATGA

ATCAGCGGGACCCAGGCTATGGAT




ACAGCCTGAGAGCTGAGGACACGG

GAGGCTGACTATTACTGTCAGGCG




CTGTGTATTACTGTGCGAAATATAC

TGGGACAGCAGCACTGTGGTATTC




GTCAACGGTAACTACGAACTACTAC

GGCGGAGGGACCAAGCTGACCGTC




TACGGTATGGACGTCTGGGGCCAAG

CTAGGTCAGCCCAAGGCTGCCCCC




GGACCACGGTCACCGTCTCCTCAGC

TCGGTCACTCTGTTCCCGCCCTCCT




ACCCACCAAGGCTCCGGATGTGTTC

CTGAGGAGCTTCAAGCCAACAAGG




CCCATCATATCAGGGTGCAGACACC

CCACACTGGTGTGTCTCATAAGTG




CAAAGGATAACAGCCCTGTGGTCCT

ACTTCTACCCGGGAGCCGTGACAG




GGCATGCTTGATAACTGGGTACCAC

TGGCCTGGAAGGCAGATAGCAGCC




C

CCGTCAAGGCGGGAGTGGAGACCA






CCACACCCTCCAAACAAAGCAACA






ACAAGTACGCGGCCAGCAGCTACC






S24-788
CAGGTGCAGCTGGTGGAGTCTGGGG
1660
TCCTATGAGCTGACTCAGCCACCCT
1750



GAGGCGTGGTCCAGCCTGGGAGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCGTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTCAGTAGCTATGGCA

ATAAATTGGGGGATAAATATGCTT




TGCACTGGGTCCGCCAGGCTCCAGG

GCTGGTATCAGCAGAAGCCAGGCC




CAAGGGGCTGGAGTGGGTGGCAGTT

AGTCCCCTGTGCTGGTCATCTATCA




ATATGGTATGATGGAAGTAATAAAT

AGATAGCAAGCGGCCCTCAGGGAT




ACTATGCAGACTCCGTGAAGGGCCG

CCCTGAGCGATTCTCTGGCTCCAAC




ATTCACCATCTCCAGAGACAATTCC

TCTGGGAACACAGCCACTCTGACC




AAGAACACGCTGTATCTGCAAATGA

ATCAGCGGGACCCAGGCTATGGAT




ACAGCCTGAGAGCCGAGGACACGG

GAGGCTGACTATTACTGTCAGGCG




CTGTGTATTACTGTGCGAGAGGACG

TGGGACAGCAGCTCTGTGGTATTC




TTCCCCAGGTGGGGGCCACTACTAC

GGCGGAGGGACCAAGCTGACCGTC




GGTATGGACGTCTGGGGCCAAGGG

CTAGGTCAGCCCAAGGCTGCCCCC




ACCACGGTCACCGTCTCCTCAGGGA

TCGGTCACTCTGTTCCCGCCCTCCT




GTGCATCCGCCCCAACCCTTTTCCCC

CTGAGGAGCTTCAAGCCAACAAGG




CTCGTCTCCTGTGAGAATTCCCCGTC

CCACACTGGTGTGTCTCATAAGTG




GGATACGAGCAGCGTG

ACTTCTACCCGGGAGCCGTGACAG






TGGCCTGGAAGGCAGATAGCAGCC






CCGTCAAGGCGGGAGTGGAGACCA






CCACACCCTCCAAACAAAGCAACA






ACAAGTACGCGGCCAGCAGCTA






S24-821
CAGGTCACCTTGAGGGAGTCTGGTC
1661
GACATCCAGATGACCCAGTCTCCTT
1751



CTGCGCTGGTGAAACCCACACAGAC

CCACCCTGTCTGCATCTGTAGGAG




CCTCACACTGACCTGCACCTTCTCTG

ACAGAGTCACCATCACTTGCCGGG




GGCTCTCACTCAGCAGTAGTGGAAT

CCAGTCAGAGTATTAGTAGCTGGT




GTGTGTGAGCTGGATCCGTCAGCCC

TGGCCTGGTATCAGCAGAAACCAG




CCAGGGAAGGCCCTGGAGTGGCTTG

GGAAAGCCCCTAAGCTCCTGATCT




CACGCATTGATTGGGATGATGATAA

ATAAGGCGTCTAGTTTAGAAAGTG




ATACTACAGCACATCTCTGAAGACC

GGGTCCCATCAAGGTTCAGCGGCA




AGGCTCACCATCTCCAAGGACACCT

GTGGATCTGGGACAGAATTCACTC




CCAAAAATCAGGTGGTCCTTACAAT

TCACCATCAGCAGCCTGCAGCCTG




GACCAACATGGACCCTGTGGACACA

ATGATTTTGCAACTTATTACTGCCA




GCCACGTATTACTGTGCACGGATAT

ACAGTATAATAGTTATTCGTGGAC




GTACTATGGTTCGGGGACTCCATGA

GTTCGGCCAAGGGACCAAGGTGGA




TGCTTTTGATATCTGGGGCCAAGGG

AATCAAACGAACTGTGGCTGCACC




ACAATGGTCACCGTCTCTTCAGGGA

ATCTGTCTTCATCTTCCCGCCATCT




GTGCATCCGCCCCAACCCTTTTCCCC

GATGAGCAGTTGAAATCTGGAACT




CTCGTCTCCTGTGAGAATTCCCCGTC

GCCTCTGTTGTGTGCCTGCTGAATA




GGATACGAGCAGCGTG

ACTTCTATCCCAGAGAGGCCAAAG






TACAGTGGAAGGTGGATAACGC






S144-67
GAGGTGCAGCTGGTGCAGTCTGGAG
1662
CAGTCTGTGCTGACGCAGCCGCCC
1752



CAGAGGTGAAAAAGCCCGGGGAGT

TCAGTGTCTGGGGCCCCAGGGCAG




CTCTGAAGATCTCCTGTAAGGGTTC

AGGGTCACCATCTCTTGCACTGGG




TGGATACAGCTTTACCACCTACTGG

AGCAGGTCCAACATCGGGGCAGGT




ATCGCCTGGGTGCGCCAGATGCCCG

TATGATGTACAGTGGTACCAGCAG




GGAAAGGCCTGGAGTGGGTGGGGA

GTTCCAGGAACAGCCCCCAAACTC




TCATCTATCCTGATGACTCTGATACC

CTCATCTCTGGTAACAGCAATCGG




AGATACAGCCCGTCCTTCCAAGGCC

CCCTCAGGGGTCCCTGACCGATTCT




AGGTCACCATCTCAGCCGACAAGTC

CTGGCTCCAAGTCTGGCACCTCAG




CATCGGTACCGCCTACCTGCAGTGG

CCTCCCTGGCCATCACTGGGCTCCA




AGTAGCCTGAAGGCCTCGGACACCG

GGCTGAGGATGAGGCTGATTATTA




CCATGTATTACTGTGCGAGGGGCCA

CTGCCAGTCCTATGACAGCAGCCT




GTATTACGATTTTTGGAGCGGAGCC

GAGTGGTCTGAGGGTATTCGGCGG




GGAGGTGTGGACGTCTGGGGCCAA

AGGGACCAAGCTGACCGTCCTAGG




GGGACCACGGTCACCGTCTCCTCAG

TCAGCCCAAGGCTGCCCCCTCGGT




CCTCCACCAAGGGCCCATCGGTCTT

CACTCTGTTCCCGCCCTCCTCTGAG




CCCCCTGGCACCCTCCTCCAAGAGC

GAGCTTCAAGCCAACAAGGCCACA




ACCTCTGGGGGCACAGCGGCCCTGG

CTGGTGTGTCTCATAAGTGACTTCT




GCTGCCTGGTCAAGGACTACTTCCC

ACCCGGGAGCCGTGACAGTGGCCT




CGAACCGGTGACGGTGTCGTGGAAC

GGAAGGCAGATAGCAGCCCCGTCA




TCAGGCGCCCTGACCAGCGGCGTGC

AGGCGGGAGTGGAGACCACCACAC




ACACCTTCCCGGCTGTCCTACAGTC

CCTCCAAACAAAGCAACAACAAGT




CTCAGGA

ACGCGGCCAGCAGCTATCTGAGCC






TGACGCCTGAGCAGTGGAAGTCCC






AC






S144-69
GAGGTGCAGCTGGTGCAGTCTGGAG
1663
GACATCCAGATGACCCAGTCTCCTT
1753



CAGAGGTGAAAAAGCCCGGGGAGT

CCACCCTGTCTGTATCTGTAGGAGA




CTCTGAAGATCTCCTGTAAGGGTTC

CAGAGTCACCATCACTTGCCGGGC




TGGATACAGCTTTACCAGCTACTGG

CAGTCAGAGTGTTAGTAGCTGGTT




ATCGGCTGGGTGCGCCAGATGCCCG

GGCCTGGTATCAGCAGAAACCAGG




GGAAAGGCCTGGAGTGGATGGGGA

GAAAGCCCCTAAGCTCCTGATCTA




TCATCTATCCTGGTGACTCTGATACC

TGATGCCTCCAGTTTGGAAAGTGG




AGATACAGCCCGTCCTTCCAAGGCC

GGTCCCATCAAGGTTCAGCGGCAG




AGGTCACCATCTCAGCCGACAAGTC

TGGATCTGGGACAGAATTCACTCT




CATCACTACCGCCTACCTGCAGTGG

CACCATTAGCAGCCTGCAGCCTGA




AGCAGCCTGAAGGCCTCGGACACCG

TGATTTTGCAACTTATTACTGCCAA




CCATGTATTACTGTGCGAGGACCCA

CAGTATAATAGTTTCTACACTTTTG




GACTACGAACTGGTTCGACTCCTGG

GCCAGGGGACCAAGCTGGAGATCA




GGCCAGGGAACCCTGGTCACCGTCT

AACGAACTGTGGCTGCACCATCTG




CCTCAGCCTCCACCAAGGGCCCATC

TCTTCATCTTCCCGCCATCTGATGA




GGTCTTCCCCCTGGCACCCTCCTCCA

GCAGTTGAAATCTGGAACTGCCTC




AGAGCACCTCTGGGGGCACAGCGG

TGTTGTGTGCCTGCTGAATAACTTC




CCCTGGGCTGCCTGGTCAAGGACTA

TATCCCAGAGAGGCCAAAGTACAG




CTTCCCCGAACCGGTGACGGTGTCG

TGGAAGGTGGATAACGCCCTCCAA




TGGAACTCAGGCGCCCTGACCAGCG

TCGGGTAACTCCCAGGAGAGTGTC




GCGTGCACACCTTCCCGGCTGTCCT

ACAGAGCAGGACAGCAAGGACAG




ACAGTCCTCAGGA

CACCTACAGCCTCAGCAGCACCCT






GACGCTGAGCAAAGCAGACTACGA






GAA






S144-94
CAGGTGCAGCTGGTGGAGTCTGGGG
1664
GATATTGTGATGACTCAGTCTCCAC
1754



GAGGCGTGGTCCAGCCTGGGGGGTC

TCTCCCTGCCCGTCACCCCTGGAGA




CCTGAGACTCTCCTGTGCAGCGTCT

GCCGGCCTCCATCTCCTGCAGGTCT




GGATTCACCTTCAGTAGCTATGGCA

AGTCAGAGCCTCCTGCATAGTAAT




TGCACTGGGTCCGCCAGGCTCCAGG

GGATACAACTATTTGGATTGGTAC




CAAGGGGCTGGAGTGGGTGACATTT

CTGCAGAAGCCAGGGCAGTCTCCA




ACACGGTATGATGGAAGTAATAAGT

CAGCTCCTGATCTATTTGGGTTCTA




TCTATGCAGACTCCGTGAAGGGCCG

ATCGGGCCTCCGGGGTCCCTGACA




ATTCTCCATCTCCAGAGACAATTCC

GGTTCAGTGGCAGTGGATCAGGCA




AAGAACACGTTGTATCTGCAAATGA

CAGATTTTACACTGAAAATCAGCA




ATAGTCTGAGAGCTGAGGACACGGC

GAGTGGAGGCTGAGGATGTTGGGG




TGTATACTACTGCGCGAAAGAAAGT

TTTATTACTGCATGCAAGCTCTACA




CGTGTGGCGTTTGGGGGAGCTATCG

AACTCCTCAGTACACTTTTGGCCAG




CCATCTACTACTTCGGTATGGACGT

GGGACCAAGCTGGAGATCAAACGA




CTGGGGCCAAGGGACCACGGTCACC

ACTGTGGCTGCACCATCTGTCTTCA




GTCTCCTCAGCCTCCACCAAGGGCC

TCTTCCCGCCATCTGATGAGCAGTT




CATCGGTCTTCCCCCTGGCGCCCTG

GAAATCTGGAACTGCCTCTGTTGTG




CTCCAGGAGCACCTCTGGGGGCACA

TGCCTGCTGAATAACTTCTATCCCA




GCGGCCCTGGGCTGCCTGGTCAAGG

GAGAGGCCAAAGTACAGTGGAAG




ACTACTTCCCCGAACCGGTGACGGT

GTGGATAACGCCCTCCAATCGGGT




GTCGTGGAACTCAGGCGCCCTGACC

AACTCCCAGGAGAGTGTCACAGAG




AGCGGCGTGCACACCTTCCCGGCTG

CAGGACAGCAAGGACAGCACCTAC




TCCTACAGTCCTCAGGA

AGCCTCAGCAGCACCCTGACGCTG






AGCAAAGCAGACTACGAGAA






S144-113
GAGGTGCAGTTATTGGAGTCTGGGG
1665
GACATCCAGATGACCCAGTCTCCA
1755



GAGGCTTGGTACAGCCTGGGGGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTTAGCAACTATGCCA

CAAGTCAGAGCATTAGCAACTATT




TGAGCTGGGTCCGCCAGGCTCCAGG

TAAATTGGTATCAGCAGAAACCAG




GAAGGGGCTGGAGTGGGTCTCAGCT

GGAAAGCCCCTGACCTCCTGATCT




ATTCGTAATAGTGGTAGTAGCACAT

ATGCTGCATCCAGTTTGCAAAGTG




ACTATGCTGACTCCGTGAAGGGCCG

GGGTCCCATTAAGGTTCAGTGGCA




GTTCACCATCTCCAGAGACAATTCC

GTGGATCTGGGACAGATTTCACTCT




AAGAACACGCTGTATCTGCAAATGA

CACCATCAGCAGTCTGCAACCTGA




ACAGCCTGAGAGCCGAGGACTCGG

AGATTTTGCAACTTACTACTGTCAA




CCGTATATTACTGTGCGAAAGTAGG

CAGACTTACAGTGCCCCCACTTTCG




GGGGACAGCAGCTGGTCATCCGTTT

GCGGAGGGACCAAGGTGGAGATCA




TATGACTACTGGGGCCAGGGAACCC

AACGAACTGTGGCTGCACCATCTG




TGGTCACCGTCTCCTCAGCCTCCAC

TCTTCATCTTCCCGCCATCTGATGA




CAAGGGCCCATCGGTCTTCCCCCTG

GCAGTTGAAATCTGGAACTGCCTC




GCACCCTCCTCCAAGAGCACCTCTG

TGTTGTGTGCCTGCTGAATAACTTC




GGGGCACAGCGGCCCTGGGCTGCCT

TATCCCAGAGAGGCCAAAGTACAG




GGTCAAGGACTACTTCCCCGAACCG

TGGAAGGTGGATAACGCCCTCCAA




GTGACGGTGTCGTGGAACTCAGGCG

TCGGGTAACTCCCAGGAGAGTGTC




CCCTGACCAGCGGCGTGCACACCTT

ACAGAGCAGGACAGCAAGGACAG




CCCGGCTGTCCTACAGTCCTCAGGA

CACCTACAGCCTCAGCAGCACCCT




CTC

GACGCTGAGCAAAGCAGACTACGA






GAA






S144-175
CAGGTGCAGCTGGTGCAGTCTGGGG
1666
CAGTCTATGCTGACTCAGCCACCCT
1756



CTGAGGTGAAGAAGCCTGGGGCCTC

CAGCGTCTGGGACCCCCGGGCAGA




AGTGAAGGTCTCCTGCAAGGCTTCT

GGGTCACCATCTCTTGTTCTGGAAG




GGATACACCTTCACCGGCTACTATA

CAGCTCCAACATCGGAAGTAATTA




TGCACTGGGTGCGACAGGCCCCTGG

TGTATACTGGTACCAGCAGCTCCC




ACAAGGTCTTGAGTGGATGGGACGG

AGGAACGGCCCCCAAACTCCTCAT




ATCAACCCTAACAGTGGTGGCACAA

CTATAGGAATAATCAGCGGCCCTC




ACTTTGCACAGAGGTTTCAGGGCAG

AGGGGTCCCTGACCGATTCTCTGG




GGTCTCCATGACCAGGGACACCTCC

CTCCAAGTCTGGCACCTCAGCCTCC




ATCAGCACAGCCTACATGGAACTGA

CTGGCCATCAGTGGGCTCCGGTCC




GCAGCCTGAGATCTGACGACACGGC

GAGGATGAGGCTGATTATTACTGT




CGTATATTACTGTGCGAGAGGCGCA

GCAGCATGGGATGACAGACGTTGG




AAATTCGAGCACCTCCCTTTTGATA

GTGTTCGGCGGAGGGACCAAGCTG




TCTGGGGCCAAGGGACAATGGTCAC

ACCGTCCTAGGTCAGCCCAAGGCT




CGTCTCTTCAGCCTCCACCAAGGGC

GCCCCCTCGGTCACTCTGTTCCCAC




CCATCGGTCTTCCCCCTGGCACCCTC

CCTCCTCTGAGGAGCTTCAAGCCA




CTCCAAGAGCACCTCTGGGGGCACA

ACAAGGCCACACTGGTGTGTCTCA




GCGGCCCTGGGCTGCCTGGTCAAGG

TAAGTGACTTCTACCCGGGAGCCG




ACTACTTCCCCGAACCGGTGACGGT

TGACAGTGGCCTGGAAGGCAGATA




GTCGTGGAACTCAGGCGCCCTGACC

GCAGCCCCGTCAAGGCGGGAGTGG




AGCGGCGTGCACACCTTCCCGGCTG

AGACCACCACACCCTCCAAACAAA




TCCTACAGTCCTCAGGA

GCAACAACAAGTACGCGGCCAGCA






GCTA






S144-208
CAGGTGCAACTGGTGCAGTCTGGGG
1667
CAGTCTGCCCTGACTCAGCCTCGCT
1757



CTGAGGTGAAGAAGCCTGGGGCCTC

CAGTGTCCGGGTCTCCTGGACAGT




AGTGAAGGTCTCCTGCAAGTCTTCT

CAGTCACTATCTCCTGCACTGGAAC




GGATACACCTTCACCGGCTACTATA

CAGCAGTGATGTTGGTGGTTATAA




TGCACTGGGTGCGACAGGCCCCTGG

GTATGTCTCCTGGTACCAACAGCA




ACAAGGGCTTGAGTGGATGGGACG

CCCAGGCAAAGCCCCCAAACTCAT




GATCAACCCTAATAGTGGTGGCACA

GATTTATGACGTCAGTAAGCGGCC




AACTATGCACAGAAGTTTCAGGGCA

CTCAGGGGTCCCTGATCGCTTCTCT




GGGTCACCATGACCAGGGACACGTC

GGCTCCAAGTCTGGCAACACGGCC




CATCAGCACAGCCTACATGGAACTG

TCCCTGACCATCTCTGGGCTCCAGG




AGCAGGCTGAGATCTGACGACACG

CTGAGGATGAGGGTGATTATTACT




GCCGTATATTACTGTGCGAGAGGGG

GCTGCTCATATGCAGGCACCTACA




CCCGAGGTGGCGCGGGGTGCAGTG

GTTTGGTATTCGGCGGAGGGACCA




GCTGGTCATGTTTTGACTTCTGGGG

AGGTGACCGTGACCGTCCTAGGTC




CCAGGGAACCCTGGTCACCGTCTCC

AGCCCAAGGCTGCCCCCTCGGTCA




TCAGCCTCCACCAAGGGCCCATCGG

CTCTGTTCCCGCCCTCCTCTGAGGA




TCTTCCCCCTGGCACCCTCCTCCAAG

GCTTCAAGCCAACAAGGCCACACT




AGCACCTCTGGGGGCACAGCGGCCC

GGTGTGTCTCATAAGTGACTTCTAC




TGGGCTGCCTGGTCAAGGACTACTT

CCGGGAGCCGTGACAGTGGCCTGG




CCCCGAACCGGTGACGGTGTCGTGG

AAGGCAGATAGCAGCCCCGTCAAG




AACTCAGGCGCCCTGACCAGCGGCG

GCGGGAGTGGAGACCACCACACCC




TGCACACCTTCCCGGCTGTCCTACA

TCCAAACAAAGCAACAACAAGTAC




GTCCTCAGGA

GCGGCCAGCAGCTATCTGAGCCTG






ACGCCTGAGCAGTGGAAGTCCCAC






A






S144-339
GAGGTGCAGCTGGTGGAGTCTGGGG
1668
GAAATTGTGTTGACGCAGTCTCCA
1758



GAGGCCTGGTCAAGCCGGGGGGGT

GGCACCCTGTCTTTGTCTCCAGGGG




CCCTGAGACTCTCCTGTGCAGCCTC

AAAGAGCCACCCTCTCCTGCAGGG




TGGATTCACCTTCAGTGACTATACC

CCAGTCAGAGTCTTAGCAGCAGCT




ATGAACTGGGTCCGACAGGCTCCAG

ACTTAGCCTGGTACCAGCAGAAAC




GGAAGGGACTGGAGTGGGTCTCATC

CTGGCCAGTCTCCCAGGCTCCTCAT




CATTACTAGAAGTAGTACTTACATC

TTATGGTGCATCCAGCAGGGCCAC




TACTACGCAGACTCAGTGAAGGGCC

TGGCATCCCAGACAGGTTCAGTGG




GATTCACCATCTCCAGAGACAACGC

CAGTGGGTCTGGGACAGACTTCAC




CAAGAACTCACTGTATCTGCAAATG

TCTCACCATCAACAGACTGGAGCC




AACAGCCTGAGAGCCGAGGACACG

TGAAGATTTTGCAGTATATTACTGT




GCTGTCTATTACTGTGCGAGAGACC

CAGCAGTATCGTACCTCACCTCGA




CCTATTACGATATTTTGACTGGTTAT

GGCACTTTCGGCGGAGGGACCAAG




TGGAACTACTGGGGCCAGGGAACCC

GTGGAGATCAAACGAACTGTGGCT




TGGTCACCGTCTCCTCAGCCTCCAC

GCACCATCTGTCTTCATCTTCCCGC




CAAGGGCCCATCGGTCTTCCCCCTG

CATCTGATGAGCAGTTGAAATCTG




GCACCCTCCTCCAAGAGCACCTCTG

GAACTGCCTCTGTTGTGTGCCTGCT




GGGGCACAGCGGCCCTGGGCTGCCT

GAATAACTTCTATCCCAGAGAGGC




GGTCAAGGACTACTTCCCCGAACCG

CAAAGTACAGTGGAAGGTGGATAA




GTGACGGTGTCGTGGAACTCAGGCG

CGCCCTCCAATCGGGTAACTCCCA




CCCTGACCAGCGGCGTGCACACCTT

GGAGAGTGTCACAGAGCAGGACAG




CCCGGCTGTCCTACAGTCCTCAGGA

CAAGGACAGCACCTACAGCCTCAG






CAGCACCCTGACGCTGAGCAAAGC






AGACTACGAGAA






S144-359
GAGGTGCAGCTGGTGGAGTCTGGGG
1669
GACATCCAGATGACCCAGTCTCCA
1759



GAGGCTTGGTACAGCCTGGGGGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTTAGCAGCTATGCCA

CAAGTCAGAGCATTAGCAGCTATT




TGAGCTGGGTCCGCCAGGCTCCAGG

TAAATTGGTATCAGCAGAAACCAG




GAAGGGGCTGGAGTGGGTCTCATCT

GGAAAGCCCCTAAGCTCCTGATCT




ATTAGAGGTAGTGGTGGTAGCACAT

ATGCTGCATCCAGTTTGCAAAGTG




ACTACGCAGACTCCGTGAAGGGCCG

GGGTCCCATCAAGGTTCAGTGGCA




GTTCACCATCTCCAGAGACAACTCC

GTGGATCTGGGACAGATTTCACTCT




AAGTACACGTTGTATCTGCAAATGA

CACCATCAGCAGTCTGCAACCTGA




ACAGCCTGAGAGCCGAGGACACGG

AGATTTTGCAATTTACTACTGTCAA




CCGTATATTACTGTGCGAAAATAAC

CAGACTTCCCGTACCCCGCTCACTT




TGGAGCCGTCGGGGGGGAGAACTG

TCGGCGGAGGGACCAAGGTGGAGG




GTTCGACCCCTGGGGCCAGGGAACC

TCAAACGAACTGTGGCTGCACCAT




CTGGTCACCGTCTCCTCAGCCTCCA

CTGTCTTCATCTTCCCGCCATCTGA




CCAAGGGCCCATCGGTCTTCCCCCT

TGAGCAGTTGAAATCTGGAACTGC




GGCGCCCTGCTCCAGGAGCACCTCT

CTCTGTTGTGTGCCTGCTGAATAAC




GGGGGCACAGCGGCCCTGGGCTGCC

TTCTATCCCAGAGAGGCCAAAGTA




TGGTCAAGGACTACTTCCCCGAACC

CAGTGGAAGGTGGATAACGCCCTC




GGTGACGGTGTCGTGGAACTCAGGC

CAATCGGGTAACTCCCAGGAGAGT




GCCCTGACCAGCGGCGTGCACACCT

GTCACAGAGCAGGACAGCAAGGAC




TCCCGGCTGTCCTACAGTCCTCAGG

AGCACCTACAGCCTCAGCAGCACC




A

CTGACGCTGAGCAAAGCAGACTAC






GAGAA






S144-460
GAGGTGCGCCTGGTGCAGTCTGGGG
1670
GACATCCAGATGACCCAGTCTCCA
1760



GAGGCTTGGTAAAGCCCGGGGGGTC

TCTGCCATGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGTCGGG




GGATTCACCTTCAGCACCGCCTGGG

CGAGTCAGGACATTAACACCTTTTT




TGAGGTGGGTCCGCCAGGCTCCAGG

AACGTGGTTTCAGCAGAAACCAGG




GAAGGGGCTGGAGTGCGTTGGCCG

AAAAGTCCCTCAGCGCCTGATCTTT




AATCAAAAGTAAAAATGACGGTGA

GCTGCATATCGTTTGCAAAGTGGG




CAGAGCAGAGTACGCTGCACCCGCG

GTCCCTTCAAGGTTCAGTGGCAGT




AGAGGCAGATTCATCATCTCAAGAG

GGATCTGGGACAGAATTCACTCTC




ATGATGCAGAAAACATTCTGTATTT

ACAATCAACAGCCTGCAGCCTGAA




ACAAATGAACAACCTGAAAACCGA

GATGTTGCGACTTATTATTGTCTAC




GGACACAGCCTTTTATTACTGTACC

ACCATAAAACTTATCCGTACACTTT




ACGGATCAAGGAAATAGTAGTGCCT

TGGCCAGGGGACCAAACTGGAGAT




TCTACAGTGCTGACTATTGGGGCCA

CAAACGAACTGTGGCTGCACCATC




GGGAACCCTGGTCACCGTCTCCTCA

TGTCTTCATCTTCCCGCCATCTGAT




GCATCCCCGACCAGCCCCAAGGTCT

GAGCAGTTGAAATCTGGAACTGCC




TCCCGCTGAGCCTCGACAGCACCCC

TCTGTTGTGTGCCTGCTGAATAACT




CCAAGATGGGAACGTGGTCGTCGCA

TCTATCCCAGAGAGGCCAAAGTAC




TGCCTGGTCCAGGGCTTCTTCCCCC

AGTGGAAGGTGGATAACGCCCTCC




AGGAGCCACTCAGTGTGACCTGGAG

AATCGGGTAACTCCCAGGAGAGTG




CGAAAGCGGACAGAACGTGACCGC

TCACAGAGCAGGACAGCAAGGACA




CAGAAACTTCCC

GCACCTACAGCCTCAGCAGCACCC






TGACGCTGAGCAAAGCAGACTACG






AGAA






S144-466
GAGGTGCAGCTGGTGCAGTCTGGAG
1671
GACATCCAGATGACCCAGTCTCCTT
1761



CAGAGGTGAAAAAGCCCGGGGAGT

CCACCCTGTCTGCATCTGTGGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

ACAGAGTCACCATCACTTGCCGGG




TGGATACAGGTTTACCAGATACTGG

CCAGTCAGAGTATTACTAGTTGGTT




ATCGGCTGGGTGCGCCAGATGCCCG

GGCCTGGTATCAGCAGAAATCAGG




GGAAAGGCCTGGAGTGGATGGGGA

GAAAGCCCCTAAACTCCTGATCTA




TCATCTATCTTGGTGACTCTGAAAC

TGATGCCTCCAGTTTGGAAAGTGG




CAGATACAGTCCGTCCTTCCAAGGC

GGTCCCATCAAGGTTCAGCGGCAG




CAGGTCACCATCTCAGCCGACAACT

TGGATCTGGGACAGAATTCACTCT




CCATCAGCACCGCCTACCTGCAGTG

CACCATCAGCAGCCTGCAGCCTGA




GAGCAGCCTGAAGGCCTCGGACACC

TGATTTTGCAACTTATTACTGCCAA




GCCATGTATTACTGTGCGAGAAGTT

CAGTATAATAGTTATCCTTGGACGT




CCAATTGGAATTACGGTGACTACTG

TCGGCCAAGGGACCAAGGTGGAAA




GGGCCAGGGAACCCTGGTCACCGTC

TCAAACGAACTGTGGCTGCACCAT




TCCTCAGCTTCCACCAAGGGCCCAT

CTGTCTTCATCTTCCCGCCATCTGA




CGGTCTTCCCCCTGGCGCCCTGCTCC

TGAGCAGTTGAAATCTGGAACTGC




AGGAGCACCTCTGGGGGCACAGCG

CTCTGTTGTGTGCCTGCTGAATAAC




GCCCTGGGCTGCCTGGTCAAGGACT

TTCTATCCCAGAGAGGCCAAAGTA




ACTTCCCCGAACCGGTGACGGTGTC

CAGTGGAAGGTGGATAACGCCCTC




GTGGAACTCAGGCGCCCTGACCAGC

CAATCGGGTAACTCCCAGGAGAGT




GGCGTGCACACCTTCCCGGCTGTCC

GTCACAGAGCAGGACAGCAAGGAC




TACAGTCCTCAGGA

AGCACCTACAGCCTCAGCAGCACC






CTGACGCTGAGCAAAGCAGACTAC






GAGAA






S144-469
CAGGTGCAGCTGCAGGAGTCGGGCC
1672
GATATTGTGATGACTCAGTCTCCAC
1762



CAGGACTGGTGAAGCCTTCGGAGAC

TCTCCCTGCCCGTCACCCCTGGAGA




CCTGTCCCTCACCTGCACTGTCTCTG

GCCGGCCTCCATCTCCTGCAGGTCT




GTGGCTCCATCAGTAGTGACTACTG

AGTCAGAGCCTCCTGCATAGTAAT




GAGCTGGATCCGGCAGCCCCCAGGG

GGATACAACTATTTGGATTGGTAC




AAGGGACTGGAGTGGATTGGATATA

CTGCAGAAGCCAGGGCAGTCTCCA




TGTATTACAGTGGGAGCACCAACTA

CAGCTCCTGATCTATTTGGGTTCTA




CAACCCCTCCCTCAAGAGTCGAGTC

ATCGGGCCTCCGGGGTCCCTGACA




ACCATATCAGTAGACACGTCCAAGA

GGTTCAGTGGCAGTGCATCAGGCA




ACCAGTTCTCCCTGAAGCTGAGCTC

CAGATTTTACACTGAAAATCAGCA




TGTGACCGCTGCGGACACGGCCGTG

GAGTGGAGGCTGAGGATGTTGGGG




TATTACTGTGCGAGATGGGATAGGG

TTTATTACTGCATGCAAGCTCTACA




GAAGCAGGCCTCACTACTACTACTA

AGCTTTCACTTTCGGCCCTGGGACC




TGGTATGGACGTCTGGGGCCAAGGG

AAAGTGGATATCAAACGAACTGTG




ACCACGGTCACCGTCTCCTCAGCCT

GCTGCACCATCTGTCTTCATCTTCC




CCACCAAGGGCCCATCGGTCTTCCC

CGCCATCTGATGAGCAGTTGAAAT




CCTGGCACCCTCCTCCAAGAGCACC

CTGGAACTGCCTCTGTTGTGTGCCT




TCTGGGGGCACAGCGGCCCTGGGCT

GCTGAATAACTTCTATCCCAGAGA




GCCTGGTCAAGGACTACTTCCCCGA

GGCCAAAGTACAGTGGAAGGTGGA




ACCGGTGACGGTGTCGTGGAACTCA

TAACGCCCTCCAATCGGGTAACTC




GGCGCCCTGACCAGCGGCGTGCACA

CCAGGAGAGTGTCACAGAGCAGGA




CCTTCCCGGCTGTCCTACAGTCCTCA

CAGCAAGGACAGCACCTACAGCCT




GGA

CAGCAGCACCCTGACGCTGAGCAA






AGCAGACTACGAGA






S144-509
GAGGTGCAGCTGGTGCAGTCTGGAG
1673
GACATCCAGATGACCCAGTCTCCTT
1763



CAGAGGTGAAAAAGCCCGGGGAGT

CCACCCTGTCTGCATCTGTAGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

ACAGAGTCACCATCACTTGCCGGG




TGCATACACCTTTACCACCTACTGG

CCAGTCAGAGTATTAGTAGCTGGT




ATCGGCTGGGTGCGCCAGATGCCCG

TGGCCTGGTATCAGCAGAAACCAG




GGAAAGGCCTGGAGTGGATGGGGA

GGAAAGCCCCTAACCTCCTGATCT




TCATCTATCCTGGTGACTCTGATACC

ATGATGCCTCCAGTTTGGAAAGTG




AGATACAGCCCGTCCTTCCAAGGCC

GGGTCCCATCAAGGTTCAGCGGCA




AGGTCACCATCTCAGCCGACAAGTC

GTGGATCTGGGACAGAATTCACTC




CATCAGCACCGCCTACCTGCAGTGG

TCACCATCAGCAGCCTGCAGCCTG




AGCAGCCTGAAGGCCTCGGACACCG

ATGATTTTGCAACTTATTACTGCCA




CCATGTATTACTGTGCGAGATTATT

ACAGTATAATAGTTATCCGTGGAC




ATTGGTGGCTGGTCCCTTTGACTACT

GTTCGGCCAAGGGACCAAGGTGGA




GGGGCCAGGGAACCCTGGTCACCGT

AATCAAACGAACTGTGGCTGCACC




CTCCTCAGCCTCCACCAAGGGCCCA

ATCTGTCTTCATCTTCCCGCCATCT




TCGGTCTTCCCCCTGGCACCCTCCTC

GATGAGCAGTTGAAATCTGGAACT




CAAGAGCACCTCTGGGGGCACAGC

GCCTCTGTTGTGTGCCTGCTGAATA




GGCCCTGGGCTGCCTGGTCAAGGAC

ACTTCTATCCCAGAGAGGCCAAAG




TACTTCCCCGAACCGGTGACGGTGT

TACAGTGGAAGGTGGATAACGC




CGTGGAACTCAGGCGCCCTGACCAG






CGGCGTGCACACCTTCCCGGCTGTC






CTACAGTCCTCAGGACTCTACTCCC






TCAGCAGCGTGGTGACCGTGCCCTC






CAGCAGCTTGGGCACCCAGACCTAC






ATCTGCAACGTGAATCACAAGCCCA






GCAACACCAAGGTGGACA








S144-516
CAGGTGCAGCTGCTGCAGTCTGGGG
1674
CAGTCTGTGCTGACGCAGCCGCCC
1764



CTGAAGTGAAGAAGCCTGGGGCCTC

TCAGTGTCTGAGGCCCCAGGGCAG




AGTGAAGGTCTCCTGCAAGGCTTCT

AGGGTCACCATCTCCTGCACTGGG




GGATACACCTTCACCGGCTACTATA

AGCAGCTCCAACATCGGGGCAGGT




TGCACTGGGTGCGACAGGCCCCTGG

TATGATGTACACTGGTACCAGCAG




ACAAGGGCTTGAGTGGATGGGACG

CTTCCAGGAACAGCCCCCAAACTG




GATCAACCCTAACAGTGGTGGCACA

CTCATCTATGGTAACATTAATCGGC




AATTATGCACAGAAGTTTCAGGGCA

CCTCAGGGGTCCCTGACCGATTCTC




GGGTCACCATGACCAGGGACACGTC

TGGCTCCAAGTCTGGCACCTCAGC




CATCAGCACAGCCTACATGGAGCTG

CTCCCTGGCCATCACTGGGCTCCAG




AGCAGGCTGACATCTGACGACACGG

GCTGAGGATGAGGCTGATTATTAC




CCGTGTATTACTGTGCGACCAAAAC

TGCCAGTCCTATGACAACAGCCTG




TGGAATTGATCGCTACTACTACTAC

AATGGTTCGGTGTTCGGCGGAGGG




TACATGGACGTCTGGGGCAAAGGG

ACCAAACTGACCGTCCTACGTCAG




ACCACGGTCACCGTCTCCTCAGCCT

CCCAAGGCTGCCCCCTCGGTCACTC




CCACCAAGGGCCCATCGGTCTTCCC

TGTTCCCACCCTCCTCTGAGGAGCT




CCTGGCACCCTCCTCCAAGAGCACC

TCAAGCCAACAAGGCCACACTGGT




TCTGGGGGCACAGCGGCCCTGGGCT

GTGTCTCATAAGTGACTTCTACCCG




GCCTGGTCAAGGACTACTTCCCCGA

GGAGCCGTGACAGTGGCCTGGAAG




ACCGGTGACGGTGTCGTGGAACTCA

GCAGATAGCAGCCCCGTCAAGGCG




GGCGCCCTGACCAGCGGCGTGCACA

GGAGTGGAGACCACCACACCCTCC




CCTTCCCGGCTGTCCTACAGTCCTCA

AAACAAAGCAACAACAAGTACGCG




GGA

GCCAGCAGCTA






S144-568
CAGGTGCAGCTGCAGGAGTCGGGCC
1675
GAAATTGTGTTGACGCAGTCTCCA
1765



CAGGACTGGTGAAGCCTTCGGAGAC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGTCCCTCACCTGCAGTGTCTCTG

AAAGAGCCACCCTCTCATGTAGGG




GTGGCTCCATCAGTGATTACTACTG

CCAGTCAGAGTGTTAGCAGCAACT




GAGCTGGATCCGGCAGCCCCCTGGG

TCCTAGCCTGGTACCAGCAGAAAC




AAGGGACTGGAGTGGATTGGATATA

CTGGCCAGCCTCCCAGGCTCCTCAT




TCTATAACAGTGGGAGTACCAACTA

CTATGGTGCATCCGTCAGGGCCAC




CAACCCCTCCCTCAAGAGTCGAGTC

TGGCATCCCAGACAGGTTCAGTGG




ACCATATCAGCAGACCCGTCCAAGA

CAGTGGGTCTGGGACAGACTTCAC




ACCAGTTCTCCCTGAAGTTGAGCTC

TCTCACCATCACCAGACTGGAGCC




TGTGACCGCCGCAGACACGGCCGTA

TGAAGATTTTGCAGTATATTACTGT




TATTACTGTGCGAGACCTCACGGCG

CAGCAGTATGGTAGCTTACCTCGG




GTGACTACGCTTTTGATATTTGGGG

ACGTTCGGCCAAGGGACCAAGGTG




CCAAGGGACAATGGTCACCGTCTCT

GAAATCAAACGAACTGTGGCTGCA




TCAGCATCCCCGACCAGCCCCAAGG

CCATCTGTCTTCATCTTCCCGCCAT




TCTTCCCGCTGAGCCTCGACAGCAC

CTGATGAGCAGTTGAAATCTGGAA




CCCCCAAGATGGGAACGTGGTCGTC

CTGCCTCTGTTGTGTGCCTGCTGAA




GCATGCCTGGTCCAGGGCTTCTTCC

TAACTTCTATCCCAGAGAGGCCAA




CCCAGGAGCCACTCAGTGTGACCTG

AGTACAGTGGAAGGTGGATAACGC




GAGCGAAAGCGGACAGAACGTGAC

CCTCCAATCGGGTAACTCCCAGGA




CGCCAGAAACTTCCC

GAGTGTCACAGAGCAGGACAGCAA






GGACAGCACCTACAGCCTCAGCAG






CACCCTGACGCTGAGCAAAGCAGA






CTACGAGA






S144-576
CAGGTCCAGCTGGTGCAATCTGGGG
1676
CATCCAGATGACCCAGTCTCCTTCC
1766



CTGAGGTGATGAAGCCTGGGTCCTC

ACCCTGTCTGCATCTGTAGGAGAC




GGTGAAGGTCTCCTGCAAGGCTTCT

AGAGTCACCATCACTTGCCGGGCC




GGAGGCACCTTCAGCAGCTATAGTA

AGTCAGAGTATTAGTAGCTGGTTG




TCACCTGGGTGCGACAGGCCCCTGG

GCCTGGTATCAGCAGAAACCAGGG




ACAAGGGCTTGAGTGGATGGGAAG

AAAGCCCCTAAGCTCCTGATCTAT




GATCATCCCTATCCTTGGTATAGCA

GATGCCTCCAGTTTGCAAAGTGGG




AACTACGCACAGAAGTTCCAGGGCA

GTCCCATCAAGGTTCAGCGGCAGT




GAGTCACGATTACCGCGGACAAATC

GGATCTGGGACAGAATTCACTCTC




CACGAGCACAGCCTACATGGAGCTG

ACCATCAGCAGCCTGCAGCCTGAT




AGCAGCCTGAGATCTGAGGACACG

GATTTTGCAACTTATTACTGCCAAC




GCCGTGTATTACTGTGCGAGAGGGT

AGTATAATAGTTATTCTCCGATCAC




ATAGTGGGAGCCCCTCGAATTTAGA

CTTCGGCCAAGGGACACGACTCGA




CGGTATGGACGTCTGGGGCCAAGGG

GATTAAACGAACTGTGGCTGCACC




ACCACGGTCACCGTCTCCTCAGCCT

ATCTGTCTTCATCTTCCCGCCATCT




CCACCAAGGGCCCATCGGTCTTCCC

GATGAGCAGTTGAAATCTGGAACT




CCTGGCACCCTCCTCCAAGAGCACC

GCCTCTGTTGTGTGCCTGCTGAATA




TCTGGGGGCACAGCGGCCCTGGGCT

ACTTCTATCCCAGAGAGGCCAAAG




GCCTGGTCAAGGACTACTTCCCCGA

TACAGTGGAAGGTGGATAACGCCC




ACCGGTGACGGTGTCGTGGAACTCA

TCCAATCGGGTAACTCCCAGGAGA




GGCGCCCTGACCAGCGGCGTGCACA

GTGTCACAGAGCAGGACAGCAAGG




CCTTCCCGGCTGTCCTACAGTCCTCA

ACAGCACCTACAGCCTCAGCAGCA




GGA

CCCTGACGCTGAGCAAAGCAGACT






ACGAGAA






S144-588
CAGCTGCAGCTGCAGGAGTCGGGCC
1677
TCCTATGAGCTGACTCAGCCACCCT
1767



CAGGACTGGTGAAGCCTTCGGAGAC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGTCCCTCACCTGCACTGTCTCTG

CAGCCAGCATCACCTGCTCTGGAG




GTGGCTCCATCAGCAGTAGTAGTTA

ATAAATTGGGGGATAAATATGCTT




CTACTGGGGCTGGATCCGCCAGCCC

GCTGGTATCAGCAAAAGCCAGGCC




CCAGGGAAGGGGCTGGAGTGGATT

AGTCCCCTGTGCTGGTCATCTATCA




GGGAGTATCTATTATAGTGGGAGCA

AGATACCAAGCGGCCCTCAGGGAT




CCTACTACAACCCGTCCCTCAAGAG

CCCTGAGCGATTCTCTGGCTCCAAC




TCGATTCACCATATCCGTAGACACG

TCTGGGAACACAGCCACTCTGACC




TCCAAGAACCAGTTCTCCCTGAAGC

ATCAGCGGGACCCAGGCTATGGAT




TGAGCTCTGTGACCGCCGCAGACAC

GAGGCTGACTATTACTGTCAGGCG




GGCTGTGTATTACTGTGCGGCCTAT

TGGGACAGTAGCACTGTGTTATTC




CAGAGGAAACTAGGATATTGTCGTG

GGCGGAGGGACCAAGCTGACCGTC




GTAATAGCTGCTTTTCCTGCTTCGAC

CTAGGTCAGCCCAAGGCTGCCCCC




CCCTGGGGCCAGGGAACCCTGGTCA

TCGGTCACTCTGTTCCCGCCCTCCT




CCGTCTCCTCAGCCTCCACCAAGGG

CTGAGGAGCTTCAAGCCAACAAGG




CCCATCGGTCTTCCCCCTGGCACCCT

CCACACTGGTGTGTCTCATAAGTG




CCTCCAAGAGCACCTCTGGGGGCAC

ACTTCTACCCGGGAGCCGTGACAG




AGCGGCCCTGGGCTGCCTGGTCAAG

TGGCCTGGAAGGCAGATAGCAGCC




GACTACTTCCCCGAACCGGTGACGG

CCGTCAAGGCGGGAGTGGAGACCA




TGTCGTGGAACTCAGGCGCCCTGAC

CCACACCCTCCAAACAAAGCAACA




CAGCGGCGTGCACACCTTCCCGGCT

ACAAGTACGCGGCCAGCAGCTATC




GTCCTACAGTCCTCAGGA

TGAGCCTGACGCCTGAGCAGTGGA






AGTCCCACA






S144-628
GAGGTGCACCTGGTGCAGTCTGGAG
1678
CAGTCTGTGCTGACGCAGCCGCCC
1768



CAGAGGTGAAACAGCCCGGGGAGT

TCAATGTCTGGGGCCCCAGGGCAG




CTCTGAAGATCTCCTGTAAGGGTTC

AGGGTCACCATCTCCTGCACTGGG




TGGATACAACTTTGCCACCTACTGG

AGCAGCTCCAACATCGGGGCAGGT




ATCGCCTGGGTGCGCCAGATGCCCG

TATGATGTACACTGGTACCAGCAG




GGAAAGGCCTGGAGTGGATGGGGA

CTTCCAGGAGCAGCCCCCAAACTC




TCATCTATCCTGGTGACTCTGATACC

CTCATCTATGGTGACACCAGTCGG




AGATACAGCCCGTCCTTCCAAGGCC

CCCTCAGGGGTCCCTGACCGATTCT




AGGTCATCATCTCAGCCGACAAGTC

CTGGCTCCAAGTCTGACACCTCAG




CATCGGCACCGCCTTCCTGCAGTGG

CCTCCCTGGCCATCACTGGGCTCCA




AGCAGCCTGAAGGCCTCGGACACCG

GGCTGAGGATGAGGCTGATTATTA




CCATGTATTACTGTGCGAGGCGGGG

CTGCCAGTCCTTTGACAGAAGTCTG




GTATAGTAGCTCTAACTATCGCGTT

AGTGGTCTCGTGATTTTCGGCGGA




GACGAATACTATTACTACGGTATGG

GGGACCAGGCTGACCGTCCTCGGT




ACGTCTGGGGCCAAGGGACCACGGT

CAGCCCAAGGCTGCCCCCTCGGTC




CACCGTCTCCTCAGCATCCCCGACC

ACTCTGTTCCCACCCTCCTCTGAGG




AGCCCCAAGGTCTTCCCGCTGAGCC

AGCTTCAAGCCAACAAGGCCACAC




TCTGCAGCACCCAGCCAGATGGGAA

TGGTGTGTCTCATAAGTGACTTCTA




CGTGGTCATCGCCTGCCTGGTCCAG

CCCGGGAGCCGTGACAGTGGCCTG




GGCTTCTTCCCCCAGGAGCCACTCA

GAAGGCAGATAGCAGCCCCGTCAA




GTGTGACCTGGAGCGAAAGCGGAC

GGCGGGAGTGGAGACCACCACACC




AGGGCGTGACCGCCAGAAACTTCCC

CTCCAAACAAAGCAACAACAAGTA




C

CGCGGCCAGCAGCTAAGATCGGAA






GAGC






S144-740
CAGGTGCAGCTGGTGCAGTCTGGGG
1679
GAAGTTGTGTTGACGCAGTCTCCA
1769



CTGAGGTGAAGAAGCCTGGGGCCTC

GGCACCCTGTCTTTGTCTCCAGGGG




AGTGAAGGTCTCCTGCAAGGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATACACCTTCACCGGCTACTATA

CCAGTCAGAGTGTTAGCAGCAGCT




TGCACTGGGTGCGACAGGCCCCTGG

ACTTAGCCTGGTACCAGCAGAAAC




ACAAGGGCTTGAGTGGATGGGACG

CTGGCCAGGCTCCCAGGCTCGTCA




GATCAACCCTAACAGTGGTGACACA

TCTATGGTGCATCCAGCAGGGCCA




AACTATGCACAGAAGTTTCAGGGCA

CTGGCATCCCAGACAGGTTCAGTG




GGGTCACCATGACCAGGGACACGTC

GCAGTGGGTCTGGGACAGACTTCA




CATCAGCACAGCCTACATGGAGCTG

CTCTCACCATCAGCAGACTGGAGC




AGCAGGCTGAGATCTGACGACACG

CTGAAGATTTTGCAGTGTATTACTG




GCCGTGTATTACTGTGCGAGATTGG

TCAGCAGTTTGGTAGCTCTCCCACC




GTAAAGGAATGGCAGCAGCCCGTA

TTCGGCCGAGGGACACGACTGGAG




CTGTCTTTGACTCCTGGGGCCAGGG

ATTAAACGAACTGTGGCTGCACCA




AACCCTGGTCACCGTCTCCTCAGCC

TCTGTCTTCATCTTCCCGCCATCTG




TCCACCAAGGGCCCATCGGTCTTCC

ATGAGCAGTTGAAATCTGGAACTG




CCCTGGCACCCTCCTCCAAGAGCAC

CCTCTGTTGTGTGCCTGCTGAATAA




CTCTGGGGGCACAGCGGCCCTGGGC

CTTCTATCCCAGAGAGGCCAAAGT




TGCCTGGTCAAGGACTACTTCCCCG

ACAGTGGAAGGTGGATAACGCCCT




AACCGGTGACGGTGTCGTGGAACTC

CCAATCGGGTAACTCCCAGGAGAG




AGGCGCCCTGACCAGCGGCGTGCAC

TGTCACAGAGCAGGACAGCAAGGA




ACCTTCCCGGCTGTCCTACAGTCCTC

CAGCACCTACAGCCTCAGCAGCAC




AGGA

CCTGACGCTGAGCAAAGCAGACTA






CGAGAA






S144-741
CAGGTGCACCTGGTGCAGTCTGGGG
1680
CAGTCTGTGCTGACTCAGCCACCCT
1770



CTGAGGTGAAGAAGCCTGGGGCCTC

CAGCGTCTGGGACCCCCGGGCAGA




AGTGAAGGTCTCCTGCAAGGCTTCT

GGGTCACCATCTCTTGTTCTGGAAG




GGATACACCTTCACCGGCTACTATA

CAGCTCCAACATCGGAAGTAATAC




TGAACTGGGTGCGACAGGCCCCTGG

TGTAAACTGGTACCAGCAGCTCCC




ACAAGGGCTTGAGTGGATGGGACG

AGGAACGGCCCCCAAGCTCCTCAT




GATCAACCCTAACAGTGGTGGCACA

CTATAGTAATAATCAGCGGCCCTC




AACTATGCACAGAAGTTTCAGGGCA

AGGGGTCCCTGACCGATTCTCTGG




GGGTCACCATGACCAGGGACACGTC

CTCCAAGTCTGGCACCTCAGCCTCC




CATCAGCACAGCCTACATGGAACTG

CTGGCCATCAGTGGGCTCCAGTCT




AGCAGGCTGAGATCTGACGACGCG

GAGGATGAGGCTGATTATTACTGT




GCCGTGTATTACTGTGCGAGAGCTG

GCAGCATGGGATGACAGCCTGAAT




AGAGGTATAGCAGCAGCTGGTACA

GGTGTGGTATTCGGCGGAGGGACC




ATCTTTACTACTGGGGCCAGGGAAC

AAGCTGACCGTCCTAGGTCAGCCC




CCTGGTCACCGTCTCCTCAGCCTCC

AAGGCTGCCCCCTCGGTCACTCTGT




ACCAAGGGCCCATCGGTCTTCCCCC

TCCCGCCCTCCTCTGAGGAGCTTCA




TGGCACCCTCCTCCAAGAGCACCTC

AGCCAACAAGGCCACACTGGTGTG




TGGGGGCACAGCGGCCCTGGGCTGC

TCTCATAAGTGACTTCTACCCGGGA




CTGGTCAAGGACTACTTCCCCGAAC

GCCGTGACAGTGGCCTGGAAGGCA




CGGTGACGGTGTCGTGGAACTCAGG

GATAGCAGCCCCGTCAAGGCGGGA




CGCCCTGACCAGCGGCGTGCACACC

GTGGAGACCACCACACCCTCCAAA




TTCCCGGCTGTCCTACAGTCCTCAG

CAAAGCAACAACAAGTACGCGGCC




GA

AGCAGCTATCTGAGCCTGACGCCT






GAGCAGTGGAAGTCCCACA






S144-803
GAGGTGCAGCTGGTGCAGTCTGGAG
1681
GACATCCAGATGACCCAGTCTCCTT
1771



CAGAGGTGAAAAAGCCCGGGGAGT

CCACCCTGTCTGCATCTGTAGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

ACAGAGTCACCATCACTTGCCGGG




TAGATACAGCTTTACCAGATACTGG

CCAGTCAGAGTATTAGTAGTTGGTT




ATCGCCTGGGTGCGCCAGATGCCCG

GGCCTGGTATCAGCAGAAACCAGG




GGAAAGGCCTGGAGTGGATGGGGA

GAAAGCCCCTAAGCTCCTGATCTA




TCATCTATCCTGGTGACTCTGATACC

TGATGCCTCCAGTTTGGAAAGTGG




AGATACAGCCCGTCCTTCCAAGGCC

GGTCCCATCAAGGTTCAGCGGCAG




CGGTCACCATCTCAGCCGACAAGTC

TGGATCTGGGACAGAATTCACTCT




CATCAGCACCGCCTACCTGCAGTGG

CACCATCAGCAGCCTGCAGCCTGA




AGCAGCCTGAAGGCCTCGGACACCG

TGATTTTGCAACTTATTACTGCCAA




CCATATATTACTGTGCGAGACTCCC

CAGTATAATATTTACCCGTACACTT




GAACAGTAACTACGTTGACTACTGG

TTGGCCAGGGGACCAAGCTGGACA




GGCCAGGGAACCCTGGTCACCGTCT

TCAAACGAACTGTGGCTGCACCAT




CCTCAGCCTCCACCAAGGGCCCATC

CTGTCTTCATCTTCCCGCCATCTGA




GGTCTTCCCCCTGGCACCCTCCTCCA

TGAGCAGTTGAAATCTGGAACTGC




AGAGCACCTCTGGGGGCACAGCGG

CTCTGTTGTGTGCCTGCTGAATAAC




CCCTGGGCTGCCTGGTCAAGGACTA

TTCTATCCCAGAGAGGCCAAAGTA




CTTCCCCGAACCGGTGACGGTGTCG

CAGTGGAAGGTGGATAACGCCCTC




TGGAACTCAGGCGCCCTGACCAGCG

CAATCGGGTAACTCCCAGGAGAGT




GCGTGCACACCTTCCCGGCTGTCCT

GTCACAGAGCAGGACAGCAAGGAC




ACAGTCCTCAGGACTCTACTCCCTC

AGCACCTACAGCCTCAGCAGCACC




AGCAGCGTGGTGACCGTGCCCTCCA

CTGACGCTGAGCAAAGCAGACTAC




GCAGCTTGGGCACCCAGACCTACAT

GAGAA




CTGCAACGTGAATCACAAGCCCAGC






AACACCAAGGTGGACAA








S144-843
CAGGTGCAGCTGGTGGAGTCTGGGG
1682
GAAATTGTGTTGACGCAGTCTCCA
1772



GAGGCGTGGTCCAGCCTGGGGGGTC

GGCACCCTGTCTTTGTCTCCAGGGG




CGTAAGACTCTCCTGTGCAGCGTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCGACTTCACTAATAATGGCA

CCAGTCAGACTGTTACCAGCAGGT




TGTATTGGGTCCGCCAGGCTCCAGG

ACTTAGCCTGGTATCAGCAGAAGC




CAAGGGGCTGGAGTGGGTGGCATTT

CTGGCCAGGCTCCCAGGCTCCTCAT




ATACGGTATGATGGAAATAAACAA

CTATGGTGCATCCACCAGGGCCAC




GACTATGCAGACTCCGTGAAGGGCC

TGGCATCCCAGACAGGTTCAGTGG




GATTCACCATCTCCAGAGACAATTC

CAGTGGGTCTGGGACAGACTTCAC




CAAAAACACTCTGTATCTGCAAATG

TCTCACCATCAGCAGACTGGAGCC




AGCAGCCTTAGACCTGAGGACACGG

TGAAGATTTTGCAGTGTATTACTGT




CTGTATATTACTGTGCGAAAGGTGT

CAGCAGTATGGTAATTCACCTCCGT




TTATACTGAAAATTACGGCTGGGGC

ACACTTTTGGCCAGGGGACCAAGC




CAGGGAACCCTGGTCACCGTCTCCT

TGGAGATCAAACGAACTGTGGCTG




CAGGGACCACGGTCACCGTCTCCTC

CACCATCTGTCTTCATCTTCCCGCC




AGCCTCCACCAAGGGCCCATCGGTC

ATCTGATGAGCAGTTGAAATCTGG




TTCCCCCTGGCGCCCTGCTCCAGGA

AACTGCCTCTGTTGTGTGCCTGCTG




GCACCTCCGAGAGCACAGCGGCCCT

AATAACTTCTATCCCAGAGAGGCC




GGGCTGCCTGGTCAAGGACTACTTC

AAAGTACAGTGGAAGGTGGATAAC




CCCGAACCGGTGACGGTGTCGTGGA

GCCCTCCAATCGGGTAACTCCCAG




ACTCAGGCGCTCTGACCAGCGGCGT

GAGAGTGTCACAGAGCAGGACAGC




GCACACCTTCCCAGCTGTCCTACAG

AAGGACAGCACCTACAGCCTCAGC




TCCTCAGGACTCTACTCCCTCAGCA

AGCACCCTGACGCTGAGCAAAGCA




GCGTGGTGACCGTGCCCTCCAGCAA

GACTACGAGAA




CTTCGGCACCCAGACCTACACCTGC






AACGTAGATCACAAGCCCAGCAAC






ACCAAGGTGGACAA








S144-877
CAGGTGCAGCTGGTGGAGTCTGGGG
1683
GACATCCAGATGACCCAGTCTCCA
1773



GAGGCGTGGTCCAGCCTGGGAGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCAGG




GGATTCACCTTCAGTACCTATGGCA

CGAGTCAGGACATTAGCAACTATT




TGCACTGGGTCCGCCAGGCTCCAGG

TAAATTGGTATCAGCAGAAACCAG




CAAGGGGCTGGAGTGGGTGGCAGTT

GGAAAGCCCCTAAGCTCCTGATCT




ATATCATATGATGGAAGTAATAAAT

ACGATGCATCGAATTTGGAAACAG




ATTATGCAGACTCCGTGAAGGGCCG

GGGTCCCATCAAGGTTCAGTGGAA




ATTCACCATCTCCAGAGACAATTCC

GTGGATCTGGGACAGATTTTAGTTT




AAGAACACGCTGTATCTGCAAATGA

TAGTATCAGCAGCCTGCAGCCTGA




ACAGCCTGAGAGCTGAGGACACGG

AGATATTGCAACATATTACTGTCA




CTGTGTATTACTGTGCGAAACAGCA

ACAGTATGATAATGTCCCTCTTACT




AGGCACCTATTGCAGTGGTGGTAAC

TTCGGCGGAGGGACCAAGGTGGAG




TGCTACTCGGGATATTTTGACTACT

ATCAAACGAACTGTGGCTGCACCA




GGGGCCAGGGAACCCTGGTCACCGT

TCTGTCTTCATCTTCCCGCCATCTG




CTCCTCAGCCTCCACCAAGGGCCCA

ATGAGCAGTTGAAATCTGGAACTG




TCGGTCTTCCCCCTGGCACCCTCCTC

CCTCTGTTGTGTGCCTGCTGAATAA




CAAGAGCACCTCTGGGGGCACAGC

CTTCTATCCCAGAGAGGCCAAAGT




GGCCCTGGGCTGCCTGGTCAAGGAC

ACAGTGGAAGGTGGATAACGCCCT




TACTTCCCCGAACCGGTGACGGTGT

CCAATCGGGTAACTCCCAGGAGAG




CGTGGAACTCAGGCGCCCTGACCAG

TGTCACAGAGCAGGACAGCAAGGA




CGGCGTGCACACCTTCCCGGCTGTC

CAGCACCTACAGCCTCAGCAGCAC




CTACAGTCCTCAGGACTCTACTCCC

CCTGACGCTGAGCAAAGCAGACTA




TCAGCAGCGTGGTGACCGTGCCCTC

CGAGAA




CAGCAGCTTGGGCACCCAGACCTAC






ATCTGCA








S144-952
CAGGTTCAGCTGGTGCAGTCTGGAG
1684
GACATCGTGATGACCCAGTCTCCA
1774



CTGAGGTGAAGAAGCCTGGGGCCTC

GACTCCCTGGCTGTGTCTCTGGGCG




AGTGAAGGTCTCCTGCACGGCTTCT

AGAGGGCCACCATCAACTGCAAGT




GGTTACACCGTTACCAGTTATGGTA

CCAGCCAGAGTGTTTTAAACAGCT




TCAGCTGGGTGCGACAGGCCCCTGG

CCAACAATAAGAACTACTTAGCTT




ACAAGGGCTTGAGTGGATGGGATG

GGTACCAGCAGAAACCAGGACAGC




GATCAGCACTTACAATGGTAACACA

CTCCTAAGCTGCTCATTTACTGGGC




AACTATGCACAGAAGCTCCAGGGCA

ATCTACCCGGGAATCCGGGGTCCC




GAGTCACCATGACCACAGACACATC

TGACCGATTCAGTGGCAGCGGGTC




CACGAGCACAGCCTACATGGAGCTG

TGGGACAGATTTCACTCTCACCATC




AGGAGCCTGAGATCTGACGACACG

AGCAGCCTGCAGGCTGAAGATGTG




GCCGTGTATTACTGTGCGAGAGAAT

GCAGTTTATTACTGTCAGCAGTATT




ACAGCTATGGTTACCGACTGGCCTA

ATAGTACTCCTCAGACGTTCGGCC




CTTTGACTACTGGGGCCAGGGAACC

AAGGGACCAAGGTGGAAATCAAAC




CTGGTCACCGTCTCCTCAGGGAGTG

GAACTGTGGCTGCACCATCTGTCTT




CATCCGCCCCAACCCTTTTCCCCCTC

CATCTTCCCGCCATCTGATGAGCAG




GTCTCCTGTGAGAATTCCCCGTCGG

TTGAAATCTGGAACTGCCTCTGTTG




ATACGAGCAGCGTGGCCGTTGGCTG

TGTGCCTGCTGAATAACTTCTATCC




CCTCGCACAGGACTTCCTTCCCGAC

CAGAGAGGCCAAAGTACAGTGGAA




TCCATCACTTTCTCCTGGAAATACA

GGTGGATAACGCCCTCCAATCGGG




AGAACAACTCTGACATCAGCAGCAC

TAACTCCCAGGAGAGTGTCACAGA




CCGGGGCTTCCCATCAGTCCTGAGA

GCAGGACAGCAAGGACAGCACCTA




GGGGGCAAGTACGCAGCCACCTCAC

CAGCCTCAGCAGCACCCTGACGCT




AGGTGCTGCTGCCTTCCAAGGACGT

GAGCAAAGCAGACTACGAGA




CATG








S144-971
GAGGTGCAGCTGGTGGAGTCTGGGG
1685
GACATCGTGATGACCCAGTCTCCA
1775



GAGGCTTGGTCCAGCCTGGGGGGTC

GACTCCCTGGCTGTGTCTCTGGGCG




CCTGAGAATCTCTTGTTCAGCCTCTG

AGAGGGCCACCATCAACTGCAAGT




GATTCACCTTCAGTAGATATGCTAT

CCAGCCAGAGTGTTTTATACAGCTC




GCACTGGGTCCGCCAGGCTCCAGGG

CAACAATAAGAACTTCTTAACTTG




AAGGGACTGGAATATGTTTCAGCTA

GTACCAGCAGAAACCAGGACAGCC




TTAGGAGTAATGGGGGTAGCACATA

TCCTAAGCTGCTCATTTACTGGGCA




CTACGCAGACTCCGTGAGGGGCAGA

TCTACCCGGGAATCCGGGGTCCCT




TTCACCATCTCCAGAGACAATTCCA

GACCGATTCAGTGGCAGCGGGTCT




GGAACACGCTGTATCTTCAAATGAG

GGGACAGATTTCACTCTCACCATC




CAGTCTGAGAGCTGAGGACACGGCT

AGCAGCCTGCAGGCTGAAGATGTG




GTGTATTACTGTGTGATAATAAACA

GCAGTTTATTACTGTCAGCAATATT




ATTTAGCAGCAGCTGGTACCCGTTT

ATACTACTCCGTGGACGTTCGGCC




TGACTACTGGGGCCAGGGAACCCTG

AAGGGACCAAGGTGGAAATCAAAC




GTCACCGTCTCCTCAGCCTCCACCA

GAACTGTGGCTGCACCATCTGTCTT




AGGGCCCATCGGTCTTCCCCCTGGC

CATCTTCCCGCCATCTGATGAGCAG




ACCCTCCTCCAAGAGCACCTCTGGG

TTGAAATCTGGAACTGCCTCTGTTG




GGCACAGCGGCCCTGGGCTGCCTGG

TGTGCCTGCTGAATAACTTCTATCC




TCAAGGACTACTTCCCCGAACCGGT

CAGAGAGGCCAAAGTACAGTGGAA




GACGGTGTCGTGGAACTCAGGCGCC

GGTGGATAACGCCCTCCAATCGGG




CTGACCAGCGGCGTGCACACCTTCC

TAACTCCCAGGAGAGTGTCACAGA




CGGCTGTCCTACAGTCCTCAGGA

GCAGGACAGCAAGGACAGCACCTA






CAGCCTCAGCAGCACCCTGACGCT






GAGCAAAGCAGACTACGAGAA






S144-1036
CAGGTGCAGCTACAGCAGTGGGGC
1686
GACATCGTGATGACCCAGTCTCCA
1776



GCAGGGCTGTTGAAGCCTTCGGAGA

GACTCCCTGGCTGTGTCTCTGGGCG




CCCTGTCCCTCACCTGCGCTGTCTAT

AGAGGGCCACCATCAACTGCAACT




GGTGGGTCCTTCAGTGGTTACTTCT

CCAGCCAGAGTGTTTTATACAGCTC




GGAGCTGGATCCGCCAGCCCCCAGG

CATCAATAAGAACTACTTAGCTTG




GAAGGGGCTGGAGTGGATTGGGGA

GTACCAGCAGAAACCAGCACAGCC




AATCAATCATAGTGGAAGCACCAAC

TCCTAAGGTGCTCATTTACTGGGCA




TACAACCCGTCCCTCAAGAGTCGAG

TCTACCCGGGAATCCGGGGTCCCT




TCACCATATCAGTAGACACGTCCAA

GACCGATTCAGTGGCAGCGGGTCT




GAACCAGTTCTCCCTGAAGCTGAGC

GGGACAGATTTCACTCTCACCATC




TCTGTGACCGCCGCGGACACGGCTG

AGCAGCCTGCAGGCTGAAGATGTG




TGTATTACTGTGCGAGAGCGCCCTA

GCAGTTTATTACTGTCAGCAATATT




TTACGATTTCTTGCGGGAAGGAAAC

ATAGGACTCCCTGGACGTTCGGCC




TGGTTCGACCCCTGGGGCCAGGGAA

AAGGGACCAAGGTGGAAATCAAAC




CCCTGGTCACCGTCTCCTCAGCCTCC

GAACTGTGGCTGCACCATCTGTCTT




ACCAAGGGCCCATCGGTCTTCCCCC

CATCTTCCCGCCATCTGATGAGCAG




TGGCACCCTCCTCCAAGAGCACCTC

TTGAAATCTGGAACTGCCTCTGTTG




TGGGGGCACAGCGGCCCTGGGCTGC

TGTGCCTGCTGAATAACTTCTATCC




CTGGTCAAGGACTACTTCCCCGAAC

CAGAGAGGCCAAAGTACAGTGGAA




CGGTGACGGTGTCGTGGAACTCAGG

GGTGGATAACGCCCTCCAATCGGG




CGCCCTGACCAGCGGCGTGCACACC

TAACTCCCAGGAGAGTGTCACAGA




TTCCCGGCTGTCCTACAGTCCTCAG

GCAGGACAGCAAGGACAGCACCTA




GACTCTACTCCCTCAGCAGCGTGGT

CAGCCTCAGCAGCACCCTGACGCT




GACCGTGCCCTCCAGCAGCTTGGGC

GAGCAAAGCAGACTACGAGAA




ACCCAGACCTACATCTGCAACGTGA






ATCACAAGCCCAGC








S144-1079
CAGGTCCAGCTGGTGCAATCTGGGG
1687
GAAATTGTGTTGACGCAGTCTCCA
1777



CTGAGGTGAAGAAGCCTGGGTCCTC

GGCACCCTGTCTTTGTCTCCAGGGG




GGTGAAGGTCTCCTGCAAGGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGAGACACCTTCGGCAGCTATAGTA

CCAGTCAGAGTGTTAGCAGCAACT




TCACCTGGGTGCGACAGGCCCCTGG

ACTTAGCCTGGTACCAGCAGAAAC




ACAAGGACTTGAGTGGATGGGAAG

CTGGCCAGGCTCCCAGGCTCCTCAT




GATCATCCCTGTCCTTGGTATAGCA

CTATGGTGCATCCAGCAGGGCCAC




AACTACGCACAGAAGTTCCAGGGCA

TGGCATCCCAGAGAGGTTCAGTGG




GAGTCACGATTACCGCGGACAAATC

CAGTGGGTCTGGGACAGACTTCAC




CACGAGCACAGCCTACATGGAGCTG

TCTCACCATCAGCAGACTGGAGCC




AGCAGCCTGAGATCTGAGGACACG

TGAAGATTTTGCAGTGTATTACTGT




GCCGTGTATTACTGTGCGGGAGGGG

CAGCAGTATGGTAGGTCACCGTAC




GTTGTAGTGGTGGTAACTGCTACTC

ACTTTTGGCCAGGGGACCAAGCTG




GTGGTACAACTGGTTCGACCCCTGG

GAGATCAAACGAACTGTGGCTGCA




GGCCAGGGATCCCTGGTCACCGTCT

CCATCTGTCTTCATCTTCCCGCCAT




CCTCAGCCTCCACCAAGGGCCCATC

CTGATGAGCAGTTGAAATCTGGAA




GGTCTTCCCCCTGGCACCCTCCTCCA

CTGCCTCTGTTGTGTGCCTGCTGAA




AGAGCACCTCTGGGGGCACAGCGG

TAACTTCTATCCCAGAGAGGCCAA




CCCTGGGCTGCCTGGTCAAGGACTA

AGTACAGTGGAAGGTGGATAACGC




CTTCCCCGAACCGGTGACGGTGTCG

CCTCCAATCGGGTAACTCCCAGGA




TGGAACTCAGGCGCCCTGACCAGCG

GAGTGTCACAGAGCAGGACAGCAA




GCGTGCACACCTTCCCGGCTGTCCT

GGACAGCACTTACAGCCTCAGCAG




ACAGTCCTCAGGA

CACCCTGACGCTGAGCAAAGCAGA






CTACGAGAA






S144-1299
CAGGTGCAGCTGCAGGAGTCGGGCC
1688
CAGTCTGTGCTGACTCAGCCACCCT
1778



CAGGACTGGTGAAGCCTTCGGAGAC

CAGCGTCTGGGACCCCCGGGCAGA




CCTGTCCCTCACCTGCACTGTCTCTG

GGGTCACCATCTCTTGTTCTGGAAG




GTGGCTCCATCAGTAGTTACTACTG

CAGCTCCAACATCGGAAGTAATTA




GAGCTGGATCCGGCAGCCCCCAGGG

TGTATACTGGTACCAGCAGCTCCC




AAGGGACTGGAGTGGATTGGGTATA

AGGAACGGCCCCCAAACTCCTCAT




TCAATTACAGGGGGATCACCAACTA

CTATAGGAATAATCAGCGGCCCTC




CAACCCCTCCCTCAAGAGTCGAGTC

AGGGGTCCCTGACCGATTCTCTGG




ACCATATCAGTAGACATGTCCAAGA

CTCCAAGTCTGGCACCTCAGCCTCC




ACCAGTTCTCCCTGAAGCTGAGCTC

CTGGCCATCAGTGGGCTCCGGTCC




TGTGACCGCCGCAGACACGGCCGTG

GAGGATGAGGCTGATTATTACTGT




TATTCCTGTGCGAGACTAGCAGTGG

GCAGCATGGGATGACAGCCTGAGT




CTAGTCGAGGGACCGTTGACTACTG

GTTAATGTGGTATTCGGCGGAGGG




GGGCCAGGGAACCCTGGTCACCGTC

ACCAAGCTGACCGTCCTAGGTCAG




TCCTCAGCCTCCACCAAGGGCCCAT

CCCAAGGCTGCCCCCTCGGTCACTC




CGGTCTTCCCCCTGGCACCCTCCTCC

TGTTCCCGCCCTCCTCTGAGGAGCT




AAGAGCACCTCTGGGGGCACAGCG

TCAAGCCAACAAGGCCACACTGGT




GCCCTGGGCTGCCTGGTCAAGGACT

GTGTCTCATAAGTGACTTCTACCCG




ACTTCCCCGAACCGGTGACGGTGTC

GGAGCCGTGACAGTGGCCTGGAAG




GTGGAACTCAGGCGCTCTGACCAGC

GCAGATAGCAGCCCCGTCAAGGCG




GGCGTGCACACCTTCCCAGCTGTCC

GGAGTGGAGACCACCAAACCCTCC




TACAGTCCTCAGGACTCTACTCCCT

AAACAGAGCAACAACAAGTACGCG




CAGCAGCGTGGTGACCGTGCCCTCC

GCCAGCAGCTACCTGAGCCTGACG




AGCAACTTCGGCACCCAGACCTACA

CCTGAGCAGTGGAAGTCCCACA




CCTGCAACGTAGATCACAAGCCCAG






CAACACCAAGGTGGAC








S144-1339
CAGGTGCAGCTGGTGCAGTCTGGGA
1689
CAGTCTGCCCTGACTCAGCCTGCCT
1779



CTGAGGTGAAGAAGCCTGGGGCCTC

CCGTGTCTGGGTCTCCTGGACAGTC




AGTGAAGGTCTCCTGCAAGGCTTCT

GATCACCATCTCCTGCACTGGAAC




GGATACACCTTCACCGACTACTATA

CAACAGTGACGTTGGTGGTTATAA




TGCACTGGGTGCGACAGGCCCCTGG

CTATGTCTCCTGGTACCAACAACAC




ACAAGGGCTTGAGTGGATGGGACG

CCAGGCAAAGCCCCCAGACTCATG




GATCAACCCTACCAGTGGTGGCACA

ATTTATGATGTCAGTAATCGGCCCT




AACTATCCACAGAAGTTTCAGGGCA

CAGGGGTTTCTAATCGCTTCTCTGG




GTGTCACCATGACCAGGGACACGTC

CTCCAAGTCTGGCAACACGGCCTC




CCTCAGCACAGTCTACATGGAACTG

CCTGACCATCTCTGGGCTCCAGGCT




AGCGGGCTGAGATCTGACGACACG

GAGGACGAGGCTGATTATTACTGC




GCCGTCTATTATTGTGCGAGAGAGA

AGCTCATATACAAGCAGCAGCACT




GGGTTACTCTGATTCAGGGAAAGAA

CTCGTGGTTTTCGGCGGAGGGACC




CCACTACTACATGGACGTCTGGGGC

AAGCTGACCGTCCTAGGTCAGCCC




ACAGGGACCACGGTCACCGTCTCCT

AAGGCTGCCCCCTCGGTCACTCTGT




CAGCCTCCACCAAGGGCCCATCGGT

TCCCGCCCTCCTCTGAGGAGCTTCA




CTTCCCCCTGGCACCCTCCTCCAAG

AGCCAACAAGGCCACACTGGTGTG




AGCACCTCTGGGGGCACAGCGGCCC

TCTCATAAGTGACTTCTACCCGGGA




TGGGCTGCCTGGTCAAGGACTACTT

GCCGTGACAGTGGCCTGGAAGGCA




CCCCGAACCGGTGACGGTGTCGTGG

GATAGCAGCCCCGTCAAGGCGGGA




AACTCAGGCGCCCTGACCAGCGGCG

GTGGAGACCACCACACCCTCCAAA




TGCACACCTTCCCGGCTGTCCTACA

CAAAGCAACAACAAGTACGCGGCC




GTCCTCAGGA

AGCAGCTATCTGAGCCTGACGCCT






GAGCAGTGGAAGTCCCACA






S144-1406
CAGGTCCAGCTTGTGCAGTCTGGGG
1690
GACATCCAGATGACCCAGTCTCCTT
1780



CTGAGGTGAAGAAGCCTGGGGCCTC

CCACCCTGTCTGCATCTGTAGGAG




AGTGAAGGTTTCCTGCAAGGCTTCT

ACAGAGTCACCATCACTTGCCGGG




GGATATACCTTCACTACCTATGCTA

CCAGTCAGAGTATTAGTAGCTGGT




TGCATTGGGTGCGCCAGGCCCCCGG

TGGCCTGGTATCAGCAGAAACCAG




ACAAAGGCTTGAGTGGATGGGATG

GGAAAGCCCCTAAGCTCCTGATCT




GATCAACGCTGGCAATGGTAACACA

ATGATGCCTCCAGTTTGGAAAGTG




AAATATTCACAGAACTTCCAGGGCA

GGGTCCCATCAAGGTTCAGCGGCA




GAGTCACCATTACCAGGGACACATC

GTGGATCTGGGACAGAATTCACTC




CGCGAGCACAGCCTACATGGAGCTG

TCACCATCAGCAGCCTGCAGCCTG




AGCAGCCTGAGATCTGAAGACACG

ATGATTTTGCAACTTATTACTGCCA




GCTGTGTATTACTGTGCGAGTCTCG

ACAGTATAATAGTTATCCGTGGAC




TGGGTGGGGATAGCAGCAGCTGGTA

GTTCGGCCAAGGGACCAAGGTGGA




TGACTACATGGACGTCTGGGGCAAA

AATCAAACGAACTGTGGCTGCACC




GGGACCACGGTCACCGTCTCCTCAG

ATCTGTCTTCATCTTCCCGCCATCT




CCTCCACCAAGGGCCCATCGGTCTT

GATGAGCAGTTGAAATCTGGAACT




CCCCCTGGCGCCCTGCTCCAGGAGC

GCCTCTGTTGTGTGCCTGCTGAATA




ACCTCCGAGAGCACAGCGGCCCTGG

ACTTCTATCCCAGAGAGGCCAAAG




GCTGCCTGGTCAAGGACTACTTCCC

TACAGTGGAAGGTGGATAACGCCC




CGAACCGGTGACGGTGTCGTGGAAC

TCCAATCGGGTAACTCCCAGGAGA




TCAGGCGCTCTGACCAGCGGCGTGC

GTGTCACAGAGCAGGACAGCAAGG




ACACCTTCCCAGCTGTCCTACAGTC

ACAGCACCTACAGCCTCAGCAGCA




CTCAGGACTCTACTCCCTCAGCAGC

CCCTGACGCTGAGCAAAGCAGACT




GTGGTGACCGTGCCCTCCAGCAACT

ACGAGAA




TCGG








S144-1407
CAGGTCCAGCTGGTGCAATCTGGGG
1691
GACATCCAGATGACCCAGTCTCCTT
1781



CTGAGGTGAAGAAGCCTGGGTCCTC

CCACCCTGTCTGCATCTGTAGGAG




GGTGAAGGTCTCCTGCAAGGCTTCT

ACAGAGTCACCATCACTTGCCGGG




GGAGGCACCTTCAGCAGCTATACTA

CCAGTCAGAGTATTAGTAGCTGGT




TCAGCTGGGTGCGACAGGCCCCTGG

TGGCCTGGTATCAGCAGAAACCAG




ACAAGGCCTTGAGTGGATGGGAAG

GGAAAGCCCCTAAGCTCCTGATCT




GATCATCCCTGTCCGTGATATAGCA

ATGATGCCTCCAGTTTGGAAAGTG




AACTACGCACAGAAGTTCCAGGGCA

GGGTCCCATCAAGGTTCAGCGGCA




GAGTCACGATTACCGCGGACAAATC

GTGGATCTGGGACAGAATTCACTC




CACGAGGACAGCCTACATGGAGGT

TCACCGTCAGCAGCCTGCAGCCTG




GAGCAGCCTGAGATCTGAGGACAC

ATGATTTTGCAACTTATTACTGCCA




GGCCGTGTATTACTGTGCGGCAACG

ACAGTATAATAATTATTCTCCCATC




GAGCTCCGCTCGGATGGTCTTGACA

ACTTTTGGCCAGGGGACCAAGCTG




TCTGGGGCCAAGGGACAATGGTCAC

GAGATCAAACGAACTGTGGCTGCA




CGTCTCTTCAGCCTCCACCAAGGGC

CCATCTGTCTTCATCTTCCCGCCAT




CCATCGGTCTTCCCCCTGGCACCCTC

CTGATGAGCAGTTGAAATCTGGAA




CTCCAAGAGCACCTCTGGGGGCACA

CTGCCTCTGTTGTGTGCCTGCTGAA




GCGGCCCTGGGCTGCCTGGTCAAGG

TAACTTCTATCCCAGAGAGGCCAA




ACTACTTCCCCGAACCGGTGACGGT

AGTACAGTGGAAGGTGGATAACGC




GTCGTGGAACTCAGGCGCCCTGACC

CCTCCAATCGGGTAACTCCCAGGA




AGCGGCGTGCACACCTTCCCGGCTG

GAGTGTCACAGAGCAGGACAGCAA




TCCTACAGTCCTCAGGA

GGACAGCACCTACAGCCTCAGCAG






CACCCTGACGCTGAGCAAAGCAGA






CTACGAGAA






S144-1569
CAGGTTCAGCTGGTGCAGTCTGGAG
1692
CAGCCTGTGCTGACTCAGCCACCTT
1782



CTGAGGTGAAGAAGCCTGGGGCCTC

CTGCATCAGCCTCCCTGGGAGCCTC




AGTGAAGGTCTCCTGCAAGGCTTCT

GGTCACACTCACCTGCACCCTGAG




GGTTACACCTTTTCCAACTACGGTA

CAGCGGCTACAGTAATTATAAAGT




TCAGCTGGGTGCGACAGGCCCCTGG

GGACTGGTACCAGCAGAGACCAGG




ACAAGGGCTTGAGTGGATGGGATG

GAAGGGCCCCCAGTTTGTGATGCG




GATCAGCGCTTACAATGGTAACACT

AGTGGGCACTGGTGGGATTGTGGG




AAGTATCCACAAAAGCTCCAGGGCA

ATCCAAGGGGGATGGCATCCCTGA




GAGTCACCATGAGCACAGACACATC

TCGCTTCTCAGTCTTGGGCTCAGGC




CACGAGCACAGCCTACATGGAGCTG

CTGAATCGGTACCTGACCATCAAG




AGGAGCCTGAGATCTGACGACACG

AACATCCAGGAAGAGGATGAGAGT




GCCGTGTATTACTGTGCGAGAGAGA

GACTACCACTGTGGGGCAGACCAT




CGCGGTACGGTATGGACGTCTGGGG

GGCAGTGGGAGCAACTTCGTTCGG




CCAAGGGACCACGGTCACCGTCTCC

GTGTTCGGCGGAGGGACCAAGCTG




TCAGCCTCCACCAAGGGCCCATCGG

ACCGTCCTAGGTCAGCCCAAGGCT




TCTTCCCCCTGGCACCCTCCTCCAAG

GCCCCCTCGGTCACTCTGTTCCCAC




AGCACCTCTGGGGGCACAGCGGCCC

CCTCCTCTGAGGAGCTTCAAGCCA




TGGGCTGCCTGGTCAAGGACTACTT

ACAAGGCCACACTGGTGTGTCTCA




CCCCGAACCGGTGACGGTGTCGTGG

TAAGTGACTTCTACCCGGGAGCCG




AACTCAGGCGCCCTGACCAGCGGCG

TGACAGTGGCCTGGAAGGCAGATA




TGCACACCTTCCCGGCTGTCCTACA

GCAGCCCCGTCAAGGCGGGAGTGG




GTCCTCAGGA

AGACCACCACACCCTCCAAACAAA






GCAACAACAAGTACGCGGCCAGCA






GCTACCTGAGCCTGACGCCTGAGC






AGTGGAAGTCCCAC






S144-1641
GAGGTGCAGCTGGTGCAGTCTGGAG
1693
GACATCCAGATGACCCAGTCTCCTT
1783



CAGAGGTGAAAAAGCCCGGGGAGT

CCACCCTGTCTGCATCTGTAGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

AGAGAGTCACCATCACTTGCCGGG




TGGATACACCTTTACCAGCTACTGG

CCAGTCAGAGTATTAGTAGGTGGT




ATCGGCTGGGTGCGCCAGATGCCCG

TGGCCTGGTATCAGCAGAAACCAG




GGAAAGGCCTGGAGTGGATGGGGA

GGAAAGCCCCTAAACTCCTTATCT




TCATCTATCTTGGTGACTCTGATACG

ATGATGCCTCCAGTTTGGAAAGTG




AGATACAGCCCGTCCTTCCAAGGCC

GGGTCCCATCAAGGTTCAGCGGCA




AGGTCACCATCTCAGCCGACAAGTC

GTGGATCTGGGACAGAATTCACTC




CATCAGCACCGCCTACCTGCAGTGG

TCACCATCAGCAGCCTGCAGCCTG




AACAGCCTGAAGGCCTCGGACACCG

ATGATTTTGCAACTTATCACTGCCA




CCATGTATTACTGTGCGAGACAGGT

CCAGTATAGTACTTATTCGCTCACT




TACCGGAACTACGAGCTGGTTCGAC

TTCGGCGGAGGGACCAAGGTGGAC




CCCTGGGGCCAGGGAACCCTGGTCA

ATCAAACGAACTGTGGCTGCACCA




CCGTCTCCTCAGCCTCCACCAAGGG

TCTGTCTTCATCTTCCCGCCATCTG




CCCATCGGTCTTCCCCCTGGCACCCT

ATGAGCAGTTGAAATCTGGAACTG




CCTCCAAGAGCACCTCTGGGGGCAC

CCTCTGTTGTGTGCCTGCTGAATAA




AGCGGCCCTGGGCTGCCTGGTCAAG

CTTCTATCCCAGAGAGGCCAAAGT




GACTACTTCCCCGAACCGGTGACGG

ACAGTGGAAGGTGGATAACGCCCT




TGTCGTGGAACTCAGGCGCCCTGAC

CCAATCGGGTAACTCCCAGGAGAG




CAGCGGCGTGCACACCTTCCCGGCT

TGTCACAGAGCAGGACAGCAAGGA




GTCCTACAGTCCTCAGGA

CAGCACCTACAGCCTCAGCAGCAC






CCTGACGCTGAGCAAAGCAGACTA






CGAGAA






S144-1827
GAGGTGCAGCTGGTGGAGTCTGGGG
1694
GAAATTGTGTTGACGCAGTCTCCA
1784



GAGACGTGGTCCAGCCTGGGGGGTC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGAATTACCTTTAGTAACTATTGGA

CCAGTCAGAGTATTAGCAACAGCT




TGACCTGGGTCCGCCAGGCTCCAGG

ACTTAGTCTGGTACCAGCAGAAAC




GAAAGGGCTGGAGTGGGTGGCCAC

CTGGCCAGGCTCCCAGGCTCCTCAT




CATAAAGAAGGATGGAGGGGAGCA

CTATGGTGCATCCACCAGGGCCAC




GTACTATGTGGACTCTGTGAAGGGC

TGGCATCCCAGACAGGTTCAGTGG




CGATTCACCATCTCCAGAGACAACG

CAGTGGGTCTGGGACAGACTTCAC




CCAGGAATTCACTGTATCTACAAAT

TCTCACCATCAGCAGACTGGAGCC




AAACAGCCTGAGGGCCGAGGATAC

TGAAGATTTTGCAGTGTATTACTGT




GGCTGTCTATTACTGTGCGAGGGGT

CAGCAGTATGGTAGCTCACCGTGG




GGATCTAGCAGCAGCTACTACTGGA

ACGTTCGGCCAAGGGACCACGGTG




TCTACTGGGGCCAGGGAACCCTGGT

GAAATCAAACGAACTGTGGCTGCA




CACCGTCTCCTCAGGGAGTGCATCC

CCATCTGTCTTCATCTTCCCGCCAT




GCCCCAACCCTTTTCCCCCTCGTCTC

CTGATGAGCAGTTGAAATCTGGAA




CTGTGAGAATTCCCCGTCGGATACG

CTGCCTCTGTTGTGTGCCTGCTGAA




AGCAGCGTG

TAACTTCTATCCCAGAGAGGCCAA






AGTACAGTGGAAGGTGGATAACGC






CCTCCAATCGGGTAACTCCCAGGA






GAGTGTCACAGAGCAGGACAGCAA






GGACAGCACCTACAGCCTCAGCAG






CACCCTGACGCTGAGCAAAGCAGA






CTACGAGAA






S144-1848
GAGGTGCAGCTGGTGGAGTCTGGGG
1695
CAGTCTGTGCTGACTCAGCCACCCT
1785



GAGGCCTGGTCAAGCCTGGGGGGTC

CAGCGTCTGGGACCCCCGGGCAGA




CCTGAGACTCTCCTGTGCAGCCTCT

GGGTCACCATCTCTTGTTCTGGAAG




GGATTCACCTTCAGTAGCTATAGCA

CAGCTCCAACATCGAACATAATTA




TGAACTGGGTCCGCCAGGCTCCAGG

TGTATTCTGGTACCAGCAACTCCCA




GAAGGGGCTGGAGTGGGTCTCGTCC

GGAACGGCCCCCAAACTCCTCATC




ATTAGTAGTAGTAGTAGTTACATAT

TATAGTAATAATCACCGGCCCTCA




ACTACGCAGACTCAGTGAAGGGCCG

GGGGTCCCTGACCGATTCTCTGGCT




ATTCACCATCTCCAGAGACAACGCC

CCAAGTCTGGCACCTCAGCCTCCCT




AAGAATTCACTGTATCTGCAACTGA

GGCCATCAGTGGGCTCCGGTCCGA




ACAGCCTGAGAGCCGAGGACACGG

GGATGAGGCTGATTATTACTGTGC




CTGTGTACTACTGTGCGAGAGATCG

AGCATGGGATGCCAGCCTGAGTGG




GGACCAGTTGATATTCTCGGCCGCT

TCCTGTGGTATTCGCCGGAGGGAC




TTTGATATCTGGGGCCAAGGGACAA

CAAGCTGACCGTCCTAGGTCAGCC




TGGTCACCGTCTCTTCAGCCTCCACC

CAAGGCTGCCCCCTCGGTCACTCTG




AAGGGCCCATCGGTCTTCCCCCTGG

TTCCCGCCCTCCTCTGAGGAGCTTC




CACCCTCCTCCAAGAGCACCTCTGG

AAGCCAACAAGGCCACACTGGTGT




GGGCACAGCGGCCCTGGGCTGCCTG

GTCTCATAAGTGACTTCTACCCGGG




GTCAAGGACTACTTCCCCGAACCGG

AGCCGTGACAGTGGCCTGGAAGGC




TGACGGTGTCGTGGAACTCAGGCGC

AGATAGCAGCCCCGTCAAGGCGGG




CCTGACCAGCGGCGTGCACACCTTC

AGTGGAGACCACCACACCCTCCAA




CCGGCTGTCCTACAGTCCTCAGGA

ACAAAGCAACAACAAGTACGCGGC






CAGCAGCTA






S144-1850
GAGGTGCAGCTGGTGGAGTCTGGGG
1696
GACATCCAGATGACCCAGTCTCCTT
1786



GAGGCTTGGTACAGCCTGGGGGGTC

CCACCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTTAGCAGCTATGCCA

CCAGTCAGAGTATTACTAGCTGGTT




TGAGTTGGGTCCGCCAGGCTCCAGG

GGCCTGGTATCAGCAGAAACCAGG




GAAGGGGCTGGAGTGGGTCTCAGCT

GAAAGCCCCTAAGCTCCTGATCTA




ATTAGTGGTAGTGGTGGTAGCACAT

TGATGCCTCCAATTTGGAAAGTGG




ACTACGCAGACTCCGTGAAGGGCCG

GGTCCCATCAAGGTTCAGCGGCAG




GTTCACCATCTCCAGAGCCAATTCC

TGGATCTGGGACAGAATTCACTCT




AAGAACACGCTGTATCTGCAAATGA

CACCATCAGCAGCCTGCAGCCTGA




ACAGCCTGAGAGCCGAGGACACGG

TGATTTTGCAACTTATTACTGCCAA




CCGTATATTACTGTGCGAAAGGCCC

CAGTATAATAATTATCTGGGGACG




GCGCTTTAGTCGCGACTACTTTGAC

TTCGGCCAAGGGACCAAGGTGGAA




TACTGGGGCCAGGGAACCCTGGTCA

ATCAAACGAACTGTGGCTGCACCA




CCGTCTCCTCAGCCTCCACCAAGGG

TCTGTCTTCATCTTCCCGCCATCTG




CCCATCGGTCTTCCCCCTGGCACCCT

ATGAGCAGTTGAAATCTGGAACTG




CCTCCAAGAGCACCTCTGGGGGCAC

CCTCTGTTGTGTGCCTGCTGAATAA




AGCGGCCCTGGGCTGCCTGGTCAAG

CTTCTATCCCAGAGAGGCCAAAGT




GACTACTTCCCCGAACCGGTGACGG

ACAGTGGAAGGTGGATAACGCCCT




TGTCGTGGAACTCAGGCGCCCTGAC

CCAATCGGGTAACTCCCAGGAGAG




CAGCGGCGTGCACACCTTCCCGGCT

TGTCACAGAGCAGGACAGCAAGGA




GTCCTACAGTCCTCAGGA

CAGCACCTACAGCCTCAGCAGCAC






CCTGACGCTGAGCAAAGCAGACTA






CGAGAA






S144-2234
CAGGTCCAGCTGGTGCAATCTGGGG
1697
GACATCGTGATGACCCAGTCTCCA
1787



CTGAGGTGAAGAAGCCTGGGTCCTC

GACTCCCTGACTGTGTCTCTGGGCG




GGTGAAGGTCTCCTGCAAGGCTTCT

AGAGGGCCACCATCAACTGCAAGT




GGAGGCACCTTCAGCAGATATACTA

CCAGCCAGAGTGTTTTATACAGCTC




TCAGCTGGGTGCGACAGGCCCCTGG

CAACAATAAGAACTACTTAGCTTG




ACAAGGGCTTGAGTGGATGGGAAG

GTACCAGCAGAAACCAGGACAGCC




GATCATCCCTATACTTGGTACAGCA

TCCTAAGCTGCTCATTTACTGGGCA




AACTACGCACAGAATTTCCAGGGCA

TCTACCCGGGAATCCGGGGTCCCT




GAGTCACGATTACCGCGGACAAATC

GACCGATTCAGTGGCAGCGGCTCT




CACGAGCACAGCCTACATGGAGCTG

GGGACAGATTTCACTCTCACCGTC




AGTAGCCTGAGATCTGAGGACACGG

AGCAGCCTGCAGGCTGAAGATGTG




CCGTGTATTACTGTGCGAGACACGG

GCAGTTTATTACTGTCAGCAATATT




ATACAGCTATGGTCCCTTTGACTAC

ATAGTACTCCTGGAACGTTCGGCC




TGGGGCCAGGGAACCCTGGTCACCG

AAGGGACCAAGGTGGAAATCAAAC




TCTCCTCAGCCTCCACCAAGGGCCC

GAACTGTGGCTGCACCATCTGTCTT




ATCGGTCTTCCCCCTGGCACCCTCCT

CATCTTCCCGCCATCTGATGAGCAG




CCAAGAGCACCTCTGGGGGCACAGC

TTGAAATCTGGAACTGCCTCTGTTG




GGCCCTGGGCTGCCTGGTCAAGGAC

TGTGCCTGCTGAATAACTTCTATCC




TACTTCCCCGAACCGGTGACGGTGT

CAGAGAGGCCAAAGTACAGTGGAA




CGTGGAACTCAGGCGCCCTGACCAG

GGTGGATAACGCCCTCCAATCGGG




CGGCGTGCACACCTTCCCGGCTGTC

TAACTCCCAGGAGAGTGTCACAGA




CTACAGTCCTCAGGAG

GCAGGACAGCAAGGACAGCACCTA






CAGCCTCAGCAGCACCCTGACGCT






GAGCAAAGCAGACTACGAGAA






S564-105
CAGGTGCGGCTGCAGGAGTCGGGCC
1698
CAGTCTGCCCTGACTCAGCCTGCCT
1788



CAGGACTGGTGAAGCCTTCACAGAC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGTCCCTCACCTGCACTGTCTCTG

GATCACCATCTCCTGCACTGGAAC




GTGGCTCCATCAGCAGTGGTAGTTA

CAGCAGTGACGTTGGTGCTTATAA




CTACTGGAGCTGGATCCGGCAGCCC

CTATGTCTCCTGGTACCAACAGCAC




GCCGGGAAGGGACTGGAGTGGATT

CCAGGCAAAGCCCCCAAACTCATG




GGGCGTTTCCATACCAGTGGGAGCA

ATTTATGAGGTCAGTAATCGGCCCT




CCAACTACAATCCCTCCCTCAAGAG

CAGGGGTTTCTAATCGCTTCTCTGG




TCGAGTCACCATATCAGTAGACACG

CTCCAAGTCTGGCAACACGGCCTC




TCCAAGAACCAGTTCTCCCTGAAGC

CCTGACCATCTCTGGGCTCCAGGCT




TGAGTTCTGTGACCGCCGCAGACAC

GAGGACGAGGCTGATTATTACTGC




GGCCGTGTATTACTGTGCGAGAGAT

AGCTCATATACAAGCAGCACCTTC




TTAAAGGGAAAGACGTGGATACAG

TTCGGAACTGGGACCACGGTCACC




ACCCCCTTTGACTACTGGGGCCAGG

GTCCTAGGTCAGCCCAAGGCCAAC




GAATCCTGGTCACCGTCTCCTCAGC

CCCACTGTCACTCTGTTCCCGCCCT




CTCCACCAAGGGCCCATCTGTCTTC

CCTCTGAGGAGCTCCAAGCCAACA




CCCCTGGCACCCTCCTCCAAGAGCA

AGGCCACACTAGTGTGTCTGATCA




CCTCTGGGGGCACAGCGGCCCTGGG

GTGACTTCTACCCGGGAGCTGTGA




CTGCCTGGTCAAGGACTACTTCCCC

CAGTGGCCTGGAAGGCAGATGGCA




GAACCGGTGACGGTGTCGTGGAACT

GCCCCGTCAAGGCGGGAGTGGAGA




CAGGCGCTCTGACCAGCGGCGTGCA

CCACCACACCCTCCAAACAAAGCA




CACCTTCCCGGCTGTCCTACAGTCCT

ACAACAAGTACGCGGCCAGCAGCT




CAGGA

AC






S564-
GAGGTGCAGCTGGTGGAGTCTGGGG
1699
TCCTATGTGCTGACTCAGCCACCCT
1789


14
GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCAGTGGCCCCAGGAAAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CGGCCAGGATTACCTGTGGGGGAA




GGACTCACCTTTAGTAGCTATTGGA

ACAACATTGGAAGTAAAAGTGTGC




TGAGCTGGGCCCGCCAGGCTCCAGG

ACTGGTACCAGCAGAGGCCAGGCC




GAAGGGGCTGGAGTGGGTGGCCAA

AGGCCCCTGTACTGGTCATCTATTA




TATAAAGAAAGATGGAAGTGAGAA

TGATAGCGACCGGCCCTCAGGGAT




ATACTATGTGGACTCTGTGAAGGGC

CCCTGAGCGATTCTCTGGCTCCAAC




CGATTCACCATCTCCAGAGACAACG

TCTGGGAACACGGCCACCCTGACC




CCAAGAACTCACTGTATCTGCAAAT

ATCAGCAGGGTCGAGGCCGGGGAT




GAACAGCCTGAGAGTCGAGGACAC

GAGGCCGACTATTACTGTCAGGTG




GGCTGTGTATTACTGTGCGAGTGAA

TGGGATAGTAGTAGTGATCACCAT




CCTCCCCACTACGGTGGTAACTCCG

TATGTCTTCGGAACTGGGACCAAG




GGGCTGAATACTTCCAGCACTGGGG

GTCACCGTCCTAGGTCAGCCCAAG




CCAGGGCACCCTGGTCACCGTCTCC

GCCAACCCCACTGTCACTCTGTTCC




TCAGCACCCACCAAGGCTCCGGATG

CGCCCTCCTCTGAGGAGCTTCAAG




TGTTCCCCATCATATCAGGGTGCAG

CCAACAAGGCCACACTGGTGTGTC




ACACCCAAAGGATAACAGCCCTGTG

TCATAAGTGACTTCTACCCGGGAG




GTCCTGGCATGCTTGATAACTGGGT

CCGTGACAGTGGCCTGGAAGGCAG




ACCACCC

ATAGCAGCCCCGTCAAGGCGGGAG






TGGAGACCACCAAACCCTCCAAAC






AGAGCAACAACAAGTACGCGGCCA






GCAGCTA






S564-68
CAGGTGCAGCTGGTGCAGTCTGGGG
1700
CAGTCTGCCCTGACTCAGCCTCCCT
1790



CTGAGGTGAAGAAGCCTGGGGCCTC

CCGCGTCCGGGTCTCCTGGACAGT




AGTGAAGGTCTCCTGCAAGGCTTCT

CAGTCACCATCTCCTGCACTGGAA




GGATACATCTTCACCGGCTATTATA

CCAGCAGTGACGTTGGTGGTTATA




TGCACTGGGTGCGACAGGCCCCTGG

ACTATGTCTCCTGGTACCAACAGC




ACAAGGGCTTGAGTGGATGGGATG

ACCCAGGCAAAGCCCCCAAACTCA




GATCAACCCTAACAGTGGTGGCACT

TGATTTATGAGGTCAGTAAGCGGC




AACTATGCACAGAAGTTTCAGGGCA

CCTCAGGGGTCCCTGATCGCTTCTC




GGGTCACCATGACCAGGGACACGTC

TGGCTCCAAGTCTGGCAACACGGC




CATCACCACAGCCTACATGGAGCTG

CTCCCTGACCGTCTCTGGGCTCCAG




AGCAGGCTGAGATCTGACGACACG

GCTGAGGATGAGGCTGATTATTTCT




GCCTTTTATTACTGTGCGAGAGTCA

GCAGCTCATATGCAGACAGCAACA




AGAGGTTTTCGATTTTTGGAGTGGA

ATTTGGTATTCGGCGGAGGGACCA




GCTTGACTACTGGGGCCAGGGAACC

AGCTGACCGTCCTAGGTCAGCCCA




CTGGTCACCGTCTCCTCAGCCTCCA

AGGCTGCCCCCTCGGTCACTCTGTT




CCAAGGGCCCATCGGTCTTCCCCCT

CCCGCCCTCCTCTGAGGAGCTTCAA




GGCACCCTCCTCCAAGAGCACCTCT

GCCAACAAGGCCACACTGGTGTGT




GGGGGCACAGCGGCCCTGGGCTGCC

CTCATAAGTGACTTCTGCCCGGGA




TGGTCAAGGACTACTTCCCCGAACC

GCCGTGACAGTGGCCTGGAAGGCA




GGTGACGGTGTCGTGGAACTCAGGC

GATAGCAGCCCCGTCAAGGCGGGA




GCCCTGACCAGCGGCGTGCACACCT

GTGGAGACCACCACACCCTCCAAA




TCCCGGCTGTCCTACAGTCCTCAGG

CAAAGCAACAACAAGTACGCGGCC




A

AGCAGCTACC






S564-98
CAGGTGCAGCTGCAGGAGTCGGGCC
1701
GACATCCAGATGACCCAGTCTCCA
1791



CAGGACTGGTGAAGCCTTCGGAGAC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACAGAGTCACCATCACTTGCCGGG




GTGGCTCCATCAGTAGTTACTACTG

CAAGTCAGAGCATTCGCAGCTATT




GAGCTGGATCCGGCAGCCCCCAGGG

TAAATTGGTATCAGCAGAAACCAG




AAGGGACTGGAGTGGATTGGGTATA

GGAAAGCCCCTAAGCTCCTGATCT




TCTATTACAGTGGGAGCACCAACTA

ATGCTGCATCCAGTTTGCAAAGTG




CAACCCCTCCCTCAAGAGTCGAGTC

GCGTCCCATCAAGGTTCAGTGGCA




ACCATATCAGTAGACACGTCCAAGA

GTGGATCTGGGACAGATTTCACTCT




ACCAGTTCTCCCTGAAGCTGAGCTC

CACCATCGGCAGTCTGCAACCTGA




TGTGACCGCCGCAGACACGGCCGTG

AGATTTTGCAACTTACTACTGTCAA




TATTACTGTGCGAGACATCAATCGC

CAGAGTTACAGTACCTCCGTGGCG




GGTGGAATATAGTGGCTACGATGGA

TTCGGCCAAGGGACCAAGGTGGAA




CTTTGACTACTGGGGCCAGGGAACC

ATCAAACGAACTGTGGCTGCACCA




CTGGTCACCGTCTCCTCAGCCTCCA

TCTGTCTTCATCTTCCCGCCATCTG




CCAAGGGCCCATCGGTCTTCCCCCT

ATGAGCAGTTGAAATCTGGAACTG




GG

CCTCTGTTGTGTGCCTGCTGAATAA






CTTCTATCCCAGAGAGGCCAAAGT






ACAGTGGAAGGTGGATAACGCCCT






CCAATCGGGTAACTCCCAGGAGAG






TGTCACAGAGCAGGACAGCAAGGA






CAGCACCTACAGCCTCAGCAGCAC






CCTGACGCTGAGCAAAGCAGACTA






CGAGA






S564-105
CAGGTGCGGCTGCAGGAGTCGGGCC
1702
CAGTCTGCCCTGACTCAGCCTGCCT
1792



CAGGACTGGTGAAGCCTTCACAGAC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGTCCCTCACCTGCACTGTCTCTG

GATCACCATCTCCTGCACTGGAAC




GTGGCTCCATCAGCAGTGGTAGTTA

CAGCAGTGACGTTGGTGCTTATAA




CTACTGGAGCTGGATCCGGCAGCCC

CTATGTCTCCTGGTACCAACAGCAC




GCCGGGAAGGGACTGGAGTGGATT

CCAGGCAAAGCCCCCAAACTCATG




GGGCGTTTCCATACCAGTGGGAGCA

ATTTATGAGGTCAGTAATCGGCCCT




CCAACTACAATCCCTCCCTCAAGAG

CAGGGGTTTCTAATCGCTTCTCTGG




TCGAGTCACCATATCAGTAGACACG

CTCCAAGTCTGGCAACACGGCCTC




TCCAAGAACCAGTTCTCCCTGAAGC

CCTGACCATCTCTGGGCTCCAGGCT




TGAGTTCTGTGACCGCCGCAGACAC

GAGGACGAGGCTGATTATTACTGC




GGCCGTGTATTACTGTGCGAGAGAT

AGCTCATATACAAGCAGCACCTTC




TTAAAGGGAAAGACGTGGATACAG

TTCGGAACTGGGACCACGGTCACC




ACCCCCTTTGACTACTGGGGCCAGG

GTCCTAGGTCAGCCCAAGGCCAAC




GAATCCTGGTCACCGTCTCCTCAGC

CCCACTGTCACTCTGTTCCCGCCCT




CTCCACCAAGGGCCCATCTGTCTTC

CCTCTGAGGAGCTCCAAGCCAACA




CCCCTGGCACCCTCCTCCAAGAGCA

AGGCCACACTAGTGTGTCTGATCA




CCTCTGGGGGCACAGCGGCCCTGGG

GTGACTTCTACCCGGGAGCTGTGA




CTGCCTGGTCAAGGACTACTTCCCC

CAGTGGCCTGGAAGGCAGATGGCA




GAACCGGTGACGGTGTCGTGGAACT

GCCCCGTCAAGGCGGGAGTGGAGA




CAGGCGCTCTGACCAGCGGCGTGCA

CCACCACACCCTCCAAACAAAGCA




CACCTTCCCGGCTGTCCTACAGTCCT

ACAACAAGTACGCGGCCAGCAGCT




CAGGA

AC






S564-
CAGGTGCAGCTGGTGCAGTCTGGGG
1703
CAGTCTGCCCTGACTCAACCTCCCT
1793


134
CTGAGGTGAAGAAGCCTGGGGCCTC

CCGCGTCCGGGTCTCCTGGACAGT




AGTGAAGGTCTCCTGCAAGGCTTCT

CAGTCACCATCTCCTGCACTGGAA




GGATACACCTTCACCGGCTACTATA

CCAGCAGTGACGTTGGTGGTTATA




TGCACTGGGTGCGACAGGCCCCTGG

ACTATGTCTCCTGGTACCAGCAAC




ACAAGGGCTTGAGTGGATGGGATG

ACCCAGGCAAAGCCCCCAAACTCA




GATCAACCCTAACAGTGGTGGCACA

TGATTTATGAGGTCAATAAGCGGC




AACTATGCACAGAAGTTTCAGGGCA

CCTCAGGGGTCCCTGATCGCTTCTC




GGGTCACCATGACCAGGGACACGTC

TGGCTCCAAGTCTGGCAACACGGC




CATCAACACAGCCTACATGGAGCTG

CTCCCTGACCGTCTCTGGGCTCCAG




AGCAGGCTGAGATCTGACGACACG

GCTGACGATGAGGCTGATTATTAC




GCCGTGTATTACTGTACGAGAGTCG

TGCAGCTCATATGCAGGCAGCAAC




GGAGGTTTTCGATTTTTGGAGTGGA

AATTTGGTTTTCGGCGGAGGGACC




GCTTGACTACTGGGGCCAGGGAACC

AAGCTGACCGTCCTAGGTCAGCCC




CTGGTCACCGTCTCCTCAGCCTCCA

AAGGCTGCCCCCTCGGTCACTCTGT




CCAAGGGCCCATCTGTCTTCCCCCT

TCCCGCCCTCCTCTGAGGAGCTTCA




GGCACCCTCCTCCAAGAGCACCTCT

AGCCAACAAGGCCACACTGGTGTG




GGGGGCACAGCGGCCCTGGGCTGCC

TCTCATAAGTGACTTCTACCCGGGA




TGGTCAAGGACTACTTCCCCGAACC

GCCGTGACAGTGGCCTGGAAGGCA




GGTGACGGTGTCGTGGAACTCAGGC

GATAGCAGCCCCGTCAAGGCGGGA




GCCCTGACCAGCGGCGTGCACACCT

GTGGAGACCACCACACCCTCCAAA




TCCCGGCTGTCCTACAGTCCTCAGG

CAAAGCAACAACAAGTACGCGGCC




A

AGCAGCTA






S564-138
CAGGTGCTCCTGGTGCAGTCTGGGG
1704
CAGTCTGCCCTGACTCAGCCTGCCT
1794



CTGAGGTGAAGAAGCCTGGGGCCTC

CCGTGTCTGGGTCTCCTGGACAGTC




AGTGAAGGTCTCCTGCAAGGCTTCT

GATCACCATCTCCTGCACTGGAAC




GGATACACCTTCACCGGCTACTATC

CAGCAGTGACGTTGGTGGTTATAA




TGCACTGGGTGCGACAGGCCCCTGG

CTATGTCTCCTGGTACCAACAGCAC




ACAAGGGCTTGAGTGGATGGGATG

CCAGGCAAAGCCCCCAAACTCATG




GATCAACCCTATCAGTGGTGGCACA

ATTTATGAGGTCAGTAATCGGCCCT




AACTATGCACAGAATTTTCAGGACA

CAGGGGTTTCTGATCGCTTCTCTGG




GGGTCACCATGACCAGGGACACGTC

CTCCAAGTCTGGCAACACGGCCTC




CATCATCACAGCCTACATGGAACTG

CCTGACCATCTCTGGGCTCCAGGCT




AGCAGGCTGAGATCTGACGACACG

GAGGACGAGGCTGATTATTACTGC




GCCGTGTATTACTGTGCGAGACTTG

AGCTCATATACAAGCAGCAGCACT




CCTATTATTATGATAGTAGTGCTTAC

TATGTCTTCGGAACTGGGACCAAG




CGGGGTGCTTTTGATATCTGGGGCC

GTCACCGTCCTAGGTCAGCCCAAG




AAGGGACAATGGTCACCGTCTCTTC

GCCAACCCCACTGTCACTCTGTTCC




AGCCTCCACCAAGGGCCCATCTGTC

CGCCCTCCTCTGAGGAGCTCCAAG




TTCCCCCTGGCACCCTCCTCCAAGA

CCAACAAGGCCACACTAGTGTGTC




GCACCTCTGGGGGCACAGCGGCCCT

TGATCAGTGACTTCTACCCGGGAG




GGGCTGCCTGGTCAAGGACTACTTC

CTGTGACAGTGGCCTGGAAGGCAG




CCCGAACCGGTGACGGTGTCGTGGA

ATGGCAGCCCCGTCAAGGCGGGAG




ACTCAGGCGCCCTGACCAGCGGCGT

TGGAGACCACCAAACCCTCCAAAC




GCACACCTTCCCGGCTGTCCTACAG

AGAGCAACAACAAGTACGCGGCCA




TCCTCAGG

GCAGCTA






S564-152
CAGGTGCAGCTGGTGGAGTCTGGGG
1705
GACATCCAGATGACCCAGTCTCCA
1795



GAGGCGTGGTCCAGCCTGGGAGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCGTCT

ACAGAGTCACCATCACTTGCCAGG




GGATTCACCTTCAGTTACTATGGCA

CGAGTCAGGACATTAACAACTATT




TGCACTGGGTCCGCCAGGCTCCAGG

TAAATTGGTATCAGCAGAAACCAG




CAAGGGGCTGGAGTGGGTGGCAGTT

GGAAAGCCCCTAAGCTCCTGATCT




ATATGGTATGATGGAAGTAATAAAC

ACGATGCATCCAATTTGGAAACAG




ACTATGCAGACTCCGTGAAGGGCCG

GGGTCCCATCAAGGTTCAGTGGGA




ATTCACCATCTCCAGAGACAATTCC

GTGGATCTGGGACAGATTTTACTTT




AAGAACACGCTGTATCTGCAAATGA

CACCATCAGCAGCCTGCAGCCTGA




ACAGCCTGAGAGCCGAGGACACGG

AGATATTGCAACATATTACTGTCA




CTGTGTACTACTGTGCGAAAAATGC

ACAGTATGACAATGTCCCTCCGCA




GGCCCCCTATTGTAGTGGTGGTAGC

CACTTTTGGCCAGGGGACCAAGCT




TGCTACGGTACCTACTTTGACTACT

GGAGATCAAACGAACTGTGGCTGC




GGGGCCAGGGAACCCTGGTCACCGT

ACCATCTGTCTTCATCTTCCCGCCA




CTCCTCAGCCTCCACCAAGGGCCCA

TCTGATGAGCAGTTGAAATCTGGA




TCTGTCTTCCCCCTGGCACCCTCCTC

ACTGCCTCTGTTGTGTGCCTGCTGA




CAAGAGCACCTCTGGGGGCACAGC

ATAACTTCTATCCCAGAGAGGCCA




GGCCCTGGGCTGCCTGGTCAAGGAC

AAGTACAGTGGAAGGTGGATAACG




TACTTCCCCGAACCGGTGACGGTGT

CCCTCCAATCGGGTAACTCCCAGG




CGTGGAACTCAGGCGCCCTGACCAG

AGAGTGTCACAGAGCAGGACAGCA




CGGCGTGCACACCTTCCCGGCTGTC

AGGACAGCACCTACAGCCTCAGCA




CTACAGTCCTCAGGA

GCACCCTGACGCTGAGCAAAGCAG






ACTACGAGAA






S564-218
CAGGTCCAGCTGGTGCAGTCTGGGG
1706
CAGTCTGCCCTGACTCAGCCTCCCT
1796



CTGAGGTGAAGAAGCCTGGGTCCTC

CCGCGTCCGGGTCTCCTGGACAGT




GGTGAAGGTCTCCTGCAAGGCTTCT

CAGTCACCATCTCCTGCACTGGAA




GGAGGCACCTTCAGCAGCTATGCTA

CCAGCAGTGACGTTGGTGGTTATA




TCAGCTGGGTGCGACAGGCCCCTGG

ACTATGTCTCCTGGTACCAACAGC




ACAAGGGCTTGAGTGGATGGGAGG

ACCCAGGCAAAGCCCCCAAACTCA




GATCATCCCTATCTTTGGTACAGCA

TGATTTATGAGGTCAGTAAGCGGC




AAGTACGCACAGAAGTTCCAGGGC

CCTCAGGGGTCCCTGATCGCTTCTC




AGAGTCACGATTACCGCGGACGAAT

TGGCTCCAAGTCTGGCAACACGGC




CCACGAGCACAGCCTACATGGAGCT

CTCCCTGACCGTCTCTGGGCTCCAG




GAGCAGCCTGAGATCTGAGGACAC

GCTGAGGATGAGGCTGATTATTAC




GGCCGTGTATTACTGTGCGAGAGGA

TGCAGCTCATATGCAGGCAGCAAC




AAAGATGGCTACAATCCCTGGGGCG

AATTTCGGGGTATTCGGCGGAGGG




CTTTTGATATCTGGGGCCAAGGGAC

ACCAAGCTGACCGTCCTAGGTCAG




AATGGTCACCGTCTCTTCAGGGAGT

CCCAAGGCTGCCCCCTCGGTCACTC




GCATCCGCCCCAACCCTTTTCCCCCT

TGTTCCCGCCCTCCTCTGAGGAGCT




CGTCTCCTGTGAGAATTCCCCGTCG

TCAAGCCAACAAGGCCACACTGGT




GATACGAGCAGCGTG

GTGTCTCATAAGTGACTTCTACCCG






GGAGCCGTGACAGTGGCCTGGAAG






GCAGATAGCAGCCCCGTCAAGGCG






GGAGTGGAGACCACCACACCCTCC






AAACAAAGCAACAACAAGTACGCG






GCCAGCAGCTACCTGAGCCTGACG






CCTGAGCAGTGGAAGTCCCAC






S564-249
GAGGTGCAGCTGGTGGAGTCTGGGG
1707
CAGTCTGCCCTGACTCAGCCTGCCT
1797



GAGGCTTGGTCCAGCCCGGGGGGTC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGAGACTCTCCTGCGTAGCCTCT

GATCACCATCTCCTGCACTGGAAC




GGATTCACCTTCAGTGACTATGCTA

CAGCAGTGACATTGGTGGTTATAA




TGCACTGGGTCCGCCAGGCTCCAGG

CTATGTCTCCTGGTACCAACAACAC




GAAGGGACTGGAATATATTGCAGCT

CCAGGCAAAGCCCCCAAACTCATC




ATTAGTAGCAATGGGGGTAGGACAT

ATTTCTGATGTCTCTAATCGGCCCT




ATTATGCAGACTCTGTGAAGGACAA

CAGGGGTTTCTAGTCGCTTCTCTGG




ATTCACCATCTCCAGAGACAATTCC

CTCCAAGTCTGGCAACACGGCCTC




AAGAACATCTTGTATCTTCACATGG

CCTGACCATCTCTGGACTCCAGACT




GCAGCCTGAGAGCGGAGGACACGG

GAGGACGAGGCTCATTATTATTGC




CTGTGTATTTCTGTGCGAGAGATCC

AGCTCGTTTAGAAGTGGCATCACT




CCAGTCATGGGTGACTTCCACCACA

CTCGGGGTATTCGGCGGGGGGACC




GCCCATTTCCAGCACTGGGGCCAGG

AAGCTGACCGTCCTAGGTCAGCCC




GCACCCTGGTCACCGTCTCCTCAGC

AAGGCTGCCCCCTCGGTCACTCTGT




ATCCCCGACCAGCCCCAAGGTCTTC

TCCCGCCCTCCTCTGAGGAGCTTCA




CCGCTGAGCCTCTGCAGCACCCAGC

AGCCAACAAGGCCACACTGGTGTG




CAGATGGGAACGTGGTCATCGCCTG

TCTCATAAGTGACTTCTACCCGGGA




CCTGGTCCAGGGCTTCTTCCCCCAG

GCCGTGACAGTGGCCTGGAAGGCA




GAGCCACTCAGTGTGACCTGGAGCG

GATAGCAGCCCCGTCAAGGCGGGA




AAAGCGGACAGGGCGTGACCGCCA

GTGGAGACCACCACACCCTCCAAA




GAAACTTCCC

CAAAGCAACAACAAGTACGCGGCC






AGCAGCTA






S564-265
CAGGTGCAGCTGGTGCAGTCTGGGG
1708
CAGTCTGCCCTGACTCAGCCTCCCT
1798



CTGAGGTGAAGAAGCCTGGGGCCTC

CCGCGTCCGGGTCTCCTGGACAGT




AGTGAAGGTCTCCTGCAAGGCTTCT

CAGTCACCATCTCCTGCACTGGAA




GGATACACCTTCACCGGCTACTATA

CCAGCAGTGACGTTGGTGGTTATA




TGCACTGGGTGCGTCAGGCCCCTGG

ACTTTGTCTCCTGGTACCAACAGCA




ACAAGGGCTTGAGTGGATGGGATG

CCCAGGCAAAGCCCCCAAACTCAT




GATCAACCCTAACAGTGGTGCCATA

GATTTATGAGGTCAGTAAGCGGCC




AACTATGCACAGAAGTTTCAGGGCA

CTCAGGGGTCCCTGATCGCTTCTCT




GGGTCACCATGACCAGGGACACGTC

GGCTCCAAGTCTGGCAACACGGCC




CATCAGCACAGCCTACATGGAGCTG

TCCCTGACCGTCTCTGGGCTCCAGG




AGCAGCCTGAGATCTGACGACACGG

CTGAGGATGAGGCTGATTATTACT




CCGTGTATTACTGTGCGAGAGTCGG

GCAGCTCATATGGAGGCAGCAACA




GAGGTTTTCGATTTTTGGAGTGGAG

ATTTGATATTCGGCGGAGGGACCA




CTTGATAACTGGGGCCAGGGAACCC

GGCTGACCGTCCTAGGTCAGCCCA




TGGTCACCGTCTCCTCAGCCTCCAC

AGGCTGCCCCCTCGGTCACTCTGTT




CAAGGGCCCATCTGTCTTCCCCCTG

CCCGCCCTCCTCTGAGGAGCTTCAA




GCACCCTCCTCCAAGAGCACCTCTG

GCCAACAAGGCCACACTGGTGTGT




GGGGCACAGCGGCCCTGGGCTGCCT

CTCATAAGTGACTTCTACCCGGGA




GGTCAAGGACTACTTCCCCGAACCG

GCCGTGACAGTGGCCTGGAAGGCA




GTGACGGTGTCGTGGAACTCAGGCG

GATAGCAGCCCCGTCAAGGCGGGA




CCCTGACCAGCGGCGTGCACACCTT

GTGGAGACCACCACACCCTCCAAA




CCCGGCTGTCCTACAGTCCTCAGGA

CAAAGCAACAACAAGTACGCGGCC






AGCAGCTACCTGAGCCTGACGCCT






GAGCAGTGGAAGTCCCAC






S564-275
CAGGTGCAGCTGCAGGAGTCGGGCC
1709
GACATTCAGATGACCCAGTCTCCA
1799



CAGGACTGGTGAAGCCTTCGGAGAC

TCCTCCCTGTCTGCATCTATAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACAGAGTCACCATCACTTGCCGGG




GTGGCTCCATCAGTAGTTACTACTG

CAAGTCAGAGCATTAGCACCTATT




GAGCTGGATCCGGCAGCCCCCAGGG

TAAATTGGTATCAGCAGAAACCAG




AAGGGACTGGAGTGGATTGGGTATA

GGAAAGCCCCTAAACTCCTGATCT




TCTATTACAGTGGGAGCACCAAGTA

ATGCTGCATCCAGTTTGCAAAGTG




CAACCCCTCCCTCAAGAGTCGAGTC

GGGTCCCATCAAGGTTCAGTGGCA




ACCATATCAGTAGACACGTCCAAGA

GTGGATCTGGGGCAGATTTCACTCT




AGCAGTTCTCCCTGAAGTTGAGCTC

CACCATCAGCAGTCTGCAACCTGA




TGTGACCGCCGCAGACACGGCCGTG

AGATTTTGCAACTTACTACTGTCAA




TATTACTGTGCGAGACATATAAAGA

CAGAGTTACAGTACCCCGCTCACTT




TAGGAGTGGTCGGAGGCCTTACTTT

TCGGCGGAGGGACGAAGGTGGAG




TGACTTCTGGGGCCAGGGAACCCTG

ATCAAACGAACTGTGGCTGCACCA




GTCACCGTCTCCTCAGGGAGTGCAT

TCTGTCTTCATCTTCCCGCCATCTG




CCGCCCCAACCCTTTTCCCCCTCGTC

ATGAGCAGTTGAAATCTGGAACTG




TCCTGTGAGAATTCCCCGTCGGATA

CCTCTGTTGTGTGCCTGCTGAATAA




CGAGCAGCGTG

CTTCTATCCCAGAGAGGCCAAAGT






ACAGTGGAAGGTGGATAACGCC






S564-287
CAGGTGCAGCTGGTGCAGTCTGGGG
1710
CAGTCTGCCCTGACTCAGCCTGCCT
1800



CTGAGGTGAAGAAGCCTGGGGCCTC

CCGTGTCTGGGTCTCCTGGACAGTC




AGTGAAGGTCTCCTGCAAGGCTTCT

GATCACCATCTCCTGCACTGGAAC




GGATACACCTTCACCGGCTACTATA

CAGCAGTGACGTTGGTGGTTATAA




TGCACTGGGTGCGACAGGCCCCTGG

CTATGTCTCCTGGTACCAACAACAC




ACAAGGGCTTGAGTGGATGGGATG

CCAGGCAAAGCCCCCAAACTCATG




GATCAACCCTAACAGTGGTGGCACA

ATTTATGATGTCAGTAATCGGCCCT




AACTATGCACAGAAGTTTCAGGGCA

CAGGGGTTTCTAATCGCTTCTCTGG




GGGTCACCATGACCAGGGACACGTC

CTCCAAGTCTGGCAACACGGCCTC




CATCAGCACAGCCTACATGGAGCTG

CCTGACCATCTCTGGGCTCCAGGCT




AGCAGGCTGAGATGTGACGACACG

GAGGACGAGGCTGATTATTACTGC




GCCGTGTATTACTGTGCGAGAGCCT

AGCTCATATGCAAGCAGCAGCACT




CAACTCCGTATAGCAGTGGCTCCTG

TGGGTGTTCGGCGGAGGGACCAAG




GGCGGACTACTGGGGCCAGGGAAC

CTGACCGTCCTAGGTCAGCCCAAG




CCTGGTCACCGTCTCCTCAGGGAGT

GCTGCCCCCTCGGTCACTCTGTTCC




GCATCCGCCCCAACCCTTTTCCCCCT

CGCCCTCCTCTGAGGAGCTTCAAG




CGTCTCCTGTGAGAATTCCCCGTCG

CCAACAAGGCCACACTGGTGTGTC




GATACGAGCAGCGTG

TCATAAGTGACTTCTACCCGGGAG






CCGTGACAGTGGCCTGGAAGGCAG






ATAGCAGCCCCGTCAAGGCGGGAG






TGGAGACCACCACACCCTCCAAAC






AAAGCAACAACAAGTACGCGGCCA






GCAGCTATCTGAGCCTGACGCC






S116-2822
CAGGTGCAGCTGGTGGAGTCTGGGG
2707
GACATCCAGATGACCCAGTCTCCTT
2756



GAGGCGTGGTCCAGCCTGGGAGGTC

CCACCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTCAGTAGCTATGGCA

CCAGTCAGAGTATTAGTAGCTGGT




TGCACTGGGTCCGCCAGGCTCCAGG

TGGCCTGGTATCAGCAGAAACCAG




CAAGGGGCTGGAGTGGGTGGCAGTT

GGAAAGCCCCTAAGCTCCTGATCT




ATATCATATGATGGAAGTAATAAAT

ATGATGCCTCCAGTTTGGAAAGTG




ACTATGCAGACTCCGTGAAGGGCCG

GGGTCCCATCAAGGTTCAGCGGCA




ATTCACCATCTCCAGAGACAATTCC

GTGGATCTGGGACAGAATTCACTC




AAGAACACGCTGTATCTGCAAATGA

TCACCATCAGCAGCCTGCAGCCTG




ACAGCCTGAGAGCTGAGGACACGG

ATGATTTTGCAACTTATTACTGCCA




CTGTGTATTACTGTGCGAAAGGGGA

ACAGTATAATAGTTATTCTCAAACT




TTACTATGGTTCGGGGAGTCAGTAC

TTTGGCCAGGGGACCAAGCTGGAG




TACTTTGACTACTGGGGCCAGGGAA

ATCAAACGAACTGTGGCTGCACCA




CCCTGGTCACCGTCTCCTCAGGGAG

TCTGTCTTCATCTTCCCGCCATCTG




TGCATCCGCCCCAACCCTTTTCCCCC

ATGAGCAGTTGAAATCTGGAACTG




TCGTCTCCTGTGAGAATTCCCCGTC

CCTCTGTTGTGTGCCTGCTGAATAA




GGATACGAGCAGCGTG

CTTCTATCCCAGAGAGGCCAAAGT






ACAGTGGAAGGTGGATAACGC






S116-2825
GAGGTGCAGCTGGTGGAGTCCGGG
2708
TCTTCTGAGCTGACTCAGGACCCTG
2757



GGAGGCTTAGTTCAGCCTGGGGGGT

CTGTGTCTGTGGCCTTGGGACAGA




CCCTGAGACTCTCCTGTGCAGCCTC

CAGTCAGGATCACATGCCAAGGAG




TGGATTCACCTTCAGTAGCTACTGG

ACAGCCTCAGAAGCTATTATGCAA




ATGCACTGGGTCCGCCAAGCTCCAG

GCTGGTACCAGCAGAAGCCAGGAC




GGAAGGGGCTGGTGTGGGTCTCACG

AGGCCCCTGTACTTGTCATCTATGG




TATTAATAGTGATGGGAGTAGCACA

TAAAAACAACCGGCCCTCAGGGAT




AGCTACGCGGACTCCGTGAAGGGCC

CCCAGACCGATTCTCTGGCTCCAGC




GATTCACCATCTCCAGAGACAACGC

TCAGGAAACACAGCTTCCTTGACC




CAAGAACACGCTGTATCTGCAAATG

ATCACTGGGGCTCAGGCGGAAGAT




AACAGTCTGAGAGCCGAGGACACG

GAGGCTGACTATTACTGTAACTCCC




GCTGTGTATTACTGTGCAAGAGTCG

GGGACAGCAGTGGTAACCTCGTGG




TTCTTACGTATTACTATGATAGTAGT

TATTCGGCGGAGGGACCAAGCTGA




GGTTATCAGAATGCTTTTGATATCT

CCGTCCTAGGTCAGCCCAAGGCTG




GGGGCCAAGGGACAATGGTCACCG

CCCCCTCGGTCACTCTGTTCCCGCC




TCTCTTCAGGGAGTGCATCCGCCCC

CTCCTCTGAGGAGCTTCAAGCCAA




AACCCTTTTCCCCCTCGTCTCCTGTG

CAAGGCCACACTGGTGTGTCTCAT




AGAATTCCCCGTCGGATACGAGCAG

AAGTGACTTCTACCCGGGAGCCGT




CGTG

GACAGTGGCCTGGAAGGCAGATAG






CAGCCCCGTCAAGGCGGGAGTGGA






GACCACCAAACCCTCCAAACAGAG






CAACAACAAGTACGCGGCCAGCAG






CTA






S116-3179
CAGGTGCAGCTGCAGGAGTCGGGCC
2709
GACATCCAGATGACCCAGTCTCCA
2758



CAGGACTGGTGAAGCCTTCGGAGAC

TCTTCCGTGTCTGCATCTGTAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACAGAGTCACCATCACTTGTCGGG




GTGGCTCCATCAGTAGTTACTACTG

CGAGTCAGGGTATTAGCAGCTGGT




GAGCTGGATCCGGCAGCCCCCAGGG

TAGCCTGGTATCAGCAGAAACCAG




AAGGGACTGGAGTGGATTGGGTATA

GGAAAGCCCCTAAGCTCCTGATCT




TCTATTACAGTGGGAGCACCAACTA

ATGCTGCATTCAGTTTGCAAAGTG




CAACCCCTCCCTCAAGAGTCGAGTC

GGGTCCCATCAAGGTTCAGCGGCA




ACCATATCAGTAGACACGTCCAAGA

GTGGATCTGGGACAGATTTCACTCT




ACCAGTTCTCCCTGAAGCTGACCTC

CACCATCAGCAGCCTGCAGCCTGA




TGTGACCGCTGCGGACACGGCCGTG

AGATTTTGCAACTTACTATTGTCAA




TATTACTGTGCGAGATGTGCCTTAC

CAGGCTAACAGTTTCCCGCGGGGG




TACTAGGGAACGCTTTTGATATCTG

CTCTCTTTCGGCGGAGGGACCAAG




GGGCCAAGGGACAATGGTCACCGTC

GTGGAGATCAAACGAACTGTGGCT




TCTTCAGCTTCCACCAAGGGCCCAT

GCACCATCTGTCTTCATCTTCCCGC




CGGTCTTCCCCCTGGCGCCCTGCTCC

CATCTGATGAGCAGTTGAAATCTG




AGGAG

GAACTGCCTCTGTTGTGTGCCTGCT






GAATAACTTCTATCCCAGAGAGGC






CAAAGTACAGTGGAAGGTGGATAA






CGC






S144-121
GAGGTGCACCTGTTGGAGTCTGGGG
2710
GAAATTGTGTTGACGCAGTCTCCA
2759



GAGGCCTGGTACAGCCTGGGGGGTC

GGCACCCTGTCGTTGTCTCCAGGA




CCTGAGACTCTCCTGTGCAGCCTCT

GAAAGAGCCACCCTCTCCTGCAGG




GGATTCACCTTCAGCAGCTATGCCA

GCCAGTCAGAGTGTTAGCAGCAGC




TGAGCTGGGTCCGCCAGACTCCAGG

CACTTAGCCTGGTACCAGCAGAAA




GAAGGGGCTGGAGTGGATCTCAGCT

CCTGGCCAGTCTCCCAGGCTCCTCA




ATTACTGCCAGTGGTTCTGACACAT

TCTATGGTACATCCAACAGGGCCA




TCCACGCTGACTCCGTGAAGGGCCG

CTGGCATCCCAGACAGGTTCAGTG




GTTCACCATCTCCAGAGACAATTCC

GCAGTGGGTCTGGGACAGACTTCA




AAGGACACACTGTATCTGCAAATGA

CTCTCAGCATCAGCAGACTGGAGC




ACAGCCTGAGAGTCGAGGACACGG

CTGAAGATTTTGCAGTGTATTACTG




CCATATATTACTGTGCGAAAGGCTC

TCAAGAATATGGTAGCTCACGGAT




TTCCACCGCCCGCCCCTACTACTTTG

GTTCGGCCAAGGGACCAAGGTGGA




ACTACTGGGGCCAGGGAACCCTGGT

AATCAAACGAACTGTGGCTGCACC




CACCGTCTCCTCAGGGAGTGCATCC

ATCTGTCTTCATCTTCCCGCCATCT




GCCCCAACCCTTTTCCCCCTCGTCTC

GATGAGCAGTTGAAATCTGGAACT




CTGTGAGAATTCCCCGTCGGATACG

GCCTCTGTTGTGTGCCTGCTGAATA




AGCAGCGTG

ACTTCTATCCCAGAGAGGCCAAAG






TACAGTGGAAGGTGGATAACGCCC






TCCAATCGGGTAACTCCCAGGAGA






GTGTCACAGAGCAGGACAGCAAGG






ACAGCACCTACAGCCTCAGCAGCA






CCCTGACGCTGAGCAAAGCAGACT






ACGAG






S144-1364
GAGGTGCAGCTGGTGCAGTCTGGAG
2711
GAAATTGTGTTGACGCAGTCTCCA
2760



CAGAGATGAAAAAGCCCGGGGAGT

GGCACCCTGTCTTTGTCTCCAGGGG




CTCTGAAGATCTCCTGTAAGGCTTC

AAAGAGCCACCCTCTCCTGCAGGG




TGGATACTACTTTCCCAGCTACTGG

CCAGTCAGGGTGTTAGCAGCAACT




ATCGCCTGGGTGCGCCAGATGCCCG

ACTTAGCCTGGTACCAGCAGAAAC




GGAGAGGCCTGGAATGGATGGGGA

CTGGCCAGGCTCCCAGGCTCCTCAT




TCATTTATCCTGTTGACTCTGAGACC

CTATGGTGCATCCAGCAGGGCCAC




ACATACAGCCCGTCCTTCCAAGGCC

TGGCATCCCAGACAGGTTCAGTGG




ACGTCACCATCTCAGCCGACAAGTC

CAGTGGGTCTGGGACAGACTTCAC




CATCAGCACCGCCTACCTGCAGTGG

TCTCACCATCAGCAGACTGGAGCC




AGCAGCCTGAAGGCCTCGGACACCG

TGAAGATTTTGCAGTGTATTACTGT




CCATGTATTACTGTGCGAGACCGAA

CAGCAGTATGGTACCACACCTAAT




TTACTATGGTTCGGGGAGCCCCCCG

ACTTTCGGCGGAGGGACCAAGGTG




GGCTACTGGGGCCAGGGAACCCTGG

GAGATCAAACGAACTGTGGCTGCA




TCACCGTCTCCTCAGGGAGTGCATC

CCATCTGTCTTCATCTTCCCGCCAT




CGCCCCAACCCTTTTCCCCCTCGTCT

CTGATGAGCAGTTGAAATCTGGAA




CCTGTGAGAATTCCCCGTCGGATAC

CTGCCTCTGTTGTGTGCCTGCTGAA




GAGCAGCGTGGCCGTTGGCTG

TAACTTCTATCCCAGAGAGGCCAA






AGTACAGTGGAAGGTGGATAACGC






CCTCCAATCGGGTAACTCCCAGGA






GAGTGTCACAGAGCAGGACAGCAA






GGACAGCACCTACAGCCTCAGCAG






CACCCTGACGCTGAGCAAAGCAGA






CTACGAGAA






S144-292
GAGGTGCAGCTGGTGCAGTCTGGAG
2712
GACATCCAGATGACCCAGTCTCCTT
2761



CAGAGGTGAAAAAGCCCGGGGAGT

CCACCCTGTCTGCATCTGTAGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

ACAGAGTCACCATCACTTGCCGGG




TGGATACACCTTTACCAACTACTGG

CCAGTCAGAGTATTAGTAGCTGGT




ATCGGCTGGGTGCGCCAGATGCCCG

TGGCCTGGTATCAGCAGAAACCAG




GGAAAGGCCTGGAGTGGATGGGGA

GGAAAGCCCCTAACCTCCTGATCT




TCATCTATCCTGGTGACTCGGATAC

ATGATGCCTCCAGTTTGGAAAGTG




CAGATACAGCCCGTCCTTCCAAGGC

GGGTCCCATCAAGGTTCAGCGGCA




CAGGTCACCATCTCAGCCGACAAGT

GTGGATCTGGGACAGAATTCACTC




CCATCAGCACCGCCTACCTGCAGTG

TCACCATCAGCAGCCTGCAGCCTG




GAGCAGCCTGAAGGCCTCGGACACC

ATGATTTTGCAACTTATTACTGCCA




GCCATGTATTACTGTGCGAGACTGT

ACAGTATAATACTTACCCAAGGAC




TTTGTGGTGGTGACTGCCCGTTTGA

GTTCGGCCAAGGGACCAAGGTGGA




CTACTGGGGCCAGGGAACCCTGGTC

AATCAAACGAACTGTGGCTGCACC




ACCGTCTCCTCAGCCTCCACCAAGG

ATCTGTCTTCATCTTCCCGCCATCT




GCCCATCGGTCTTCCCCCTGGCGCC

GATGAGCAGTTGAAATCTGGAACT




CTGCTCCAGGAGCACCTCTGGGGGC

GCCTCTGTTGTGTGCCTGCTGAATA




ACAGCGGCCCTGGGCTGCCTGGTCA

ACTTCTATCCCAGAGAGGCCAAAG




AGGACTACTTCCCCGAACCGGTGAC

TACAGTGGAAGGTGGATAACGCCC




GGTGTCGTGGAACTCAGGCGCCCTG

TCCAATCGGGTAACTCCCAGGAGA




ACCAGCGGCGTGCACACCTTCCCGG

GTGTCACAGAGCAGGACAGCAAGG




CTGTCCTACAGTCCTCAGGA

ACAGCACCTACAGCCTCAGCAGCA






CCCTGACGCTGAGCAAAGCAGACT






ACGAGAA






S155-37
GAGGTGCAACTGTTGGAGTCTGGGG
2713
GAAATTGTGTTGACGCAGTCTCCA
2762



GAGGCTTGGTGCAGCCGGGAGGGTC

GGCACCCTGTCTTTGTCTCCAGGAG




CCTGAGACTCTCCTGCGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCAGCTTTAGCAACTACGCCA

CCAGTCAGACTGTTAGCAGCAACT




TGAGCTGGGTCCGCCAGGCTCCAGG

ACTTAGCCTGGTACCAGCAGAAAC




GAAGGGGCTGGAGTGGGTCTCAGCT

CTGCCCAGGGTCCCAGGCTCGTCA




GTTTCTGGTAATGGAGTTGGCACAT

TCTATGGTGCATCCAACAGGGCCA




TCCACGCAGACTCCGTGAAGGGCCG

CTGGCATCCCAGACAGGTTCAGTG




CTTCACCATCTCCAGAGACAATTCC

GCAGTGGGTCTGGGACAGACTTCA




AAGGACACGTTCTATTTGCAAATGA

CTCTCACCATCAGCAGACTGGAGC




GTGGCCTCACAGTCGACGACACGGC

CTGAAGATTTTGCAGTGTATTACTG




CCTATATTATTGTGTGAAGGGAAGT

TCAGCAGTATGGTAATTCAAGGAT




GCAGCCGCTCGCCCCTACTACTTTG

TTTCGGCCAAGGGACCAAGGTGGA




ACTACTGGGGCCAGGGAATCCTGGT

GATCAAACGAACTGTGGCTGCACC




CGCCGTCTCCTCAGGGAGTGCATCC

ATCTGTCTTCATCTTCCCGCCATCT




GCCCCAACCCTTTTCCCCCTCGTCTC

GATGAGCAGTTGAAATCTGGAACT




CTGTGAGAATTCCCCGTCGGATACG

GCCTCTGTTGTGTGCCTGCTGAATA




AGCAGCGTG

ACTTCTATCCCAGAGAGGCCAAAG






TACAGTGGAAGGTGGATAACGC






S166-1318
GAGGTGCAGCTGGTGGAGTCTGGGG
2714
TCCTATGAGCTGACTCAGCCACCCT
2763



GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTTACTATCTATTGGAT

ATAAATTGGGGGATAAATATGCTT




GAGCTGGGTCCGCCAGGCTCCAGGG

GCTGGTATCAGCAGAAGCCAGGCC




AAGGGGCTGGAGTGGGTGGCCAAC

AGTCCCCTGTGTTGGTCATCTATCA




ATAAAGCAAGATGGAAGTGAGAAA

AGATAGCAAGCGGCCCTCAGGGAT




TACTATGTGGACTCTGTGAAGGGCC

CCCTGAGCGATTCTCTGGCTCCAAC




GATTCACCATCTCCAGAGACAACGC

TCTGGGAACACAGCCACTCTGACC




CAAGAATTCACTGTATCTGCAAATG

ATCAGCGGGACCCAGGCTATGGAC




AACAGCCTGAGAGCCGAGGACACG

GAGGCTGACTATTACTGTCAGGCG




GCCGTGTATTACTGTGCGAGAGATG

TGGGACAGCAGCACCGTGGTATTC




GTATAGCAGTGGCTGGTGGGTTTGA

GGCGGAGGGACCAAGCTGACCGTC




CTACTGGGGCCAGGGAACCCTGGTC

CTAGGTCAGCCCAAGGCTGCCCCC




ACCGTCTCCTCAGGGAGTGCATCCG

TCGGTCACTCTGTTCCCGCCCTCCT




CCCCAACCCTTTTCCCCCTCGTCTCC

CTGAGGAGCTTCAAGCCAACAAGG




TGTGAGAATTCCCCGTCGGATACGA

CCACACTGGTGTGTCTCATAAGTG




GCAGCGTG

ACTTCTACCCGGGAGCCGTGACAG






TGGCCTGGAAGGCAGATAGCAGCC






CCGTCAAGGCGGGAGTGGAGACCA






CCACACCCTCCAAACAAAGCAACA






ACAAGTACGCGGCCAGCAGCTA






S166-1366
CAGATCACCTTGAAGGAGTCTGGTC
2715
TCCTATGAGCTGACTCAGCCACCCT
2764



CTACGCTGGTGAAACCCACACAGAC

CAGTGTCCGTGTCCCCAGGACAGA




CCTCACGCTGACCTGCACCTTCTCTG

CAGCCAGCATCACCTGCTCTGGAG




GGTTCTCACTCAGCACTAGTGGAGT

ATAAATTGGGGGATAAATATGCTT




GGGTGTGGGCTGGATCCGTCAGCCC

GCTGGTATCAGCAGAAGCCAGGCC




CCAGGAAAGGCCCTGGAGTGGCTTG

AGTCCCCTGTGCTGGTCATCTATCA




CACTCATTTATTGGGATGATGATAA

AGATAGCAAGCGGCCCTCAGGGAT




GCGCTACAGGCCATCTCTGAAGAGC

CCCTGAGCGATTCTCTGGCTCCAAC




AGGCTCAGCATCACCAAGGACACCT

TCTGGGAACACAGCCACTCTGACC




CCAAAAACCAGGTGGTCCTTACAAT

ATCAGCGGGACCCAGGCTATGGAT




GACCAACATGGACCCTGTGGACACA

GAGGCTGACTATTACTGTCAGGCG




GCCACATATTACTGTGCACACCATC

TGGGACAGCAGCACTAGGGATTAT




ACCCCATACTTGATTTTGACTACTG

GTCTTCGGAACTGGGACCAAGGTC




GGGCCAGGGAACCCTGGTCACCGTC

ACCGTCCTAGGTCAGCCCAAGGCC




TCCTCAGGGAGTGCATCCGCCCCAA

AACCCCACTGTCACTCTGTTCCCGC




CCCTTTTCCCCCTCGTCTCCTGTGAG

CCTCCTCTGAGGAGCTCCAAGCCA




AATTCCCCGTCGGATACGAGCAGCG

ACAAGGCCACACTAGTGTGTCTGA




TG

TCAGTGACTTCTACCCGGGAGCTGT






GACAGTGGCCTGGAAGGCAGATGG






CAGCCCCGTCAAGGCGGGAGTGGA






GACCACCAAACCCTCCAAACAGAG






CAACAACAAGTACGCGGCCAGCAG






CTA






S166-2395
CAGGTGCAGCTGCAGGAGTCGGGCC
2716
TCCTATGTGCTGACTCAGACACCCT
2765



CAGGACTGGTGAAGCCTTCGGAGAC

CGGTGTCAGTGGCCCCAGGACAGA




CCTGTCCCTCACCTGCACTGTCTCTG

CGGCCAGGATTACCTGTGGGGGAA




GTGGCTCCATCAGTACTTACTACTG

ACAACATTGGAAGTAAAAGTGTGC




GAGCTGGATCCGGCAGCCCGCCGGG

ACTGGTACCAGCAGAAGCCAGGCC




AAGGGACTGGAGTGGATTGGGCGT

AGGCCCCTGTGCTGGTCGTCCATG




ATCTATACCAGTGGGAGCACCAACT

ATGAAAGCGACCGGCCCTCAGGGA




ACAACCCCTCCCTCAAGAGTCGGGT

TCCCTGAGCGATTTTTTGGCTCCAA




CACCATGTCAGTAGACACGTCCAAG

CTCTGGGAACACGGCCACCCTGAC




AACCAGTTCTCCCTGAAGCTGAGCT

CATCAGCAGGGTCGAAGCCGGGGA




CTGTGACCGCCGCGGACACGGCCGT

TGAGGCCGACTATTACTGTCAGGT




GTATTACTGTGCGAGAGAGGTTACT

GTGGGATAGTAGTAGTGATCATCT




ATGATAGTACTGGGATACAACTGGT

TCATGTCTTCGGAACTGGGACCAA




TCGACCCCTGGGGCCAGGGAACCCT

GGTCACCGTCCTAGGTCAGCCCAA




GGTCACCGTCTCCTCTGCACCCACC

GGCCAACCCCACTGTCACTCTGTTC




AAGGCTCCGGATGTGTTCCCCATCA

CCGCCCTCCTCTGAGGAGCTCCAA




TATCAGGGTGCAGACACCCAAAGG

GCCAACAAGGCCACACTAGTGTGT




ATAACAGCCCTGTGGTCCTGGCATG

CTGATCAGTGACTTCTACCCGGGA




CTTGATAACTGGGTACCACC

GCTGTGACAGTGGCCTGGAAGGCA






GATGGCAGCCCCGTCAAGGCGGGA






GTGGAGACCACCAAACCCTCCAAA






CAGAGCAACAACAAGTACGCGGCC






AGCAGCTA






S166-2620
GAGGTGCAGCTGGTGGAGTCTGGGG
2717
TCCTATGAGCTGACTCAGCCACCCT
2766



GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTTAGTAGCTATTGGA

ATAAATTGGGGGATAAATATGCTT




TGAGCTGGGTCCGCCAGGCTCCAGG

GCTGGTATCAGCAGAAGCCAGGCC




GAAGGGGCTGGAGTGGGTGGCCAA

AGTCCCCTGTGCTGGTCATCTATCA




CATAAAGCAAGATGGAAGTGAGAA

AGATAGCAAGCGGCCCTCAGGGAT




ATACTATGTGGCCTCTGTGAAGGGC

CCCTGAGCGATTCTCTGGCTCCAAC




CGATTCACCATCTCCAGAGACAACG

TCTGGGAACACAGCCACTCTGACC




CCAAGAACTCACTGTATCTGCAAAT

ATCAGCGGGACCCAGGCTATGGAT




GAACAGCCTGAGAGCCGAGGACAC

GAGGCTGACTATTTCTGTCAGGCGT




GGCCGTGTATTACTGTGCGAGAGAT

GGGACAGCAGCACTGTGGTATTCG




AGTATAGCAGTGGCTGGGGGCCTTG

GCGGAGGGACCAAGCTGACCGTCC




ACTACTGGGGCCAGGGAACCCTGGT

TACGTCAGCCCAAGGCTGCCCCCT




CACCGTCTCCTCAGGGAGTGCATCC

CGGTCACTCTGTTCCCGCCCTCCTC




GCCCCAACCCTTTTCCCCCTCGTCTC

TGAGGAGCTTCAAGCCAACAAGGC




CTGTGAGAATTCCCCGTCGGATACG

CACACTGGTGTGTCTCATAAGTGA




AGCAGCGTG

CTTCTACCCGGGAGCCGTGACAGT






GGCCTGGAAGGCAGATAGCAGCCC






CGTCAAGGCGGGAGTGGAGACCAC






CACACCCTCCAAACAAAGCAACAA






CAAGTACGCGGCCAGCAGCTA



S166-32
CAGGTGCAGCTGGTGGAGTCTGGGG
2718
GACATCCAGATGACCCAGTCTCCTT
2767



GAGGCTTGGTCAAGCCTGGAGGGTC

CCACCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTCAGTGACTACTACA

CCAGTCAGAGTATTTTTAGCTGGTT




TGAGCTGGATCCGCCAGGCTCCAGG

GGCCTGGTATCAGCAGAAACCAGG




GAAGGGGCTGGAGTGGGTTTCATAC

GAAAGCCCCTAAGCTCCTGATCTA




ATTAGTATTAGTGATACGACCATAT

TGATGCCTCCAGTTTGGAAAGTGG




ACTACGCAGACGCTGTGCAGGGCCG

GGTCCCATCAAGGTTCAGCGGCAG




ATTCACCATGTCCAGGGACAACGCC

TGGATCTGGGACAGAATTCACTCT




AAGAACTCACTGTATCTGCAAATGA

CACCATCAGCAGCCTGCAGCCTGA




ACAGCCTGAAGGCCGAGGACACGG

TGATTTTGCAACTTATTACTGCCAA




CCGTGTATTACTGTGCGAGAGCTAG

CAGTATAATAGTTATTGGACGTTCG




CCCATATTGTGGTGGTGATTGCTCTT

GCCAAGGGACCAAGGTGGAAATCA




TCGGCAATGCTTTTGATATCTGGGG

AACGAACTGTGGCTGCACCATCTG




CCTAGGGACAATGGTCACCGTCTCT

TCTTCATCTTCCCGCCATCTGATGA




TCAGCCTCCACCAAGGGCCCATCGG

GCAGTTGAAATCTGGAACTGCCTC




TCTTCCCCCTGGCACCCTCCTCCAAG

TGTTGTGTGCCTGCTGAATAACTTC




AGCACCTCTGGGGGCACAGCGGCCC

TATCCCAGAGAGGCCAAAGTACAG




TGGGCTGCCTGGTCAAGGACTACTT

TGGAAGGTGGATAACGCCCTCCAA




CCCCGAACCGGTGACGGTGTCGTGG

TCGGGTAACTCCCAGGAGAGTGTC




AACTCAGGCGCCCTGACCAGCGGCG

ACAGAGCAGGACAGCAAGGACAG




TGCACACCTTCCCGGCTGTCCTACA

CACCTACAGCCTCAGCAGCACCCT




GTCCTCAGGA

GACGCTGAGCAAAGCAGACTACGA






G






S171-1150
GAGGTGCAGCTGGTGGAGTCTGGGG
2719
TCCTATGAGCTGACTCAGCCACCCT
2768



GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTTAGTAGCTATTGGA

ATAAATTGGGGGATAAATATGCTT




TGAGCTGGGTCCGCCAGGCTCCAGG

GCTGGTATCAGCAGAAGCCAGGCC




GAAGGGGCTGGAGTGGGTGGCCAA

AGTCCCCTGTGCTGGTCATCTATCA




CATAAAGCAAGATGGAAGTGAGAA

AGATAGCAAGCGGCCCTCAGGGAT




ATACTATGTGGACTCTGTGAAGGGC

CCCTGAGCGATTCTCTGGCTCCAAC




CGATTCACCATCTCCAGAGACAACG

TCTGGGAACACAGCCACTCTGACC




CCAAGAACTCACTGTATCTGCAAAT

ATCAGCGGGACCCAGGCTATGGAT




GAACAGCCTGAGAGCCGAGGACAC

GAGGCTGACTATTACTGTCAGGCG




GGCTGTGTATTACTGTGCGAGAGAC

TGGGACAGCAGCACTGTGGTATTC




GGTATAGCAGTGGCTGGTGGGCTTG

GGCGGAGGGACCAAGCTGACCGTC




ACTACTGGGGCCAGGGAACCCTGGT

CTAGGTCAGCCCAAGGCTGCCCCC




CACCGTCTCCTCAGCACCCACCAAG

TCGGTCACTCTGTTCCCGCCCTCCT




GCTCCGGATGTGTTCCCCATCATAT

CTGAGGAGCTTCAAGCCAACAAGG




CAGGGTGCAGACACCCAAAGGATA

CCACACTGGTGTGTCTCATAAGTG




ACAGCCCTGTGGTCCTGGCATGCTT

ACTTCTACCCGGGAGCCGTGACAG




GATAACTGGGTACCACC

TGGCCTGGAAGGCAGATAGCAGCC






CCGTCAAGGCGGGAGTGGAGACCA






CCACACCCTCCAAACAAAGCAACA






ACAAGTACGCGGCCAGCAGCTA






S171-1285
CAGGTGCAGTTGGTGGAGTCTGGGG
2720
TCCTATGAGCTGACACAGCCACCC
2769



GAGGCGTGGTCCAGCCTGGGAGGTC

TCGGTGTCAGTGTCCCCAGGACAA




CCTGAGACTCTCCTGTGCAGCCTCT

ACGGCCAGGATCACCTGCTCTGGA




GGATTCATCTTCAGTAACAATGCTT

GATGCACTGCCAAAAAAATTTGTT




TGCACTGGGTCCGCCAGGCTCCAGG

CATTGGTACCAGCAGAAGTCAGGC




CAAGGGGCTGGAGTGGGTGGCAATT

CAGGCCCCTGTGCTGGTCATCTATG




ATATCATATGATGGAAGCAATAAAA

AGGACAGTAAACGACCCTCCGGGA




ATTATGCAGCCTCCGTGAAGGGCCG

TCCCTGAGAGATTCTCTGGCTCCAG




ATTCACCATCTCCAGAGACAATTCC

CTCAGGGACAACGGCCACCTTGAC




CAGAACACGGTGTTTCTGCAAATGA

CATCAGTGGGGCCCAGGTGGAGGA




ACAGCCTGAGAGCTGAAGACACGG

TGAAGGTGACTACTACTGTTATTCA




CTGTGTATTACTGTGCGAGAGATCA

ACAGACAGTAGTGGCCGAGGGGTG




TATAGCAGGAGCTGCTAAGTATTTC

TTCGGCGGAGGGACCAAGCTGACC




GACTACTGGGGCCAGGGAACCCTGG

GTCCTAGGTCAGCCCAAGGCTGCC




TCACCGTCTCCTCAGCCTCCACCAA

CCCTCGGTCACTCTGTTCCCACCCT




GGGCCCATCGGTCTTCCCCCTGGCA

CCTCTGAGGAGCTTCAAGCCAACA




CCCTCCTCCAAGAGCACCTCTGGGG

AGGCCACACTGGTGTGTCTCATAA




GCACAGCGGCCCTGGGCTGCCTGGT

GTGACTTCTACCCGGGAGCCGTGA




CAAGGACTACTTCCCCGAACCGGTG

CAGTGGCCTGGAAGGCAGATAGCA




ACGGTGTCGTGGAACTCAGGCGCCC

GCCCCGTCAAGGCGGGAGTGGAGA




TGACCAGCGGCGTGCACACCTTCCC

CCACCACACCCTCCAAACAAAGCA




GGCTGTCCTACAGTCCTCAGGA

ACAACAAGTACGCGGCCAGCAGCT






A






S171-692
CAGGTGCAGCTGCAGGAGTCGGGCC
2721
GACATCCAGATGACCCAGTCTCCA
2770



CAGGACTGGTGAAGCCTTCACAGAC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACAGAGTCACCATCACTTGCCGGG




GTGGCTCCATCAGCAGTGGTAGTTA

CAAGTCAGAGCATTAGCAGCTATT




CTACTGGAGCTGGATCCGGCAGCCC

TAAATTGGTATCAGCAGAAACCAG




GCCGGGAAGGGACTGGAGTGGATT

GGAAAGCCCCTAAGCTCCTGATCT




GGGCGTATCTATACCAGTGGGAGCA

ATGCTGCATCCAGTTTGCAAAGTG




CCAACTACAACCCCTCCCTCAAGAG

GGGTCCCATCAAGGTTCAGTGGCA




TCGAGTCACCATATCAGTAGACACG

GTGGATCTGGGACAGATTTCACTCT




TCCAAGAACCAGTTCTCCCTGAAGC

CACCATCAGCAGTCTGCAACCTGA




TGAGCTCTGTGACCGCCGCAGACAC

AGATTTTGCAACTTACTACTGTCAA




GGCCGTGTATTACTGTGCGAGAGAG

CAGAGTTACAGTAAGAACACTTTT




AGTAAGGTAACTATGGTTCGGGGAG

GGCCAGGGGACCAAGCTGGAGATC




GTCTGGCCTACTACTACATGGACGT

AAACGAACTGTGGCTGCACCATCT




CTGGGGCAAAGGGACCACGGTCAC

GTCTTCATCTTCCCGCCATCTGATG




CGTCTCCTCAGCACCCACCAAGGCT

AGCAGTTGAAATCTGGAACTGCCT




CCGGATGTGTTCCCCATCATATCAG

CTGTTGTGTGCCTGCTGAATAACTT




GGTGCAGACACCCAAAGGATAACA

CTATCCCAGAGAGGCCAAAGTACA




GCCCTGTGGTCCTGGCATGCTTGAT

GTGGAAGGTGGATAACGC




AACTGGGTACCACC








S179-122
GAGGTGCAGCTGGTGGAGTCTGGGG
2722
AATTTTATGCTGACTCAGCCCCACT
2771



GAGGCTTGGTCCAGCCTGGGGGGTC

CTGTGTCGGAGTCTCCGGGGAAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CGGTAACCATCTCCTGCACCGGCA




GGATTCACCTTTAGTACCTATTGGA

GCAGTGGCAGCATTGCCAGCAACT




TGAGCTGGGTCCGCCAGGCTCCAGG

ATGTGCAGTGGTACCAGCAGCGCC




GAAGGGGCTGGAGTGGGTGGCCAA

CGGGCAGTGCCCCCACCACTGTGA




CATAAAGCAAGATGGAAGTGAGAA

TCTATGAGGATAACCAAAGACCCT




GTACTATGTGGACTCTGTGAAGGGC

CTGGGGTCCCTGATCGGTTCTCTGG




CGATTCACCATCTCCAGAGACAACG

CTCCATCGACAGCTCCTCCAACTCT




CCAAGAACTCACTGTATCTGCAAAT

GCCTCCCTCACCATCTCTGGACTGA




GAACAGCCTGAGAGCCGAGGACAC

AGACTGAGGACGAGGCTGACTACT




GGCCGTGTATTACTGTGCGTCTAAG

ACTGTCAGTCTTATGATAGCAGCA




CTATGGTTACGTGGAAACTTTGACT

ATCTAGTGTTCGGCGGAGGGACCA




ACTGGGGCCAGGGAACCCTGGTCAC

AGCTGACCGTCCTAGGTCAGCCCA




CGTCTCCTCAGCCTCCACCAAGGGC

AGGCTGCCCCCTCGGTCACTCTGTT




CCATCGGTCTTCCCCCTGGCACCCTC

CCCGCCCTCCTCTGAGGAGCTTCAA




CTCCAAGAGCACCTCTGGGGGCACA

GCCAACAAGGCCACACTGGTGTGT




GCGGCCCTGGGCTGCCTGGTCAAGG

CTCATAAGTGACTTCTACCCGGGA




ACTACTTCCCCGAACCGGTGACGGT

GCCGTGACAGTGGCCTGGAAGGCA




GTCGTGGAACTCAGGCGCCCTGACC

GATAGCAGCCCCGTCAAGGCGGGA




AGCGGCGTGCACACCTTCCCGGCTG

GTGGAGACCACCACACCCTCCAAA




TCCTACAGTCCTCAGGA

CAAAGCAACAACAAGTACGCGGCC






AGCAGCTACCTGAGCCTGACGCCT






GAGCAGTGGAAGTCCCAC






S179-20
CAGGTGCAGCTGGTGGAGTCTGGGG
2723
GAAGTAGTGCTGACGCAGTCTCCA
2772



GAGGCGTGGTCCAGCCTGGGAGGTC

GCCACCCTGTCTGTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCGTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTCAGTGGCTATGGCA

CCAGTCAGAGTGTTAGCAGCAATT




TGCACTGGGTCCGCCAGGCTCCAGG

TAGCCTGGTATCAGCAGAAACCTG




CAAGGGGCTGGAGTGGGTGGCAGTT

GCCAGGCTCCCAGGCTCCTCATCTA




ATATGGTTTGATGGAAGTAATAAAT

TGGTGCATCCACCAGGGCCACTGG




ACTATGCAGACTCCGTGAAGGGCCG

TATCCCAGCCAGGTTCAGTGGCAG




ATTCACCATCTCCAGAGACAATTCC

TGGGTCTGGGACAGAGTTCACTCT




AAGAACACGCTGTATCTGCAAATGA

CACCATCAGCAGCCTGCAGTCTGA




ACAGCCTGAGAGCCGAGGACACGG

AGATTTTGCAGTTTATTACTGTCAG




CTGTCTATTACTGTGCGAGAGATGC

CAGTATAATAACTGGCCTCGGACG




GCGTTACTATGATACTAGTGGTTAT

TTCGGCCAAGGGACCAAGGTGGAA




TTAGGGACAACAGAGTTTGACTACT

ATCAAACGAACTGTGGCTGCACCA




GGGGCCAGGGAACCCTGGTCACCGT

TCTGTCTTCATCTTCCCGCCATCTG




CTCCTCAGGGAGTGCATCCGCCCCA

ATGAGCAGTTGAAATCTGGAACTG




ACCCTTTTCCCCCTCGTCTCCTGTGA

CCTCTGTTGTGTGCCTGCTGAATAA




GAATTCCCCGTCGGATACGAGCAGC

CTTCTATCCCAGAGAGGCCAAAGT




GTGGCC

ACAGTGGAAGGTGGATAACGCCCT






CCAATCGGGTAACTCCCAGGAGAG






TGTCACAGAGCAGGACAGCAAGGA






CAGCACCTACAGCCTCAGCAGCAC






CCTGACGCTGAGCAAAGCAGACTA






CGAGAA






S179-27
CAGGTGCAGCTGGTGGAGTCTGGGG
2724
GACATCCAGATGACCCAGTCTCCA
2773



GAGGCGTGGTCCAGCCTGGGAGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCAGG




GGATTCACCTTCAGGAGCTATGGCA

CGAGTCAGGACATTAGCAACTATT




TGCACTGGGTCCGCCAGGCTCCAGG

TAAATTGGTATCAGCAGAAACCAG




CAAGGGGCTGGAGTGGGTGGCAGTT

GGAAAGCCCCTAAGCTCCTGATCT




ATATCATATGATGGAAGTAATAAAA

ACGATGCATCCAATTTGGAAACAG




ACTATGCAGACTCCGTGAAGGGCCG

GGGTCCCATCAAGGTTCAGTGGAA




ACTCACCATCTCCAGAGACAATTCC

GTGGATCTGGGACAGATTTTACTTT




AAGAACACGCTGTATCTGCAAATGA

CACCATCAGCAGCCTGCAGCCTGA




ACAGCCTGAGAGCTGAGGACACGG

AGATATTGCAACATATTACTGTCA




CTGTGTATTACTGTGCGAAAGATCG

ACAATATGATAATCTCCCCCTCACT




GGGTGGGTATAGCAGTGGCTGGACC

TTCGGCGGAGGGACCAAGGTGGAG




TACTACTACTACGGTATGGACGTCT

ATCAAACGAACTGTGGCTGCACCA




GGGGCCAAGGGACCACGGTCACCG

TCTGTCTTCATCTTCCCGCCATCTG




TCTCCTCAGCCTCCACCAAGGGCCC

ATGAGCAGTTGAAATCTGGAACTG




ATCGGTCTTCCCCCTGGCACCCTCCT

CCTCTGTTGTGTGCCTGCTGAATAA




CCAAGAGCACCTCTGGGGGCACAGC

CTTCTATCCCAGAGAGGCCAAAGT




GGCCCTGGGCTGCCTGGTCAAGGAC

ACAGTGGAAGGTGGATAACGCCCT




TACTTCCCCGAACCGGTGACGGTGT

CCAATCGGGTAACTCCCAGGAGAG




CGTGGAACTCAGGCGCCCTGACCAG

TGTCACAGAGCAGGACAGCAAGGA




CGGCGTGCACACCTTCCCGGCTGTC

CAGCACCTACAGCCTCAGCAGCAC




CTACAGTCCTCAGGACTCTACTCCC

CCTGACGCTGAGCAAAGCAGACTA




TCAGCAGCGTGGTGACCGTGCCCTC

CGAGAA




CAGCAGCTTGGGCACCCAGACCTAC






ATCTGCAACGTGAATCACAAGCCCA






GCAACACCAAGGTGGACA








S179-28
GAGGTGCAGCTGTTGGAGTCTGGGG
2725
GACATCCAGATGACCCAGTCTCCTT
2774



GAGGCTTGGTACAGCCTGGGGGGTC

CCACCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTTAGCAGCTATGCCA

CCAGTCAGAGTATTACTAGCTGGTT




TGAGCTGGGTCCGCCAGGCTCCAGG

GGCCTGGTATCAGCAGAAACCAGG




GAAGGGGCTGGAGTGGGTCTCAGCT

GAAAGCCCCTAAGCTCCTGATCTA




ATTAGGGGTAGTGGTGGTAGCACAT

TGATGCCTCCAGTTTGGAAAGTGG




ACTACGCAGACTCCGTGAAGGGCCG

GGTCCCATCAAGGTTCAGCGGCAG




GTTCACCATCTCCAGAGACAATTCC

TGGATCTGGGACAGAATTCACTCT




AAGAACACACTGTATCTGCAAATGA

CACCATCAGCAGCCTGCAGCCTGA




ACAGCCTGAGAGCCGAGGACACGG

TGATTTTGCAACTTATTACTGCCAA




CCGTATATTACTGTGCGAAAGGGGT

CATTATAATAGTTATCCTTGGACGT




CCGCAGCTCGGATGACTACTTTGAG

TCGGCCAAGGGACCAAGGTGGAAA




TACTGGGGCCAGGGAACCCTGGTCA

TCAAACGAACTGTGGCTGCACCAT




CCGTCTCCTCAGCCTCCACCAAGGG

CTGTCTTCATCTTCCCGCCATCTGA




CCCATCGGTCTTCCCCCTGGCACCCT

TGAGCAGTTGAAATCTGGAACTGC




CCTCCAAGAGCACCTCTGGGGGCAC

CTCTGTTGTGTGCCTGCTGAATAAC




AGCGGCCCTGGGCTGCCTGGTCAAG

TTCTATCCCAGAGAGGCCAAAGTA




GACTACTTCCCCGAACCGGTGACGG

CAGTGGAAGGTGGATAACGCCCTC




TGTCGTGGAACTCAGGCGCCCTGAC

CAATCGGGTAACTCCCAGGAGAGT




CAGCGGCGTGCACACCTTCCCGGCT

GTCACAGAGCAGGACAGCAAGGAC




GTCCTACAGTCCTCAGGACTCTACT

AGCACCTACAGCCTCAGCAGCACC




CCCTCAGCAGCGTGGTGACCGTGCC

CTGACGCTGAGCAAAGCAGACTAC




CTCCAGCAGCTTGGGCACCCAGACC

GAGAA




TACATCTGCAACGTGAATCACAAGC






CCAGCAACACCAAGGTGGACA








S210-1139
GAGGTGCAGCTGGTGCAGTCTGGAG
2726
GAAATTGTGTTGACGCAGTCTCCA
2775



CAGAGGTGAAAAAGCCCGGAGAGT

GGCACCCTGTCTTTGTCTCCAGGGG




CTCTGAAGATCTCCTGTAAGGGTTC

AAAGAGCCACCCTCTCCTGCAGGG




TGGATACTACTTTCCCAGCTACTGG

CCAGTCAGAGTGTTAGCAGCAGCT




ATCGGCTGGGTGCGCCAGAAGCCCG

ACTTAGCCTGGTACCAGCAGAAAC




GGAATGGCCCGGAGTGGATGGGAA

CTGGCCAGGCTCCCAGACTCCTCAT




TCATCCATCCTGGTGACTCTGAAAG

CTATGGTGCATCTAGCAGGGCCAC




CACATACAGCCCGTCCTTCCAAGGC

TGGCATCCCAGACAGGTTCAGTGG




CAGGTCACCATCTCGGCCGACAAGT

CAGTGGGTCTGGGACAGACTTCAC




CCATCAGCACCGCCTACCTGCAGTG

TCTCACCATCAGCAGACTGGAGGC




GAGCAGCCTGAAGGCCTCGGACACC

TGAAGATTTTGCAGTATATTACTGT




GCCATGTATTACTGTGCGCGACCGT

CAGCTCTTTGGTAGCTCACCGACGT




TTTACTATGGTTCGGAGAGTCCCCC

GGACGTTCGGCCAAGGGACCAAGG




CGGCTACTGGGGCCAGGGAACCCTG

TGGAAATCAAACGAACTGTGGCTG




GTCACCGTCTCCTCAGGGAGTGCAT

CACCATCTGTCTTCATCTTCCCGCC




CCGCCCCAACCCTTTTCCCCCTCGTC

ATCTGATGAGCAGTTGAAATCTGG




TCCTGTGAGAATTCCCCGTCGGATA

AACTGCCTCTGTTGTGTGCCTGCTG




CGAGCAGCGTG

AATAACTTCTATCCCAGAGAGGCC






AAAGTACAGTGGAAGGTGGATAAC






GC






S210-1262
CAGCTGCAGCTGCAGGAGTCGGGCC
2727
CAGCTTGTGCTGACTCAATCGCCCT
2776



CAGGACTAATGAAGCCTTCGGAGAC

CTGCCTCTGCCTCCCTGGGAGCCTC




CCTGTCCCTCACCTGCACTGTCTCTG

GGTCAAGCTCACCTGCACTCTGAG




GTGGCTCCATCAGCAGAAGCAATTA

CAGTGGGCACAGCAGCTACGCCAT




CTACTGGGGCTGGATCCGCCAGCCC

CGCATGGCATCAGCAGCAGCCAGA




CCAGGTAAGGGACTGGAGTGGATTG

GAGGGGCCCTCGGTACTTGATGAA




GGAGTATCTATTATAGTGGGAGCAC

GCTTAACGGTGATGGCAGCCACAG




CTACTACAACCCCTCCCTCAAGAGT

CAAGGGGGACGGGATCCCTGATCG




CGAGTCACCATATCCGTAGACACGT

CTTCTCAGGCTCCAGCTCTGGGGCT




CCCAGAACCAGTTCTCCCTGAAGAT

GAGCGCTACCTCACCATCTCCAGC




GAGCTCTGTGACCGCCGCAGACACG

CTCCAGTCTGAAGATGAGGCTGAC




GCTGTTTATTACTGTGCGAGCCTCTT

TATTACTGTCAGACCTGGGGCACT




CGACTACGGTGACAACTACTGGGGC

GACATTCAAGTGTTCGGCGGAGGG




CAGGGAACCCTGGTCACCGTCTCCT

ACCAAGCTGACCGTCCTAGGTCAG




CAGCCTCCACCAAGGGCCCATCGGT

CCCAAGGCTGCCCCCTCGGTCACTC




CTTCCCCCTGGCACCCTCCTCCAAG

TGTTCCCGCCCTCCTCTGAGGAGCT




AGCAC

TCAAGCCAACAAGGCCACACTGGT






GTGTCTCATAAGTGACTTCTACCCG






GGAGCCGTGACAGTGGCCTGGAAG






GCAGATAGCAGCCCCGTCAAGGCG






GGAGTGGAGACCACCACACCCTCC






AAACAAAGCAACAACAAGTACGCG






GCCAGCAGCTA






S210-1611
CAGGTGCAGCTGGTGCAGTCTGGGG
2728
GAAATTGTGTTGACACAGTCTCCA
2777



CTGAGGTGAAGAAGCCTGGGTCCTC

GCCACCCTGTCTTTGTCTCCAGGGG




GGTGAAGGTCTCCTGCAAGGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGAGGCACCTTCAGCAGCTATGCTA

CCAGTCAGAGTATTAGCAGCTTCTT




TCAGCTGGGTGCGACAGGCCCGTGG

AGCCTGGTACCAACAGAAACCTGG




ACAAGGGCTTGAGTGGATGGGAGG

CCAGGCTCCCAGGCTCCTCATCTAT




GATCATCCCTATCTTTGGTACAGCA

GATGCATCCAACAGGGCCACTGGC




AACTACCCACAGAAGTTCCAGGGCA

ATCCCAGCCAGGTTCAGTGGCAGT




GAGTCACGATTACCGCGGACGAATC

GGGTCTGGGACAGACTTCATTCTC




CACGAGCACAGCCTACATGGAGCTG

ACCATCAACAACCTAGAGCCTGAA




AGCAGCCTGAGATCTGAGGACACG

GATTTTGCAGTTTATTACTGTCAGC




GCCGTGTATTACTGTGCGAGATATC

AGCGTAGCAACTGGCCTCCGAAGC




ACGCCTATGATAGTAGTGGCTATTA

TCACTTTCGGCGGAGGGACCAAGG




CGTTGACTATTGGGGCCAGGGAACC

TGGAGATCAAACGAACTGTGGCTG




CTGGTCACCGTCTCCTCAGCATCCC

CACCATCTGTCTTCATCTTCCCGCC




CGACCAGCCCCAAGGTCTTCCCGCT

ATCTGATGAGCAGTTGAAATCTGG




GAGCCTCTGCAGCACCCAGCCAGAT

AACTGCCTCTGTTGTGTGCCTGCTG




GGGAACGTGGTCATCGCCTGCCTGG

AATAACTTCTATCCCAGAGAGGCC




TCCAGGGCTTCTTCCCCCAGGAGCC

AAAGTACAGTGGAAGGTGGATAAC




ACTCAGTGTGACCTGGAGCGAAAGC

GC




GGACAGGGCGTGACCGCCAGAAAC






TTCCC








S210-727
CAGGTGCAGCTGCAGGAGTCGGGCC
2729
GACATCCAGATGACCCAGTCTCCA
2778



CAGGACTGGTGAAGCCTTCGGAGAC

TCCTCACTGTCTGCATCTGTAGGAG




CCTGTCCCTCACCTGCACTGTCTCTG

ACAGAGTCACCATCACTTGTCGGG




GTGGCTCCATGAGTAGCAGTTACTG

CGAGTCAGGGCATTAGCAGTTATT




GAGCTGGATCCGGCAGCCCCCAGGG

TAGCCTGGTTTCAGCAGAAACCAG




AAGGGACTGGAGTGGATTGGCTATA

GGAAAGCCCCTAAGTCCCTGATCT




TCTATTACAGAGGGAGCACCAACTA

ATGCTGCATCCAGTTTGCAAAGTG




CAACCCCTCCCTCAAGACTCGAGTC

GGGTCCCATCAAAGTTCAGCGGCA




ACCATGTCAGTAGACACGTCCAAGA

GTGGATCTGGGACAGATTTCACTCT




ACCAATTCTCGATGAAAATGACCTT

CACCATCAGCAGCCTGCAGCCTGA




TATGACCGCTGCGGACACGGCCGTC

AGATTTTGCAACTTATTACTGCCAA




TATTACTGTGCGCGAGAGGCGGCGT

CAGTATAATAGATACCCTCCCACTT




TCAACTGGTTCGACTCCTGGGGCCA

TCGGCGGAGGGACCAAGGTGGAGA




GGGAACCCTGGTCACCGTCTCCTCA

TCAAGCGAACTGTGGCTGCACCAT




GGGAGTGCATCCGCCCCAACCCTTT

CTGTCTTCATCTTCCCGCCATCTGA




TCCCCCTCGTCTCCTGTGAGAATTCC

TGAGCAGTTGAAATCTGGAACTGC




CCGTCGGATACGAGCAGCGTG

CTCTGTTGTGTGCCTGCTGAATAAC






TTCTATCCCAGAGAGGCCAAAGTA






CAGTGGAAGGTGGATAACGC






S210-852
GAGGTGCAGCTGGTGGAGTCTGGGG
2730
TCCTATGAGCTGACTCAGCCACCCT
2779



GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTAAGTATTTATTGGA

ATAAATTGGGGGATACATATGCTT




TGAGCTGGGTCCGCCAGGCTCCAGG

GCTGGTATCAGCAGAAGCCAGGCC




GAAGGGGCTGGAGTGGGTGGCCAA

AGTCCCCTGTACTGGTCATCTATCA




CATAAAGCAAGATGGACGTGAGAA

AGATAGCAAGCGGCCCTCAGGGAT




ATACCATGTGGACTCTGTGAAGGGC

CCCTGAGCGATTCTCTGGCTCCAAC




CGATTCACCATCTCCAGAGACAACG

TCTGGGAACACAGCCACTCTGACC




CCAACAACTCACTGTATCTGCAAAT

ATCAGCGGGACCCAGGCTATGGAT




GAACAACCTGAGAGCCGAGGACAC

GAGGCTGACTATTACTGTCAGGCG




GGCTGTGTATTTCTGTGCGAGAGAT

TGGGACAGCAGCACGTCTGTGGTA




GGTATAGCAGTGGCTGGGGGGTTTG

TTCGGCGGAGGGACCAAGCTGACC




ACTACTGGGGCCAGGGAACCCTGGT

GTCCTAGGTCAGCCCAAGGCTGCC




CACCGTCTCCTCAGGGAGTGCATCC

CCCTCGGTCACTCTGTTCCCGCCCT




GCCCCAACCCTTTTCCCCCTCGTCTC

CCTCTGAGGAGCTTCAAGCCAACA




CTGTGAGAATTCCCCGTCGGATACG

AGGCCACACTGGTGTGTCTCATAA




AGCAGCGTG

GTGACTTCTACCCGGGAGCCGTGA






CAGTGGCCTGGAAGGCAGATAGCA






GCCCCGTCAAGGCGGGAGTGGAGA






CCACCACACCCTCCAAACAAAGCA






ACAACAAGTACGCGGCCAGCAGCT






A






S210-896
CAGGTGCAGCTGGTGGAGTCTGGGG
2731
GAAATTGTGTTGACGCAGTCTCCA
2780



GAGGCGTGGTCCAGCCTGGGAGGTC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTCAGTAGCTATGCTA

CCAGTCAGAGTATTAGCAGCAACT




TGCACTGGGTCCGCCAGGCTCCAGG

ACTTAGCCTGGTACCAGCAGAAAC




CAAGGGGCTGGAGTGGGTGGCAGTT

CTGGCCAGGCTCCCAGGCTCCTCAT




ATATCATATGATGGAGGCAATAAAT

CTATGGTGCATCCAGCAGGGCCAC




ACTACGCAGACTCCGTGAAGGGCCG

TGGCATCCCAGACAGGTTCAGTGG




ATTCACCATCTCCAGAGACAATTCC

CAGTGGGTCTGGGACAGACTTCAC




AAGAACACGCTGTATCTGCAAATGA

TCTCACCATCAGCAGACTGGAGCC




ACAGCCTGAGAGCTGAGGACACGG

TGAAGATTTTGCAGTGTATTACTGT




CTGTGTATTACTGTGCGAGAGGACA

CAGCAGTATGGTAGCTCACCTCTC




TGGGAACTACCTTACCTACTTTGAC

ACTTTCGGCCCTGGGACCAAAGTG




TACTGGGGCCAGGGAACCCTGGTCA

GATATCAAACGAACTGTGGCTGCA




CCGTCTCCTCAGGGAGTGCATCCGC

CCATCTGTCTTCATCTTCCCGCCAT




CCCAACCCTTTTCCCCCTCGTCTCCT

CTGATGAGCAGTTGAAATCTGGAA




GTGAGAATTCCCCGTCGGATACGAG

CTGCCTCTGTTGTGTGCCTGCTGAA




CAGCGTG

TAACTTCTATCCCAGAGAGGCCAA






AGTACAGTGGAAGGTGGATAACGC






S2141-
GAGGTGCAGCTGGTGGAGTCCGGG
2732
AATTTTATGCTGACTCAGCCCCACT
2781


113
GGAGGCTTAGTTCAGCCTGGGGGGT

CTGTGTCGGAGTCTCCGGGGAAGA




CCCTGAGACTCTCCTGTGCAGCCTC

CGGTAACCATCTCCTGCACCGGCA




TGGATTCACCTTCAGTAGCTCCTGG

GCAGTGGCAGCATTGCCAGCAACT




ATACACTGGGTCCGCCAAGCTCCAG

ATGTGCAGTGGTACCAGCAGCGCC




GGAAGGGGCTGGTGTGGGTCTCACG

CGGGCAGTGCCCCCACCACTGTGA




TATTAATAGTGATGGGAGTAGCACA

TCTATGAGGATAACCAAAGACCCT




ACCTACGCGGACTCCGTGAAGGGCC

CTGGGGTCCCTGATCGGTTCTCTGG




GATTCACCATCTCCAGAGACAACGC

CTCCATCGACAGCTCCTCCAACTCT




CAAGAACACGCTGTTTCTGCAAATG

GCCTCCCTCACCATCTCTGGACTGA




AACAGTCTGAGAGCCGAGGACACG

AGACTGAGGACGAGGCTGACTACT




GCTGTGTATTACTGTGCAAGAGCGG

ACTGTCAGTCTTATGATACCAGCA




AGTGGCTACGCGGGCAGTTTGACTA

ATCATGTGGTATTCGGCGGAGGGA




CTGGGGCCAGGGAACCCTGGTCACC

CCAAGCTGACCGTCCTAGGTCAGC




GTCTCCTCACCACCCACCAAGGCTC

CCAAGGCTGCCCCCTCGGTCACTCT




CGGATGTGTTCCCCATCATATCAGG

GTTCCCGCCCTCCTCTGAGGAGCTT




GTGCAGACACCCAAAGGATAACAG

CAAGCCAACAAGGCCACACTGGTG




CCCTGTGGTCCTGGCATGCTTGATA

TGTCTCATAAGTGACTTCTACCCGG




ACTGGGTACCACCCAACGTCCGTGA

GAGCCGTGACAGTGGCCTGGAAGG




CTGTCACCTGGTACATGGGGACACA

CAGATAGCAGCCCCGTCAAGGCGG




GAGCCAGCCCCAGAGAACCTTCCCT

GAGTGGAGACCACCACACCCTCCA




GAGATACAAAGACGGGACAGCTAC

AACAAAGCAACAACAAGTACGCGG




TACATGACAAGCAGCCAGCTCTCCA

CCAGCAGCTACCTGAGCCTGACGC




CCCCCCTCCAGCAGTGGCGCCAAGG

CTGAGCAGTGGAAGTCCCACA




CGAGTACAAATGCGTGGTCCAGCA








S2141-126
GAGGTGCAGCTGGTGCAGTCTGGAG
2733
GACATCCAGATGACCCAGTCTCCTT
2782



CAGAGGTGAAAAACCCGGGGGAGT

CCACCCTGTCTGCATCTGTAGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

ACAGAGTCACCATCACTTGCCGGG




TGGATACAGGTTTACCACCTACTGG

CCAGTCAGAGTATTAGTAGCTGGT




ATCGGCTGGGTGCGCCAGATGCCCG

TGGCCTGGTATCAGCAGAAACCAG




GGAAAGGCCTGGAGTGGATGGGGA

GGAAAGCCCCTAAGCTCCTGATCT




TCATCTATCCTGGTGACTCTGATACC

ATGATGCCTCCAGTTTGGAAAGTG




AGATACAGCCCGTCCTTCGAAGGCC

GGGTCCCATCAAGGTTCAGCGGCA




AGGTCACCATCTCAGCCGACAAGTC

GTGGATCTGGGACAGAATTCACTC




CATCAGCACCGCCTACCTGCAGTGG

TCACCATCAGCAGCCTGCAGCCTG




AGCAGCCTGAAGGCCTCGGACACCG

ATGACTTTGCAACTTATTACTGCCA




CCATGTATTACTGTGCGAGGCACCC

ACAGTATAATAGTCATTGGACGTT




CCTGGGCTTGGGGGGAAGTATTGAC

CGGCCAAGGGACCAAGGTGGAAAT




TACTGGGGCCAGGGAACCCTGGTCA

CAAACGAACTGTGGCTGCACCATC




CCGTCTCCTCAGCCTCCACCAAGGG

TGTCTTCATCTTCCCGCCATCTGAT




CCCATCGGTCTTCCCCCTGGCACCCT

GAGCAGTTGAAATCTGGAACTGCC




CCTCCAAGAGCACCTCTGGGGGCAC

TCTGTTGTGTGCCTGCTGAATAACT




AGCGGCCCTGGGCTGCCTGGTCAAG

TCTATCCCAGAGAGGCCAAAGTAC




GACTACTTCCCCGAACCGGTGACGG

AGTGGAAGGTGGATAACGCCCTCC




TGTCGTGGAACTCAGGCGCCCTGAC

AATCGGGTAACTCCCAGGAGAGTG




CAGCGGCGTGCACACCTTCCCGGCT

TCACAGAGCAGGACAGCAAGGACA




GTCCTACAGTCCTCAGGACTCTACT

GCACCTACAGCCTCAGCAGCACCC




CCCTCAGCAGCGTGGTGACCGTGCC

TGACGCTGAGCAAAGCAGACTACG




CTCCAGCAGCTTGGGCACCCAGACC

AGAA




TACATCTGCAACGTGAATCACAAGC






CCACCTTGGTGTTGCTGGGCTTGTG






ATTCAC








S2141-16
CAGGTGCAGTTACAGCAGTGGGGCG
2734
TCCTATGAACTGACTCAGTCACTCT
2783



CAGGACTGTTGAAGCCTTCGGAGAC

CAGTGTCAGTGGCCCTGGGACAGA




CCTGTCCCGCACCTGCGCTGTCTAT

CGGCCAGAATTCCCTGTGGGGGAA




GGTGGGTCCTTCAGTGGTTACTACT

ACAACATTGGAAGTAAAAATGTGC




GGAGCTGGATCCGCCAGACCCCAGG

ACTGGTACCAGCAGAAGCCAGGCC




GAAGGGGCTGGAGTGGATTGGGGA

AGGCCCCTGTGCTGGTCATCTACA




AATCAATCATGATGGAAGCACCATC

GCGATCGCAACCGGCCCTCTGGGA




TACAACCCGTCCCTCAAGAGTCGAG

TCCCTGAGCGATTCTCAGGCTCCAA




TCACCATATCGATAGACACGTCCAA

CTCGGGGAACACGGCCACCCTGAC




GAACCAGTTCTCCCTGCAACTGAGC

CATCAGCAGAGCCCAAGCCGGGGA




TCTGTGACCGCCGCGGACACGGCTG

TGAGGCTGACTATTACTGTCAGGT




TGTACTACTGTGCGAGAGGGTCTAA

GTGGGACAGTAGCTCTGTGGTATT




TCCTGGGGACTACTGGGGCCAGGGA

CGGCGGAGGGACCAAGCTGACCGT




GCCCTGGTCACCGTCTCCTCAGCAC

CCTACGTCAGCCCAAGGCTGCCCC




CCACCAAGGCTCCGGATGTGTTCCC

CTCGGTCACTCTGTTCCCGCCCTCC




CATCATATCAGGGTGCAGACACCCA

TCTGAGGAGCTTCAAGCCAACAAG




AAGGATAACAGCCCTGTGGTCCTGG

GCCACACTGGTGTGTCTCATAAGT




CATGCTTGATAACTGGGTACCACCC

GACTTCTACCCGGGAGCCGTGACA




AACGTC

GTGGCCTGGAAGGCAGATAGCAGC






CCCGTCAAGGCGGGAGTGGAGACC






ACCACACCCTCCAAACAAAGCAAC






AACAAGTACGCGGCCAGCAGCTAT






CTGAGCCTGACGCCTGAGCAGTGG






AAGTCCCACA






S2141-62
CAGGTGCACCTGCAGGAGTCGGGCC
2735
CAGTCTGCCCTGACTCAGCCTACCT
2784



CAGGACTGGTGAAGCCTTCACAGAC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTGTCCCTCACTTGCACTGTCTCTG

GATCACCATCTCCTGCACTGGAAC




GTGTCTCCATCACCACTAGTGGCTC

CAGCAGTGATGTTGGGCGTTATAA




CTACTGGAGCTGGATCCGCCAGTGC

CCTTGTCTCCTGGTACCAACAGTAC




CCAGGGAAGGGCCTGGAGTGGATT

CCAGGCAAAGCCCCCAAACTCATC




GGATACATCTATTCCACTGGGACCA

ATTTTTGAGGTCAGTAAGCGGCCCT




CCTACTACAGTCCGTCCCTCAAGAG

CAGGGGTCTCTGATCGCTTCTCTGC




TCGACTTACCATATCCCTAGACACG

CTCAAAGTCTGGCAACACGGCCTC




TCTAGGAACCAATTCTCCCTGAACC

CCTGACAATCTCTGGGCTCCAGGCT




TGAGTTCTGTGACTGCCGCGGACAC

GACGACGAGGCTGATTATTACTGC




GGCCGTGTTTTTCTGTGCTAGAAAA

TGCACATATGCTCTTACATTTTTGT




ACCTACATGGACTACTTTGACTACT

TCGGCGGAGGGACCAAAGTGACCG




GGGGCCAGGGAGCCCTGATCACCGT

TCCTAGGTCAGCCCAAGGCTGCCC




CTCCTCAGCCTCCACCAAGGGCCCA

CCTCGGTCACTCTGTTCCCGCCCTC




TCGGTCTTCCCCCTGGCACCCTCCTC

CTCTGAGGAGCTTCAAGCCAACAA




CAAGAGCACCTCTGGGGGCACAGC

GGCCACACTGGTGTGTCTCATAAG




GGCCCTGGGCTGCCTGGTCAAGGAC

TGACTTCTACCCGGGAGCCGTGAC




TACTTCCCCGAACCGGTGACGGTGT

AGTGGCCTGGAAGGCAGATAGCAG




CGTGGAACTCAGGCGCCCTGACCAG

CCCCGTCAAGGCGGGAGTGGAGAC




CGGCGTGCACACCTTCCCGGCTGTC

CACCACACCCTCCAAACAAAGCAA




CTACAGTCCTCAGGA

CAACAAGTACGCGGCCAGCAGCTA






TCTGAGCCTGACGCCTGAGCAGTG






GAAGTCCCAC






S2141-63
GAGGTGCAGTTGTTGGAGTCTGGGG
2736
GACATCCAGATGACCCAGTCTCCA
2785



GAGGCTTGGTACAGCCTGGGGGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGGGTCACCATCACTTGCCGGT




GGATTCACCTTTTACGACTATGCCA

CAGGTCAGAGCATTAGCACCTATT




TGAACTGGGTCCGCCAGACTCCAGG

TAAATTGGTATCAGCAGAAACCAG




GGAGGGGCTGGAGTGGGTCTCAGCC

GAAAAGCCCCTAAACTCCTGATCT




ATTAGTGGCAGTGGTGATCCCACAT

ATGCTTCATCCAGTTTGCAAAGTGG




ACTACGCAGACTCCGTGAACGGCCG

GGTCCCATCAAGGTTCAGTGGCAG




CTTCACCATCTCCAGAGACAATTCC

TGGATCTGGGACAGATTTCACTCTC




AAGAACACACTGTATCTGCAAATGA

ACCATCAGCAGTCTGCAACCTGAA




ACAGTCTGAGAGCCGAGGATACGG

GATTTTGCAACTTACTACTGTCAAC




CCATATATTATTGTGCGAAAGACAT

AGAGTTTCCTTCCCCCTCGAACTTT




GGAGGACTTCGGTTTTAGTTGGGGC

TGGCCAGGGAACCAAGCTGGAGAT




CAGGGAACCCTGGTCACCGTCTCCT

CAAACGAACTGTGGCTGCACCATC




CAGCACCCACCAAGGCTCCGGATGT

TGTCTTCATCTTCCCGCCATCTGAT




GTTCCCCATCATATCAGGGTGCAGA

GAGCAGTTGAAATCTGGAACTGCC




CACCCAAAGGATAACAGCCCTGTGG

TCTGTTGTGTGCCTGCTGAATAACT




TCCTGGCATGCTTGATAACTGGGTA

TCTATCCCAGAGAGGCCAAAGTAC




CCACCCAACGTCCGTGACTGTCACC

AGTGGAAGGTGGATAACGCCCTCC




TGGTACATGGG

AATCGGGTAACTCCCAGGAGAGTG






TCACAGAGCAGGACAGCAAGGACA






GCACCTACAGCCTCAGCAGCACCC






TGACGCTGAGCAAAGCAGACTACG






AGAA






S2141-65
GACGTGCAGCTGGTGCAGTCTGGAG
2737
GACATCCAGATGACCCAGTCTCCTT
2786



CAGAGGTGACAAAGCCGGGGGAGT

CCACCCTGTCTGCATCTGTAGGAG




CTCTGAAGATCTCCTGTAAGGGTTC

ACAGAGTCACCATCACTTGCCGGG




TGGATACAGCTTTACCACCTACTGG

CCAGTCAGAGTATTAGTAGCTGGT




ATCGGCTGGGTGCGCCAGATGCCCG

TGGCCTGGTATCAGCAGAAACCAG




GGAAAGGCCTGGAGTGGATGGGGA

GGAAAGCCCCTAAGCTCCTGATCT




TCATCTATCCTGGTGACTCTGATACC

ATGATGCCTCCAGTTTGGAAGGTG




AGATACAGCCCGTCCTTCCAAGGCC

GGGTCCCATCAAGGTTCAGCGGCA




AGGTCACCATCTCAGTCGACAAGTC

GTGGATCTGGGACAGAATTCACTC




CATCAGCACCGCCTACCTGCAGTGG

TCACCATCAGCAGCCTGCAGCCTG




AGCAGCCTGAAGGCCTCGGACACCG

ATGATTTTGCAACTTATTACTGCCA




CCATGTATTACTGTGCGAGACAGTT

ACAGTATAATAGTTATCCCCGGAC




TTGTGGTGGTGACTGCCCCTTTGACT

GTTCGGCCAAGGGACCAAGGTGGA




ACTGGGGCCGGGGAACCCTGGTCAC

AATCAAACGAACTGTGGCTGCACC




CGTCTCCTCAGCTTCCACCAAGGGC

ATCTGTCTTCATCTTCCCGCCATCT




CCATCGGTCTTCCCCCTGGCGCCCT

GATGAGCAGTTGAAATCTGGAACT




GCTCCAGGAGCACCTCTGGGGGCAC

GCCTCTGTTGTGTGCCTGCTGAATA




AGCGGCCCTGGGCTGCCTGGTCAAG

ACTTCTATCCCAGAGAGGCCAAAG




GACTACTTCCCCGAACCGGTGACGG

TACAGTGGAAGGTGGATAACGCCC




TGTCGTGGAACTCAGGCGCCCTGAC

TCCAATCGGGTAACTCCCAGGAGA




CAGCGGCGTGCACACCTTCCCGGCT

GTGTCACAGAGCAGGACAGCAAGG




GTCCTACAGTCCTCAGGACTCTACT

ACAGCACCTACAGCCTCAGCAGCA




CCCTCAGCAGCGTGGTGACCGTGCC

CCCTGACGCTGAGCAAAGCAGACT




CTCCAGCAGCTTGGGCACCCAGACC

ACGAGAA




TACACCTGCAACGTGAATCACAAGC






CCAGCAACACCAAGGTGGACAA








S2141-97
CAGGTCCAGCTTGTGCAGTCTGGGG
2738
GAAATTGTGTTGACGCAGTCTCCA
2787



CTGAGGTGAAGAAGCCTGGGGCCTC

GGCACCCTGTCTTTGTCTCCAGGGG




AGTGAAGGTTTCCTGCAAGGCTTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATACACCTTCACTAGATATGGTA

CCAGTCAGAGAGTTAGCAGCAGCT




TGCATTGGGTGCGCCAGGCCCCCGG

ACATAGCCTGGTACCAGCAGAAAC




ACAAAGGCTTAAGTGGATGGGATG

CTGGCCAGGCTCCCAGGCTCCTCAT




GATCAACGCTGGCAATGGTAACACA

CTTTGGTACATCCAGCAGGGCCAC




AAATATTCACAGAAGTTCCAGGGCA

TGGCATCCCAGACAGGTTCAGTGG




GACTCACCATTAGCAGGGACACATC

CAGTGGGTCCGGGACAGACTTCAC




CGCGAGCACAGCCTACATGGAGGTG

TCTCACCATCAGCAGACTGGAGCC




AGCAGTCTGAGATCTGAAGACACGG

TGAAGATTTTGCACTGTATTACTGT




CTGTGTATTACTGTGCGAGATCGGG

CAACAGTATGGTAGCTCACCGTAC




TATAGCAGCAGCTGGTAGTAAAGTA

ACTTTTGGCCAGGGGACCAAGCTG




ATCTACTACTACGATATGGACGTCT

GAGATCAAACGAACTGTGGCTGCA




GGGGCCAAGGGACCACGGTCACCG

CCATCTGTCTTCATCTTCCCGCCAT




TCTCCTCAGCACCCACCAAGGCTCC

CTGATGAGCAGTTGAAATCTGGAA




GGATGTGTTCCCCATCATATCAGGG

CTGCCTCTGTTGTGTGCCTGCTGAA




TGCAGACACCCAAAGGATAACAGC

TAACTTCTATCCCAGAGAGGCCAA




CCTGTGGTCCTGGCATGCTTGATAA

AGTACAGTGGAAGGTGGATAACGC




CTGGGTACCACCCAACGTCCGTGAC

CCTCCAATCGGGTAACTCCCAGGA




TGTCACCTGGTACATGGGGACACAG

GAGTGTCACAGAGCAGGACAGCAA




AGCCAGCCCCAGAGAACCTTCCCTG

GGACAGCACCTACAGCCTCAGCAG




AGATACAAAGACGGGACAGCTACT

CACCCTGACGCTGAGCAAAGCAGA




ACATGACAAGCAGCCAGCTCTCCAC

CTACGAGAA




CCCCCTCCAGCAGTGGCGCCAAGGC






GAGTACAAATGCGTGGTCCAGCA








S24_342
CAGGTGCAACTGGTGCAGTCTGGGG
2739
CACTCTGCCCTGACTCAGCCTCCCT
2788



CTGAGGTGAAGATGCCTGGGGCCTC

CCGCGTCTGGGTCTCCTGGACAGTC




AGTGATTGTTTCCTGCAAGGCATCT

AGTCACCATTTCCTGCACTGGAACC




GGATACACCTTCAGCACCTACTATA

AGCAGTGACGTTGGTGGTTATAAC




TTCACTGGGTGCGACAGGCCCCTGG

CATGTCTCCTGGTACCAACAGCAC




ACAAGGGCTTGAGTGGATGGGAAG

CCAGGCAAAGCCCCCAAATTAATG




AATCACCCCCCGCGATGGTGACACA

GTTTATGAGGTCAATCAGCGGCCC




ACCTACGCACAGGTGTTGCAGGGCA

TCAGGGGTCCCTGATCGCTTCACTG




GAGTCACATTGACCAGGGACACGTC

GCTCCAAGTCTGGCAACACGGCCT




CGCGAGCACAGCCTACATGGAGCTG

CCCTGACCGTCTCTGGGCTCCAGGC




AGCAGCCTGACATATGAGGACACG

TGAGGATGAGGCTGATTATTATTG




GCCGTCTATTATTGTGCGAGAGATG

CAACTCATATACAGACAGGAACAA




GACATCACTGGGACTTTGACTTCTG

GTGGGTGTTCGGCGGAGGGACCAG




GGGCCGGGGAACCCTGGTCGCCGTC

GCTGACCGTCCTAGGTCAGCCCAA




TCCTCAGCCTCCACCAAGGGCCCAT

GGCTGCCCCCTCGGTCACTCTGTTC




CGGTCTTCCCCCTGGCGCCCTGCTCC

CCGCCCTCCTCTGAGGAGCTTCAA




AGGAGCACCTCCGAGAGCACAGCG

GCCAACAAGGCCACACTGGTGTGT




GCCCTGGGCTGCCTGGTCAAGGACT

CTCATAAGTGACTTCTACCCGGGA




ACTTCCCCGAACCGGTGACGGTGTC

GCCGTGACAGTGGCCTGGAAGGCA




GTGGAACTCAGGCGCCCTGACCAGC

GATAGCAGCCCCGTCAAGGCGGGA




GGCGTGCACACCTTCCCGGCTGTCC

GTGGAGACCACCACACCCTCCAAA




TACAGTCCTCAGG

CAAAGCAACAACAAGTACGCGGCC






AGCAGCTA






S24-1047
CAGGTGCAGCTGAAGCAGTCTGGGG
2740
CACTCTGCCCTGACTCAGCCTCCCT
2789



CTGAGGTGAAGGAGCCCGGGGGCT

CCGCGTCTGGGTCTCCTGGACAGTC




CAGTGAAGCTTTCCTGCAAGGCGTC

AGTCACCATTTCCTGCACTGGAACC




TGGATACACCTTCACCTCCCGCTAT

AGCGATGACGTTGGTGGTTATAAC




ATACACTGGGTGCGACAGGCCCCTG

CATGTCTCCTGGTATCAACAGCACC




GACAAGGGCTTGAGTGGGTGGGAA

CAGGCAAAGCCCCCAAATTAGTGA




GACTTATTCCCAGTGACGGTGGCAC

TTTATGAGGTCACTGAGCGGCCCTC




AACCTACGCACAGAAATTTCGCGGC

AGGGGTCCCTGATCGCTTCACTGG




AGAGTCACCATGACCAGCGACACGT

CTCCAAGTCTGGCAACACGGCCTC




CCGCGACCACAGCCTACATGGAGCT

CCTGACCGTCTCTGGGCTCCAGGCT




GAGCAGCCTTGGATCTGGCGACACG

GAGGATGAGGCTGATTATTACTGC




GCCGTCTATTACTGTGCGCGAGACG

AACTCATATAAAAGGGGCAACACT




GGACTCACTGGGACTTTGACTTCTG

TGGGTGTTCGGCGGAGGGACCAGG




GGGCCAGGGAACCCTGGTCACCGTC

CTGACCGTCCTAGGTCAGCCCAAG




TCCTCTGCATCCCCGACCAGCCCCA

GCTGCCCCCTCGGTCACTCTGTTCC




AGGTCTTCCCGCTGAGCCTCGACAG

CGCCCTCCTCTGAGGAGCTTCAAG




CACCCCCCAAGATGGGAACGTGGTC

CCAACAAGGCCACACTGGTGTGTC




GTCGCATGCCTGGTCCAGGGCTTCT

TCATAAGTGACTTCTACCCGGGAG




TCCCCCAGGAGCCACTCAGTGTGAC

CCGTGACAGTGGCCTGGAAGGCAG




CTGGAGCGAAAGCGGACAGAACGT

ATAGCAGCCCCGTCAAGGCGGGAG




GACCGCCAGAAACTTCCC

TGGAGACCACCACACCCTCCAAAC






AAAGCAACAACAAGTACGCGGCCA






GCAGCTA






S24-223
CAGATCACCTTGAAGGAGTCTGGTC
2741
CAGTCTGCCCTGACTCAGCCTGCCT
2790



CTACGCTGGTGAAACCCACACAGAC

CCGTGTCTGGGTCTCCTGGACAGTC




CCTCACGCTGACCTGCACCTTCTCTG

GATCACCATCTCCTGCACTGGAAC




GGTTCTCACTCAACACTAGTGGAGT

CAGCAGTGACGTTGGTGGTTATAA




GGGTGTGGGCTGGATCCGTCAGCCC

CTATGTCTCCTGGTACCAACAACAC




CCAGGAAAGGCCCTGGAGTGGCTTG

CCAGGCAAAGCCCCCAAACTCATG




CACTCATTTATTGGGATGATGATAA

ATTTATGATGTCAGTAATCGGCCCT




GCGCTACAGCCCATCTCTGAAGAGC

CAGGGGTTTCTAATCGCTTCTCTGG




AGGCTCACCATCACCAAGGACACCT

CTCCAAGTCTGGCAACACGGCCTC




CCAAAAACCAGGTGGTCCTTACAAT

CCTGACCATCTCTGGGCTCCAGGCT




GACCAACATGGACCCTGTGGACACA

GAGGACGAGGCTGATTATTACTGC




GCCACATATTACTGTGCACACCATA

AACTCATATACAAGCAGCAGCACT




CGATTGTTCCAATTTTTGACTACTGG

CTCGTGGTATTCGGCGGAGGGACC




GGCCAGGGAACCCTGGTCACCGTCT

AAGCTGACCGTCCTAGGTCAGCCC




CCTCAGGGAGTGCATCCGCCCCAAC

AAGGCTGCCCCCTCGGTCACTCTGT




CCTTTTCCCCCTCGTCTCCTGTGAGA

TCCCGCCCTCCTCTGAGGAGCTTCA




ATTCCCCGTCGGATACGAGCAGCGT

AGCCAACAAGGCCACACTGGTGTG




G

TCTCATAAGTGACTTCTACCCGGGA






GCCGTGACAGTGGCCTGGAAGGCA






GATAGCAGCCCCGTCAAGGCGGGA






GTGGAGACCACCACACCCTCCAAA






CAAAGCAACAACAAGTACGCGGCC






AGCAGCTATCTGAGCCTGACGCC






S24-237
CAGGTGCAGCTGCAGGAGTCGGGCC
2742
GACATCGTGATGACCCAGTCTCCA
2791



CAGGACTGGTGAAGCCTTCGGGGAC

GACTCCCTGGCTGTGTCTCTGGGCG




CCTGTCCCTCACCTGCTCTGTCTCTG

AGAGGGCCACCATCAACTGCAAGT




GTGGCTCCATCAATAGTTCCTTCTG

CCAGCCAGACTGTTTCATACACCTC




GAGCTGGATCCGGCAGCCCCCAGGG

CAACAATAAGAACTACCTAGCTTG




AAGGGACTGGAGTGGATTGGGTATA

GTACCAGCAGAAACCAGGACAGCC




TCTATTACCGTGGGAGCACCAATTA

TCCTAACCTGCTCATTTACTGGGCA




CAACCCCTCCCTCAAGAGTCGAGTC

TCTACCCGGGAATCCGGGGTCCCT




ACCATATCAGTGGACACGTCCAACA

GACCGATTCAGTGGCAGCGGGTCT




ATCAGTTCTCCCTGAAGCTGACCTC

GGGACAGATTTCACTCTCACCATC




TATGACCGCTGCGGACTCGGCCGTG

AACAGCCTGCAGGCTGAAGATGTG




TATTACTGTGCGCGAGAAACCCGAT

GCAGTTTATTACTGTCAGCAATATT




ACAACTGGTTCGACTCCTGGGGCCA

ATACTACTCCGTGGACGTTCGGCC




GGGAACCCGGGTCACCGTCTCCTCA

AAGGGACCAAGGTGGAAATCAAAC




GCCTCCACCAAGGGCCCATCGGTCT

GAACTGTGGCTGCACCATCTGTCTT




TCCCCCTGGCGCCCTGCTCCAGGAG

CATCTTCCCGCCATCTGATGAGCAG




CACCTCCGAGAGCACAGCGGCCCTG

TTGAAATCTGGAACTGCCTCTGTTG




GGCTGCCTGGTCAAGGACTACTTCC

TGTGCCTGCTGAATAACTTCTATCC




CCGAACCGGTGACGGTGTCGTGGAA

CAGAGAGGCCAAAGTACAGTGGAA




CTCAGGCGCCCTGACCAGCGGCGTG

GGTGGATAACGC




CACACCTTCCCGGCTGTCCTACAGT






CCTCAGGA








S305-1456
CAGGTCCAGCTGGTACAGTCTGGGG
2743
GAAATAGTGATGACGCAGTCTCCA
2792



CTGAGGTGAAGAAGCCTGGGGCCTC

GCCACCCTGTCTGTGTCTCCAGGGG




AGTGAAGGTCTCCTGCAAGGTTTCC

AAAGAGCCACCCTCTCCTGCAGGG




GGATACACCCTCACTGAATTATCCA

CCAGTCAGAATGTTAGCAGCAACT




TGCACTGGGTGCGGCAGGCTCCTGG

TAGCCTGGTACCAACAGAAACCTG




AAAAGGGCTTGAGTGGATGGGAGG

GCCAGGCTCCCAGGCTCCTCATCTA




TTTTGATCCTGAAGATGCTGAAACA

TGGTGCATCCACCAGGGCCACTGG




ATCTACGCACAGAAGTTCCAGGGCA

TATCCCGGCCAGGTTCAGTGGCAG




GAGTCACCATGACCGAGGACACATC

TGGGTCTGGGACAGAGTTCACTCT




TACAGACACAGCCTACATGGAGCTG

CACCATCAGCAGCCTGCAGTCTGA




AGCAGCCTGAGATCTGAGGACACG

AGATTTTGCAGTTTATTACTGTCAG




GCCGTGTATTACTGTGCAACAGGGG

CAGTATAATAACTGGCCTCACACTT




GCTTTCCCGTCAATAGCCTTTACGAT

TCGGCCCTGGGACCAAAGTGGATA




ATTTTGACTGGTTACCTTGACTACTG

TCAAACGAACTGTGGCTGCACCAT




GGGCCAGGGAACCCTGGTCACCGTC

CTGTCTTCATCTTCCCGCCATCTGA




TCCTCAGCCTCCACCAAGGGCCCAT

TGAGCAGTTGAAATCTGGAACTGC




CGGTCTTCCCCCTGGCGCCCTGCTCC

CTCTGTTGTGTGCCTGCTGAATAAC




AGGAGCACCTCCGAGAGCACAGCG

TTCTATCCCAGAGAGGCCAAAGTA




GCCCTGGGCTGCCTGGTCAAGGACT

CAGTGGAAGGTGGATAACGC




ACTTCCCCGAACCGGTGACGGTGTC






GTGGAACTCAGGCGCTCTGACCAGC






GGCGTGCACACCTTCCCAGCTGTCC






TACAGTCCTCAGGA








S305-223
CAGGTGCAGTTGGTGGAGTCTGGGG
2744
GAAATTGTGTTGACACAGTCTCCA
2793



GAGGCGTGGTCCAGCCTGGAAGGTC

GCCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCGTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTCAGAAACTTTGGCA

CCAGTCAGAGTGTTAGCACCTCCTT




TGCACTGGGTCCGCCAGGCTCCAGG

AGCCTGGTACCAACAGAAATGTGG




CAAGGGGCTGGAGTGGGTGGCATTT

CCAGGCTCCCCGGCTCCTCATCTAT




ATATGGACTGCTGAAAGTGATAAAT

GATGCATCCAACAGGGCCACTGGC




TCTATGCAGACTCCGTGAAGGGCCG

ATCCCAGCCAGGTTCAGTGGCAGT




ATTCACCGTCTCCAGAGACAATTCG

GGGTCTGGGACAGACTTCACTCTC




AAGAACACGCTGTATTTGGAAATGA

ACCATCAGCAGCCTAGAGCCTGAA




ACAGCCTGAGAGCCGAGGACACGG

GATTTTGCAGTTTATTACTGTCAAC




CTGTGTATTACTGTACGAAAGCGAT

AGCGTGGCAACTGGCCCTTCACTTT




GGACGTCTGGGGCAGAGGGACCAC

CGGCCCTGGGACCAGAGTGGATAT




GGTCACCGTCTCCTCAGCATCCCCG

CAAACGAACTGTGGCTGCACCATC




ACCAGCCCCAAGGTCTTCCCGCTGA

TGTCTTCATCTTCCCGCCATCTGAT




GCCTCTGCAGCACCCAGCCAGATGG

GAGCAGTTGAAATCTGGAACTGCC




GAACGTGGTCATCGCCTGCCTGGTC

TCTGTTGTGTGCCTGCTGAATAACT




CAGGGCTTCTTCCCCCAGGAGCCAC

TCTATCCCAGAGAGGCCAAAGTAC




TCAGTGTGACCTGGAGCGAAAGCGG

AGTGGAAGGTGGATAACGC




ACAGGGCGTGACCGCCAGAAACTTC






CC








S305-399
CAGGTCCAGCTGGTACAGTCTGGGG
2745
GAAATAGTGATGACGCAGTCTCCA
2794



CTGAGGTGAAGAAGCCTGGGGCCTC

GCCACCCTGTCTGTGTCTCCAGGGG




AGTGAAGGTCTCCTGCAAGGTTTCC

AAAGAGCCACCCTCTCCTGCAGGG




GGATACACCCTCACTGAATTATCCA

CCAGTCAGAGTATTACTAGCAACT




TGCACTGGGTGCGACAGGCTCCTGG

TAGCCTGGTACCAGCAGAAACCTG




AAAAGGGCTTGAGTGGATGGGAGG

GCCAGGCTCCCAGGCTCCTCATCTA




TTTTGATCCTGAAGATGGTGAAACA

TGGTGCATCCACCAGGGCCACTGG




ATCTACGCACAGAAGTTCCAGGGCA

TATCCCAGCCAGGTTCAGTGGCAG




GAGTCACCATGACCGAAGACACATC

TGGGTCTGGGACAGAGTTCACTCT




TACAGACACAGCCTACATGGAGCTG

CACCATCAGCAACCTGCAGTCTGA




AGCAGCCTGAGATCTGAGGACACG

AGATTTTGCAGTTTATTACTGTCAG




GCCGTGTATTACTGTGCAACAGGGG

CAGTATAATAACTGGCCTCTGACG




GATTGGGTTGTTCTAATGGGGTATG

TTCGGCCAAGGGACCAAGGTGGAA




CAACAACTGGTTCGACCCCTGGGGC

ATCAAACGAACTGTGGCTGCACCA




CTGGGAACCCTGGTCACCGTCTCCT

TCTGTCTTCATCTTCCCGCCATCTG




CAGGGAGTGCATCCGCCCCAACCCT

ATGAGCAGTTGAAATCTGGAACTG




TTTCCCCCTCGTCTCCTGTGAGAATT

CCTCTGTTGTGTGCCTGCTGAATAA




CCCCGTCGGATACGAGCAGCGTG

CTTCTATCCCAGAGAGGCCAAAGT






ACAGTGGAAGGTGGATAACGCCCT






CCAATCGGGTAACTCCCAGGAGAG






TGTCACAGAGCAGGACAGCAA






S305-968
GAGGTGCAGCTGGTGGAGTCTGGGG
2746
TCCTATGAGCTGACTCAGCCACCCT
2795



GAGGCTTGGTCCAGCCTGGGGGGTC

CAGTGTCCGTGTCCCCAGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGCCAGCATCACCTGCTCTGGAG




GGATTCACCTTTAGTAGCTATTGGA

ATAAATTGGGGGATAAATATGCTT




TGAGCTGGGTCCGCCAGGCTCCAGG

GCTGGTATCAGCAGAAGCCAGGCC




GAAGGGGCTGGAGTGGGTGGCCAA

AGTCCCCTGTGCTGGTCATCTATCA




CATAAAGCAAGATGGAAGTGAGAA

AGATAGCAAGCGGCCCTCAGGGAT




ATACTATGTGGACTCTGTGAAGGGC

CCCTGAGCGATTCTCTGGCTCCAAC




CGATTCACCATCTCCAGAGACAACG

TCTGGGAACACAGCCACTCTGACC




CCAAGAACTCACTGTATCTGCAAAT

ATCAGCGGGACCCAGGCTATGGAT




GAACAGCCTGAGAGCCGAGGACAC

GAGGCTGACTATTACTGTCAGGCG




GGCCGTGTATTACTGTGCGAGGGAT

TGGGACAGCAGCACTAATGTGGTA




AGTATAGCAGTGGCTGGGGGCTTTG

TTCGGCGGAGGGACCAAGCTGACC




ACTACTGGGGCCAGGGAACCCTGGT

GTCCTAGGTCAGCCCAAGGCTGCC




CACCGTCTCCTCAGGGAGTGCATCC

CCCTCGGTCACTCTGTTCCCGCCCT




GCCCCAACCCTTTTCCCCCTCGTCTC

CCTCTGAGGAGCTTCAAGCCAACA




CTGTGAGAATTCCCCGTCGGATACG

AGGCCACACTGGTGTGTCTCATAA




AGCAGCGTG

GTGACTTCTACCCGGGAGCCGTGA






CAGTGGCCTGGAAGGCAGATAGCA






GCCCCGTCAAGGCGGGAGTGGAGA






CCACCACACCCTCCAAACAAAGCA






ACAACAAGTACGCGGCCAGCAGCT






ACCTGAGCCTGACGCCTGAGCAGT






GGAAGTCCCAC






S376-1070
CAGGTGCAGCTGGTGGAGTCTGGGG
2747
CAGTCTGCCCTGACTCAGCCTCGCT
2796



GAGGCGTGGTCCAGCCTGGGAGGTC

CAGTGTCCGGGTCTCCTGGACAGT




CCTGAGACTCTCCTGTGCAGCGTCT

CAGTCACCATCTCCTGCACTGGAA




GGATTCACCTTCAGTAGCTATGGCA

GCAGCAGTGATGTTGGTCGTTATA




TGCACTGGGTCCGCCAGGCTCCAGG

ACTATGTCTCCTGGTACCAGCAAC




CAAGGGGCTGGAGTGGGTGGCAGTT

ACCCAGGCAAAGCCCCCAAACTCA




ATATGGTATGATGGAAGTAATAAAT

TGACTTATGATGTCACTAGGCGGC




ACTATGCAGACTCCGTGAAGGGCCG

CCTCAGGGGTCCCTGCTCGCTTCTC




ATTCACCATCTCCAGAGACAATTCC

TGGCTCCAAGTCTGACAACACGGC




AAGAACACGCTGTATCTGCAAATGA

CTCCCTGACCATCTCTGGGCTCCAG




ACAGCCTGAGAGCCGAGGACACGG

GCTGAGGATGAGGCCGATTATTAT




CTGTGTATTACTGTGCGAGGATGCG

TGTTGCTCATTTGCAGGCAGCTACA




TCCTGAATATTCCAGCGGGTTCGAC

CTGTGTTCGGCGGAGGGACCAAAC




CCCTGGGGCCAGGGAACCCTGGTCA

TGACCGTCCTGGGTCAGCCCAAGG




CCGTCTCCTCAGGGAGTGCATCCGC

CTGCCCCCTCGGTCACTCTGTTCCC




CCCAACCCTTTTCCCCCTCGTCTCCT

GCCCTCCTCTGAGGAGCTTCAAGC




GTGAGAATTCCCCGTCGGATACGAG

CAACAAGGCCACACTGGTGTGTCT




CAGCGTG

CATAAGTGACTTCTACCCGGGAGC






CGTGACAGTGGCCTGGAAGGCAGA






TGGCAGCCCCGTCAAGGTGGGAGT






GGAGACCACCAAACCCTCCAAACA






AAGCAACAACAAGTATGCGGCCAG






CAGCTACCTGAGCCTGACGCCCGA






GCAGTGGAAGTCCC






S376-1721
CAGGTGCAGTTGGTGCAGTCTGGGA
2748
CAGTCTGTGCTGACGCAGCCGCCC
2797



CTGAGGTGAGGGAGCCTGGGGCCTC

TCAGTGTCTGGGGCCCCAGGGCAG




AGTGAAAGTCTCCTGCAAGGCTTCT

AGGGTCACCATCTCCTGCACTGGG




GGATACACCTTCACCGGCTACTATG

AGCAGCTCCAACATCGGGGCAGGT




TGCACTGGGTGCGGCAGGCCCCTGG

TATGATGTACACTGGTACCAGCAG




ACAAGGACTTGAGTGGATGGGCTGG

CTTCCAGGAACAGCCCCCAAACTC




GTCAACCCTGGCAGTGGTGACACAC

CTCATCTATGGTAACAGCAATCGG




TCTATGCACAGAAGTTTCAGGGCAG

CCCTCAGGGGTCCCTGACCGATTCT




GTTCACCTTGACCAGGGACATGTCC

CTGGCTCCAAGTCTGGCACCTCAG




ATCACCACCGCCTACATGGAGCTGA

CCTCCCTGGCCATCACTGGGCTCCA




GCAGCCTGAGATCTGACGACTCGGC

GGCTGAGGATGAGGCTGATTATTA




CGTTTATTTCTGTTTCCGTGGATACA

CTGCCAGTCCTATGACAGCAGCCT




GCTATGCAACCTTTGACTACTGGGG

GAGTGGTTCTTTTTATGTCTTCGGA




CCAGGGAACCCTGGTCACCGTCTCC

ACTGGGACCAAGGTCACCGTCCTA




TCAGCATCCCCGACCAGCCCCAAGG

GGTCAGCCCAAGGCCAACCCCACT




TCTTCCCGCTGAGCCTCTGCAGCAC

GTCACTCTGTTCCCGCCCTCCTCTG




CCAGCCAGATGGGAACGTGGTCATC

AGGAGCTTCAAGCCAACAAGGCCA




GCCTGCCTGGTCCAGGGCTTCTTCC

CACTGGTGTGTCTCATAAGTGACTT




CCCAGGAGCCACTCAGTGTGACCTG

CTACCCGGGAGCCGTGACAGTGGC




GAGCGAAAGCGGACAGGGCGTGAC

CTGGAAGGCAGATAGCAGCCCCGT




CGCCAGAAACTTCCC

CAAGGCGGGAGTGGAGACCACCAC






ACCCTCCAAACAAAGCAACAACAA






GTACGCGGCCAGCAGCTA






S376-2486
CAGGTGCAGCTGGTGGAGTCTGGGG
2749
GAAATTGTGTTGACGCAGTCTCCA
2798



GAGGCGTGGTCCAGCCTGGGAGGTC

GGCACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGTCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTCAGTAGCTATGCTA

CCAGTCAGAGTGTTAGCCGCAACT




TGCACTGGGTCCGCCAGGCTCCAGG

ACTTAGCCTGGTACCAGCAGAAAC




CAAGGGGCTGGAGTGGGTGGCAGTT

CTGGCCAGGCTCCCAGGCTCCTCAT




ATATCATATGATGGAAGCAATAAAT

CTATAGTGCATCCAGCAGGGCCAC




ACTTCGCAGACTCCGTGAAGGGCCG

TGGCATCCCAGACAGGTTCAGTGG




ATTCACCATCTCCAGAGACAATTCC

CAGTGGGTCTGGGACAGACTTCAC




AAGAACACGCTGTATCTGCAAATGA

TCTCACCATCAGCAGACTGGAGCC




ACAGCCTGAGAGCTGAGGACACGG

TGAAGATTTTGCAGTGTATTACTGT




CTGTCTATTACTGTGCGAGAGGACG

CAGCAGTATGGTGGCTCACTCACTT




TGGGAACTACTTTACCTACTTTGACT

TCGGCGGAGGGACCAAGGTGGAGA




ACTGGGGCCAGGGAACCCTGGTCAC

TCAAACGAACTGTGGCTGCACCAT




CGTCTCCTCAGCCTCCACCAAGGGC

CTGTCTTCATCTTCCCGCCATCTGA




CCATCGGTCTTCCCCCTGGCACCCTC

TGAGCAGTTGAAATCTGGAACTGC




CTCCAAGAGCACCTCTGGGGGCACA

CTCTGTTGTGTGCCTGCTGAATAAC




GCGGCCCTGGGCTGCCTGGTCAAGG

TTCTATCCCAGAGAGGCCAAAGTA




ACTACTTCCCCGAACCGGTGACGGT

CAGTGGAAGGTGGATAACGC




GTCGTGGAACTCAGGCGCCCTGACC






AGCGGCGTGCACACCTTCCCGGCTG






TCCTACAGTCCTCAGG








S376-780
CAGGTGCAGCTGGTGGAGTCTGGGG
2750
GACATCCAGATGACCCAGTCTCCA
2799



GAGGCGTGGTCCAGCCTGGGAGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTGCAGCCTCT

ACAGAGTCACCATCACTTGCCGGG




GGATTCACCTTCAGTAGCTATGGCA

CGAGTCAGGGCATTAGCAATTATT




TGCACTGGGTCCGCCAGGCTCCAGG

TAGCCTGGTATCAGCAGAAACCAG




CAAGGGGCTGGAGTGGGTGGCAGTT

GGAAAGTTCCTAAGCTCCTGATCT




ATATCATATGATGGAAGTAATAAAT

ATGCTGCATCCACTTTGCAATCAGG




ACTATGCAGACTCCGTGAAGGGCCG

GGTCCCATCTCGGTTCAGTGGCAGT




ATTCACCATCTCCAGAGACAATTCC

GGATCTGGGACAGATTTCACTCTC




AAGAACACGCTGTATCTGCAAATGA

ACCATCAGCAGCCTGCAGCCTGAA




ACAGCCTGAGAGCTGAGGACACGG

GATGTTGCAACTTATTACTGTCAAA




CTGTGTATTACTGTGCGAAAGAGGG

AGTATAACAGTGCCCCTCGGACTTT




TGGGAGCTACTCCTACTACTACTAC

CGGCCCTGGGACCAAAGTGGATAT




GGTATGGACGTCTGGGGCCAAGGG

CAAACGAACTGTGGCTGCACCATC




ACCACGGTCACCGTCTCCTCAGGGA

TGTCTTCATCTTCCCGCCATCTGAT




GTGCATCCGCCCCAACCCTTTTCCCC

GAGCAGTTGAAATCTGGAACTGCC




CTCGTCTCCTGTGAGAATTCCCCGTC

TCTGTTGTGTGCCTGCTGAATAACT




GGATACGAGCAGCGTG

TCTATCCCAGAGAGGCCAAAGTAC






AGTGGAAGGTGGATAACGC






S469-373
GAGGTGCAGTTGGTGGAGTCTGGGG
2751
GAGGTGCAGTTGGTGGAGTCTGGG
2800



GAGGGTTGGTCCAGCCTGGGGGGTC

GGAGGGTTGGTCCAGCCTGGGGGG




CCTGAGACTCTCCTGTGTAGTCTCTG

TCCCTGAGACTCTCCTGTGTAGTCT




GATTCACCTTTAGTAGGTATTGGAT

CTGGATTCACCTTTAGTAGGTATTG




GAGCTGGGTCCGCCAGACTCCAGGG

GATGAGCTGGGTCCGCCAGACTCC




AAGGGGCTGCAGTGGGTGGCTAAC

AGGGAAGGGGCTGCAGTGGGTGGC




ATAAAGCAAGATGACACTAACAAA

TAACATAAAGCAAGATGACACTAA




TTCTATGAAGACTCTGTGAAGGGCC

CAAATTCTATGAAGACTCTGTGAA




GATTCACCACCTCCAGAGACAACGC

GGGCCGATTCACCACCTCCAGAGA




CAAGAACTCACTATATCTGCAAATG

CAACGCCAAGAACTCACTATATCT




AACAGCCTGAGAGCCGAGGACACG

GCAAATGAACAGCCTGAGAGCCGA




GCCGTCTATTACTGTGCGAGAGGGG

GGACACGGCCGTCTATTACTGTGC




GGGGCAGCTCGTCCGGGCTCTACTT

GAGAGGGGGGGGCAGCTCGTCCGG




TGAGTCCTGGGGCCAGGGAACCCTG

GCTCTACTTTGAGTCCTGGGGCCAG




GTCATCGTCTCCTCAGGGAGTGCAT

GGAACCCTGGTCATCGTCTCCTCAG




CCGCCCCAACCCTTTTCCCCCTCGTC

GGAGTGCATCCGCCCCAACCCTTTT




TCCTGTGAGAATTCCCCGTCGGATA

CCCCCTCGTCTCCTGTGAGAATTCC




CGAGCAGCGTG

CCGTCGGATACGAGCAGCGTG






S48-144
GAGGTGCAGCTGGTGGAGTCTGGGG
2752
GACATCCAGATGACCCAGTCTCCA
2801



GAGACTTGGTACAGCCAGGGCGGTC

TCCTCCCTGTCTGCATCTGTAGGAG




CCTGAGACTCTCCTGTACAGCTTCT

ACAGAGTCACCATCACTTGCCGGG




GCATTCAACTTTGGTGATTATGCTAT

CAAGCCAGAGCATTAGCACCTTTTT




GAGCTGGGTCCGCCAGGCTCCAGGG

AAATTGGTATCAGCAGAAACCAGG




AAGGGGCTGGAGTGGGTAGGTTTTA

GAAAGCCCCTAGTCTCCTGATCTAT




TTAGAAGTAAAGGTTATGGTGGGAC

GCTGCATCCAGTTTGCAAAGTGGG




AACAGAATACGCCGCGTCTGTGAAA

GTCCCATCAAGGTTCAGTGGCAGT




GGCAGATTCACCATCTCAAGAGATG

GAATCTGGGACAGATTTCACTCTC




ATTCCAATCGCATCGCCTATCTGCA

ACCATCAGCAGTCTGCAACCTGAA




AATGAACAGCCTGAAATCCGAGGA

GATTTTGCAACTTACTACTGTCAAC




CACAGCCGTATATTACTGTAGTAGA

AGAGTTACAGTACCCCACTCACTTT




GGGTACCAGCTGCCAAACTTATGGG

CGGCGGAGGGACCAAGGTGGAGAT




GCCAGGGAACCCTGGTCACCGTCTC

CAAACGAACTGTGGCTGCACCATC




CTCAGCATCCCCGACCAGCCCCAAG

TGTCTTCATCTTCCCGCCATCTGAT




GTCTTCCCGCTGAGCCTCTGCAGCA

GAGCAGTTGAAATCTGGAACTGCC




CCCAGCCAGATGGGAACGTGGTCAT

TCTGTTGTGTGCCTGCTGAATAACT




CGCCTGCCTGGTCCAGGGCTTCTTC

TCTATCCCAGAGAGGCCAAAGTAC




CCCCAGGAGCCACTCAGTGTGACCT

AGTGGAAGGTGGATAACGC




GGAGCGAAAGCGGACAGGGCGTGA






CCGCCAGAAACTTCCC








128
GAGGTGCACCTGGTGGAGTCTGGGG
2753
GAAATAGTGATGACGCAGTCTCCA
2802



GAGGCTGGGTCCAGCCTGGGGGGTC

GCCACCCTGTCTGTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTGAGTACCTATTGGA

CCAGTCAGAGTATCAGCAGCAAAT




TGAGCTGGGTCCGCCAGACTCCAGG

TAGCCTGGTACCAGCAGAAACCTG




GGAGGGGCTGCAGTGGGTGGCCAA

GCCAGGCTCCCAGGCTCCTCATCTA




CATAAAGCAAGATGGAAGTTCGAA

TGGTGCGTCCACCAGGGCCACTGG




ATACTATGTGGACTCTGTGAAGGGC

TATCCCAGCCAGGTTCAGTGGCAG




CGATTCACCATTTCCAGGGACAACG

TGGGTCTGGGACAGAATTCACTCT




CCAAGAACTCAGTATATCTGCAAAT

CACCATCAGCAGCATGCAGTCTGA




GAACAGCCTGAGAGGCGAGGACAC

AGATTTTGCAGTTTATTACTGTCAG




GGCTGTGTATTATTGTGCGAGAGGG

CAGTATAATTACTGGTACACTTTTG




GATGGGAGCAATTCCGGGATTTATT

GCCAGGGGACCAAGCTGGAGATCA




TTGACTCCTGGGGCCAGGGAACCCT

AACGAACTGTGGCTGCACCATCTG




GGTCACCGTCTCTTCAGCCTCCACC

TCTTCATCTTCCCGCCATCTGATGA




AAGGGCCCATCGGTCTTCCCCCTGG

GCAGTTGAAATCTGGAACTGCCTC




CGCCCTGCTCCAGGAGCACCTCCGA

TGTTGTGTGCCTGCTGAATAACTTC




GAGCACAGCGGCCCTGGGCTGCCTG

TATCCCAGAGAGGCCAAAGTACAG




GTCAAGGACTACTTCCCCGAACCGG

TGGAAGGTGGATAACGCCCTCCAA




TGACGGTGTCGTGGAACTCAGGCGC

TCGGGTAACTCCCAGGAGAGTGTC




TCTGACCAGCGGCGTGCACACCTTC

ACAGAGCAGGACAGCAAGGACAG




CCGGCTGTCCTACAGTCCTCAGGA

CACCTACAGCCTCAGCAGCACCCT






GACGCTGAGCAAAGCAGACTACGA






GAA






S92-110
GAGGTGCAGCTGGTGGAGTCTGGGG
2754
TCTTCTGAGCTGACTCAGGACCCTG
2803



GAGGCTTGGTACAGCCTGGAGGGTC

CTGTGTCTGTGGCCTTGGGACAGA




CCTGAGACTCTCCTGTGCAGCCTCT

CAGTCAGGATCACATGCCAAGGAG




GGATTCACCTTCAGTAGTTATGAAA

ACAGCCTCAGAAGCTATTATGCAA




TGAACTGGGTCCGCCAGGCTCCAGG

GCTGGTACCAGCAGAAGCCAGGAC




GAAGGGGCTGGAGTGGGTTTCATAC

AGGCCCCTGTACTTGTCATCTATGG




ATTAGTAGTAGTGGTAGTACCATAT

TAAAAACAACCGGCCCTCAGGGAT




ACTACGCAGACTCTGTGAAGGGCCG

CCCAGACCGATTCTCTGGCTCCAGC




ATTCACCATCTCCAGAGACAACGCC

TCAGGAAACACAGCTTCCTTGACC




AAGAACTCACTGTATCTGCAAATGA

ATCACTGGGGCTCAGGCGGAAGAT




ACAGCCTGAGAGCCGAGGACACGG

GAGGCTGACTATTACTGTAACTCCC




CTGTTTATTACTGTGCGAGAGATAG

GGGACAGCAGTGGTAACCGGGTGT




ACGTGGGGACTACGGCCGGTACTAC

TCGGCGGAGGGACCAAGCTGACCG




TACGGTATGGACGTCTGGGGCCAAG

TCCTAGGTCAGCCCAAGGCTGCCC




GGACCACGGTCACCGTCTCCTCAGG

CCTCGGTCACTCTGTTCCCACCCTC




GAGTGCATCCGCCCCAACCCTTTTC

CTCTGAGGAGCTTCAAGCCAACAA




CCCCTCGTCTCCTGTGAGAATTCCCC

GGCCACACTGGTGTGTCTCATAAG




GTCGGATACGAGCAGCGTG

TGACTTCTACCCGGGAGCCGTGAC






AGTGGCCTGGAAGGCAGATAGCAG






CCCCGTCAAGGCGGGAGTGGAGAC






CACCACACCCTCCAAACAAAGCAA






CAACAAGTACGCGGCCAGCAGCTA






S92-2329
GAGGTGCAGCTGGTGGAGTCTGGGG
2755
GAAATTGTGTTGACACAGTCTCCA
2804



GAGGCCTGGTCAAGCCTGGGGGGTC

GCTACCCTGTCTTTGTCTCCAGGGG




CCTGAGACTCTCCTGTGCAGCCTCT

AAAGAGCCACCCTCTCCTGCAGGG




GGATTCACCTTCAGTAGCTATAGCA

CCAGTCAGAGTGTTAGCAGCTACT




TGAACTGGGTCCGCCAGGCTCCAGG

TAGCCTGGTACCAACAGAAACCTG




GAAGGGGCTGGAGTGGGTCTCATCC

GCCAGGCTCCCAGGCTCCTCATCTA




ATTAGTAGTAGTGGTACTTACATAT

TGATGCATTCAACAGGGCCACTGG




ACTACGCAGACTCAGTGAAGGGCCG

CATCCCAGCCAGGTTCAGTGGCAG




ATTCACCATCTCCAGAGACAACGCC

TGGGTCTGGGACAGACTTCACTCTC




AAGAACTCACTGTATCTGCAAATGA

ACCATCAGCAGCCTAGAGCCTGAA




ACAGCCTGAGAGTCGAGGACACGG

GATTTTGCAGTTTATTACTGTCAGC




CTGTGTATTACTGTGCCCAAAGTAT

AGCGTAGCAACTGGCCTCGCACTT




TGCAGCTCGTCTCGACTGGTTCGAC

TCGGCGGAGGGACCAAGGTGGAGA




CCCTGGGGCCAGGGAACCCTGGTCA

TCAAACGAACTGTGGCTGCACCAT




CCGTCTCCTCAGGGAGTGCATCCGC

CTGTCTTCATCTTCCCGCCATCTGA




CCCAACCCTTTTCCCCCTCGTCTCCT

TGAGCAGTTGAAATCTGGAACTGC




GTGAGAATTCCCCGTCGGATACGAG

CTCTGTTGTGTGCCTGCTGAATAAC




CAGCGTG

TTCTATCCCAGAGAGGCCAAAGTA






CAGTGGAAGGTGGATAACGC
















TABLE 3





Summary of SEQ ID NOS.

























HC
VH
HCDR1
HCDR2
HCDR3
HFRW1
HFRW2
HFRW3
HFRW4





S20-15
1
2
3
4
5
6
7
8
9


S20-22
19
20
21
22
23
24
25
26
27


S20-31
37
38
39
40
41
42
43
44
45


S20-40
55
56
57
58
59
60
61
62
63


S20-58
73
74
75
76
77
78
79
80
81


S20-74
91
92
93
94
95
96
97
98
99


S20-86
109
110
111
112
113
114
115
116
117


S24-68
127
128
129
130
131
132
133
134
135


S24-105
145
146
147
148
149
150
151
152
153


S24-178
163
164
165
166
167
168
169
170
171


S24-188
181
182
183
184
185
186
187
188
189


S24-202
199
200
201
202
203
204
205
206
207


S24-278
217
218
219
220
221
222
223
224
225


S24-339
235
236
237
238
239
240
241
242
243


S24-472
253
254
255
256
257
258
259
260
261


S24-490
271
272
273
274
275
276
277
278
279


S24-494
289
290
291
292
293
294
295
296
297


S24-566
307
308
309
310
311
312
313
314
315


S24-636
325
326
327
328
329
330
331
332
333


S24-740
343
344
345
346
347
348
349
350
351


S24-791
361
362
363
364
365
366
367
368
369


S24-902
379
380
381
382
383
384
385
386
387


S24-921
397
398
399
400
401
402
403
404
405


S24-1063
415
416
417
418
419
420
421
422
423


S24-1224
433
434
435
436
437
438
439
440
441


S24-1271
451
452
453
454
455
456
457
458
459


S24-1339
469
470
471
472
473
474
475
476
477


S24-1345
487
488
489
490
491
492
493
494
495


S24-1378
505
506
507
508
509
510
511
512
513


S24-1379
523
524
525
526
527
528
529
530
531


S24-1384
541
542
543
544
545
546
547
548
549


S24-1476
559
560
561
562
563
564
565
566
567


S24-1564
577
578
579
580
581
582
583
584
585


S24-1636
595
596
597
598
599
600
601
602
603


S24-1002
613
614
615
616
617
618
619
620
621


S24-1301
631
632
633
634
635
636
637
638
639


S24-223
649
650
651
652
653
654
655
656
657


S24-461
667
668
669
670
671
672
673
674
675


S24-511
685
686
687
688
689
690
691
692
693


S24-788
703
704
705
706
707
708
709
710
711


S24-821
721
722
723
724
725
726
727
728
729


S144-67
739
740
741
742
743
744
745
746
747


S144-69
757
758
759
760
761
762
763
764
765


S144-94
775
776
777
778
779
780
781
782
783


S144-113
793
794
795
796
797
798
799
800
801


S144-175
811
812
813
814
815
816
817
818
819


S144-208
829
830
831
832
833
834
835
836
837


S144-339
847
848
849
850
851
852
853
854
855


S144-359
865
866
867
868
869
870
871
872
873


S144-460
883
884
885
886
887
888
889
890
891


S144-466
901
902
903
904
905
906
907
908
909


S144-469
919
920
921
922
923
924
925
926
927


S144-509
937
938
939
940
941
942
943
944
945


S144-516
955
956
957
958
959
960
961
962
963


S144-568
973
974
975
976
977
978
979
980
981


S144-576
991
992
993
994
995
996
997
998
999


S144-588
1009
1010
1011
1012
1013
1014
1015
1016
1017


S144-628
1027
1028
1029
1030
1031
1032
1033
1034
1035


S144-740
1045
1046
1047
1048
1049
1050
1051
1052
1053


S144-741
1063
1064
1065
1066
1067
1068
1069
1070
1071


S144-803
1081
1082
1083
1084
1085
1086
1087
1088
1089


S144-843
1099
1100
1101
1102
1103
1104
1105
1106
1107


S144-877
1117
1118
1119
1120
1121
1122
1123
1124
1125


S144-952
1135
1136
1137
1138
1139
1140
1141
1142
1143


S144-971
1153
1154
1155
1156
1157
1158
1159
1160
1161


S144-1036
1171
1172
1173
1174
1175
1176
1177
1178
1179


S144-1079
1189
1190
1191
1192
1193
1194
1195
1196
1197


S144-1299
1207
1208
1209
1210
1211
1212
1213
1214
1215


S144-1339
1225
1226
1227
1228
1229
1230
1231
1232
1233


S144-1406
1243
1244
1245
1246
1247
1248
1249
1250
1251


S144-1407
1261
1262
1263
1264
1265
1266
1267
1268
1269


S144-1569
1279
1280
1281
1282
1283
1284
1285
1286
1287


S144-1641
1297
1298
1299
1300
1301
1302
1303
1304
1305


S144-1827
1315
1316
1317
1318
1319
1320
1321
1322
1323


S144-1848
1333
1334
1335
1336
1337
1338
1339
1340
1341


S144-1850
1351
1352
1353
1354
1355
1356
1357
1358
1359


S144-2234
1369
1370
1371
1372
1373
1374
1375
1376
1377


S564-105
1387
1388
1389
1390
1391
1392
1393
1394
1395


S564-14
1405
1406
1407
1408
1409
1410
1411
1412
1413


S564-68
1423
1424
1425
1426
1427
1428
1429
1430
1431


S564-98
1441
1442
1443
1444
1445
1446
1447
1448
1449


S564-105
1459
1460
1461
1462
1463
1464
1465
1466
1467


S564-134
1477
1478
1479
1480
1481
1482
1483
1484
1485


S564-138
1495
1496
1497
1498
1499
1500
1501
1502
1503


S564-152
1513
1514
1515
1516
1517
1518
1519
1520
1521


S564-218
1531
1532
1533
1534
1535
1536
1537
1538
1539


S564-249
1549
1550
1551
1552
1553
1554
1555
1556
1557


S564-265
1567
1568
1569
1570
1571
1572
1573
1574
1575


S564-275
1585
1586
1587
1588
1589
1590
1591
1592
1593


S564-287
1603
1604
1605
1606
1607
1608
1609
1610
1611


S116-2822
1825
1826
1827
1828
1829
1830
1831
1832
1833


S116-2825
1843
1844
1845
1846
1847
1848
1849
1850
1851


S116-3179
1861
1862
1863
1864
1865
1866
1867
1868
1869


S144-121
1879
1880
1881
1882
1883
1884
1885
1886
1887


S144-1364
1897
1898
1899
1900
1901
1902
1903
1904
1905


S144-292
1915
1916
1917
1918
1919
1920
1921
1922
1923


S155-37
1933
1934
1935
1936
1937
1938
1939
1940
1941


S166-1318
1951
1952
1953
1954
1955
1956
1957
1958
1959


S166-1366
1969
1970
1971
1972
1973
1974
1975
1976
1977


S166-2395
1987
1988
1989
1990
1991
1992
1993
1994
1995


S166-2620
2005
2006
2007
2008
2009
2010
2011
2012
2013


S166-32
2023
2024
2025
2026
2027
2028
2029
2030
2031


S171-1150
2041
2042
2043
2044
2045
2046
2047
2048
2049


S171-1285
2059
2060
2061
2062
2063
2064
2065
2066
2067


S171-692
2077
2078
2079
2080
2081
2082
2083
2084
2085


S179-122
2095
2096
2097
2098
2099
2100
2101
2102
2103


S179-20
2113
2114
2115
2116
2117
2118
2119
2120
2121


S179-27
2131
2132
2133
2134
2135
2136
2137
2138
2139


S179-28
2149
2150
2151
2152
2153
2154
2155
2156
2157


S210-1139
2167
2168
2169
2170
2171
2172
2173
2174
2175


S210-1262
2185
2186
2187
2188
2189
2190
2191
2192
2193


S210-1611
2203
2204
2205
2206
2207
2208
2209
2210
2211


S210-727
2221
2222
2223
2224
2225
2226
2227
2228
2229


S210-852
2239
2240
2241
2242
2243
2244
2245
2246
2247


S210-896
2257
2258
2259
2260
2261
2262
2263
2264
2265


S2141-113
2275
2276
2277
2278
2279
2280
2281
2282
2283


S2141-126
2293
2294
2295
2296
2297
2298
2299
2300
2301


S2141-16
2311
2312
2313
2314
2315
2316
2317
2318
2319


S2141-62
2329
2330
2331
2332
2333
2334
2335
2336
2337


S2141-63
2347
2348
2349
2350
2351
2352
2353
2354
2355


S2141-65
2365
2366
2367
2368
2369
2370
2371
2372
2373


S2141-97
2383
2384
2385
2386
2387
2388
2389
2390
2391


S24_342
2401
2402
2403
2404
2405
2406
2407
2408
2409


S24-1047
2419
2420
2421
2422
2423
2424
2425
2426
2427


S24-223
2437
2438
2439
2440
2441
2442
2443
2444
2445


S24-237
2455
2456
2457
2458
2459
2460
246
2462
2463


S305-1456
2473
2474
2475
2476
2477
2478
2479
2480
2481


S305-223
2491
2492
2493
2494
2495
2496
2497
2498
2499


S305-399
2509
2510
2511
2512
2513
2514
2515
2516
2517


S305-968
2527
2528
2529
2530
2531
2532
2533
2534
2535


S376-1070
2545
2546
2547
2548
2549
2550
2551
2552
2553


S376-1721
2563
2564
2565
2566
2567
2568
2569
2570
2571


S376-2486
2581
2582
2583
2584
2585
2586
2587
2588
2589


S376-780
2599
2600
2601
2602
2603
2604
2605
2606
2607


S469-373
2617
2618
2619
2620
2621
2622
2623
2624
2625


S48-144
2635
2636
2637
2638
2639
2640
2641
2642
2643


S564-128
2653
2654
2655
2656
2657
2658
2659
2660
2661


S92-110
2671
2672
2673
2674
2675
2676
2677
2678
2679


S92-2329
2689
2690
2691
2692
2693
2694
2695
2696
2697






LC
VL
LCDR1
LCDR2
LCDR3
LFRW1
LFRW2
LFRW3
LFRW4





S20-15
10
11
12
13
14
15
16
17
18


S20-22
28
29
30
31
32
33
34
35
36


S20-31
46
47
48
49
50
51
52
53
54


S20-40
64
65
66
67
68
69
70
71
72


S20-58
82
83
84
85
86
87
88
89
90


S20-74
100
101
102
103
104
105
106
107
108


S20-86
118
119
120
121
122
123
124
125
126


S24-68
136
137
138
139
140
141
142
143
144


S24-105
154
155
156
157
158
159
160
161
162


S24-178
172
173
174
175
176
177
178
179
180


S24-188
190
191
192
193
194
195
196
197
198


S24-202
208
209
210
211
212
213
214
215
216


S24-278
226
227
228
229
230
231
232
233
234


S24-339
244
245
246
247
248
249
250
251
252


S24-472
262
263
264
265
266
267
268
269
270


S24-490
280
281
282
283
284
285
286
287
288


S24-494
298
299
300
301
302
303
304
305
306


S24-566
316
317
318
319
320
321
322
323
324


S24-636
334
335
336
337
338
339
340
341
342


S24-740
352
353
354
355
356
357
358
359
360


S24-791
370
371
372
373
374
375
376
377
378


S24-902
388
389
390
391
392
393
394
395
396


S24-921
406
407
408
409
410
411
412
413
414


S24-1063
424
425
426
427
428
429
430
431
432


S24-1224
442
443
444
445
446
447
448
449
450


S24-1271
460
461
462
463
464
465
466
467
468


S24-1339
478
479
480
481
482
483
484
485
486


S24-1345
496
497
498
499
500
501
502
503
504


S24-1378
514
515
516
517
518
519
520
521
522


S24-1379
532
533
534
535
536
537
538
539
540


S24-1384
550
551
552
553
554
555
556
557
558


S24-1476
568
569
570
571
572
573
574
575
576


S24-1564
586
587
588
589
590
591
592
593
594


S24-1636
604
605
606
607
608
609
610
611
612


S24-1002
622
623
624
625
626
627
628
629
630


S24-1301
640
641
642
643
644
645
646
647
648


S24-223
658
659
660
661
662
663
664
665
666


S24-461
676
677
678
679
680
681
682
683
684


S24-511
694
695
696
697
698
699
700
701
702


S24-788
712
713
714
715
716
717
718
719
720


S24-821
730
731
732
733
734
735
736
737
738


S144-67
748
749
750
751
752
753
754
755
756


S144-69
766
767
768
769
770
771
772
773
774


S144-94
784
785
786
787
788
789
790
791
792


S144-113
802
803
804
805
806
807
808
809
810


S144-175
820
821
822
823
824
825
826
827
828


S144-208
838
839
840
841
842
843
844
845
846


S144-339
856
857
858
859
860
861
862
863
864


S144-359
874
875
876
877
878
879
880
881
882


S144-460
892
893
894
895
896
897
898
899
900


S144-466
910
911
912
913
914
915
916
917
918


S144-469
928
929
930
931
932
933
934
935
936


S144-509
946
947
948
949
950
951
952
953
954


S144-516
964
965
966
967
968
969
970
971
972


S144-568
982
983
984
985
986
987
988
989
990


S144-576
1000
1001
1002
1003
1004
1005
1006
1007
1008


S144-588
1018
1019
1020
1021
1022
1023
1024
1025
1026


S144-628
1036
1037
1038
1039
1040
1041
1042
1043
1044


S144-740
1054
1055
1056
1057
1058
1059
1060
1061
1062


S144-741
1072
1073
1074
1075
1076
1077
1078
1079
1080


S144-803
1090
1091
1092
1093
1094
1095
1096
1097
1098


S144-843
1108
1109
1110
1111
1112
1113
1114
1115
1116


S144-877
1126
1127
1128
1129
1130
1131
1132
1133
1134


S144-952
1144
1145
1146
1147
1148
1149
1150
1151
1152


S144-971
1162
1163
1164
1165
1166
1167
1168
1169
1170


S144-1036
1180
1181
1182
1183
1184
1185
1186
1187
1188


S144-1079
1198
1199
1200
1201
1202
1203
1204
1205
1206


S144-1299
1216
1217
1218
1219
1220
1221
1222
1223
1224


S144-1339
1234
1235
1236
1237
1238
1239
1240
1241
1242


S144-1406
1252
1253
1254
1255
1256
1257
1258
1259
1260


S144-1407
1270
1271
1272
1273
1274
1275
1276
1277
1278


S144-1569
1288
1289
1290
1291
1292
1293
1294
1295
1296


S144-1641
1306
1307
1308
1309
1310
1311
1312
1313
1314


S144-1827
1324
1325
1326
1327
1328
1329
1330
1331
1332


S144-1848
1342
1343
1344
1345
1346
1347
1348
1349
1350


S144-1850
1360
1361
1362
1363
1364
1365
1366
1367
1368


S144-2234
1378
1379
1380
1381
1382
1383
1384
1385
1386


S564-105
1396
1397
1398
1399
1400
1401
1402
1403
1404


S564-14
1414
1415
1416
1417
1418
1419
1420
1421
1422


S564-68
1432
1433
1434
1435
1436
1437
1438
1439
1440


S564-98
1450
1451
1452
1453
1454
1455
1456
1457
1458


S564-105
1468
1469
1470
1471
1472
1473
1474
1475
1476


S564-134
1486
1487
1488
1489
1490
1491
1492
1493
1494


S564-138
1504
1505
1506
1507
1508
1509
1510
1511
1512


S564-152
1522
1523
1524
1525
1526
1527
1528
1529
1530


S564-218
1540
1541
1542
1543
1544
1545
1546
1547
1548


S564-249
1558
1559
1560
1561
1562
1563
1564
1565
1566


S564-265
1576
1577
1578
1579
1580
1581
1582
1583
1584


S564-275
1594
1595
1596
1597
1598
1599
1600
1601
1602


S564-287
1612
1613
1614
1615
1616
1617
1618
1619
1620


S116-2822
1834
1835
1836
1837
1838
1839
1840
1841
1842


S116-2825
1852
1853
1854
1855
1856
1857
1858
1859
1860


S116-3179
1870
1871
187
1873
1874
1875
1876
1877
1878


S144-121
1888
1889
1890
1891
1892
1893
1894
1895
1896


S144-1364
1906
1907
1908
1909
1910
1911
1912
1913
1914


S144-292
1924
1925
1926
1927
1928
1929
1930
1931
1932


S155-37
1942
1943
1944
1945
1946
1947
1948
1949
1950


S166-1318
1960
1961
1962
1963
1964
1965
1966
1967
1968


S166-1366
1978
1979
1980
1981
1982
1983
1984
1985
1986


S166-2395
1996
1997
1998
1999
2000
2001
2002
2003
2004


S166-2620
2014
2015
2016
2017
2018
2019
2020
2021
2022


S166-32
2032
2033
2034
2035
2036
2037
2038
2039
2040


S171-1150
2050
2051
2052
2053
2054
2055
2056
2057
2058


S171-1285
2068
2069
2070
2071
2072
2073
2074
2075
2076


S171-692
2086
2087
2088
2089
2090
2091
2092
2093
2094


S179-122
2104
2105
2106
2107
2108
2109
2110
2111
2112


S179-20
2122
2123
2124
2125
2126
2127
2128
2129
2130


S179-27
2140
2141
2142
2143
2144
2145
2146
2147
2148


S179-28
2158
2159
2160
2161
2162
2163
2164
2165
2166


S210-1139
2176
2177
2178
2179
2180
2181
2182
2183
2184


S210-1262
2194
2195
2196
2197
2198
2199
2200
2201
2202


S210-1611
2212
2213
2214
2215
2216
2217
2218
2219
2220


S210-727
2230
2231
2232
2233
2234
2235
2236
2237
2238


S210-852
2248
2249
2250
2251
2252
2253
2254
2255
2256


S210-896
2266
2267
2268
2269
2270
2271
2272
2273
2274


S2141-113
2284
2285
2286
2287
2288
2289
2290
2291
2292


S2141-126
2302
2303
2304
2305
2306
2307
2308
2309
2310


S2141-16
2320
2321
2322
2323
2324
2325
2326
2327
2328


S2141-62
2338
2339
2340
2341
2342
2343
2344
2345
2346


S2141-63
2356
2357
2358
2359
2360
2361
2362
2363
2364


S2141-65
2374
2375
2376
2377
2378
2379
2380
2381
2382


S2141-97
2392
2393
2394
2395
2396
2397
2398
2399
2400


S24_342
2410
2411
2412
2413
2414
2415
2416
2417
2418


S24-1047
2428
2429
2430
2431
2432
2433
2434
2435
2436


S24-223
2446
2447
2448
2449
2450
2451
2452
2453
2454


S24-237
2464
2465
2466
2467
2468
2469
2470
2471
2472


S305-1456
2482
2483
2484
2485
2486
2487
2488
2489
2490


S305-223
2500
2501
2502
2503
2504
2505
2506
2507
2508


S305-399
2518
2519
2520
2521
2522
2523
2524
2525
2526


S305-968
2536
2537
2538
2539
2540
2541
2542
2543
2544


S376-1070
2554
2555
2556
2557
2558
2559
2560
2561
2562


S376-1721
2572
2573
2574
2575
2576
2577
2578
2579
2580


S376-2486
2590
2591
2592
2593
2594
2595
2596
2597
2598


S376-780
2608
2609
2610
2611
2612
2613
2614
2615
2616


S469-373
2626
2627
2628
2629
2630
2631
2632
2633
2634


S48-144
2644
2645
2646
2647
2648
2649
2650
2651
2652


S564-128
2662
2663
2664
2665
2666
2667
2668
2669
2670


S92-110
2680
2681
2682
2683
2684
2685
2686
2687
2688


S92-2329
2698
2699
2700
2701
2702
2703
2704
2705
2706









1. Variant Polypeptides


The following is a discussion of changing the amino acid subunits of a protein to create an equivalent, or even improved, second-generation variant polypeptide or peptide. For example, certain amino acids may be substituted for other amino acids in a protein or polypeptide sequence with or without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's functional activity, certain amino acid substitutions can be made in a protein sequence and in its corresponding DNA coding sequence, and nevertheless produce a protein with similar or desirable properties. It is thus contemplated by the inventors that various changes may be made in the DNA sequences of genes which encode proteins without appreciable loss of their biological utility or activity.


The term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the six different codons for arginine. Also considered are “neutral substitutions” or “neutral mutations” which refers to a change in the codon or codons that encode biologically equivalent amino acids.


Amino acid sequence variants of the disclosure can be substitutional, insertional, or deletion variants. A variation in a polypeptide of the disclosure may affect 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more non-contiguous or contiguous amino acids of the protein or polypeptide, as compared to wild-type. A variant can comprise an amino acid sequence that is at least 50%, 60%, 70%, 80%, or 90%, including all values and ranges there between, identical to any sequence provided or referenced herein. A variant can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more substitute amino acids.


It also will be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids, or 5′ or 3′ sequences, respectively, and yet still be essentially identical as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5′ or 3′ portions of the coding region.


Deletion variants typically lack one or more residues of the native or wild type protein. Individual residues can be deleted or a number of contiguous amino acids can be deleted. A stop codon may be introduced (by substitution or insertion) into an encoding nucleic acid sequence to generate a truncated protein.


Insertional mutants typically involve the addition of amino acid residues at a non-terminal point in the polypeptide. This may include the insertion of one or more amino acid residues. Terminal additions may also be generated and can include fusion proteins which are multimers or concatemers of one or more peptides or polypeptides described or referenced herein.


Substitutional variants typically contain the exchange of one amino acid for another at one or more sites within the protein or polypeptide, and may be designed to modulate one or more properties of the polypeptide, with or without the loss of other functions or properties. Substitutions may be conservative, that is, one amino acid is replaced with one of similar chemical properties. “Conservative amino acid substitutions” may involve exchange of a member of one amino acid class with another member of the same class. Conservative substitutions are well known in the art and include, for example, the changes of: alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine. Conservative amino acid substitutions may encompass non-naturally occurring amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics or other reversed or inverted forms of amino acid moieties.


Alternatively, substitutions may be “non-conservative”, such that a function or activity of the polypeptide is affected. Non-conservative changes typically involve substituting an amino acid residue with one that is chemically dissimilar, such as a polar or charged amino acid for a nonpolar or uncharged amino acid, and vice versa. Non-conservative substitutions may involve the exchange of a member of one of the amino acid classes for a member from another class.


2. Considerations for Substitutions


One skilled in the art can determine suitable variants of polypeptides as set forth herein using well-known techniques. One skilled in the art may identify suitable areas of the molecule that may be changed without destroying activity by targeting regions not believed to be important for activity. The skilled artisan will also be able to identify amino acid residues and portions of the molecules that are conserved among similar proteins or polypeptides. In further embodiments, areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without significantly altering the biological activity or without adversely affecting the protein or polypeptide structure.


In making such changes, the hydropathy index of amino acids may be considered. The hydropathy profile of a protein is calculated by assigning each amino acid a numerical value (“hydropathy index”) and then repetitively averaging these values along the peptide chain. Each amino acid has been assigned a value based on its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cysteine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5). The importance of the hydropathy amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte et al., J. Mol. Biol. 157:105-131 (1982)). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein or polypeptide, which in turn defines the interaction of the protein or polypeptide with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and others. It is also known that certain amino acids may be substituted for other amino acids having a similar hydropathy index or score, and still retain a similar biological activity. In making changes based upon the hydropathy index, in certain embodiments, the substitution of amino acids whose hydropathy indices are within ±2 is included. In some aspects of the invention, those that are within ±1 are included, and in other aspects of the invention, those within ±0.5 are included.


It also is understood in the art that the substitution of like amino acids can be effectively made based on hydrophilicity. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigen binding, that is, as a biological property of the protein. The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); and tryptophan (−3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within +2 are included, in other embodiments, those which are within ±1 are included, and in still other embodiments, those within are included. In some instances, one may also identify epitopes from primary amino acid sequences based on hydrophilicity. These regions are also referred to as “epitopic core regions.” It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still produce a biologically equivalent and immunologically equivalent protein.


Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides or proteins that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues important for activity or structure in similar proteins. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues.


One skilled in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar proteins or polypeptides. In view of such information, one skilled in the art may predict the alignment of amino acid residues of an antibody with respect to its three-dimensional structure. One skilled in the art may choose not to make changes to amino acid residues predicted to be on the surface of the protein, since such residues may be involved in important interactions with other molecules. Moreover, one skilled in the art may generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using standard assays for binding and/or activity, thus yielding information gathered from such routine experiments, which may allow one skilled in the art to determine the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations. Various tools available to determine secondary structure can be found on the world wide web at expasy.org/proteomics/protein_structure.


In some embodiments of the invention, amino acid substitutions are made that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (5) confer or modify other physicochemical or functional properties on such polypeptides. For example, single or multiple amino acid substitutions (in certain embodiments, conservative amino acid substitutions) may be made in the naturally occurring sequence. Substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts. In such embodiments, conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the protein or polypeptide (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the native antibody).


VII. Nucleic Acids

In certain embodiments, nucleic acid sequences can exist in a variety of instances such as: isolated segments and recombinant vectors of incorporated sequences or recombinant polynucleotides encoding peptides and polypeptides of the disclosure, or a fragment, derivative, mutein, or variant thereof, polynucleotides sufficient for use as hybridization probes, PCR primers or sequencing primers for identifying, analyzing, mutating or amplifying a polynucleotide encoding a polypeptide, anti-sense nucleic acids for inhibiting expression of a polynucleotide, and complementary sequences of the foregoing described herein. Nucleic acids encoding fusion proteins that include these peptides are also provided. The nucleic acids can be single-stranded or double-stranded and can comprise RNA and/or DNA nucleotides and artificial variants thereof (e.g., peptide nucleic acids).


The term “polynucleotide” refers to a nucleic acid molecule that either is recombinant or has been isolated from total genomic nucleic acid. Included within the term “polynucleotide” are oligonucleotides (nucleic acids 100 residues or less in length), recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like. Polynucleotides include, in certain aspects, regulatory sequences, isolated substantially away from their naturally occurring genes or protein encoding sequences. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be RNA, DNA (genomic, cDNA or synthetic), analogs thereof, or a combination thereof. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide.


In this respect, the term “gene,” “polynucleotide,” or “nucleic acid” is used to refer to a nucleic acid that encodes a protein, polypeptide, or peptide (including any sequences required for proper transcription, post-translational modification, or localization). As will be understood by those in the art, this term encompasses genomic sequences, expression cassettes, cDNA sequences, and smaller engineered nucleic acid segments that express, or may be adapted to express, proteins, polypeptides, domains, peptides, fusion proteins, and mutants. A nucleic acid encoding all or part of a polypeptide may contain a contiguous nucleic acid sequence encoding all or a portion of such a polypeptide. It also is contemplated that a particular polypeptide may be encoded by nucleic acids containing variations having slightly different nucleic acid sequences but, nonetheless, encode the same or substantially similar protein.


In certain embodiments, there are polynucleotide variants having substantial identity to the sequences disclosed herein; those comprising at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity, including all values and ranges there between, compared to a polynucleotide sequence provided herein using the methods described herein (e.g., BLAST analysis using standard parameters). In certain aspects, the isolated polynucleotide will comprise a nucleotide sequence encoding a polypeptide that has at least 90%, preferably 95% and above, identity to an amino acid sequence described herein, over the entire length of the sequence; or a nucleotide sequence complementary to said isolated polynucleotide.


The nucleic acid segments, regardless of the length of the coding sequence itself, may be combined with other nucleic acid sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. The nucleic acids can be any length. They can be, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, 175, 200, 250, 300, 350, 400, 450, 500, 750, 1000, 1500, 3000, 5000 or more nucleotides in length, and/or can comprise one or more additional sequences, for example, regulatory sequences, and/or be a part of a larger nucleic acid, for example, a vector. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant nucleic acid protocol. In some cases, a nucleic acid sequence may encode a polypeptide sequence with additional heterologous coding sequences, for example to allow for purification of the polypeptide, transport, secretion, post-translational modification, or for therapeutic benefits such as targeting or efficacy. As discussed above, a tag or other heterologous polypeptide may be added to the modified polypeptide-encoding sequence, wherein “heterologous” refers to a polypeptide that is not the same as the modified polypeptide.


A. Hybridization


The nucleic acids that hybridize to other nucleic acids under particular hybridization conditions. Methods for hybridizing nucleic acids are well known in the art. See, e.g., Current Protocols in Molecular Biology, John Wiley and Sons, N.Y. (1989), 6.3.1-6.3.6. As defined herein, a moderately stringent hybridization condition uses a prewashing solution containing 5× sodium chloride/sodium citrate (SSC), 0.5% SDS, 1.0 mM EDTA (pH 8.0), hybridization buffer of about 50% formamide, 6×SSC, and a hybridization temperature of 55° C. (or other similar hybridization solutions, such as one containing about 50% formamide, with a hybridization temperature of 42° C.), and washing conditions of 60° C. in 0.5×SSC, 0.1% SDS. A stringent hybridization condition hybridizes in 6×SSC at 45° C., followed by one or more washes in 0.1×SSC, 0.2% SDS at 68° C. Furthermore, one of skill in the art can manipulate the hybridization and/or washing conditions to increase or decrease the stringency of hybridization such that nucleic acids comprising nucleotide sequence that are at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical to each other typically remain hybridized to each other.


The parameters affecting the choice of hybridization conditions and guidance for devising suitable conditions are set forth by, for example, Sambrook, Fritsch, and Maniatis (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., chapters 9 and 11 (1989); Current Protocols in Molecular Biology, Ausubel et al., eds., John Wiley and Sons, Inc., sections 2.10 and 6.3-6.4 (1995), both of which are herein incorporated by reference in their entirety for all purposes) and can be readily determined by those having ordinary skill in the art based on, for example, the length and/or base composition of the DNA.


B. Mutation


Changes can be introduced by mutation into a nucleic acid, thereby leading to changes in the amino acid sequence of a polypeptide (e.g., an antigenic peptide or polypeptide) that it encodes. Mutations can be introduced using any technique known in the art. In one embodiment, one or more particular amino acid residues are changed using, for example, a site-directed mutagenesis protocol. In another embodiment, one or more randomly selected residues are changed using, for example, a random mutagenesis protocol. However it is made, a mutant polypeptide can be expressed and screened for a desired property.


Mutations can be introduced into a nucleic acid without significantly altering the biological activity of a polypeptide that it encodes. For example, one can make nucleotide substitutions leading to amino acid substitutions at non-essential amino acid residues. Alternatively, one or more mutations can be introduced into a nucleic acid that selectively changes the biological activity of a polypeptide that it encodes. See, eg., Romain Studer et al., Biochem. J. 449:581-594 (2013). For example, the mutation can quantitatively or qualitatively change the biological activity. Examples of quantitative changes include increasing, reducing or eliminating the activity. Examples of qualitative changes include altering the antigen specificity of an antibody.


C. Probes


In another aspect, nucleic acid molecules are suitable for use as primers or hybridization probes for the detection of nucleic acid sequences. A nucleic acid molecule can comprise only a portion of a nucleic acid sequence encoding a full-length polypeptide, for example, a fragment that can be used as a probe or primer or a fragment encoding an active portion of a given polypeptide.


In another embodiment, the nucleic acid molecules may be used as probes or PCR primers for specific nucleic acid sequences. For instance, a nucleic acid molecule probe may be used in diagnostic methods or a nucleic acid molecule PCR primer may be used to amplify regions of DNA that could be used, inter alia, to isolate nucleic acid sequences for use in producing the engineered cells of the disclosure. In a preferred embodiment, the nucleic acid molecules are oligonucleotides.


Probes based on the desired sequence of a nucleic acid can be used to detect the nucleic acid or similar nucleic acids, for example, transcripts encoding a polypeptide of interest. The probe can comprise a label group, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used to identify a cell that expresses the polypeptide.


VIII. Polypeptide Expression

In some aspects, there are nucleic acid molecule encoding polypeptides, antibodies, or antigen binding fragments of the disclosure. The nucleic acid molecules may be used to express large quantities of polypeptides. If the nucleic acid molecules are derived from a non-human, non-transgenic animal, the nucleic acid molecules may be used for humanization of the antibody or TCR genes.


A. Vectors


In some aspects, contemplated are expression vectors comprising a nucleic acid molecule encoding a polypeptide of the desired sequence or a portion thereof (e.g., a fragment containing one or more CDRs or one or more variable region domains). Expression vectors comprising the nucleic acid molecules may encode the heavy chain, light chain, or the antigen-binding portion thereof. In some aspects, expression vectors comprising nucleic acid molecules may encode fusion proteins, modified antibodies, antibody heavy and/or light chain, antibody fragments, and probes thereof. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well.


To express the polypeptides or peptides of the disclosure, DNAs encoding the polypeptides or peptides are inserted into expression vectors such that the gene area is operatively linked to transcriptional and translational control sequences. In some aspects, a vector that encodes a functionally complete human CH or CL immunoglobulin sequence with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In some aspects, a vector that encodes a functionally complete human TCR alpha or TCR beta sequence with appropriate restriction sites engineered so that any variable sequence or CDR1, CDR2, and/or CDR3 can be easily inserted and expressed. Typically, expression vectors used in any of the host cells contain sequences for plasmid or virus maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as “flanking sequences” typically include one or more of the following operatively linked nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element. Such sequences and methods of using the same are well known in the art.


B. Expression Systems


Numerous expression systems exist that comprise at least a part or all of the expression vectors discussed above. Prokaryote- and/or eukaryote-based systems can be employed for use with an embodiment to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Commercially and widely available systems include in but are not limited to bacterial, mammalian, yeast, and insect cell systems. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. Those skilled in the art are able to express a vector to produce a nucleic acid sequence or its cognate polypeptide, protein, or peptide using an appropriate expression system.


C. Methods of Gene Transfer


Suitable methods for nucleic acid delivery to effect expression of compositions are anticipated to include virtually any method by which a nucleic acid (e.g., DNA, including viral and nonviral vectors) can be introduced into a cell, a tissue or an organism, as described herein or as would be known to one of ordinary skill in the art. Such methods include, but are not limited to, direct delivery of DNA such as by injection (U.S. Pat. No. 5,994,624, 5,981,274, 5,780,448, 5,736,524, 5,702,932, 5,656,610, 5,589,466 and 5,580,859, each incorporated herein by reference), including microinjection (Harland and Weintraub, 1985; U.S. Pat. No. 5,789,215, incorporated herein by reference); by electroporation (U.S. Pat. No. 5,384,253, incorporated herein by reference); by calcium phosphate precipitation (Graham and Van Der Eb, 1973; Chen and Okayama, 1987; Rippe et al., 1990); by using DEAE dextran followed by polyethylene glycol (Gopal, 1985); by direct sonic loading (Fechheimer et al., 1987); by liposome mediated transfection (Nicolau and Sene, 1982; Fraley et al., 1979; Nicolau et al., 1987; Wong et al., 1980; Kaneda et al., 1989; Kato et al., 1991); by microprojectile bombardment (PCT Application Nos. WO 94/09699 and 95/06128; U.S. Pat. Nos. 5,610,042; 5,322,783, 5,563,055, 5,550,318, 5,538,877 and 5,538,880, and each incorporated herein by reference); by agitation with silicon carbide fibers (Kaeppler et al., 1990; U.S. Pat. Nos. 5,302,523 and 5,464,765, each incorporated herein by reference); by Agrobacterium mediated transformation (U.S. Pat. Nos. 5,591,616 and 5,563,055, each incorporated herein by reference); or by PEG mediated transformation of protoplasts (Omirulleh et al., 1993; U.S. Pat. Nos. 4,684,611 and 4,952,500, each incorporated herein by reference); by desiccation/inhibition mediated DNA uptake (Potrykus et al., 1985). Other methods include viral transduction, such as gene transfer by lentiviral or retroviral transduction.


IX. Pharmaceutical Compositions

The present disclosure includes methods for treating disease and modulating immune responses in a subject in need thereof. The disclosure includes cells that may be in the form of a pharmaceutical composition that can be used to induce or modify an immune response.


Administration of the compositions according to the current disclosure will typically be via any common route. This includes, but is not limited to parenteral, orthotopic, intradermal, subcutaneous, orally, transdermally, intramuscular, intraperitoneal, intraperitoneally, intraorbitally, by implantation, by inhalation, intraventricularly, intranasally or intravenous injection. In some embodiments, compositions of the present disclosure (e.g., compositions comprising SARS-CoV-2 protein-binding polypeptides) are administered to a subject intravenously.


Typically, compositions and therapies of the disclosure are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immune modifying. The quantity to be administered depends on the subject to be treated. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner.


The manner of application may be varied widely. Any of the conventional methods for administration of pharmaceutical compositions comprising cellular components are applicable. The dosage of the pharmaceutical composition will depend on the route of administration and will vary according to the size and health of the subject.


In many instances, it will be desirable to have multiple administrations of at most or at least 3, 4, 5, 6, 7, 8, 9, 10 or more. The administrations may range from 2-day to 12-week intervals, more usually from one to two week intervals.


The phrases “pharmaceutically acceptable” or “pharmacologically acceptable” refer to molecular entities and compositions that do not produce an adverse, allergic, or other untoward reaction when administered to an animal, or human. As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredients, its use in immunogenic and therapeutic compositions is contemplated. The pharmaceutical compositions of the current disclosure are pharmaceutically acceptable compositions.


The compositions of the disclosure can be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, subcutaneous, or even intraperitoneal routes. Typically, such compositions can be prepared as injectables, either as liquid solutions or suspensions and the preparations can also be emulsified.


Pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil, or aqueous propylene glycol. It also should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.


Sterile injectable solutions are prepared by incorporating the active ingredients (e.g., polypeptides of the disclosure) in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.


An effective amount of a composition is determined based on the intended goal. The term “unit dose” or “dosage” refers to physically discrete units suitable for use in a subject, each unit containing a predetermined quantity of the composition calculated to produce the desired responses discussed herein in association with its administration, i.e., the appropriate route and regimen. The quantity to be administered, both according to number of treatments and unit dose, depends on the result and/or protection desired. Precise amounts of the composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the subject, route of administration, intended goal of treatment (alleviation of symptoms versus cure), and potency, stability, and toxicity of the particular composition. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically or prophylactically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above.


The compositions and related methods of the present disclosure, particularly administration of a composition of the disclosure may also be used in combination with the administration of additional therapies such as the additional therapeutics described herein or in combination with other traditional therapeutics known in the art.


The therapeutic compositions and treatments disclosed herein may precede, be co-current with and/or follow another treatment or agent by intervals ranging from minutes to weeks. In embodiments where agents are applied separately to a cell, tissue or organism, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the therapeutic agents would still be able to exert an advantageously combined effect on the cell, tissue or organism. For example, in such instances, it is contemplated that one may contact the cell, tissue or organism with two, three, four or more agents or treatments substantially simultaneously (i.e., within less than about a minute). In other aspects, one or more therapeutic agents or treatments may be administered or provided within 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 45 minutes, 60 minutes, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 22 hours, 23 hours, 24 hours, 25 hours, 26 hours, 27 hours, 28 hours, 29 hours, 30 hours, 31 hours, 32 hours, 33 hours, 34 hours, 35 hours, 36 hours, 37 hours, 38 hours, 39 hours, hours, 41 hours, 42 hours, 43 hours, 44 hours, 45 hours, 46 hours, 47 hours, 48 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, or 8 weeks or more, and any range derivable therein, prior to and/or after administering another therapeutic agent or treatment.


The treatments may include various “unit doses.” Unit dose is defined as containing a predetermined-quantity of the therapeutic composition. The quantity to be administered, and the particular route and formulation, is within the skill of determination of those in the clinical arts. A unit dose need not be administered as a single injection but may comprise continuous infusion over a set period of time. In some embodiments, a unit dose comprises a single administrable dose.


The quantity to be administered, both according to number of treatments and unit dose, depends on the treatment effect desired. An effective dose is understood to refer to an amount necessary to achieve a particular effect. In the practice in certain embodiments, it is contemplated that doses in the range from 10 mg/kg to 200 mg/kg can affect the protective capability of these agents. Thus, it is contemplated that doses include doses of about 0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, and 200, 300, 400, 500, 1000 ng/kg, mg/kg, μg/day, or mg/day or any range derivable therein. Furthermore, such doses can be administered at multiple times during a day, and/or on multiple days, weeks, or months.


In some embodiments, the therapeutically effective or sufficient amount of the immune checkpoint inhibitor, such as an antibody and/or microbial modulator, that is administered to a human will be in the range of about 0.01 to about 50 mg/kg of patient body weight whether by one or more administrations. In some embodiments, the therapy used is about 0.01 to about 45 mg/kg, about 0.01 to about 40 mg/kg, about 0.01 to about 35 mg/kg, about 0.01 to about 30 mg/kg, about 0.01 to about 25 mg/kg, about 0.01 to about 20 mg/kg, about 0.01 to about 15 mg/kg, about 0.01 to about 10 mg/kg, about 0.01 to about 5 mg/kg, or about 0.01 to about 1 mg/kg administered daily, for example. In one embodiment, a therapy described herein is administered to a subject at a dose of about 100 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 600 mg, about 700 mg, about 800 mg, about 900 mg, about 1000 mg, about 1100 mg, about 1200 mg, about 1300 mg or about 1400 mg on day 1 of 21-day cycles. The dose may be administered as a single dose or as multiple doses (e.g., 2 or 3 doses), such as infusions. The progress of this therapy is easily monitored by conventional techniques.


In certain embodiments, the effective dose of the pharmaceutical composition is one which can provide a blood level of about 1 μM to 150 μM. In another embodiment, the effective dose provides a blood level of about 4 μM to 100 μM; or about 1 μM to 100 μM; or about 1 μM to 50 μM; or about 1 μM to 40 μM; or about 1 μM to 30 μM; or about 1 μM to 20 μM; or about 1 μM to 10 μM; or about 10 μM to 150 μM; or about 10 μM to 100 μM; or about μM to 50 μM; or about 25 μM to 150 μM; or about 25 μM to 100 μM; or about 25 μM to 50 μM, or about 50 μM to 150 μM; or about 50 μM to 100 μM (or any range derivable therein). In other embodiments, the dose can provide the following blood level of the agent that results from a therapeutic agent being administered to a subject: about, at least about, or at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 μM or any range derivable therein. In certain embodiments, the therapeutic agent that is administered to a subject is metabolized in the body to a metabolized therapeutic agent, in which case the blood levels may refer to the amount of that agent. Alternatively, to the extent the therapeutic agent is not metabolized by a subject, the blood levels discussed herein may refer to the unmetabolized therapeutic agent.


Precise amounts of the therapeutic composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the patient, the route of administration, the intended goal of treatment (alleviation of symptoms versus cure) and the potency, stability and toxicity of the particular therapeutic substance or other therapies a subject may be undergoing.


It will be understood by those skilled in the art and made aware that dosage units of μg/kg or mg/kg of body weight can be converted and expressed in comparable concentration units of μg/ml or mM (blood levels), such as 4 μM to 100 μM. It is also understood that uptake is species and organ/tissue dependent. The applicable conversion factors and physiological assumptions to be made concerning uptake and concentration measurement are well-known and would permit those of skill in the art to convert one concentration measurement to another and make reasonable comparisons and conclusions regarding the doses, efficacies and results described herein.


X. Detectable Labels

In some aspects of this disclosure, it will be useful to detectably or therapeutically label a Fab polypeptide or protein G Fab-binding domain. Methods for conjugating polypeptides to these agents are known in the art. For the purpose of illustration only, polypeptides can be labeled with a detectable moiety such as a radioactive atom, a chromophore, a fluorophore, or the like. Such labeled polypeptides can be used for diagnostic techniques, either in vivo, or in an isolated test sample or in methods described herein.


As used herein, the term “label” intends a directly or indirectly detectable compound or composition that is conjugated directly or indirectly to the composition to be detected, e.g., polynucleotide or protein such as an antibody so as to generate a “labeled” composition. The term also includes sequences conjugated to the polynucleotide that will provide a signal upon expression of the inserted sequences, such as green fluorescent protein (GFP) and the like. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition that is detectable. The labels can be suitable for small scale detection or more suitable for high-throughput screening. As such, suitable labels include, but are not limited to radioisotopes, fluorochromes, chemiluminescent compounds, dyes, and proteins, including enzymes. The label may be simply detected or it may be quantified. A response that is simply detected generally comprises a response whose existence merely is confirmed, whereas a response that is quantified generally comprises a response having a quantifiable (e.g., numerically reportable) value such as an intensity, polarization, and/or other property. In luminescence or fluorescence assays, the detectable response may be generated directly using a luminophore or fluorophore associated with an assay component actually involved in binding, or indirectly using a luminophore or fluorophore associated with another (e.g., reporter or indicator) component.


Examples of luminescent labels that produce signals include, but are not limited to bioluminescence and chemiluminescence. Detectable luminescence response generally comprises a change in, or an occurrence of, a luminescence signal. Suitable methods and luminophores for luminescently labeling assay components are known in the art and described for example in Haugland, Richard P. (1996) Handbook of Fluorescent Probes and Research Chemicals (6.sup.th ed.). Examples of luminescent probes include, but are not limited to, aequorin and luciferases.


Examples of suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue.™., and Texas Red. Other suitable optical dyes are described in the Haugland, Richard P. (1996) Handbook of Fluorescent Probes and Research Chemicals (6.sup.th ed.).


In another aspect, the fluorescent label is functionalized to facilitate covalent attachment to a cellular component present in or on the surface of the cell or tissue such as a cell surface marker. Suitable functional groups, including, but not are limited to, isothiocyanate groups, amino groups, haloacetyl groups, maleimides, succinimidyl esters, and sulfonyl halides, all of which may be used to attach the fluorescent label to a second molecule. The choice of the functional group of the fluorescent label will depend on the site of attachment to either a linker, the agent, the marker, or the second labeling agent.


Attachment of the fluorescent label may be either directly to the cellular component or compound or alternatively, can by via a linker. Suitable binding pairs for use in indirectly linking the fluorescent label to the intermediate include, but are not limited to, antigens/polypeptides, e.g., rhodamine/anti-rhodamine, biotin/avidin and biotin/strepavidin.


The coupling of polypeptides to low molecular weight haptens can increase the sensitivity of the antibody in an assay. The haptens can then be specifically detected by means of a second reaction. For example, it is common to use haptens such as biotin, which reacts avidin, or dinitrophenol, pyridoxal, and fluorescein, which can react with specific anti-hapten polypeptides. See, Harlow and Lane (1988) supra.


XI. Sample Preparation

In certain aspects, methods involve obtaining or evaluating a sample from a subject. The sample may include a sample obtained from any source including but not limited to blood, sweat, hair follicle, buccal tissue, tears, menses, feces, or saliva. In certain aspects of the current methods, any medical professional such as a doctor, nurse or medical technician may obtain a biological sample for testing. Yet further, the biological sample can be obtained without the assistance of a medical professional.


A sample may include but is not limited to, tissue, cells, or biological material from cells or derived from cells of a subject. The biological sample may be a heterogeneous or homogeneous population of cells or tissues. The biological sample may be obtained using any method known to the art that can provide a sample suitable for the analytical methods described herein. The sample may be obtained by non-invasive methods including but not limited to: scraping of the skin or cervix, swabbing of the cheek, saliva collection, urine collection, feces collection, collection of menses, tears, or semen.


The sample may be obtained by methods known in the art. In certain embodiments the samples are obtained by biopsy. In other embodiments the sample is obtained by swabbing, endoscopy, scraping, phlebotomy, or any other methods known in the art. In some cases, the sample may be obtained, stored, or transported using components of a kit of the present methods. In some cases, multiple samples, such as multiple esophageal samples may be obtained for diagnosis by the methods described herein. In other cases, multiple samples, such as one or more samples from one tissue type (for example esophagus) and one or more samples from another specimen (for example serum) may be obtained for diagnosis by the methods. In some cases, multiple samples such as one or more samples from one tissue type (e.g. esophagus) and one or more samples from another specimen (e.g. serum) may be obtained at the same or different times. Samples may be obtained at different times are stored and/or analyzed by different methods. For example, a sample may be obtained and analyzed by routine staining methods or any other cytological analysis methods.


In some embodiments the biological sample may be obtained by a physician, nurse, or other medical professional such as a medical technician, endocrinologist, cytologist, phlebotomist, radiologist, or a pulmonologist. The medical professional may indicate the appropriate test or assay to perform on the sample. In certain aspects a molecular profiling business may consult on which assays or tests are most appropriately indicated. In further aspects of the current methods, the patient or subject may obtain a biological sample for testing without the assistance of a medical professional, such as obtaining a whole blood sample, a urine sample, a fecal sample, a buccal sample, or a saliva sample.


In other cases, the sample is obtained by an invasive procedure including but not limited to: biopsy, needle aspiration, endoscopy, or phlebotomy. The method of needle aspiration may further include fine needle aspiration, core needle biopsy, vacuum assisted biopsy, or large core biopsy. In some embodiments, multiple samples may be obtained by the methods herein to ensure a sufficient amount of biological material.


General methods for obtaining biological samples are also known in the art. Publications such as Ramzy, Ibrahim Clinical Cytopathology and Aspiration Biopsy 2001, which is herein incorporated by reference in its entirety, describes general methods for biopsy and cytological methods. In one embodiment, the sample is a fine needle aspirate of a esophageal or a suspected esophageal tumor or neoplasm. In some cases, the fine needle aspirate sampling procedure may be guided by the use of an ultrasound, X-ray, or other imaging device.


In some embodiments of the present methods, the molecular profiling business may obtain the biological sample from a subject directly, from a medical professional, from a third party, or from a kit provided by a molecular profiling business or a third party. In some cases, the biological sample may be obtained by the molecular profiling business after the subject, a medical professional, or a third party acquires and sends the biological sample to the molecular profiling business. In some cases, the molecular profiling business may provide suitable containers, and excipients for storage and transport of the biological sample to the molecular profiling business.


In some embodiments of the methods described herein, a medical professional need not be involved in the initial diagnosis or sample acquisition. An individual may alternatively obtain a sample through the use of an over the counter (OTC) kit. An OTC kit may contain a means for obtaining said sample as described herein, a means for storing said sample for inspection, and instructions for proper use of the kit. In some cases, molecular profiling services are included in the price for purchase of the kit. In other cases, the molecular profiling services are billed separately. A sample suitable for use by the molecular profiling business may be any material containing tissues, cells, nucleic acids, genes, gene fragments, expression products, gene expression products, or gene expression product fragments of an individual to be tested. Methods for determining sample suitability and/or adequacy are provided.


In some embodiments, the subject may be referred to a specialist such as an oncologist, surgeon, or endocrinologist. The specialist may likewise obtain a biological sample for testing or refer the individual to a testing center or laboratory for submission of the biological sample. In some cases the medical professional may refer the subject to a testing center or laboratory for submission of the biological sample. In other cases, the subject may provide the sample. In some cases, a molecular profiling business may obtain the sample.


XII. Host Cells

As used herein, the terms “cell,” “cell line,” and “cell culture” may be used interchangeably. All of these terms also include both freshly isolated cells and ex vivo cultured, activated or expanded cells. All of these terms also include their progeny, which is any and all subsequent generations. It is understood that all progeny may not be identical due to deliberate or inadvertent mutations. In the context of expressing a heterologous nucleic acid sequence, “host cell” refers to a prokaryotic or eukaryotic cell, and it includes any transformable organism that is capable of replicating a vector or expressing a heterologous gene encoded by a vector. A host cell can, and has been, used as a recipient for vectors or viruses. A host cell may be “transfected” or “transformed,” which refers to a process by which exogenous nucleic acid, such as a recombinant protein-encoding sequence, is transferred or introduced into the host cell. A transformed cell includes the primary subject cell and its progeny.


In certain embodiments transfection can be carried out on any prokaryotic or eukaryotic cell. In some aspects electroporation involves transfection of a human cell. In other aspects electroporation involves transfection of an animal cell. In certain aspects transfection involves transfection of a cell line or a hybrid cell type. In some aspects the cell or cells being transfected are cancer cells, tumor cells or immortalized cells. In some instances tumor, cancer, immortalized cells or cell lines are induced and in other instances tumor, cancer, immortalized cells or cell lines enter their respective state or condition naturally. In certain aspects the cells or cell lines can be A549, B-cells, B16, BHK-21, C2C12, C6, CaCo-2, CAP/, CAP-T, CHO, CHO2, CHO-DG44, CHO-K1, COS-1, Cos-7, CV-1, Dendritic cells, DLD-1, Embryonic Stem (ES) Cell or derivative, H1299, HEK, 293, 293T, 293FT, Hep G2, Hematopoietic Stem Cells, HOS, Huh-7, Induced Pluripotent Stem (iPS) Cell or derivative, Jurkat, K562, L5278Y, LNCaP, MCF7, MDA-MB-231, MDCK, Mesenchymal Cells, Min-6, Monocytic cell, Neuro2a, NIH 3T3, NIH3T3L1, K562, NK-cells, NS0, Panc-1, PC12, PC-3, Peripheral blood cells, Plasma cells, Primary Fibroblasts, RBL, Renca, RLE, SF21, SF9, SH-SYSY, SK-MES-1, SK-N-SH, SL3, SW403, Stimulus-triggered Acquisition of Pluripotency (STAP) cell or derivate SW403, T-cells, THP-1, Tumor cells, U2OS, U937, peripheral blood lymphocytes, expanded T cells, hematopoietic stem cells, or Vero cells.


XIII. Kits

Certain aspects of the present invention also concern kits containing compositions of the disclosure or compositions to implement methods of the disclosure. In some embodiments, kits can be used to detect the presence of a SARS-CoV-2 virus in a sample. In certain embodiments, a kit contains, contains at least or contains at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 100, 500, 1,000 or more probes, primers or primer sets, synthetic molecules or inhibitors, or any value or range and combination derivable therein. In some embodiments, a kit contains one or more polypeptides capable of binding to a SARS-CoV-2 spike protein, including polypeptides disclosed herein. For example, a kit may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more Fabs disclosed herein for detecting a SARS-CoV-2 spike protein. In some embodiments, a kit comprises a detection pair. In some embodiments, a kit comprises an enzyme. In some embodiments, a kit comprises a substrate for an enzyme.


Kits may comprise components, which may be individually packaged or placed in a container, such as a tube, bottle, vial, syringe, or other suitable container means.


Individual components may also be provided in a kit in concentrated amounts; in some embodiments, a component is provided individually in the same concentration as it would be in a solution with other components. Concentrations of components may be provided as 1×, 2×, 5×, 10×, or 20× or more.


Kits for using probes, synthetic nucleic acids, nonsynthetic nucleic acids, and/or inhibitors of the disclosure for prognostic or diagnostic applications are included as part of the disclosure. In certain aspects, negative and/or positive control nucleic acids, probes, and inhibitors are included in some kit embodiments.


Kits may further comprise instructions for use. For example, in some embodiments, a kit comprises instructions for detecting a SARS-CoV-2 virus in a sample.


It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein and that different embodiments may be combined. The claims originally filed are contemplated to cover claims that are multiply dependent on any filed claim or combination of filed claims.


XIV. Examples

The following examples are included to demonstrate certain embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


Example 1—Distinct B Cell Subsets Give Rise to Antigen-Specific Antibody Responses Against SARS-CoV-2

A. Results


1. SARS-CoV-2-Specific B Cell Sequencing


Serum antibodies and MBCs have potential to act as the first line of defense against SARS-CoV-2 infection11, 15-17. To determine the landscape of antibody reactivity toward distinct SARS-CoV-2 viral targets, the inventors collected peripheral blood mononuclear cells (PBMCs) and serum from 25 subjects between April and May of 2020 upon recovery from SARS-CoV-2 viral infection (Extended Data Table 1 and Extended Data Table 2). To identify B cells specific to the SARS-CoV-2 spike protein, spike RBD, ORF7a, ORF8, and NP, the inventors generated probes to bait-sort enriched B cells for subsequent single cell RNA sequencing analysis by conjugating distinct phycoerythrin (PE)-streptavidin (SA)-oligos to individual biotinylated antigens (FIG. 1a).


From 25 subjects analyzed, the inventors detected small percentages (0.02-0.26%) of SARS-CoV-2-reactive total CD19+ B cells, which were subsequently used to prepare 5′ transcriptome, immunoglobulin (Ig) VDJ, and antigen-specific probe feature libraries for sequencing (FIG. 1a, b). The inventors detected increased percentages of antigen-specific B cells within the memory B cell (MBC) compartment FIG. 1B, CD19+CD27+CD38int), though the inventors sorted on total CD19+ antigen-specific B cells to ensure adequate coverage of all potential reactive B cells and to optimize sequence library preparation and downstream analysis as the antigen-specific population was rare. The inventors integrated data from 17 subjects with high-quality sequencing results using Seurat to remove batch effects and identified 12 transcriptionally distinct B cell clusters based on transcriptional expression profiles (FIG. 1c). It was immediately evident that B cells specific to the spike, NP, ORF7a, and ORF8 were found amongst multiple B cell subsets, with spike-specific B cells substantially enriched in clusters 4, 5, 7, and 9 (FIGS. 1d, e). Analysis of Ig isotypes and degree of Ig variable heavy chain somatic hypermutations (VH SHM) suggested that clusters 0-2, 8, 10, and 11 represented naïve- or innate-like B cell clusters predominantly composed of IgM and IgD B cells. In contrast, clusters 3, 4, 5, 6, 7, 9, and 12 strongly indicated B cell subsets more similar to MBCs or plasma cells, as they exhibited a higher degree of class switch recombination (CSR) and/or increased numbers of VH SHM (FIG. 10. The inventors detected variation in the percentage of total cells sorted per cluster amongst individual patients, reflecting differences in the biology of individual responses to SARS-CoV-2, as the inventors expand upon later (FIG. 6a). No major differences in VH gene usage across clusters were evident, though the inventors identified enrichment of VH1-24 in cluster 7, which the inventors later identify as exclusively utilized by spike-reactive B cells (FIG. 6b).


The inventors next addressed whether the probe intensities generated from the feature libraries correlated with antigen-specific reactivity by plotting intensities for distinct probes against one another to observe true specificity (cells that fall directly onto the x or y axis) vs. non-specific binding (cells that fall on the diagonal). The inventors observed hundreds of cells specific to the spike, ORF8, NP, and to a lesser degree, ORF7a (FIG. 1g). For clusters 1, 2, and 8, the inventors observed that the majority of cells were not uniquely specific for any one probe, and instead tended to bind more than one probe in a polyreactive or non-specific manner, consistent with innate-like B cells18. Finally, clusters 4, 5, 6, 7, and 9 exhibited highly specific binding toward the spike, NP, and ORF8, with the majority targeting the spike (FIG. 6c). Together, the data suggest the B cell response to SARS-CoV-2 is comprised of multiple functionally distinct B cell subsets enriched for binding to distinct viral targets.


2. SARS-CoV-2-Specific B Cell Subsets


To discern the identities of distinct B cell subsets, the inventors further analyzed Ig repertoire, differentially expressed genes, and performed pseudotime analyses of integrated clusters. For pseudotime analysis, the inventors rooted the data on cluster 2, as cells within this cluster expressed Ig genes with little to no SHM or CSR (FIG. 1f) and displayed low probe reactivity (FIG. 6c), suggesting this subset is comprised of true naïve B cells. Pseudotime analysis rooted on cluster 2 identified clusters 0, 1, and 8 in various stages of differentiation, suggestive of recent activation (FIG. 2a-b). As they displayed little CSR or SHM (FIG. 10, the inventors therefore categorized these subsets as innate-like or possibly germinal center independent. Clusters 3 and 5 appeared to be specific IgM memory subsets (FIG. 1f, FIG. 6c), while clusters 4, 7, 9, and 12 displayed high specificity, CSR, and SHM, demonstrating an affinity-matured memory phenotype (FIG. 1f, FIG. 6c). As naïve B cells and MBCs are quiescent, clusters 4, 5, 7, and 9 were similar to cluster 2 in pseudotime analysis (FIG. 2a-b)19. Lastly, cluster 6 was of interest as these cells displayed the greatest frequency of SHM and IgA CSR, and may have arisen in the context of a mucosal immune response.


In-depth analysis of select genes including those related to B cell fate, MBC differentiation and maintenance, and long-lived plasma cells (LLPCs) helped to further reveal the identities of select clusters. Genes associated with MBCs (cd27, cd38, cd86, pon2af), repression of apoptosis (mcl1), early commitment to B cell fate (zeb2), repression of LLPC fate (spiB, pax5, bach2), and early B cell activation and proliferation (bach2) confirmed clusters 3, 4, 5, 7 and 9 as MBCs though with varying degrees of differentiation, CSR, and SHIM (FIG. 2b-c, FIG. 7). Notably, the inventors identified upregulation of the transcription factor hhex in cluster 7, which has recently been shown to be involved in MBC differentiation in mice (FIG. 7)20. Lastly, cluster 12 appeared to be LLPCs or precursors thereof by expression of genes associated with LLPC fate, including prdm1, xbp1, and manf (FIG. 7)19,21,22. Together with the antigen-specific probe data (FIG. 1), these results confirm that clusters representing classical MBCs are enriched for spike binding while B cells targeting internal proteins are enriched in activated naïve and innate-like B cell subsets.


3. SARS-CoV-2-Specific Ig Repertoire


The properties of B cells targeting immunogenic targets such as ORF8 and NP compared to the spike are unknown. The inventors further analyzed isotype frequencies, VH SHM, VII gene usages, and frequencies of B cells against these targets within distinct B cell subsets. The majority of antigen-specific B cells were of the IgM isotype with a limited degree of CSR. There were no major differences between the isotypes of B cells specific to these distinct targets, with the majority of class-switched cells being of the IgG1 isotype. Consistent with a de novo response against the novel SARS-CoV-2, the inventors observed that the majority of antigen-specific B cells had little to no VH SHM, though spike-reactive B cells displayed slightly increased amounts of SHM. Spike-specific B cells were primarily enriched in MBC and LLPC-like clusters 4, 5, 7, 9, and 12 while NP- and ORF8-specific B cells were largely found within naïve- and innate-like clusters but also within MBC clusters (FIG. 3a-1). Lastly, the inventors did not observe differences in heavy chain (HC) or light chain (LC) complementarity determining region 3 length by antigen targeting (FIG. 8a-b), though the inventors did observe that HC and LC isoelectric points (pI) for spike-reactive B cells were generally lower than NP- or ORF8-reactive B cells (FIG. 8c-d), and LC SHM was greater for spike-reactive B cells (FIG. 8e).


The inventors next analyzed the VH gene usages of spike-, NP-, and ORF8-specific B cells and identified the most common VH usages per reactivity (represented by larger squares on each tree map) as well as shared VH usages across reactivities (shown by matching colors; FIG. 3m-p). Strikingly, the inventors identified usage of particular VH gene loci that did not overlap between spike- and RBD-reactive B cells (shown in black). VH1-24, VH3-7, and VH3-9 were the highest represented VH gene usages exclusively associated with non-RBD spike reactivity, and VH1-24 usage was enriched in cluster 7, an MBC-like cluster (FIG. 3m-n, FIG. 6b). These results were confirmed by mAb data, which identified spike-specific mAbs utilizing VH1-24 and VH3-7 that did not bind to the RBD (Extended Data Table 3). Unique LC V gene usages were also evident amongst antigen-specific cells (FIG. 8f-i).


Finally, public B cell clones were of interest as the epitopes bound can be targeted by multiple people and thus represent important vaccine targets. The inventors identified five novel public clones from this dataset, three of which were present in two separate subjects, one that was present amongst three subjects, and one amongst four subjects (Extended Data Table 4). Four of the clonal pools were specific to the spike protein, and the remaining clone to NP. The majority of clonal pool members were identified in MBC-like clusters 3, 4, 5, 7, and 9, suggesting that B cells specific to public epitopes can be established within stable MBC compartments.


4. Monoclonal Antibody Binding and Neutralization


To simultaneously validate the specificity of the approach and investigate the properties of mAbs targeting distinct SARS-CoV-2 viral epitopes, the inventors synthesized and characterized the binding and neutralization ability of 90 mAbs from the single cell dataset (Extended Data Table 3). B cells exhibiting variable probe binding intensities toward distinct antigens were chosen as candidates for mAb generation, as well as B cells that tended to bind multiple probes (exhibiting non-specificity or polyreactivity). MAbs cloned were representative of various clusters, reactivities, VH gene usages, mutational load, and isotype usages (FIG. 4a, Extended Data Table 3). Representative mAbs generated from cells specific to the spike, NP, and ORF8 exhibited high affinity by ELISA, though probe intensities did not meaningfully correlate with apparent affinity (KD) (FIG. 4b, 9a). Only a small percentage of cloned mAbs to the spike, NP, and ORF8 exhibited non-specific binding (FIG. 4b). Notably, non-specific multi-probe-binding cells were reactive to the PE-SA-oligo probe conjugate and were largely polyreactive (FIG. 9b-g).


While mAbs targeting the RBD of the spike are typically neutralizing, little is known regarding the neutralization capabilities of mAbs targeting non-RBD regions of the spike, ORF8 and NP. The inventors addressed the neutralization ability of all synthesized mAbs using a live virus plaque assay and determined that all mAbs cloned against NP and ORF8 were non-neutralizing, while mAbs against the RBD and other epitopes of the spike were largely neutralizing at varying degrees of potency (FIG. 4c-d). As anti-spike mAbs were predominantly neutralizing and enriched in memory, these MBC subsets may serve as a biomarker for superior immunity to SARS-CoV-2.


5. Antigen Targeting and Clinical Features


Previous studies from the inventors' group and others have suggested serum antibody titers correlate with sex, SARS-CoV-2 severity, and age6,14,23. The inventors therefore investigated the frequencies of SARS-CoV-2-reactive B cells to assess whether reactivity toward particular SARS-CoV-2 antigens correlated with clinical parameters. By both serology and ELISpot, the inventors identified that B cell responses against the spike/RBD and NP were immunodominant, though ORF8 antigen targeting was substantial (FIG. 5a, b). Consistent with the single cell dataset, spike-specific B cells were enriched in memory by ELISpot (FIG. 5b).


The inventors next analyzed the distribution of B cell subsets and frequencies of B cells specific to the spike, NP, ORF7a, and ORF8 in sets of patients stratified by age, sex, and duration of symptoms from the single cell dataset. The inventors normalized antigen probe signals by a centered log-ratio transformation individually for each subject; all B cells were clustered into multiple probe hit groups according to their normalized probe signals, and cells that were negative to all probes or positive to all probes (non-specific) were excluded from the analysis. The inventors identified substantial variation in antigen targeting amongst individual subjects (FIG. 5c). As subject age increased, the percentages of spike-reactive B cells relative to B cells targeting internal proteins decreased, and age positively correlated with increased percentages of ORF8-reactive B cells (FIG. 5d-e). Similarly, female subjects and subjects experiencing a longer duration of symptoms displayed reduced spike targeting relative to internal proteins (FIG. 5d). Consistent with spike-reactive B cells enriched in MBC clusters, patient who were younger, male, or experienced a shorter duration of symptoms exhibited increased targeting of the spike and increased proportions of MBC subsets (FIG. 5d, f). Accordingly, older patients, female patients, and patients with a longer duration of symptoms exhibited reduced levels of VH gene SHM (FIG. 5g-i).


In summary, this study highlights the diversity of B cell subsets expanded upon novel infection with SARS-CoV-2 Using this approach, the inventors identified that B cells against the spike, ORFS, and NP differ in their ability to neutralize, derive from functionally distinct and differentially adapted B cell subsets, and correlate with clinical parameters such as age, sex, and symptom duration.


B. Discussion


The COVID-19 pandemic continues to pose one of the greatest public health and policy challenges in modern history, and robust data on long-term immunity is critically needed to evaluate future decisions regarding COVID-19 responses. This approach combines three powerful aspects of B cell biology to address human immunity to SARS-CoV-2: B cell transcriptome, Ig sequencing, and recombinant mAb characterization. This approach enables the identification of potently neutralizing antibodies and the characteristics of the B cells that generate them. Importantly, the inventors showed that antibodies targeting key protective spike epitopes are enriched within canonical MBC populations.


Identification of multiple distinct subsets of innate-like B cells, MBCs, and apparent LLPC precursors illustrates the complexity of the B cell response to SARS-CoV-2, revealing an important feature of the immune response against a novel pathogen. The B cell clusters herein may provide biomarkers in the form of distinct B cell populations that can be used to evaluate future responses to various vaccine formulations. In particular, the identification of LLPC precursors in the blood following infection and vaccination has been long sought after, as they serve as a bonafide marker of long-lived immunity24,25. Future studies elucidating distinct identities and functions of these subsets are necessary and will provide key insights into B cell immunology.


The inventors identified that older patients, female patients, and patients experiencing a longer duration of symptoms tended to display reduced proportions of MBC clusters and reduced VH SHM, consistent with a previous study that identified limited germinal center formation upon SARS-CoV-2 infection26. Notably, older patients had increased percentages of ORFS-specific B cells, which the inventors identified as exclusively non-neutralizing. Mechanistically, these observations may be explained by reduced adaptability of B cells or increased reliance on CD4 T cell help for B cell activation, which have been observed in aged individuals upon viral infections27,28. Furthermore, T cell responses to SARS-CoV-2 ORF proteins are prevalent in convalescent COVID-19 patients, and recent studies suggest impaired T cell responses in aged COVID-19 patients impact antibody responses10,29,30,42. More research is warranted to definitively determine whether B cell targeting of distinct SARS-CoV-2 antigens correlates with age and disease severity. Addressing these questions will be critical for determining correlates of protection and developing a vaccine capable of protecting the most vulnerable populations.


C. Materials & Methods


1. Study Cohort and Sample Collection


Clinical information for patients included in the study is detailed in Extended Data Table 1 and Extended Data Table 2. No statistical methods were used to predetermine sample size, experiments were not randomized, and investigators were unblinded. Leukoreduction filter donors were 18 years of age or older, eligible to donate blood as per standard University of Chicago Medicine Blood Donation Center guidelines, had a documented COVID-19 polymerase chain reaction (PCR) positive test, and complete resolution of symptoms at least 28 days prior to donation. PBMCs were collected from leukoreduction filters within 2 hours post-collection and flushed from the filters using sterile 1× Phosphate-Buffered Saline (PBS, Gibco) supplemented with 0.2% Bovine Serum Albumin (BSA, Sigma). Lymphocytes were purified by Lymphoprep Ficoll gradient (Thermo Fisher) and contaminating red blood cells were lysed by ACK buffer (Thermo Fisher). Cells were frozen in Fetal Bovine Serum (FBS, Gibco) with 10% Dimethyl sulfoxide (DMSO, Sigma) prior to downstream analysis. On the day of sorting, B cells were enriched using the human pan B cell EasySep™ enrichment kit (STEMCELL).


2. Recombinant Proteins and Probe Generation


Sequences for the spike and RBD proteins as well as details regarding their expression and purification have been previously described31,32. Proteins were biotinylated for 2 hours on ice using EZ-Link™ Sulfo-NHS-Biotin, No-Weigh™ Format (Thermo Fisher) according to the manufacturer's instructions, unless previously Avi-tagged and biotinylated (ORF7a and ORF8 proteins, Fremont laboratory). Truncated cDNAs encoding the Ig-like domains of ORF7a and ORF8 were inserted into the bacterial expression vector pET-21(a) in frame with a biotin ligase recognition sequence at the c-terminus (GLND1FEAQKIEWHE). Soluble recombinant proteins were produced as described previously33. In brief, inclusion body proteins were washed, denatured, reduced, and then renatured by rapid dilution following standard methods34. The refolding buffer consisted of 400 mM arginine, 100 mM Tris-HCl, 2 mM EDTA, 200 μM ABESF, 5 mM reduced glutathione, and 500 μM oxidized glutathione at a final pH of 8.3. After 24 hours, the soluble-refolded protein was collected over a 10 kDa ultrafiltration disc (EMD Millipore, PLGC07610) in a stirred cell concentrator and subjected to chromatography on a HiLoad 26/60 Superdex S75 column (GE Healthcare). Site-specific biotinylation with BirA enzyme was done following the manufacture's protocol (Avidity) except that the reaction buffer consisted of 100 mM Tris-HCl (pH 7.5) 150 mM NaCl, with 5 mM MgCl2 in place of 0.5 M Bicine at pH 8.3. Unreacted biotin was removed by passage through a 7K MWCO desalting column (Zeba spin, Thermo Fisher). Full-length SARS-CoV-2 NP was cloned into pET21a with a hexahistidine tag and expressed using BL21(DE3)-RIL E. coli in Terrific Broth (bioWORLD). Following overnight induction at 25° C., cells were lysed in 20 mM Tris-HCl pH 8.5, 1 M NaCl, 5 mM β-mercaptoethanol, and 5 mM imidazole for nickel-affinity purification and size exclusion chromatography. Biotinylated proteins were then conjugated to Biolegend TotalSeq™ PE streptavidin-(PE-SA) oligos at a 0.72:1 molar ratio of antigen to PE-SA. The amount of antigen was chosen based on a fixed amount of 0.5 μg PE-SA and diluted in a final volume of 10 μL. PE-SA was then added gradually to 10 μl biotinylated proteins 5 times on ice, 1 μl PE-SA (0.1 mg/ml stock) every 20 minutes for a total of 5 μl (0.5 μg) PE-SA. The reaction was then quenched with 5 μl 4 mM Pierce™ biotin (Thermo Fisher) for 30 minutes for a total probe volume of 20 μL. Probes were then used immediately for staining.


3. Antigen-Specific B Cell Sorting


PBMCs were thawed and B cells were enriched using EasySep™ pan B cell magnetic enrichment kit (STEMCELL). B cells were stained with a panel containing CD19 PE-Cy7 (Biolegend), IgM APC (Southern Biotech), CD27 BV605 (Biolegend), CD38 BB515 (BD Biosciences), and CD3 BV510 (BD Biosciences). B cells were stained with surface stain master mix and each COVID-19 antigen probe for 30 minutes on ice in 1×PBS supplemented with 0.2% BSA and 2 mM Pierce Biotin. Cells were stained with probe at a 1:100 dilution (NP, ORF7a, ORF8, RBD) or 1:200 dilution (spike). Cells were subsequently washed with 1×PBS BSA and stained with Live/Dead BV510 (Thermo Fisher) in 1×PBS for 15 minutes. Cells were washed again and re-suspended at a maximum of 4 million cells/mL in 1×PBS supplemented with 0.2% BSA and 2 mM Pierce Biotin for downstream cell sorting using the MACSQuantTyto cartridge sorting platform (Miltenyi). Cells that were viable/CD19+/antigen-PE+ were sorted as probe positive. The PE+ gate was drawn by use of FMO controls. Cells were then collected from the cartridge sorting chamber and used for downstream 10× Genomics analysis.


4. 10× Genomics Library Construction


VDJ, 5′, and probe feature libraries were prepared using the 10× Chromium System (10× Genomics, Pleasanton, CA). The Chromium Single Cell 5′ Library and Gel Bead v2 Kit, Human B Cell V(D)J Enrichment Kit, and Feature Barcode Library Kit were used. All steps were followed as listed in the manufacturer's instructions. Specifically, user guide CG000186 Rev D was used. Final libraries were pooled and sequenced using the NextSeq550 (Illumina, San Diego, CA) with 26 cycles apportioned for read 1, 8 cycles for the i7 index, and 134 cycles for read 2.


5. Computational Analyses for Single Cell Sequencing Data


The inventors adopted Cell Ranger (version 3.0.2) for raw sequencing processing, including 5′ gene expression analysis, antigen probe analysis, and immunoprofiling analysis of B cells. Based on Cell Ranger output, the inventors performed downstream analysis using Seurat (version 3.2.0, an R package, for transcriptome, cell surface protein and antigen probe analysis) and IgBlast (version 1.15, for immunoglobulin gene analysis). For transcriptome analysis, Seurat was used for cell quality control, data normalization, data scaling, dimension reduction (both linear and non-linear), clustering, differential expression analysis, batch effects correction, and data visualization. Unwanted cells were removed according to the number of detectable genes (number of genes <200 or >2500 were removed) and percentage of mitochondrial genes for each cell. A soft threshold of percentage of mitochondrial genes was set to the 95th percentile of the current dataset distribution, and the soft threshold was subject to a sealing point of 10% as the maximum threshold in the case of particularly poor cell quality. Transcriptome data were normalized by a log-transform function with a scaling factor of whereas cell surface protein and antigen probe were normalized by a centered log-ratio (CLR) normalization. The inventors used variable genes in principal component analysis (PCA) and used the top 15 principal components (PCs) in non-linear dimension reduction and clustering. High-quality cells were then clustered by Louvain algorithm implemented in Seurat under the resolution of 0.6. Differentially expressed genes for each cell cluster were identified using a Wilcoxon rank-sum test implemented in Seurat. Batch effects correction analysis was performed using an Anchor method implemented in Seurat to remove batch effects across different datasets. All computational analyses were performed in R (version 3.6.3).


6. Trajectory and Pseudotime Analyses


Trajectory analyses were performed using Monocle 3 (version 0.2.2)35,36, Seurat 3, and the SeuratWrappers package (version 0.2.0)37. Cells from multiple subjects were integrated to remove batch effects using Seurat, and all cells were clustered into two non-connected partitions. The inventors then performed trajectory analysis on the main partition containing the majority of the cells and clusters (clusters 0-11). Pseudotime analysis of cells was also inferred from this major partition using Monocle3. The root node of the pseudotime analysis was set to cluster 2, a naïve B cell subset with the lowest degree of VH gene SHIM and CSR.


7. Selection of Antibodies for mAb Synthesis


Representative antibodies from each subject were chosen for synthesis by choosing random samplings of B cells that bound to a given antigen probe with higher intensity relative to all other probes. B cells with varying ranges of probe-binding intensities were chosen for confirmation by ELISA. B cells binding to all probes in a polyreactive manner were also chosen and validated for polyreactivity by polyreactivity ELISA (see methods below).


8. Monoclonal Antibody Generation


Immunoglobulin heavy and light chain genes were obtained by 10× Genomics VDJ sequencing analysis and monoclonal antibodies (mAbs) were synthesized by Integrated DNA Technologies. Cloning, transfection, and mAb purification have been previously described38. Briefly, sequences were cloned into human IgG1 expression vectors using Gibson assembly, and heavy and light genes were co-transfected into 293T cells (Thermo Fisher). Secreted mAbs were then purified from the supernatant using protein A agarose beads (Thermo Fisher).


9. Enzyme-Linked Immunosorbent Assay (ELISA)


High-protein binding microtiter plates (Costar) were coated with recombinant SARS-CoV-2 proteins at 2 μg/ml in 1× PBS overnight at 4° C. Plates were washed the next morning with 1×PBS 0.05% Tween and blocked with 1× PBS containing 20% fetal bovine serum (FBS) for 1 hour at 37° C. Antibodies were then serially diluted 1:3 starting at 10 μg/ml and incubated for 1 hour at 37° C. Horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody diluted 1:1000 (Jackson Immuno Research) was used to detect binding of mAbs, and plates were subsequently developed with Super Aquablue ELISA substrate (eBiosciences). Absorbance was measured at 405 nm on a microplate spectrophotometer (BioRad). To standardize the assays, control antibodies with known binding characteristics were included on each plate and the plates were developed when the absorbance of the control reached 3.0° Dos units. Data are representative of 2-4 independent experiments with 2 technical replicates.


10. Polyreactivity ELISA


Polyreactivity ELISAs were performed as previously described39,40. High-protein binding microtiter plates (Costar) were coated with 10 μg/ml calf thymus dsDNA (Thermo Fisher), 2 μm/ml Salmonella enterica serovar Typhimurium flagellin (Invitrogen), 5 μg/ml human insulin (Sigma-Aldrich), 10 μg/ml KLH (Invitrogen), and 10 μg/ml Escherichia coli LPS (Sigma-Aldrich) in 1×PBS. Plates were coated with 10 μg/ml cardiolipin in 100% ethanol and allowed to dry overnight. Plates were washed with water and blocked with 1× PBS/0.05% Tween/1 mM EDTA. MAbs were diluted 1 μg/ml in PBS and serially diluted 4-fold, and added to plates for 1.5 hours. Goat anti-human IgG-HRP (Jackson Immunoresearch) was diluted 1:2000 in PBS/0.05% Tween/1 mM EDTA and added to plates for 1 hour. Plates were developed with Super Aquablue ELISA substrate (eBioscience) until the positive control mAb, 3H941, reached an OD405 of 3. MAbs were screened once for polyreactivity with 2 technical replicates.


11. Memory B Cell Stimulations and Enzyme-Linked Immunospot Assays (ELISpot)


MBC stimulations were performed on PBMCs collected from subjects in the convalescent cohort. To induce MBC differentiation into antibody secreting cells, 1×106 PBMCs were stimulated with 10 ng/ml Lectin Pokeweed Mitogen (Sigma-Aldrich), 1/100,000 Protein A from Staphylococcus aureus, Cowan Strain (Sigma-Aldrich), and 6 μg/ml CpG (Invitrogen) in complete RPMI in an incubator at 37° C./5% CO2 for 5 days. After stimulation, cells were counted and added to ELISpot white polystyrene plates (Thermo Fisher) coated with 4 μg/ml of SARS-CoV-2 spike that were blocked with 200 μl of complete RPMI. ELISpot plates were incubated with cells for 16 hours overnight in an incubator at 37° C./5% CO2. After the overnight incubation, plates were washed and incubated with anti-IgG-biotin and/or anti-IgA-biotin (Mabtech) for 2 hours at room temperature. After secondary antibody incubation, plates were washed and incubated with streptavidin-alkaline phosphatase (Southern Biotech) for 2 hours at room temperature. Plates were washed and developed with NBT/BCIP (Thermo Fisher Scientific) for 2-10 minutes, and reactions were stopped by washing plates with distilled water and allowed to dry overnight before counting. Images were captured with Immunocapture 6.4 software (Cellular Technology Ltd.), and spots were manually counted. Experiments were performed once with 2 technical replicates due to limited cell availability.


12. Neutralization Assay


The SARS-CoV-2/UW-001/Human/2020/Wisconsin (UW-001) virus was isolated from a mild case in February 2020 and used to assess neutralization ability of mAbs. Virus (˜500 plaque-forming units) was incubated with each mAb at a final concentration of 10 μg/ml. After a 30-minute incubation at 37° C., the virus/antibody mixture was used to inoculate Vero E6/TMPRSS2 cells seeded a day prior at 200,000 cells per well of a TC12 plate. After 30 minutes at 37° C., cells were washed 3 times to remove any unbound virus, and media containing antibody (10 μg/ml) was added back to each well. 2 days after inoculation, cell culture supernatant was harvested and stored at −80° C. until needed. A non-relevant Ebola virus GP mAb and PBS were used as controls.


To determine the amount of virus in the cell culture supernatant of each well, a standard plaque-forming assay was performed. Confluent Vero E6/TMPRSS2 cells in a TC12 plate were infected with supernatant (undiluted, 10-fold dilutions from 10−1 to 10−5) for 30 minutes at 37° C. After the incubation, cells were washed 3 times to remove unbound virus and 1.0% methylcellulose media was added over the cells. After an incubation of 3 days at 37° C., the cells were fixed and stained with crystal violet solution in order to count the number plaques at each dilution and determine virus concentration given as plaque-forming units (PFU)/ml. A stringent cutoff for neutralization was chosen as 100-fold greater neutralization relative to the negative control mAb. MAbs were screened once for neutralization.


13. Statistical Analysis


All statistical analyses were performed using Prism (GraphPad Prism version 8.0) or IMP Pro software (version 15.1.0). Sample sizes (n) are indicated directly in the figures or in the corresponding figure legends and specific tests for statistical significance used are indicated in the corresponding figure legends. P values less than or equal to 0.05 were considered significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All measures analyzed within the single cell dataset were analyzed repeatedly within the same integrated dataset, and independent preparations of mAb confirmed consistent binding patterns












Extended Data Table 1. Individual patient information.

















Duration
Symptom







of
start to


Subject



symptoms
donation


ID
Age
Sex
Reported symptoms*
(days)
(days)
Available data
















24
34
M
Fatigue, cough, SOB, SC, fever, headache, BAP,
12
41
Single cell probe binding, ELISPOT, serology





diarrhea, LOS, LOT


20
31
M
Fatigue, cough, SOB, SC, fever, headache, BAP,
19
48
Single cell probe binding, ELISPOT, serology





LOS, LOT


564
24
F
Fatigue, cough, SOB, SC, ST, fever, headache,
32
60
Single cell probe binding, ELISPOT, serology





BAP, diarrhea, LOS, LOT


144
56
M
Fatigue, cough, SC, ST, headache, BAP, LOS
23
54
Single cell probe binding, ELISPOT, serology


214
47
M
Fatigue, cough, SOB, SC, ST, headache, BAP,
24
59
Single cell probe binding, ELISPOT, serology





LOS, LOT


171
37
F
Fatigue, cough, SOB, SC, fever, headache, BAP,
16
44
Single cell probe binding, ELISPOT, serology





diarrhea, LOS, LOT


92
35
M
Fatigue, cough, SC, ST, fever, headache, BAP
16
47
Single cell probe binding, ELISPOT, serology


48
45
F
Fatigue, cough, SOB, SC, ST, fever, headache, AP,
8
40
Single cell probe binding, ELISPOT, serology





diarrhea, LOS, LOT


537
36
M
Fatigue, cough, fever, BAP
14
59
Single cell probe binding, ELISPOT, serology


586
32
F
Fatigue, cough, SOB, SC, headache, BAP, AP,
17
61
Single cell probe binding, ELISPOT, serology





diarrhea


210
47
M
Fatigue, cough, SOB, fever, headache, BAP, LOS,
7
41
Single cell probe binding, ELISPOT, serology





LOT


376
36
F
Diarrhea, LOS, LOT
7
48
Single cell probe binding, ELISPOT, serology


305
43
F
Fatigue, cough, SC, ST, fever, headache, BAP,
4
47
Single cell probe binding, ELISPOT, serology





LOS, LOT


116
65
F
Cough, SOB, fever, LOS, LOT
18
49
Single cell probe binding, ELISPOT, serology


166
42
F
Fatigue, cough, SOB, SC, fever, headache, BAP,
17
55
Single cell probe binding, ELISPOT, serology





diarrhea, LOS, LOT


155
47
F
Fatigue, cough, SOB, ST, fever, BAP, LOS, LOT
29
64
Single cell probe binding, serology


609
26
F
Fatigue, SOB, ST, fever, headache, BAP, LOS,
7
57
Single cell probe binding, serology





LOT


282
34
F
Fatigue, cough, SOB, fever, BAP, AP, LOS
24
54
ELISPOT, serology


326
36
F
Fatigue, cough, SC, fever, headache, BAP, AP,
15
47
ELISPOT, serology





LOS, LOT


356
51
F
Fatigue, cough, ST, fever, headache, BAP, AP,
14
43
ELISPOT, serology





diarrhea, LOS, LOT


373
48
M
Fatigue, fever, headache, BAP
7
39
ELISPOT, serology


402
32
F
Fatigue, cough, SOB, fever, headache, BAP, AP,
11
44
ELISPOT, serology





diarrhea, LOS, LOT


65
40
F
Fatigue, SC, fever, headache, BAP, diarrhea, LOS,
13
47
ELISPOT, serology





LOT


423
58
M
Fatigue
5
38
ELISPOT, serology


558
56
F
Fatigue, cough, SOB, LOS
11
46
ELISPOT, serology





*SOB = shortness of breath; SC = sinus congestion; ST = sore throat; BAP = body aches and pain; AP = abdominal pain; LOS = loss of smell; LOT = loss of taste
















Extended Data Table 3.


MAbs generated from single B cell heavy and light chain gene sequences.

























HC CDR3
LC CDR3



B cell
Clonal


DH
JH
LC V
LC J
AA
AA



clone
Pool
Antigen
VH gene
gene
gene
gene
gene
sequence
sequence
Cluster




















S144-
1
Spike
3-23*01
N/A
4*02
k3-20*
k1*01
AKGSSTA
QEYGSSRM
5


121





01

RPYYFDY
(SEQ ID











(SEQ ID
NO: 1802)











NO: 1801)







S155-
1
Spike
3-23*01
6-13*01
4*02
k3-20*
k1*01
VKGSAAA
QQYGNSRI
3


37





01

RPYYFDY
(SEQ ID











(SEQ ID
NO: 1804)











NO: 1803)







S210-
2
Spike
3-30-
1-7*01
4*02
k3-20*
k3*01
ARGHGNY
QQYGSSPLT
5


896


3*01


01

LTYFDY
(SEQ ID











(SEQ ID
NO: 284)











NO: 1805)







S376-
2
Spike
3-30-
1-26*01
4*02
k3-20*
k4*01
ARGRGNY
QQYGGSLT
7


2486


3*01


01

FTYFDY
(SEQ ID











(SEQ ID
NO: 1807)











NO: 1806)







S166-
3
Spike
3-7*03
6-19*01
4*02
13-1*
12*01
ARDSIAV
QAWDSSTVV
5


2620





01

AGGLDY
(SEQ ID











(SEQ ID
NO: 698)











NO: 1808)







S166-
3
Spike
3-7*03
6-19*01
4*02
13-1*
12*01
ARDGIAV
QAWDSSTVV
4


1318





01

AGGFDY
(SEQ ID











(SEQ ID
NO: 698)











NO: 1809)







S171-
3
Spike
3-7*01
6-19*01
4*02
13-1*
12*01
ARDGIAV
QAWDSSTVV
9


1150





01

AGGLDY
(SEQ ID











(SEQ ID
NO: 698)











NO: 1810)







S210-
3
Spike
3-7*01
6-19*01
4*02
13-1*
12*01
ARDGIAV
QAWDSSTSVV
4


852





01

AGGFDY
(SEQ ID











(SEQ ID
NO: 1811)











NO: 1809)







S305-
3
Spike
3-7*03
6-19*01
4*02
13-1*
12*01
ARDSIAV
QAWDSSTNVV
5


968





01

AGGFDY
(SEQ ID











(SEQ ID
NO: 1813)











NO: 1812)







S564-
4
NP
3-7*01
1-26*01
4*02
k3-15*
k2*01
ARGDGSN
QQYNYWYT
5


128





01

SGIYFDS
(SEQ ID











(SEQ ID
NO: 1815)











NO: 1814)







S469-
4
NP
3-7*03
6-6*01
4*02
k3-15*
k2*01
ARGGGSS
QQYNYWYT
5


373





01

SGLYFES
(SEQ ID











(SEQ ID
NO: 1815)











NO: 1816)







S144-
5
Spike
5-51*01
2-21*02
4*02
k1-5*
k1*01
ARLFCGG
QQYNTYPRT
7


292





01

DCPFDY
(SEQ ID











(SEQ ID
NO: 1818)











NO: 1817)







S2141-
5
Spike
5-51*01
2-21*02
4*02
k1-5*
k1*01
ARQFCGG
QQYNSYPRT
8


65





01

DCPFDY
(SEQ ID











(SEQ ID
NO: 1820)











NO: 1819)







S144-
5
Spike
5-51*01
3-10*01
4*02
k1-5*
k2*01
ARPNYYG
QQYNSYYT
5


1364





01

SGSPPGY
(SEQ ID











(SEQ ID
NO: 1822)











NO: 1821)







S210-
5
Spike
5-51*01
3-10*01
4*02
k3-20*
k1*01
ARPFYYG
QLFGSSPTWT
4


1139





01

SESPPGY
(SEQ ID











(SEQ ID
NO: 1824)











NO: 1823)



















Extended Data Table 2. Distribution of clinical


parameters for patients included in the study.


















Median Age
40



Mean Age
42



Mode Age
47



Range Age
24-65



Number of Males
9



Number of Females
16



Median Duration of Symptoms (days)
14



Mean Duration of Symptoms (days)
15



Mode Duration of Symptoms (days)
7



Range Duration of Symptoms (days)
 4-32



Median symptom start to donation (days)
47



Mean symptom start to donation (days)
49



Mode symptom start to donation (days)
47



Range symptom start to donation (days)
38-64




















Extended Data Table 3. MAbs generated from single


B cell heavy and light chain gene sequences.














mAb ID
Specificity
Cluster
Isotype
# HC SHM
VH Gene
#LC SHM
Vk/L gene

















S20-15
Spike/RBD
7
IgG1
8
VH 4-59
1
VL 3-21


S20-22
NP
9
IgG1
7
VH 4-4
4
Vk 4-1


S20-31
NP
7
IgG4
30
VH 1-24
22
Vk 3-20


S20-40
NP
2
IgM
0
VH 4-4
1
VL 2-14


S20-58
Spike/RBD
4
IgG1
5
VH 4-30
2
Vk 2-24


S20-74
Spike/RBD
4
IgG1
6
VH 4-59
3
VL 2-8


S20-86
Spike
7
IgG1
9
VH 3-9
2
VL 2-14


S24-68
ORF8
7
IgG1
4
VH 4-59
3
VL 1-44


S24-105
ORF8
7
IgG1
6
VH 3-48
4
Vk 3-20


S24-178
NP
4
IgG1
2
VH 3-33
7
VL 2-14


S24-188
NP
7
IgG3
2
VH 1-69
3
VL 2-14


S24-202
NP
4
IgG1
3
VH 5-10
6
Vk 3-11


S24-278
ORF8
7
IgG1
3
VH 1-2
1
Vk 3-20


S24-339
Spike/RBD
4
Unknown
5
VH 3-49
1
Vk 3-15


S24-472
ORF8
7
IgG1
5
VH 4-4
4
VL 4-16


S24-490
ORF8
4
IgM
2
VH 1-46
4
Vk 3-20


S24-494
Spike/RBD
6
IgG3
0
VH 4-39
0
Vk 1-39


S24-566
ORF8
4
IgG1
3
VH 3-49
1
Vk 2-28


S24-636
ORF8
1
IgD
1
VH 3-7
4
VL 8-61


S24-740
ORF8
7
IgG1
5
VH 1-3
1
Vk 4-1


S24-791
NP
7
IgG1
4
VH 4-59
6
Vk 3-20


S24-902
Spike/RBD
5
IgG1
0
VH 1-69
0
VL 7-46


S24-921
NP
7
IgG1
8
VH 4-59
7
Vk 1-39


S24-1063
NP
4
IgG1
3
VH 4-59
1
Vk 3-20


S24-1224
Spike/RBD
4
IgG1
7
VH 1-46
7
VL 1-40


S24-1271
Spike/RBD
7
IgM
6
VH 3-66
6
VL 3-1


S24-1339
Spike/RBD
4
IgG1
1
VH 3-53
1
Vk 3-20


S24-1345
ORF8
1
IgD
0
VH 4-39
0
Vk 1-13


S24-1378
ORF8
1
IgM
0
VH 3-53
0
VL 8-61


S24-1379
NP
1
IgG1
0
VH 4-59
0
VL 1-47


S24-1384
Spike/RBD
7
IgG1
2
VH 3-48
4
VL 3-21


S24-1476
Spike/RBD
4
IgG
2
VH 3-49
0
Vk 3-15


S24-1564
NP
4
IgG1
10
VH 4-59
4
Vk 1-39


S24-1636
NP
4
IgG1
3
VH 3-33
0
Vk 3-11


S24-1002
Spike/RBD
7
IgM
3
VH 3-30
5
Vk 1-13


S24-1301
Spike
7
IgG1
4
VH 1-24
4
VL 10-54


S24-223
Spike/RBD
4
IgM
1
VH 2-5
3
VL 2-14


S24-461
Spike/RBD
4
IgG1
7
VH 4-59
3
VL 3-16


S24-511
NP
5
IgD
0
VH 3-30
0
VL 3-1


S24-788
Spike/RBD
5
IgM
0
VH 3-33
1
VL 3-1


S24-821
Spike/RBD
4
IgM
4
VH2-70
0
Vk 1-5


S144-67
Spike/RBD
7
IgG1
7
VH 5-51
5
VL 1-40


S144-69
Spike/RBD
4
IgG1
2
VH 5-51
3
Vk 1-5


S144-94
ORF8
7
IgG3
11
VH 3-30
0
Vk 2-28


S144-113
ORF8
7
IgG1
9
VH 3-23
6
Vk 1-39


S144-175
ORF8
7
IgG1
9
VH 1-2
1
VL 1-47


S144-208
ORF8
4
IgG1
6
VH 1-2
7
VL 2-11


S144-339
NP
4
IgG1
11
VH 3-21
7
VK 3-20


S144-359
ORF8
4
IgG3
5
VH 3-23
5
Vk 1-39


S144-460
Spike/RBD
3
IgA1
34
VH 3-15
24
Vk1D-17


S144-466
Spike/RBD
7
IgG3
6
VH 5-51
6
Vk 1-5


S144-469
ORF8
4
IgG1
3
VH 4-59
2
Vk 2-28


S144-509
Spike/RBD
7
IgG1
3
VH 5-51
1
Vk 1-5


S144-516
ORF8
7
IgG1
5
VH 1-2
7
VL 1-40


S144-568
Spike/RBD
6
IgA2
11
VH 4-59
11
Vk 3-20


S144-576
Spike/RBD
4
IgG1
3
VH 1-69
2
Vk 1-5


S144-588
ORF8
7
IgG1
1
VH 4-39
3
VL 3-1


S144-628
Spike/RBD
5
IgA1
9
VH 5-51
10
VL 1-40


S144-740
ORF8
7
IgG1
1
VH 1-2
5
Vk 3-20


S144-741
ORF8
4
IgG1
5
VH 1-2
1
VL 1-44


S144-803
Spike/RBD
4
IgG1
5
VH 5-51
3
Vk 1-5


S144-843
ORF8
5
Unknown
20
VH 3-30
8
Vk 3-20


S144-877
Spike/RBD
7
IgG1
2
VH 3-30
6
Vk 1-33


S144-952
NP
4
IgM
4
VH 1-18
2
Vk 4-1


S144-971
ORF8
7
IgG1
6
VH 3-64
3
Vk 4-1


S144-1036
NP
7
IgG1
2
VH 4-34
5
Vk 4-1


S144-1079
Spike/RBD
7
IgG1
7
VH 1-69
3
Vk 3-20


S144-1299
ORF8
4
IgG1
5
VH 4-59
0
VL 1-47


S144-1339
Spike/RBD
4
IgG1
12
VH 1-2
5
VL 2-14


S144-1406
Spike/RBD
7
IgG2
3
VH 1-3
0
Vk 1-5


S144-1407
Spike/RBD
4
IgG1
6
VH 1-69
2
Vk 1-5


S144-1569
ORF8
7
IgG1
7
VH 1-18
1
VL 9-49


S144-1641
Spike/RBD
7
IgG1
4
VH 5-51
9
Vk 1-5


S144-1827
Spike/RBD
3
IgM
20
VH 3-7
5
Vk 3-20


S144-1848
NP
7
IgG1
4
VH 3-21
8
VL 1-47


S144-1850
Spike/RBD
7
IgG1
2
VH 3-23
3
Vk 1-5


S144-2234
ORF8
4
IgG1
4
VH 1-69
3
Vk 4-1


S564-105
NP
4
IgG1
5
VH 4-61
2
VL 2-14


S564-14
Spike/RBD
4
IgD
3
VH 3-7
0
Vk 3-21


S564-68
Spike/RBD
7
IgG1
6
VH 1-2
2
VL 2-8


S564-98
NP
7
IgG3
0
VH 4-59
3
Vk 1-39


S564-105
NP
4
IgG1
5
VH 4-61
2
VL 2-14


S564-134
Spike/RBD
7
IgG1
2
VH 1-2
6
VL 2-8


S564-138
Spike/RBD
4
IgG1
8
VH 1-2
1
VL 2-14


S564-152
Spike/RBD
7
IgG1
4
VH 3-33
4
Vk 1-33


S564-218
Spike/RBD
5
IgM
1
VH 1-69
0
VL 2-8


S564-249
NP
4
IgA1
19
VH 3-64
19
VL 2-14


S564-265
Spike/RBD
7
IgG1
4
VH 1-2
3
VL 2-8


S564-275
NP
4
IgM
3
VH 4-59
6
Vk 1-39


S564-287
ORF8
4
IgM
1
VH 1-2
3
VL2-14









E. References

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

  • 1 Chen, X. et al. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell Mol Immunol 17, 647-649, doi:10.1038/s41423-020-0426-7 (2020).
  • 2 Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 11, 2251, doi:10.1038/s41467-020-16256-y (2020).
  • 3 Yi, C. et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol 17, 621-630, doi:10.1038/s41423-020-0458-z (2020).
  • 4 Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
  • 5 Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448, doi:10.1126/science.abb2762 (2020).
  • 6 Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437-442, doi:10.1038/s41586-020-2456-9 (2020).
  • 7 Wee, A. Z. et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 369, 731-736, doi:10.1126/science.abc7424 (2020).
  • 8 Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81, 548-557, doi:10.1128/JVI.01782-06 (2007).
  • 9 Lu, X., Pan, J., Tao, J. & Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 42, 37-45, doi:10.1007/s11262-010-0544-x (2011).
  • 10 Grifoni, A. et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 181, 1489-1501 e1415, doi:10.1016/j.cell.2020.05.015 (2020).
  • 11 Ni, L. et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 52, 971-977 e973, doi:10.1016/j.immuni.2020.04.023 (2020).
  • 12 Li, J. Y. et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res 286, 198074, doi:10.1016/j.virusres.2020.198074 (2020).
  • 13 Atyeo, C. et al. Distinct Early Serological Signatures Track with SARS-CoV-2 Survival. Immunity 53, 524-532 e524, doi:10.1016/j.immuni.2020.07.020 (2020).
  • 14 Guthmiller, J. J. et al. SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike. bioRxiv, doi:10.1101/2020.09.12.294066 (2020).
  • 15 Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, doi:10.1126/science.abc5902 (2020).
  • 16 Cao, Y. et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell 182, 73-84 e16, doi:10.1016/j.cell.2020.05.025 (2020).
  • 17 Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, doi:10.1126/science.abd0827 (2020).
  • 18 Zhang, X. Regulatory functions of innate-like B cells. Cell Mol Immunol 10, 113-121, doi:10.1038/cmi.2012.63 (2013).
  • 19 Palm, A. E. & Henry, C. Remembrance of Things Past: Long-Term B Cell Memory After Infection and Vaccination. Front Immunol 10, 1787, doi:10.3389/fimmu.2019.01787 (2019).
  • 20 Laidlaw, B. J., Duan, L., Xu, Y., Vazquez, S. E. & Cyster, J. G. The transcription factor Hhex cooperates with the corepressor Tle3 to promote memory B cell development. Nat Immunol 21, 1082-1093, doi:10.1038/s41590-020-0713-6 (2020).
  • 21 Lightman, S. M., Utley, A. & Lee, K. P. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front Immunol 10, 965, doi:10.3389/fimmu.2019.00965 (2019).
  • 22 Brynjolfsson, S. F. et al. Long-Lived Plasma Cells in Mice and Men. Front Immunol 9, 2673, doi:10.3389/fimmu.2018.02673 (2018).
  • 23 Atyeo, C. et al. Distinct Early Serological Signatures Track with SARS-CoV-2 Survival. Immunity, doi: 10.1016/j.immuni 0.2020.07.020 (2020).
  • 24 Garimalla, S. et al. Differential transcriptome and development of human peripheral plasma cell subsets. JCI Insight 4, doi:10.1172/jci.insight.126732 (2019).
  • 25 Lau, D. et al. Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci Immunol 2, doi:10.1126/sciimmunol.aai8153 (2017).
  • 26 Kaneko, N. et al. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell, doi:10.1016/j.cell.2020.08.025 (2020).
  • 27 Dugan, H. L., Henry, C. & Wilson, P. C. Aging and influenza vaccine-induced immunity. Cell Immunol 348, 103998, doi:10.1016/j.cellimm.2019.103998 (2020).
  • 28 Henry, C. et al. Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly Individuals. Cell Host Microbe 25, 357-366 e356, doi: 10.1016/j.chom.2019.01.002 (2019).
  • 29 Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462, doi:10.1038/s41586-020-2550-z (2020).
  • 30 Peng, Y. et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol, doi:10.1038/s41590-020-0782-6 (2020).
  • 31 Amanat, F. et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. medRxiv, doi:10.1101/2020.03.17.20037713 (2020).
  • 32 Stadlbauer, D. et al. SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. Curr Protoc Microbiol 57, el00, doi:10.1002/cpmc.100 (2020).
  • 33 Nelson, C. A., Pekosz, A., Lee, C. A., Diamond, M. S. & Fremont, D. H. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13, 75-85, doi:10.1016/j.str.2004.10.010 (2005).
  • 34 Nelson, C. A., Lee, C. A. & Fremont, D. H. Oxidative refolding from inclusion bodies. Methods Mol Biol 1140, 145-157, doi:10.1007/978-1-4939-0354-2_11 (2014).
  • 35 Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502, doi:10.1038/s41586-019-0969-x (2019).
  • 36 Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14, 979-982, doi:10.1038/nmeth.4402 (2017).
  • 37 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 e1821, doi:10.1016/j.ce11.2019.05.031 (2019).
  • 38 Guthmiller, J. J., Dugan, H. L., Neu, K. E., Lan, L. Y. & Wilson, P. C. An Efficient Method to Generate Monoclonal Antibodies from Human B Cells. Methods Mol Biol 1904, 109-145, doi:10.1007/978-1-4939-8958-4_5 (2019).
  • 39 Andrews, S. F. et al. Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med 7, 316ra192, doi:10.1126/scitranslmed.aad0522 (2015).
  • 40 Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, doi:10.1126/science.aan6619 (2017).
  • 41 Shlomchik, M. J., Aucoin, A. H., Pisetsky, D. S. & Weigert, M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci USA 84, 9150-9154, doi:10.1073/pnas.84.24.9150 (1987).
  • 42 Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell doi:10.1016/j.ce11.2020.09.038 (2020).


Example 2: Profiling B Cell Immunodominance after SARS-CoV-2 Infection Reveals Antibody Evolution to Non-Neutralizing Viral Targets

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, the inventors used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, the inventors isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORFS), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convales-cent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 overtime, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Since the emergence of SARS-CoV-2 in December 2019, the World Health Organization has reported more than 160 million infections and 3 million deaths worldwide, with these statistics continuing to rise (World Health Organization, 2021). Faced with such persistence, the prospect of reinfection or infection with newly emerging variants warrants studies evaluating the generation of durable B cell memory upon infection.


Early in the pandemic, several independent groups identified that potently neutralizing antibodies are induced against the SARS-CoV-2 spike protein, the major antigenic glycoprotein of the virus (Chen et al., 2020; Lan et al., 2020; Robbiani et al., 2020; Wang et al., 2020; Yan et al., 2020; Yi et al., 2020). Since then, there has been a dedicated interest in the identification of durable memory B cells (MBCs) that provide protection from re-infection. The inventors' group and others have identified MBCs against the spike, nucleoprotein (NP), and open reading frame 8 (ORF8) proteins in convalescence, and some studies show that these populations persist several months after infection (Dan et al., 2021; Guthmiller et al., 2021; Hartley et al., 2020; Rodda et al., 2021). Beyond their longevity, spike-specific MBCs continue to adapt to SARS-CoV-2 up to 6 months post-infection, in a manner consistent with antigen persistence and ongoing germinal centers (GCs) (Gaebler et al., 2021; Sakharkar et al., 2021; Sokal et al., 2021).


Despite these advances, there is a lack of a clear understanding of MBC immunodominance and adaptation to distinct SARS-CoV-2 antigens over time and how this correlates with factors such as patient age and disease severity. Moreover, it remains to be determined whether MBCs to internal viral protein targets such as NP and ORF8 can provide protection from infection. Finally, the role of preexisting immunity to endemic human coronaviruses (HCoV) in shaping MBC responses to SARS-CoV-2 is poorly understood.


To address these knowledge gaps, the inventors characterized the SARS-CoV-2-specific B cell repertoire in 38 COVID-19 patients, both severe acute and convalescent, approximately 1.5-4.5 months post-symptom onset, using oligo-tagged antigen bait sorting and single-cell RNA sequencing (RNA-seq). Through this approach, the inventors provide a tool for evaluating human B cell subsets, immunodominance, and antibody adaptation to SARS-CoV-2 and have made a repository of more than 13,000 antibody sequences available to the SARS-CoV-2 research community.


These studies reveal that MBCs display substantial reactivity toward NP and ORF8 and continue to expand and adapt to these targets over time, particularly in older patients. Although SARS-CoV-2 receptor binding domain (RBD)-specific monoclonal antibodies (mAbs) were potently neutralizing and protective, the inventors showed that anti-NP and anti-ORF8 mAbs failed to neutralize and provide protection in vivo. Thus, preexisting MBC bias to non-neutralizing targets in SARS-CoV-2 could affect susceptibility to or severity of re-infection. Together, these findings highlight the importance of current SARS-CoV-2 vaccines, which are optimally formulated to induce protective MBC responses against the spike protein of SARS-CoV-2.


A. Results


Single-cell RNA-seq reveals substantial complexity among endemic HCoV- and SARS-CoV-2-specific B cells MBCs have potential to act as an early line of defense against viral infection, as they rapidly expand into antibody-secreting cells (ASCs) upon antigen re-encounter. To determine the landscape of MBC reactivity toward distinct SARS-CoV-2 and endemic HCoV spike viral targets, the inventors collected peripheral blood mononuclear cells (PBMCs) and serum between April and May 2020 from 10 severely infected acute subjects and 28 subjects upon recovery from SARS-CoV-2 viral infection (Tables S1-S4). In addition, 4 convalescent subjects returned approximately 4.5 months post-symptom onset for a second blood draw, with similar volumes of whole blood processed across time points. Severe acute infected samples were collected days 0, 1, 3, 5, and 14 before (day 0) and after receiving convalescent plasma therapy (Tables S3 and S4). All sampling time points were pooled from the same subjects for analysis because of small cell numbers.


To identify SARS-CoV-2-specific B cells, the inventors used the SARS-CoV-2 (SARS2) spike protein, spike RBD, NP, and ORF8 to generate probes for bait-sorting enriched B cells for subsequent single-cell RNA-seq analysis. This was done by conjugating distinct PE-streptavidin (SA)-oligos (BioLegend Total Seq) to individual biotinylated antigens (FIG. 10a). To control for non-specific B cell reactivity and B cells reactive to PE, and thus improve the specificity of sorting and downstream analysis, the inventors included an empty PE-SA-oligo, along with hantavirus PUUV, an irrelevant viral antigen control, on APC. Finally, to understand the impacts of preexisting immunity to endemic HCoV spike proteins, which share up to 30% amino acid identity with the SARS2 spike, the inventors included a cocktail of spike proteins from four coronavirus strains that cause mild upper respiratory infections in the vast majority of individuals: HCoV-229E, HCoV-NL63, HCoV-HKUL and HCoV-OC43, on one additional APC-SA-oligo.


From a total of 38 subjects analyzed (including four matched follow-up visits ˜4.5 months post-symptom onset), the inventors detected small percentages (0.02%-1.25%) of SARS-CoV-2-reactive total CD19+ B cells, which were subsequently used to prepare 5° transcriptome, immunoglobulin (Ig) VDJ, and antigen-specific probe feature libraries for sequencing (FIG. 10a). The inventors sorted on total CD19+ B cells with elevated mean fluorescence intensity in order to capture highly specific cells regardless of naive-like or MBC origin, though a caveat of this approach may be the exclucion of lower affinity B cells. The inventors then integrated sequencing results from all 38 subjects using Seurat to remove batch effects and identified 16 transcriptionally distinct B cell clusters on the basis of expression profiles (FIG. 10b). Adopting the ROGUE scoring method, which compares how similar all transcriptomes within a cluster are to one another, the inventors determined that most clusters were highly pure, with the majority having a score over 0.9 (1.0 indicating 100% purity) (FIG. 10c; Liu et al., 2020). The inventors ensured that the feature libraries correlated with single-probe antigen-specific reactivity using a series of filtering steps to remove cells that were probe negative, multi-reactive and non-specific, empty PE-SA+, or Hanta-PUUV+. Because of the nature of this approach and the inability to clone antibodies from every B cell, it remains likely that a fraction of cells included in the analysis are non-specific and that a fraction of cells excluded either by gating or pre-filtering were actually specific. Therefore, the dataset represents only a subset of the total antigen-specific B cells induced by SARS-CoV-2. After all pre-filtering steps were complete, mapping only the cells that bound a single probe revealed that antigen-specific cells were enriched in distinct transcriptional clusters (FIGS. 10d-e), with considerable variation observed among individual subjects (FIGS. 16a-b). The inventors did not identify obvious differences in B cell subset distribution or antigen reactivity in B cells from severe acute subjects analyzed early (days 0, 1, and 3) or late (days 7 and 14 post-convalescent plasma therapy (FIGS. 16c-d). In summary, this method revealed substantial complexity in the B cell response to distinct coronavirus antigens, which the inventors then further dissected by subset.


1. The SARS-CoV-2-Specific B Cell Landscape is Defined by Naive-Like and MBC Subsets


To discern the identity and specificity of each B cell cluster, the inventors analyzed Ig repertoire, variable heavy (VH) chain somatic hypermutation (SHM) rates, and differentially expressed genes. Different B cell clusters varied widely in their degree of class-switch recombination (CSR) and SHM, consistent with the presence of both naive-like and memory-like B cell subsets (FIG. 11a). Moreover, the inventors quantitatively identified that targeting of viral antigens was variable across clusters (FIG. 11a). To confirm B cell subset identities, the inventors curated lists of differentially expressed genes across clusters associated with naive B cells, MBCs, recent GC emigrant cells, ASCs, and innate-like B cells (including B1 B cells and marginal zone B cells) (FIG. 11b). Clusters 0, 1, 3, and 5 expressed Ig genes with little to no SHM or CSR and gene signatures associated with naive B cells, suggesting that these subsets were composed of naive-like B cells or very recently activated B cells (FIGS. 11a-b). In addition, clusters with patterns of higher CSR and SHM were further investigated for memory gene signatures. On the basis of expression of key genes (Tables S5 and S6) the inventors identified clusters 4, 6, 7, and 8 as MBCs; clusters 2, 9, and 13 as recent memory or GC emigrants; clusters 10, 11, and 15 as ASCs; and clusters 12 and 14 as innate-like in nature, though genes for these subsets are not well defined in humans (Figs a-b, bottom).


The inventors generated scores for each cluster and projected them onto UMAP, allowing us to visualize how closely associated clusters relate to one another on the basis of their B cell subset score (FIG. 11c). The inventors further visualized how cells clustered on the basis of identity by overlaying key gene signatures for MBCs, recent GC emigrants, and ASCs (Table S6). Some cells were outside of their home cluster, suggesting that they were in the course of differentiation and highlighting the plasticity of cells in an active immune response (FIGS. 17a-c). ASC clusters 10, 11, and 15 displayed a high degree of SHM, suggesting that they may derive from preexisting memory that was driven against endemic HCoV spike proteins (FIG. 11a). These clusters were also predominantly class-switched to IgA, an isotype most associated with mucosal immunity. To explore this possibility, the inventors mapped the expression of genes related to mucosal surface homing and found them to be highly expressed in ASC clusters, implying that memory to past HCoV infection generates a large plasmablast response during SARS-CoV-2 infection that re-circulates in the blood and should localize to mucosal surfaces (FIG. 17d). In conclusion, the inventors confirm that the landscape of B cell reactivity to SARS-CoV-2 and HCoV antigens is defined by distinct naive-like and MBC sub sets.


2. B Cell Immunodominance and Adaptability to SARS-CoV-2 and HCoVs Changes with Time after Infection


The kinetics and evolution of B cells against the spike and non-spike antigens are poorly understood. The inventors next investigated the dynamics of B cell subsets and their antigenic targets over time in severe acute subjects and convalescent subjects representing a range of disease severity. By color-coding cells belonging to the severe acute cohort (red), convalescent visit 1 (˜1.5 months post-symptom onset; blue), and convalescent visit 2 (˜4.5 months post-symptom onset; yellow) in the integrated UMAP, it became evident that distinct B cell subsets were enriched in different time points and cohorts. ASC clusters 10, 11, and 15 were derived predominantly from severe acute subjects (FIG. 12a). The two convalescent time points were composed largely of naive-like and MBC clusters, with convalescent visit 2 being the most enriched for canonical class-switched MBCs (clusters 4 and 7) (FIG. 12a). The severe acute cohort exhibited minimal targeting of the SARS2 spike protein and instead targeted HCoV spike and ORF8 (FIGS. 12b-c). As these ASCs were activated by SARS-CoV-2, it appeared that these were boosted MBCs with higher affinity for HCoV spikes and therefore displayed B cell receptors (BCRs) predominately loaded with HCoV spike probe when stained. In contrast, convalescent visit 1 was most enriched for SARS2 spike binding, which subsequently declined in percentage in convalescent visit 2, in which the frequency of B cells to NP and ORF8 was increased (FIGS. 12b-c).


The dynamic change observed in antigen targeting over time led us to examine antigen reactivity within distinct B cell subsets for each cohort. For the severe acute cohort, B cells binding intracellular proteins were dominated by ASC clusters, whereas SARS2 spike-specific B cells were enriched in early memory and GC emigrant B cell clusters (FIG. 12d). As previously noted, HCoV spike-specific B cells were enriched in ASCs of the severe acute cohort, indicative of re-activation of preexisting immune memory. Consistent with this, HCoV spike-specific B cells were highly mutated in the acute cohort compared with SARS2 spike-, NP-, and ORF8-specific B cells (FIG. 18a).


Across the two convalescent visits, B cells reactive to ORF8 and NP were increased in percentage and absolute numbers relative to spike B cells (FIGS. 12e-g; total cell numbers indicated). Although the degree of SHM for all antigen-specific B cells was increased across study visits (FIG. 18h; FIGS. 18b-c), the B cells displaying the highest degree of SHM in convalescent visit 2 were majority NP-specific (FIGS. 12i-j). At the individual level, all four subjects displayed increases in the percentage of MBCs to NP across time points, and half of the subjects displayed modest increases to ORF8. The change in percentage for spike-specific B cells across visits was negligible for three of four subjects, with one subject displaying a substantial decrease (FIG. 18d, S210). Previous groups have identified that spike-specific MBCs increase over time (Dan et al., 2021; Rodda et al., 2021; Sokal et al., 2021), and the study is limited in that this analysis was performed in only four subjects. However, this data support the claim that there is MBC maturation to NP and, to a lesser extent, ORF8 over time.


Analyzing isotype frequencies by antigen specificity for each cohort revealed additional differences across time points. The majority of class-switched B cells were IgA in the severe acute cohort, regardless of antigen reactivity (FIG. 18e) In contrast, class switching to IgG1 was prominent for SARS2 spike-, NP-, and ORF8-reactive B cells in convalescent visit 1, while HCoV spike-reactive B cells remained largely IgA (FIG. 18f). Class-switched B cells specific to the SARS2 spike declined in conva visit 2, and IgG1 class-switched B cells to ORF8 and NP increased in proportion (FIG. 18g).


Finally, the inventors did not identify substantial differences in serum titer to distinct antigens across convalescent visit time points (FIGS. 18h-j). Similarly, reactivity patterns in serological titer and probe hit to distinct antigens in individual subjects did not appear to be correlated (FIGS. 19a-e). This may be related to differences in B cell affinity to three-dimensional probes in the bait-sorting assay versus ELISA or the fact that the cellular response is sampled at one snapshot in time (more than 1 month post-symptom onset), with serology reflective of antibody that has accumulated since initial infection.


Together, these results point to differences in B cell immunodominance and adaptability landscapes across severe acute and convalescent cohorts, independent of serum titer. For both the severe acute cohort and convalescent visit 1 time point, SARS2 spike-specific B cells were initially the most enriched cells in memory. However, NP- and ORF8-reactive MBCs increased in proportion and showed signs of adaptation over time.


3. SARS-CoV-2-Specific B Cells Display Unique Repertoire Features and Protective Ability


The identification of B cells against distinct antigens is typically associated with stereotypical VH and variable light-chain kappa (VK) or variable light-chain lambda (VL) gene usages. Immunodominant and neutralizing spike and RBD epitopes are of particular interest, as they represent key targets for vaccine-induced responses. To investigate whether antigen-specific B cells displayed enriched variable gene usages, the inventors analyzed VH and VK/VL pairs for B cells targeting HCoV spike, non-RBD spike epitopes, and RBD-specific epitopes. A B cell was considered non-RBD spike-specific if it bound full-length spike probe and not RBD probe, and a cell that bound both RBD and full-length spike was considered to be RBD-specific. Using this approach, the inventors found that B cells against HCoV spike, non-SARS2 RBD spike epitopes, and the SARS2 RBD were enriched for VH1-69 gene usage (FIGS. 13a-c). VH1-69 is commonly used by broadly neutralizing antibodies against the hemagglutinin stalk domain of influenza viruses, as well as the gp120 co-receptor binding site of HIV-1, because of its ability to bind conserved hydrophobic regions of viral envelope glycoproteins (Chen et al., 2019). VH1-69 usage by B cells that cross-react to SARS-CoV-2 and HCoV has also been indicated (Wec et al., 2020). However, VH1-69 usage for B cells targeting HCoV spike and SARS2 spike non-RBD epitopes was predominantly enriched in convalescent visit 1 subjects and not convalescent visit 2, suggesting that the repertoire may continue to evolve months after infection (FIGS. 13a-b, right). However, several VH gene usages were enriched in both convalescent visits, regardless of antigen specificity. For SARS2 spike non-RBD-specific B cells, VH3-7 and VH1-24 were also commonly used, which the inventors confirmed by characterizing cloned mAbs from the cohort (FIG. 13b; Table S7). Although NP-specific B cells used similar variable gene usages as RBD-specific B cells (FIG. 13d), ORF8-specific B cells were enriched for VH1-2 and VH1-3 paired with VK3-20, and enrichment for these VH genes persisted across both convalescent time points (FIG. 13e). Finally, by analyzing the frequency of the top ten heavy and light chain gene pairings (total antigen-specific cells) shared across subjects for both convalescent time points, the inventors observed variability among individual subjects and time points (FIG. 13f).


To better understand antigen-specific BCRs and how antigenic reactivity relates to immune effectiveness, the inventors next investigated the binding, neutralization potency, and in vivo protective ability of mAbs cloned from select BCRs. To do so, the inventors expressed nearly 100 mAbs against the SARS2 spike, NP, and ORF8 from convalescent subjects, representing a multi tude of clusters (Table S7). Cells from which to clone antibodies were chosen at random and were not chosen on the basis of specific sequence features. However, the inventors note that the results described herein may be affected by sampling bias, as only a small subset of antigen-specific mAbs were cloned. The inventors confirmed that cells designated as specific bound with moderate to high affinity to their corresponding antigens (FIG. 14a), and cells identified as multi-reactive exhibited features of polyreactivity or bound to PE (FIG. 19f). The inventors next tested the antibodies for viral neutralization using SARS-CoV-2/UW-001/Human/2020/Wisconsin virus plaque assays, where lower plaque-forming units (PFU) per milliliter equates to increased neutrali zation. Whereas 82% of mAbs to the RBD were neutralizing, including 42% exhibiting complete inhibition, only 23% of mAbs to spike regions outside of the RBD were neutralizing, and these showed relatively low potency (FIG. 14b). NP- and ORF8-specific mAbs were entirely non-neutralizing (FIG. 14b). Using animal models of SARS-CoV-2 infection, the inventors confirmed that anti-RBD antibodies were therapeutically protective in vivo, preventing weight loss and reducing lung viral titers relative to PBS control and an irrelevant Ebola anti-GP133 mAb (FIGS. 14c-d).


Although mAbs to NP and ORF8 were non-neutralizing in vitro, they might still provide protection in vivo, potentially through Fc-mediated pathways if the proteins were exposed on the virus or cell surface at appreciable levels. However, neither ORF8-reactive mAbs nor NP-reactive mAbs conferred protection from weight loss or viral infection in the lung in vivo (FIGS. 14e-h). Altogether, this data suggest that although B cells may continue to expand and evolve to intracellular antigens upon SARS-CoV-2 infection, B cell responses against these targets may not provide substantial protection from re-infection.


4. B Cell Immunodominance is Shaped by Age, Sex, and Disease Severity


Serum antibody titers to the spike and intracellular proteins are shown to correlate with age, sex, and SARS-CoV-2 severity (Atyeo et al., 2020; Guthmiller et al., 2021; Robbiani et al., 2020). The inventors therefore analyzed the distribution of B cell subsets and frequencies of B cells specific to the spike, NP, and ORF8 in convalescent subjects stratified by age, sex, and severity of disease. Disease severity was stratified into three categories: mild, moderate, and severe, on the basis of symptom duration and symptoms experienced (Table S1), as defined previously (Guthmiller et al., 2021).


The inventors found that reactivity of total B cells toward different antigens varied widely by subject, likely reflecting host-intrinsic differences (FIG. 15a). With age, the inventors identified a decrease in the generation of spike-specific B cells and an increase in ORF8 and NP-specific B cells (FIG. 15b). Similarly, the percentage of total spike-specific B cells was reduced in subjects with more severe disease, whereas ORF8-specific B cells were increased (FIG. 15c). Last, the inventors identified that women had increased percentages of ORF8-reactive cells, whereas men showed slightly greater percentages of NP-reactive cells (Fig. To address whether differences in B cell reactivity with age and severity were associated with naive-like or MBC subsets, the inventors analyzed reactivity by subset. The inventors observed a substantial decrease in spike-specific MBCs and an increase in NP- and ORFS-reactive MBCs with age, while naive-like B cell subsets were more evenly distributed in reactivity across age groups (FIG. 15e; FIG. 20a). The inventors identified a significant correlation with age and the percentage of ORF8-reactive MBCs in women, but noting men (FIG. 20b-c). In contrast, the generation of specific MBCs was not different between mild and severe cases, though naive-like subsets targeting ORF8 were increased across mild, moderate, and severe disease (FIG. 15f; FIG. 20d).


Although B cell memory to the spike was decreased in older patients, the overall median number of VH SHMs for antigen-specific MBCs was increased relative to younger patients (FIG. 15g). However, whereas the majority of MBCs harboring the most mutations targeted the SARS2 spike in younger age groups (FIGS. 15h-i), mutated MBCs against NP and ORF8 were proportionately increased relative to the spike in older patients (FIG. 15j). Finally, the inventors observed variability in the percentages of MBCs and naive-like B cells across subjects (FIG. 15k), with older patients, patients with severe disease, and female patients generating reduced percentages of MBCs (FIGS. 15l-n). These findings point to older patients' exhibiting poorly adapted MBC responses to the spike, instead exhibiting increased targeting and adaptation to intracellular antigens. These data are analogous to B cell responses to influenza virus vaccination in the elderly and may be attributed to the effects of immunosenescence impairing the ability to form new memory over time (Dugan et al., 2020b; Henry et al., 2019). Alternatively, these findings may reflect potential effects of preexisting immunity on the boosting of NP-specific cross-reactive MBCs.


In summary, this study highlights the diversity of B cell subsets expanded upon novel infection with SARS-CoV-2. Using this approach, the inventors identified that B cells against the spike, ORFS, and NP differ in their ability to neutralize and derive from functionally distinct and differentially adapted B cell subsets; that MBC output over time shifts from the spike to intracellular antigens; and that targeting of these antigens is affected by age, sex, and disease severity.


B. Discussion


The COVID-19 pandemic continues to pose one of the greatest public health and policy challenges in modern history, and robust data on long-term immunity are critically needed to evaluate future decisions regarding COVID-19 responses. This approach combined three powerful aspects of B cell biology to address human immunity to SARS-CoV-2: B cell transcriptome, Ig sequencing, and recombinant mAb characterization. The inventors show that antibodies targeting key protective spike epitopes are enriched within MBC populations, but over time the MBC pool continues to adapt toward non-protective intracellular antigens, which could be a molecular hallmark of waning B-cell-mediated protection. This is further evidence that widespread vaccination, which only elicits a response to the spike, may be critical to end the pandemic.


Through this study, the inventors revealed that the landscape of antigen targeting and B cell subsets varied widely across severe acute subjects and convalescent subjects between 1.5 and 4.5 months post-symptom onset. Severe acute patients mounted a large ASC response toward HCoV spike and ORFS, derived largely from IgA ASC populations. The expansion of highly mutated plasmablasts to HCoV spike in severe acute patients suggests that the early response to SARS-CoV-2 in some patients may be dominated by an original antigen sin response, as plasma-blasts are often re-activated from preexisting memory (Dugan et al., 2020a). It remains unclear whether such responses worsen the severity of disease or reflect an inability to adapt to novel SARS2 spike epitopes. Alternatively, whether HCoV spike binding B cells adapt to the SARS2 spike and can provide protection is of interest for the potential generation of a universal coronavirus vaccine. Further investigation into the protection afforded by cross-reactive antibodies is warranted, as previous studies have identified cross-reactive HCoV and SARS1 binding antibodies can neutralize SARS-CoV-2 (Ng et al., 2020; Wec et al., 2020). Vaccine-induced responses to the spike will also be shaped by preexisting immunity and should be investigated.


Although SARS2 spike-specific B cells from the convalescent cohort were enriched in memory, the inventors also identified MBCs and ASCs to HCoV spike, which waned 4.5 months after infection. This later time point coincided with an increase in overall numbers and percentage of ORF8- and NP-specific MBCs, which displayed a marked increase in SHIM. This phenotype was pronounced in older patients, who exhibited reduced MBC targeting of the spike. Patients who were older, were female, and had more severe disease showed increased B cell targeting of ORF8, and older patients tended to generate more memory to intracellular proteins over time. The inventors identified B cells targeting these intracellular proteins as exclusively non-neutralizing and non-protective. Mechanistically, these observations may be explained by reduced adaptability of B cells or increased reliance on CD4 T cell help for B cell activation, which have been observed in aged individuals upon viral infections and are dysregulated in aged patients (Dugan et al., 2020b; Henry et al., 2019) Furthermore, T cell responses to SARS-CoV-2 intracellular proteins are prevalent in convalescent COVID-19 patients (Grifoni et al., 2020; Le Bert et al., 2020; Peng et al., 2020). The shift in memory output during convalescence may also reflect the massive difference in pro tein availability, with each virion producing only dozens of spikes but thousands of intracellular proteins (Grifoni et al., 2020; Lu et al., 2021; Yao et al., 2020).


Finally, the identification of multiple distinct antigen-specific subsets of naive-like, innate-like B cells, MBCs, and ASCs illustrates the complexity of the B cell response to SARS-CoV-2, revealing an important feature of the immune response against any novel pathogen. More research is warranted to determine whether the expansion of particular antigen-specific B cell subsets directly affects susceptibility and disease severity and, conversely, whether age or disease severity shape memory formation. Addressing these questions will be critical for understanding the disease course, determining correlates of protection, and developing vaccines capable of protecting against SARS-CoV-2 and emerging variants.


C. Experimental Model and Subject Details


1. Human Materials


All studies were performed with the approval of the University of Chicago institutional review board IRB20-0523 and University of Chicago, University of Wisconsin-Madison, and Washington University in St. Louis institutional biosafety committees. Informed consent was obtained after the research applications and possible consequences of the studies were disclosed to study subjects. This clinical trial was registered at ClinicalTrials.gov with identifier NCT04340050, and clinical information for patients included in the study is detailed in Tables S1-S3. Convalescent leukoreduction filter donors were 18 years of age or older, eligible to donate blood as per standard University of Chicago Medicine Blood Donation Center guidelines, had a documented COVID-19 polymerase chain reaction (PCR) positive test, and complete resolution of symptoms at least 28 days prior to donation. Severe acute infected blood donors were 18 years of age or older and blood was collected per standard University of Chicago Medical Center guidelines. Subjects had a documented COVID-19 polymerase chain reaction (PCR) positive test, were hospitalized, and had been scheduled to receive an infusion of convalescent donor plasma. Four blood draws were collected both before and after plasma infusion, at days 0, 1, 3, and 14. PBMCs were collected from leukoreduction filters or blood draws within 2 hours post-collection and, if applicable, flushed from the filters using sterile 1× Phosphate-Buffered Saline (PBS, GIBCO) supplemented with 0.2% Bovine Serum Albumin (BSA, Sigma). Lymphocytes were purified by Lymphoprep Ficoll gradient (Thermo Fisher) and contaminating red blood cells were lysed by ACK buffer (Thermo Fisher). Cells were frozen in Fetal Bovine Serum (FBS, GIBCO) with 10% Dimethyl sulfoxide (DMSO, Sigma) prior to downstream analysis. On the day of sorting, B cells were enriched using the human pan B cell EasySep™ enrichment kit (STEMCELL).


D. Method Details


1. Recombinant Proteins and Probe Generation


SARS-CoV-2 and Hanta PUUV proteins were obtained from the Krammer laboratory at Mt. Sinai, the Joachimiak laboratory at Argonne, and the Fremont laboratory at Washington University. pCAGGS expression constructs for the spike protein, spike RBD, and hanta PUUV were obtained from the Krammer lab at Mt. Sinai and produced in house in Expi293F suspension cells (Thermo Fisher). Sequences for the spike and RBD proteins as well as details regarding their expression and purification have been previously described (Amanat et al., 2020; Stadlbauer et al., 2020). Proteins were biotinylated for 2 hours on ice using EZ-Link Sulfo-NHS-Biotin, No-Weigh Format (Thermo Fisher) according to the manufacturer's instructions, unless previously Avi-tagged and biotinylated (ORF8 protein, Fremont laboratory). Truncated cDNAs encoding the Ig-like domains of ORF8 were inserted into the bacterial expression vector pET-21(a) in frame with a biotin ligase recognition sequence at the c-terminus (GLNDIFEAQKIEWHE). Soluble recombinant proteins were produced as described previously (Nelson et al., 2005). In brief, inclusion body proteins were washed, denatured, reduced, and then renatured by rapid dilution following standard methods (Nelson et al., 2014). The refolding buffer consisted of 400 mM arginine, 100 mM Tris-HCl, 2 mM EDTA, 200 mM ABESF, 5 mM reduced glutathione, and 500 mM oxidized glutathione at a final pH of 8.3. After 24 hr, the soluble-refolded protein was collected over a 10 kDa ultrafiltration disc (EMD Millipore, PLGC07610) in a stirred cell concentrator and subjected to chromatography on a HiLoad 26/60 Superdex S75 column (GE Healthcare). Site specific biotinylation with BirA enzyme was done following the manufacture's protocol (Avidity) except that the reaction buffer consisted of 100 mM Tri s-HCl (pH7.5) 150 mM NaCl, with 5 mM MgCl2 in place of 0.5 M Bicine at pH 8.3. Unreacted biotin was removed by passage through a 7K MWCO desalting column (Zeba spin, Thermo Fisher). Full-length SARS-CoV-2 NP was cloned into pET21a with a hexahistidine tag and expressed using BL21(DE3)-RIL E. coli in Terrific Broth (bioWORLD) Following overnight induction at 25° C., cells were lysed in 20 mM Tris-HCl pH 8.5, 1 M NaCl, 5 mM b-mercaptopethanol, and 5 mM imidazole for nickel-affinity purification and size exclusion chromatography. Endemic HCoV spike proteins (HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43) were purchased from Sino Biological. Biotinylated proteins were then conjugated to Biolegend TotalSeq PE streptavidin (PE-SA), APC streptavidin (APC-SA), or non-fluorescent streptavidin (NF-SA) oligos at a molar ratio of antigen to PE-SA, APC-SA, or NF-SA. The amount of antigen was chosen based on a fixed amount of 0.5 mg PE-SA, APC-SA, or NF-SA and diluted in a final volume of 10 mL. PE-SA, APC-SA, or NF-SA was then added gradually to 10 mL biotinylated proteins times on ice, 1 mL PE-SA, APC-SA, or NF-SA (0.1 mg/ml stock) every 20 minutes for a total of 5 mL (0.5 mg) PE-SA, APC-SA, or NF-SA. The reaction was then quenched with 5 mL 4 mM Pierce biotin (Thermo Fisher) for 30 minutes for a total probe volume of 20 mL. Probes were then used immediately for staining.


2. Antigen-Specific B Cell Sorting


PBMCs were thawed and B cells were enriched using EasySep™ pan B cell magnetic enrichment kit (STEMCELL). B cells were stained with a panel containing CD19 PE-Cy7 (Biolegend), IgM APC (Southern Biotech), CD27 BV605 (Biolegend), CD38 BB515 (BD Biosciences), and CD3 BV510 (BD Biosciences). B cells were stained with surface stain master mix and each COVID-19 antigen probe for 30 minutes on ice in 1×PBS supplemented with 0.2% BSA and 2 mM Pierce Biotin. Cells were stained with probe at a 1:100 dilution (NP, ORFS, RBD, PUUV, empty PE-SA) or 1:200 dilution (spike, endemic HCoV spikes). Cells were subsequently washed with 1×PBS 0.2% BSA and stained with Live/Dead BV510 (Thermo Fisher) in 1×PBS for 15 minutes. Cells were washed again and re-suspended at a maximum of 4 million cells/mL in 1×PBS supplemented with 0.2% BSA and 2 mM Pierce Biotin for downstream cell sorting using the MACSQuantTyto cartridge sorting platform (Miltenyi). Cells that were viable/CD19+/antigen-PE+ or viable/CD19+/antigen-APC were sorted as probe positive. The PE+ and APC+ gates were drawn by use of FMO controls. Cells were then collected from the cartridge sorting chamber and used for downstream 10× Genomics analysis.


3. 10× Genomics Library Construction


VDJ, 5°, and probe feature libraries were prepared using the 10× Chromium System (10× Genomics). The Chromium Single Cell 5° Library and Gel Bead v2 Kit, Human B Cell V(D)J Enrichment Kit, and Feature Barcode Library Kit were used. All steps were followed as listed in the manufacturer's instructions. Specifically, user guide CG000186 Rev D was used. Severe acute infected samples were pooled post-sort and hashtagged (Biolegend), and run as a single sample, to account for low cell numbers. Final libraries were pooled and sequenced using the NextSeq550 (Illumina) with 26 cycles apportioned for read 1, 8 cycles for the i7 index, and 134 cycles for read 2.


4. Computational Analyses for Single Cell Sequencing Data


The inventors adopted Cell Ranger (version 3.0.2) for raw sequencing processing, including 5° gene expression analysis, antigen probe analysis, and immunoprofiling analysis of B cells. Based on Cell Ranger output, the inventors performed downstream analysis using Seurat (version 3.9.9, an R package, for transcriptome, cell surface protein and antigen probe analysis) and IgBlast (version 1.15, for immunoglobulin gene analysis). For transcriptome analysis, Seurat was used for cell quality control, data normalization, data scaling, dimension reduction (both linear and non-linear), clustering, differential expression analysis, batch effects correction, and data visualization. Unwanted cells were removed according to the number of detectable genes (number of genes <200 or >2500 were removed) and percentage of mitochondrial genes for each cell. A soft threshold of percentage of mitochondrial genes was set to the 95th percentile of the current dataset distribution, and the soft threshold was subject to a sealing point of 10% as the maximum threshold in the case of particularly poor cell quality. Transcriptome data were normalized by a log-transform function with a scaling factor of whereas cell surface protein and antigen probe were normalized by a centered log-ratio (CLR) normalization. The inventors used variable genes in principal component analysis (PCA) and used the top 15 principal components (PCs) in non-linear dimension reduction and clustering. High-quality cells were then clustered by Louvain algorithm implemented in Seurat under the resolution of 0.6. Differentially expressed genes for each cell cluster were identified using a Wilcoxon rank-sum test implemented in Seurat. Batch effects correction analysis was performed using an Anchor method implemented in Seurat to remove batch effects across different datasets. All computational analyses were performed in R (version 3.6.3).


5. ROGUE Scoring


To assess the quality of B cell subsets identified in this study the inventors used ROGUE scoring, an entropy-based metric for assessing the purity of single cell populations, adapted from a previous study (Liu et al., 2020). The expression entropy for each gene was calculated using “SE_fun” from the “ROGUE” package (version 1.0). Based on the expression entropy, the ROGUE score for each cluster was calculated using the “rogue” function from the same package with parameters “platform” set to “UMI” and “span” set to


6. Antigen Probe Reactivity Assignment


Antigen probe signals were normalized by a centered log-ratio transformation individually for each subject. All B cells were sub-sequently clustered into multiple probe-specific groups according to their normalized probe signals. By investigating all normalized antigen-probe binding signals, the inventors arbitrarily set a threshold equal to 1 for all normalized probe signals to distinguish probe binding cells as “positive” or “negative.” Cells that were negative to all probes were clustered into the “negative” group; those positive to only one probe were clustered into corresponding probe-specific groups; and those that were positive to multiple probes were further investigated. Only cells whose top hit probe value was at least two-fold greater than their second hit probe value were clustered into the top hit probe-specific group; others were clustered into the “multi-reactive” group that indicates non-specific cells. To account for the inclusion of endemic HCoV spike protein reactivity in some samples, cells positive to both SARS2 spike and endemic spike were further clustered into a group the inventors assigned as “spike cross-reactive” in the code. For samples in which the inventors included separate SARS2 spike and RBD oligo tags, the inventors placed cells positive to both SARS2 spike and SARS2 RBD into the “spike” group.


7. Gene Module Scoring


Scores for B cell-genotype-related gene modules (e.g., MBC score, naive score, ASC score, and GC emigrant score) were calculated using the “AddModuleScore” function from the Seurat package (Stuart et al., 2019). The naive score was calculated based on the genes BACH2, ZBTB16, APBB2, SPRY1, TCL1A, and IKZF2; the MBC score was calculated based on the genes CD27, CD86, RASSF6, TOX, TRERF 1, TRPV3, POU2AF, RORA, TNFRSF13B, CD80, and FCRL5; the ASC score was calculated based on genes PRDM1, MANF, XBP1, IL6R, BCL6, IRF4, TNFRSF17, and CD38; and the GC emigrant score was calculated based on genes NT5E, MK167, CD40, CD83, TNFRSF13B, MAP3K8, MAP3K1, and FAS.


8. Selection of Antibodies for mAb Synthesis


Representative antibodies from each subject were chosen for synthesis by choosing random samplings of B cells that bound to a given antigen probe with higher intensity relative to all other probes. B cells with varying ranges of probe-binding intensities were chosen for confirmation by ELISAs. In addition, B cells representing select public clonal expansions were also chosen for cloning. B cells binding to all probes in a polyreactive manner were also chosen and validated for polyreactivity by polyreactivity ELISA (see methods below).


9. Monoclonal Antibody Generation


Immunoglobulin heavy and light chain genes were obtained by 10× Genomics VDJ sequencing analysis and monoclonal antibodies (mAbs) were synthesized by Integrated DNA Technologies. Cloning, transfection, and mAb purification have been previously described (Guthmiller et al., 2019). Briefly, sequences were cloned into human IgG1 expression vectors using Gibson assembly, and heavy and light genes were co-transfected into 293T cells (Thermo Fisher). Secreted mAbs were then purified from the supernatant using protein A agarose beads (Thermo Fisher).


10. Enzyme-Linked Immunosorbent Assay (ELISA)


High-protein binding microtiter plates (Costar) were coated with recombinant SARS-CoV-2 proteins at 2 mg/ml in 1×PBS overnight at 4° C. Plates were washed the next morning with 1×PBS 0.05% Tween and blocked with 1×PBS containing 20% fetal bovine serum (FBS) for 1 hour at 37° C. Antibodies were then serially diluted 1:3 starting at 10 mg/ml and incubated for 1 hour at 37° C. Horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody diluted 1:1000 (Jackson Immuno Research) was used to detect binding of mAbs, and plates were subsequently developed with Super Aquablue ELISA substrate (eBiosciences). Absorbance was measured at 405 nm on a microplate spectrophotometer (BioRad). To standardize the assays, control antibodies with known binding characteristics were included on each plate and the plates were developed when the absorbance of the control reached 3.0 OD405 units. All experiments were performed in duplicate 2-3 times.


11. Polyreactivity ELISA


Polyreactivity ELISAs were performed as previously described (Andrews et al., 2015; Bunker et al., 2017; Guthmiller et al., 2020). High-protein binding microtiter plates (Costar) were coated with 10 mg/ml calf thymus dsDNA (Thermo Fisher), 2 mg/ml Salmonella enterica serovar Typhimurium flagellin (Invitrogen), 5 mg/ml human insulin (Sigma-Aldrich), 10 mg/ml KLH (Invitrogen), and 10 mg/ml Escherichia coli LPS (Sigma-Aldrich) in 1×PBS. Plates were coated with 10 mg/ml cardiolipin in 100% ethanol and allowed to dry overnight. Plates were washed with water and blocked with 1×PBS/0.05% Tween/1 mM EDTA. MAbs were diluted 1 mg/ml in PBS and serially diluted 4-fold, and added to plates for 1.5 hours. Goat anti-human IgG-HRP (Jackson Immunoresearch) was diluted 1:2000 in PBS/0.05% Tween/1 mM EDTA and added to plates for 1 hour. Plates were developed with Super Aquablue ELISA substrate (eBioscience) until the positive control mAb, 3H9 (Shlomchik et al., 1987), reached an OD405 of 3. All experiments were performed in duplicate.


12. Neutralization Assay


The SARS-CoV-2/UW-001/Human/2020/Wisconsin (UW-001) virus was isolated from a mild case in February 2020 and used to assess neutralization ability of monoclonal antibodies (mAbs). Virus (˜500 plaque-forming units) was incubated with each mAb at a final concentration of 10 mg/ml. After a 30-minute incubation at 37° C., the virus/antibody mixture was used to inoculate Vero E6/TMPRSS2 cells seeded a day prior at 200,000 cells per well of a TC12 plate. After 30 minutes at 37° C., cells were washed three times to remove any unbound virus, and media containing antibody (10 mg/ml) was added back to each well. Two days after inoculation, cell culture supernatant was harvested and stored at −80° C. until needed. A non-relevant Ebola virus GP mAb and PBS were used as controls.


To determine the amount of virus in the cell culture supernatant of each well, a standard plaque-forming assay was performed. Confluent Vero E6/TMPRSS2 cells in a TC12 plate were infected with supernatant (undiluted, 10-fold dilutions from 10−1 to 10−5) for 30 minutes at 37° C. After the incubation, cells were washed three times to remove unbound virus and 1.0% methylcellulose media was added over the cells. After an incubation of three days at 37° C., the cells were fixed and stained with crystal violet solution in order to count the number plaques at each dilution and determine virus concentration given as plaque-forming units (PFU)/ml.


13. In Vivo Protection Assays


To evaluate the efficacy of RBD and NP monoclonal antibodies (mAbs) in vivo, groups of 4-5-week-old female Syrian golden hamsters (four animals in each group) were infected with SARS-CoV-2 at a dose of 103 PFU by intranasal inoculation. One day later, the hamsters were treated by intraperitoneal injection with one of the mAbs at 5 mg/kg. Control groups of hamsters were injected with either sterile PBS or a non-relevant mAb (Ebola glycoprotein 133/3.16). Weights were recorded daily. Four days after the infection, nasal turbinate and lung samples were collected to determine viral loads in these tissues by standard plaque assay on Vero E6/TMPRRSS2 cells. All animal studies were conducted under BSL-3 containment with an approved protocol reviewed by the Institutional Animal Care and Use Committee at the University of Wisconsin.


Studies with mice were carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocols were approved by the Institutional Animal Care and Use Committee at the Washington University School of Medicine (assurance number A3381-01). Virus inoculations were performed under anesthesia that was induced and maintained with ketamine hydrochloride and xylazine, and all efforts were made to minimize animal suffering. To evaluate the efficacy of ORF8 mAbs in vivo, eight-week-old heterozygous female K18-hACE c57BL/6J mice (strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J) received 200 mg of each indicated mAb by intraperitoneal injection one day prior to intranasal inoculation with 103 PFU of SARS-CoV-2 (n-CoV/USA_WA1/2020 strain). Weight change was monitored daily and lungs were harvested at 7 days post-infection. Viral RNA levels in lung homogenates were determined by qRT-PCR quantifying N gene copy number and compared to a standard curve as described previously (Winkler et al., 2020).


14. Quantification and Statistical Analysis


All statistical analysis was performed using Prism software (Graphpad Version 9.0) or R. Chi-square tests were corrected for multiple comparisons using post hoc Chi-square test. Sample sizes (n) are indicated in corresponding figures or figure legends. The number of biological repeats for experiments and specific tests for statistical significance used are indicated in the figure legends. P values less than or equal to 0.05 were considered significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.


E. Tables









TABLE S1







Convalescent patient information, Related to FIGS. 10-15.





















Symptom








Duration
start to


Subject


Reported
Severity
Severity
symptoms
donation


ID
Age
Sex
symptoms*
Score
Category
(days)
(days)

















24
34
M
Fatigue, cough, SOB,
19
Severe
12
41





SC, fever, headache,





BAP, diarrhea, LOS,





LOT


20
31
M
Fatigue, cough, SOB,
29
Critical
19
48





SC, fever, headache,





BAP, LOS, LOT


564
24
F
Fatigue, cough, SOB,
24
Severe
32
60





SC, ST, fever,





headache, BAP,





diarrhea, LOS, LOT


144
56
M
Fatigue, cough, SC,
17
Moderate
23
54





ST, headache, BAP,





LOS


214
47
M
Fatigue, cough, SOB,
20
Severe
24
59





SC, ST, headache,





BAP, LOS, LOT


171
37
F
Fatigue, cough, SOB,
21
Severe
16
44





SC, fever, headache,





BAP, diarrhea, LOS,





LOT


92
35
M
Fatigue, cough, SC,
16
Moderate
16
47





ST, fever, headache,





BAP


48
45
F
Fatigue, cough, SOB,
19
Severe
8
40





SC, ST, fever,





headache, AP,





diarrhea, LOS, LOT


537
36
M
Fatigue, cough,
13
Moderate
14
59





fever, BAP


586
32
F
Fatigue, cough, SOB,
18
Moderate
17
61





SC, headache, BAP,





AP. diarrhea


376
36
F
Diarrhea, LOS, LOT
8
Mild
7
48


305
43
F
Fatigue, cough, SC.
14
Moderate
4
47





ST, fever, headache,





BAP, LOS, LOT


116
65
F
Cough, SOB, fever,
13
Moderate
18
49





LOS, LOT


166
42
F
Fatigue, cough, SOB,
18
Moderate
17
55





SC, fever, headache,





BAP, diarrhea, LOS,





LOT


155
47
F
Fatigue, cough, SOB,
20
Severe
29
64





ST, fever, BAP, LOS,





LOT


609
26
F
Fatigue, SOB, ST,
16
Moderate
7
57





fever, headache,





BAP. LOS, LOT


130
52
M
Fatigue, SC,
10
Mild
7
35





headache, LOS, LOT


281
70
M
Cough, fever, BAP
9
Mild
7
48


272
42
M
Fatigue, cough, SOB,
18
Moderate
14
43





fever, headache,





BAP, LOS, LOT


50
35
M
Fatigue, SC, fever,
13
Moderate
10
40





BAP, LOS, LOT


65
40
F
Fatigue, SC, fever,
16
Moderate
13
47





headache, BAP,





diarrhea, LOS, LOT


33
36
M
Fatigue, cough, SOB,
22
Severe
14
48





SC, fever, headache,





BAP, AP, diarrhea,





LOS. LOT


201
56
M
Fatigue, cough, SOB,
20
Severe
18
58





SC, ST, fever,





headache, BAP,





LOS, LOT


218
51
F
Fatigue, cough, SOB,
19
Severe
19
48





fever, headache,





BAP, AP, diarrhea


266
19
F
Fatigue, cough, SC,
9
Mild
4
32, 137





headache, BAP



V2*


356
51
F
Fatigue, cough, ST,
20
Severe
14
43, 137





fever, headache,



V2*





BAP, AP, diarrhea,





LOS, LOT


407
34
M
Fatigue, cough, SC,
16
Moderate
11
43, 131





fever, BAP, AP,



V2*





diarrhea, LOS, LOT


210
47
M
Fatigue, cough, SOB,
16
Moderate
7
41, 125





fever, headache,



V2*





BAP, LOS, LOT





*SOB = shortness of breath; SC = sinus congestion; ST = sore throat; BAP = body aches and pain; AP = abdominal pain; LOS = loss of smell; LOT = loss of taste. Starred symptom start to donation values indicate the value for follow-up visit donation (V2). Severity scoring method has been described previously (Guthmiller et al., 2021).













TABLE S2





Distribution of clinical parameters for convalescent patients


included in the study, Related to FIGS. 10-15


















Median Age
41



Mean Age
42



Mode Age
47



Range Age
19-70



Number of Males
14



Number of Females
14



Median Duration of Symptoms (days)
14



Mean Duration of Symptoms (days)
14



Mode Duration of Symptoms (days)
7



Range Duration of Symptoms (days)
 4-32



Median symptom start to donation (days)
48



Mean symptom start to donation (days)
49



Mode symptom start to donation (days)
48



Range symptom start to donation (days)
32-64

















TABLE S3







Severe acute patient information, Related to FIGS. 10-12.

















Symptom








start to first


Subject


Reported
donation


ID
Age
Sex
symptoms*
(days)
Co-morbidities*
COVID treatment
















R1
57
M
Fever, cough,
3
HTN, DM, NAFLD
Tocilizumab,





nausea


mechanical








ventilation


R2
61
M
Cough,
16
None
Hydroxychloroquine,





weakness,


nasal cannula





hiccups, altered





mental status


R3
51
F
Fever, cough,
21
HTN, DM, PE, asthma
Remdesivir,





dyspnea


tocilizumab,








venovenous ECMO*


R4
70
F
Fever, altered
2
HTN, Alzheimer's
Nasal cannula





mental status

disease


R5
66
F
Altered mental
9
HTN, PE/DVT, recent
Nasal cannula





status, dyspnea

hospitalization for







orthopedic procedure


R6
59
M
Fever, chills,
20
HTN, DM
Remdesivir,





decreased


tocilizumab,





appetite,


Venovenous ECMO





dizziness


R7
57
M
Dyspnea
9
HTN, Myelodysplastic
Tocilizumab,







syndrome s/p stem
anakinra, nasal







cell transplant
cannula


R8
30
M
Fever, chills,
13
Cystic fibrosis s/p
Room air





fatigue, LOT*

bilateral lung







transplant, DM


R9
78
M
Fever, cough
14
HTN, prostate cancer
High-flow nasal








cannula


R10
86
F
Dyspnea,
6
ESRD on HD, stroke,
Nasal cannula





abdominal pain

PVD s/p AKA, DM,







PE/DVT, CHF





*LOT: Loss of taste; ECMO: Extracorporeal membrane oxygenation.


*AKA, above the knee amputation; CHF, congestive heart failure; DM, diabetes mellitus; DVT, deep venous thrombosis; ESRD, end-stage renal disease; HTN, hypertension; NAFLD, non-alcoholic fatty liver disease; PE, pulmonary embolism; PVD, peripheral vascular disease













TABLE S4





Distribution of clinical parameters for severe acute patients


included in the study, Related to FIGS. 10-12.


















Median Age
60



Mean Age
61.5



Mode Age
57



Range Age
30-86



Number of Males
6



Number of Females
4



Median symptom start to first donation* (days)
11



Mean symptom start to first donation* (days)
11



Mode symptom start to first donation* (days)
9



Median symptom start to last donation* (days)
25



Mean symptom start to last donation* (days)
25



Mode symptom start to last donation* (days)
23







*Samples were collected day 0 (pre-plasma transfusion), 1, 3, 5, and 14 post-plasma transfusion and all time points per subject were pooled for analysis due to low cell numbers. See methods for additional details.













TABLE S6







Key genes used in the identification of B cell subsets, Related to FIG. 11.










Gene
B Cell Subset
Rationale
Citation





BACH2
Naïve
Promotes B cell
(Itoh-Nakadai et al.,




development, maintains
2014)




mature B cells


ZBTB16
Naïve
Downregulated in
(Moroney et al.,




memory compared to
2020)




naïve


APBB2
Naïve
Foxp1 target important for
(Patzelt et al., 2018);




mature FO B cell survival
The Human Protein





Atlas (Uhlen et al.,





2015)


SPRY1
Naïve
Proliferation inhibitor,
(Frank et al., 2009)




differentially expressed
The Human Protein




(DE) between naïve and
Atlas (Uhlen et al.,




memory
2015)


TCL1A
Naïve
DE between B cell pop.
(Said et al., 2001)




High in Naïve, low in GC,




absent in memory and




ASC


IKZF2
Naïve
DE between memory and
(Moroney et al.,




naïve, higher in naïve
2020)


CD27
Memory
Classic memory marker
(Palm and Henry,





2019)


CD86
Memory
DE between memory and
(Axelsson et al.,




naïve, higher in memory
2020)


RASSF6
Memory
Increased in memory
(Moroney et al.,





2020)


TOX
Memory
Increased in memory
(Moroney et al.,





2020)


TRERF1
Memory
Increased in memory
(Moroney et al.,





2020)


TRPV3
Memory
Increased in memory
(Moroney et al.,





2020)


POU2AF1
Memory
B cell-specific TF
(Zhao et al., 2008)


RORA
Memory
Increased in memory
(Moroney et al.,





2020)


TNFRSF13B
Memory
BAFF-binding receptor
(Muller-Winkler et




expressed in memory and
al., 2021)




ASC


CD80
Memory
High affinity memory
(Palm and Henry.




marker
2019)


FCLR5
Memory
Atypical memory marker
(Kim et al., 2019)


GDPD5
Class-switched
Highest in class-switched
The Human Protein



Memory
memory B cells
Atlas (Uhlen et al.,





2015)


BAIAP3
Class-switched
DE in switched memory,
(Moroney et al.,



Memory
ion channel Ca2+ flux
2020)


TGM2
Class-switched
DE in switched memory,
(Moroney et al.,



Memory
Ca2+ signal transduction
2020)


MUC16
Class-switched
DE in class-switched
(Moroney et al.,



Memory
memory, membrane
2020)




adhesion


PRDM1
ASC
Lineage-defining TF
(Lightman et al.,





2019)


MANF
ASC
ER stress
(Lightman et al.,





2019)


XBP1
ASC
Unfolded protein
(Lightman et al.,




response
2019)


IL6R
ASC
Receptor for IL6,
(Dienz et al., 2009)




promotes PC fate and




mAb production


BCL6
ASC
Drops in GCs to promote
(Palm and Henry,




PC fate
2019)


IRF4
ASC
Rises as BCL6 drops to
(Palm and Henry,




promote PC fate
2019)


TNFSR17
ASC
Genetic KOs experience
(Lightman et al.,




sig PC reduction
2019)


CD38
ASC
Classic PC marker
(Lightman et al.,





2019)


NT5E
GC emigrant/
Important for class-switch
(Schena et al., 2013)



recent MBC


MKI67
GC emigrant/
Proliferation marker
(Scholzen and



recent MBC

Gerdes, 2000)


CD40
GC emigrant/
Required for memory
(Basso et al., 2004)



recent MBC
formation


CD83
GC emigrant/
GC composition
(Krzyzak et al.,



recent MBC

2016)


MAP3K8
GC emigrant/
DE during GC reaction
(Wohner et al., 2016)



recent MBC


MAP3K1
GC emigrant/
Required for CD40
(Gallagher et al.,



recent MBC
signaling
2007)


FAS
GC emigrant/
DE during GC reaction
(Smith et al., 1995)



recent MBC


Marginal Zone
Marginal Zone
DE in MZBs
(Descatoire et al.,


genes
B cells

2014)


SPN
B1 B Cells
Classic B1 marker
(Rothstein et al.,





2013)


MYO1D
B1 B Cells
DE in B1s
(Macias-Garcia et





al., 2016)


PLSCR1
B1 B Cells
Expressed in natural
Cordero et al




ASCs


PSTPIP2
B1 B Cell
DE during activation
(Ochiai et al., 2020)


AHR
B1 B Cell
Highest expression in B1
(Villa et al., 2017)


CD300LF
B1 B Cell
DE in B1s
(Macias-Garcia et





al., 2016)


LYSMD2-
B1 B Cell
DE in mouse B1s
(Mabbott and Gray,


GPR55


2014)


IZUMO1R
B1 B Cell
DE in B1s
(Macias-Garcia et





al., 2016)


TNFSF13B-
Innate-like B
Highly expressed in MZB
(Smulski and Eibel,


MYD88
cells
and B1
2018)









F. References

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

  • 1. Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T. H. O., Chromikova, V., McMahon, M., Jiang, K., Asthagiri Arunkumar, G., Jurczyszak, D., Polanco, J., et al. (2020). A serological assay to detect SARS-CoV-2 seroconversion in humans. medRxiv.
  • 2. Andrews, S. F., Huang, Y., Kaur, K., Popova, L. I., Ho, I. Y., Pauli, N. T., Henry Dunand, C. J., Taylor, W. M., Lim, S., Huang, M., et al. (2015). Immune history profoundly affects broadly protective B cell responses to influenza. Sci. Transl. Med. 7, 316ra192.
  • 3. Atyeo, C., Fischinger, S., Zohar, T., Slein, M. D., Burke, J., Loos, C., McCulloch, D. J., Newman, K. L., Wolf, C., Yu, J., et al. (2020). Distinct early serological signatures track with SARS-CoV-2 survival. Immunity 53, 524-532.e4.
  • 4. Axelsson, S., Magnuson, A., Lange, A., Alshamari, A., Hornquist, E. H., and Hultgren, (2020). A combination of the activation marker CD86 and the immune checkpoint marker B and T lymphocyte attenuator (BTLA) indicates a putative permissive activation state of B cell subtypes in healthy blood donors independent of age and sex. BMC Immunol. 21, 14.
  • 5. Basso, K., Klein, U., Niu, H., Stolovitzky, G. A., Tu, Y., Califano, A., Cattoretti, G., and Dalla-Favera, R. (2004). Tracking CD40 signaling during germinal center development. Blood 104, 4088-4096.
  • 6. Bunker, J. J., Erickson, S. A., Flynn, T. M., Henry, C., Koval, J. C., Meisel, M., Jabri, B., Antonopoulos, D. A., Wilson, P. C., and Bendelac, A. (2017). Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619.
  • 7. Chen, F., Tzarum, N., Wilson, I. A., and Law, M. (2019). VH1-69 antiviral broadly neutralizing antibodies: genetics, structures, and relevance to rational vaccine design. Curr. Opin. Virol. 34, 149-159.
  • 8. Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., Zhao, J., Liu, P., Gao, L., Li, Z., et al. (2020). Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell. Mol. Immunol. 17, 647-649.
  • 9. Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A., Ramirez, S. I., Haupt, S., Frazier, A., et al. (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063.
  • 10. Descatoire, M., Weller, S., Irtan, S., Sarnacki, S., Feuillard, J., Storck, S., Guiochon-Mantel, A., Bouligand, J., Morali, A., Cohen, J., et al. (2014). Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J. Exp. Med. 211, 987-1000.
  • 11. Dienz, O., Eaton, S. M., Bond, J. P., Neveu, W., Moquin, D., Noubade, R., Briso, E. M., Charland, C., Leonard, W. J., Ciliberto, G., et al. (2009). The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 206, 69-78.
  • 12. Dugan, H. L., Guthmiller, J. J., Arevalo, P., Huang, M., Chen, Y. Q., Neu, K. E., Henry, C., Zheng, N. Y., Lan, L. Y., Tepora, M. E., et al. (2020a). Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. Sci. Transl. Med. 12, eabd3601.
  • 13. Dugan, H. L., Henry, C., and Wilson, P. C. (2020b). Aging and influenza vaccine-induced immunity. Cell. Immunol. 348, 103998.
  • 14. Frank, M. J., Dawson, D. W., Bensinger, S. J., Hong, J. S., Knosp, W. M., Xu, L., Balatoni, C. E., Allen, E. L., Shen, R. R., Bar-Sagi, D., et al. (2009). Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas. Blood 113, 2478-2487.
  • 15. Gaebler, C., Wang, Z., Lorenzi, J. C. C., Muecksch, F., Finkin, S., Tokuyama, M., Cho, A., Jankovic, M., Schaefer-Babajew, D., Oliveira, T. Y., et al. (2021). Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639-644.
  • 16. Gallagher, E., Enzler, T., Matsuzawa, A., Anzelon-Mills, A., Otero, D., Holzer, R., Janssen, E., Gao, M., and Karin, M. (2007). Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production. Nat. Immunol. 8, 57-63.
  • 17. Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L., Jadi, R. S., et al (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVED-19 disease and unexposed individuals. Cell 181, 1489-1501.e15.
  • 18. Guthmiller, J. J., Dugan, H. L., Neu, K. E., Lan, L. Y., and Wilson, P. C. (2019). An efficient method to generate monoclonal antibodies from human B cells. Methods Mol. Biol. 1904, 109-145.
  • 19. Guthmiller, J. J., Lan, L. Y., ndez-Quintero, M. L., Han, J., Utset, H. A., Bitar, D. J., Hamel, N.J., Stovicek, O., Li, L., Tepora, M., et al. (2020). Polyreactive broadly neutralizing B cells are selected to provide defense against pandemic threat influenza viruses. Immunity 53, 1230-1244.e5.
  • 20. Guthmiller, J. J., Stovicek, O., Wang, J., Changrob, S., Li, L., Halfmann, P., Zheng, N. Y., Utset, H., Stamper, C. T., Dugan, H. L., et al. (2021). SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike. MBio 12, e02940-20.
  • 21. Hartley, G. E., Edwards, E. S. J., Aui, P. M., Varese, N., Stojanovic, S.,
  • 22. McMahon, J., Peleg, A. Y., Boo, I., Drummer, H. E., Hogarth, P. M., et al. (2020). Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci. Immunol. 5, eabf8891.
  • 23. Henry, C., Zheng, N.Y., Huang, M., Cabanov, A., Rojas, K. T., Kaur, K., Andrews, S. F., Palm, A. E., Chen, Y. Q., Li, Y., et al. (2019). Influenza virus vaccination elicits poorly adapted B cell responses in elderly individuals. Cell Host Microbe 25, 357-366.e6.
  • 24. Itoh-Nakadai, A., Hikota, R., Muto, A., Kometani, K., Watanabe-Matsui, M., Sato, Y., Kobayashi, M., Nakamura, A., Miura, Y., Yano, Y., et al. (2014). The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nat. Immunol. 15, 1171-1180.
  • 25. Kim, C. C., Baccarella, A. M., Bayat, A., Pepper, M., and Fontana, M. F. (2019). FCRL5+ memory B cells exhibit robust recall responses. Cell Rep. 27, 1446— 1460.e4.
  • 26. Krzyzak, L., Seitz, C., Urbat, A., Hutzler, S., Ostalecki, C., Gla€sner, J., Hiergeist, A., Gessner, A., Winkler, T. H., Steinkasserer, A., and Nitschke, L. (2016). CD83 modulates B cell activation and germinal center responses. J. Immunol. 196, 3581-3594.
  • 27. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., and Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220.
  • 28. Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A.,
  • 29. Chng, M. H. Y., Lin, M., Tan, N., Linster, M., et al. (2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457-462.
  • 30. Lightman, S. M., Utley, A., and Lee, K. P. (2019). Survival of long-lived plasma cells (LLPC): piecing together the puzzle. Front. Immunol. 10, 965.
  • 31. Liu, B., Li, C., Li, Z., Wang, D., Ren, X., and Zhang, Z. (2020). An entropy-based metric for assessing the purity of single cell populations. Nat. Commun. 11, 3155.
  • 32. Lu, S., Ye, Q., Singh, D., Cao, Y., Diedrich, J. K., Yates, J. R., 3rd, Villa, E., Cleveland, D. W., and Corbett, K. D. (2021). The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun. 12, 502.
  • 33. Mabbott, N. A., and Gray, D. (2014). Identification of co-expressed gene signatures in mouse B1, marginal zone and B2 B-cell populations. Immunology 141, 79-95.
  • 34. Macias-Garcia, A., Heizmann, B., Sellars, M., Marchal, P., Dali, H., Pasquali, J. L., Muller, S., Kastner, P., and Chan, S. (2016). Ikaros is a negative regulator of B1 cell development and function. J. Biol. Chem. 291, 9073-9086.
  • 35. Moroney, J. B., Vasudev, A., Pertsemlidis, A., Zan, H., and Casali, P. (2020). Integrative transcriptome and chromatin landscape analysis reveals distinct epigenetic regulations in human memory B cells. Nat. Commun. 11, 5435.
  • 36. Mu€ller-Winkler, J., Mitter, R., Rappe, J. C. F., Vanes, L., Schweighoffer, E., Mohammadi, H., Wack, A., and Tybulewicz, V. L. J. (2021). Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. J. Exp. Med. 218, e20191393.
  • 37. Nelson, C. A., Lee, C. A., and Fremont, D. H. (2014). Oxidative refolding from inclusion bodies. Methods Mol. Biol. 1140, 145-157.
  • 38. Nelson, C. A., Pekosz, A., Lee, C. A., Diamond, M. S., and Fremont, D. H. (2005). Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13, 75-85.
  • 39. Ng, K. W., Faulkner, N., Cornish, G. H., Rosa, A., Harvey, R., Hussain, S., Ulferts, R., Earl, C., Wrobel, A. G., Benton, D. J., et al. (2020). Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339-1343.
  • 40. Ochiai, K., Yamaoka, M., Swaminathan, A., Shima, H., Hiura, H., Matsumoto, M., Kurotaki, D., Nakabayashi, J., Funayama, R., Nakayama, K., et al. (2020). Chromatin protein PC4 orchestrates B cell differentiation by collaborating with IKAROS and IRF4. Cell Rep. 33, 108517.
  • 41. Palm, A. E., and Henry, C. (2019). Remembrance of things past: long-term B cell memory after infection and vaccination. Front. Immunol. 10, 1787.
  • 42. Patzelt, T., Keppler, S. J., Gorka, O., Thoene, S., Wartewig, T., Reth, M., Förster, I., Lang, R., Buchner, M., and Ruland, J. (2018). Foxpl controls mature B cell survival and the development of follicular and B-1 B cells. Proc. Natl. Acad. Sci. USA 115, 3120-3125.
  • 43. Peng, Y., Mentzer, A. J., Liu, G., Yao, X., Yin, Z., Dong, D., Dejnirattisai, W., Rostron, T., Supasa, P., Liu, C., et al. (2020). Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336-1345.
  • 44. Robbiani, D. F., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Gazumyan, A., Finkin, S., et al. (2020). Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437-442.
  • 45. Rodda, L. B., Netland, J., Shehata, L., Pruner, K. B., Morawski, P. A., Thouvenel, C. D., Takehara, K. K., Eggenberger, J., Hemann, E. A., Waterman, H. R., et al. (2021). Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell 184, 169-183.e17.
  • 46. Rothstein, T. L., Griffin, D. O., Holodick, N. E., Quach, T. D., and Kaku, H. (2013). Human B-1 cells take the stage. Ann. N Y Acad. Sci. 1285, 97-114.
  • 47. Said, J. W., Hoyer, K. K., French, S. W., Rosenfelt, L., Garcia-Lloret, M., Koh, P. J., Cheng, T. C., Sulur, G. G., Pinkus, G. S., Kuehl, W. M., et al. (2001). TCL1 oncogene expression in B cell subsets from lymphoid hyperplasia and distinct classes of B cell lymphoma. Lab. Invest. 81, 555-564.
  • 48. Sakharkar, M., Rappazzo, C. G., Wieland-Alter, W. F., Hsieh, C. L., Wrapp, D., Esterman, E. S., Kaku, Wec, A. Z., Geoghegan, J. C., McLellan, J. S., et al. (2021). Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Sci. Immunol. 6, eabg6916.
  • 49. Schena, F., Volpi, S., Faliti, C. E., Penco, F., Santi, S., Proietti, M., Schenk, U., Damonte, G., Salis, A., Bellotti, M., et al. (2013). Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell Rep. 3, 1824-1831.
  • 50. Scholzen, T., and Gerdes, J. (2000). The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 182, 311-322.
  • 51. Shlomchik, M. J., Aucoin, A. H., Pisetsky, D. S., and Weigert, M. G. (1987). Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc. Natl. Acad. Sci. USA 84, 9150-9154.
  • 52. Smith, K. G., Nossal, G. J., and Tarlinton, D. M. (1995). FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl. Acad. Sci. USA 92, 11628-11632.
  • 53. Smulski, C. R., and Eibel, H. (2018). BAFF and BAFF-receptor in B cell selection and survival. Front. Immunol. 9, 2285.
  • 54. Sokal, A., Chappert, P., Barba-Spaeth, G., Roeser, A., Fourati, S., Azzaoui, I., Vandenberghe, A., Fernandez, I., Meola, A., Bouvier-Alias, M., et al. (2021). Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell 184, 1201-1213.e14.
  • 55. Stadlbauer, D., Amanat, F., Chromikova, V., Jiang, K., Strohmeier, S., Arunkumar, G. A., Tan, J., Bhaysar, D., Capuano, C., Kirkpatrick, E., et al. (2020). SARS-CoV-2 seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr. Protoc. Microbiol. 57, e100.
  • 56. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satij a, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21.
  • 57. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., Sivertsson, A°., Kampf, C., Sjöstedt, E., Asplund, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science 347, 1260419.
  • 58. Villa, M., Gialitakis, M., Tolaini, M., Ahlfors, H., Henderson, C. J., Wolf, C. R., Brink, R., and Stockinger, B. (2017). Aryl hydrocarbon receptor is required for optimal B-cell proliferation. EMBO J. 36, 116-128.
  • 59. Wang, C., Li, W., Drabek, D., Okba, N. M. A., van Haperen, R., Osterhaus, A. D. M. E., van Kuppeveld, F. J. M., Haagmans, B. L., Grosveld, F., and Bosch,
  • 60. B. J. (2020). A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 2251.
  • 61. Wec, A. Z., Wrapp, D., Herbert, A. S., Maurer, D. P., Haslwanter, D., Sakharkar, M., Jangra, R. K., Dieterle, M. E., Lilov, A., Huang, D., et al. (2020). Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 369, 731-736.
  • 62. Winkler, E. S., Bailey, A. L., Kafai, N. M., Nair, S., McCune, B. T., Yu, J., Fox, J. M., Chen, R. E., Earnest, J. T., Keeler, S. P., et al. (2020). Publisher correction: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1470.
  • 63. Wo hner, M., Tagoh, H., Bilic, I., Jaritz, M., Poliakova, D. K., Fischer, M., and Busslinger, M. (2016). Molecular functions of the transcription factors E2A and E2-2 in controlling germinal center B cell and plasma cell development. J. Exp. Med. 213, 1201-1221.
  • 64. World Health Organization (2021). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/.
  • 65. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448.
  • 66. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C., Zhang, J., Weng, T., Zhang, Z., Wu, Z., et al. (2020). Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730-738.e13.
  • 67. Yi, C., Sun, X., Ye, J., Ding, L., Liu, M., Yang, Z., Lu, X., Zhang, Y., Ma, L., Gu,
  • 68. W., et al. (2020). Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell. Mol. Immunol. 17, 621-630.
  • 69. Zhao, C., Inoue, J., Imoto, I., Otsuki, T., Iida, S., Ueda, R., and Inazawa, J. (2008). POU2AF 1, an amplification target at 11q23, promotes growth of multiple myeloma cells by directly regulating expression of a B-cell maturation factor, TNERSF17. Oncogene 27, 63-75.


All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Claims
  • 1. An antibody or antigen binding fragment comprising a heavy chain variable region and a light chain variable region, wherein the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 having at least 80% sequence identity to the HCDR1, HCR2, HCR3 from a heavy chain variable region of a antibody clone of Table 1 and wherein the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 having at least 80% sequence identity to the LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same antibody clone of Table 1.
  • 2. The antibody or antigen binding fragment of claim 1, wherein the heavy chain variable region comprises a HCDR1, HCDR2, and HCDR3 having the amino acid sequence of an of a HCDR1, HCDR2, and HCDR3 of a clone of Table 1 and wherein the light chain variable region comprises a LCDR1, LCDR2, and LCDR3 comprising the amino acid sequence of the LCDR1, LCDR2, and LCDR3 from the light chain variable region of the same clone of Table 1.
  • 3. The antibody or antigen binding fragment of claim 1 or 2, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 each comprise an amino acid sequence that has at least 80% sequence identity to an HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 of Table 1, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 are from the same antibody clone.
  • 4. The antibody or antigen binding fragment of claim 1 or 2, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 each comprise the amino acid sequence of an HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 of Table 1, wherein the HCDR1, HCDR2, HCDR2, LCDR1, LCDR2, and LCDR3 are from the same antibody clone.
  • 5. The antibody or antigen binding fragment of any one of claims 1-4, wherein the heavy chain variable region comprises an amino acid sequence with at least 80% sequence identity to a heavy chain variable region of an antibody clone of Table 1 and/or the light chain variable region comprises an amino acid sequence with at least 80% sequence identity to the light chain variable region of the same antibody clone of Table 1.
  • 6. The antibody or antigen binding fragment of claim 5, wherein the heavy chain variable region comprises the amino acid sequence of a heavy chain variable region of an antibody clone of Table 1 and/or the light chain variable region comprises the amino acid sequence of the same antibody clone of Table 1.
  • 7. The antibody or antigen binding fragment of any one of claims 1-6, wherein the antibody or antigen binding fragment comprises a heavy chain framework region (HFR) 1, HFR2, HFR3, and HFR4 and light chain framework region (LFR) 1, LFR2, LFR3, and LFR4, and wherein the HFR1, HFR2, HFR3, and HFR4 comprises an amino acid sequence with at least 80% sequence identity to an HFR1, HFR2, HFR3, and HFR4, respectively, of an antibody clone of Table 1, and the LFR1, LFR2, LFR3, and LFR4 comprises an amino acid sequence with at least 80% sequence identity to the LFR1, LFR2, LFR3, and LFR4, respectively, of the same antibody clone of Table 1.
  • 8. The antibody or antigen binding fragment of any one of claims 1-6, wherein the HFR1, HFR2, HFR3, and HFR4 comprises the amino acid sequence of an HFR1, HFR2, HFR3, and HFR4, respectively, of an antibody clone of Table 1, and the LFR1, LFR2, LFR3, and LFR4 comprises the amino acid sequence of the LFR1, LFR2, LFR3, and LFR4, respectively, of the same antibody clone of Table 1.
  • 9. The antibody or antigen binding fragment of any one of claims 1-8, wherein the antibody comprises a heavy chain and a light chain and wherein the heavy chain comprises an amino acid sequence with at least 70% sequence identity to a heavy chain of an antibody clone of Table 1 and the light chain comprises an amino acid sequence with at least 70% sequence identity to the light chain of the same antibody clone of Table 1.
  • 10. The antibody or antigen binding fragment of claim 9, wherein the antibody comprises a heavy chain and a light chain and wherein the heavy chain comprises the amino acid sequence of an antibody clone of Table 1 and the light chain comprises the amino acid sequence of the same antibody clone of Table 1.
  • 11. The antibody of any one of claims 1-10, wherein the antibody is human, chimeric, or humanized.
  • 12. The antibody or antigen-binding fragment of any one of claims 1-11, wherein the antibody, or antigen binding fragment binds a SARS-CoV-2 protein with a KD of about 10−6 nM to about 10−12 pM.
  • 13. The antibody or antigen binding fragment of any one of claims 1-12, wherein the antibody is a neutralizing antibody.
  • 14. The antibody or antigen binding fragment of any one of claims 1-13, wherein the antibody is a human antibody, humanized antibody, recombinant antibody, chimeric antibody, an antibody derivative, a veneered antibody, a diabody, a monoclonal antibody, a single domain antibody, or a single chain antibody.
  • 15. The antigen binding fragment of any one of claims 1-13, wherein the antigen binding fragment is a single chain variable fragment (scFv), F(ab′)2, Fab′, Fab, Fv, or rIgG.
  • 16. A polypeptide comprising the antigen binding fragment of any one of claims 1-15.
  • 17. The polypeptide of claim 16, wherein the polypeptide comprises at least two antigen binding fragments, wherein each antigen binding fragment is independently selected from an antigen binding fragment of any one of claims 1-15.
  • 18. The polypeptide of claim 16 or 17, wherein the polypeptide is multivalent.
  • 19. The polypeptide of any one of claims 16-18, wherein the polypeptide is bispecific.
  • 20. A composition comprising the antibody or antigen binding fragment of any one of claims 1-19.
  • 21. The composition of claim 20, wherein the composition comprises a pharmaceutical excipient.
  • 22. The composition of claim 20 or 21, wherein the composition further comprises an adjuvant.
  • 23. The composition of any one of claims 20-22, wherein the composition is formulated for parenteral, intravenous, subcutaneous, intramuscular, or intranasal administration.
  • 24. The composition of any one of claims 1-23, wherein the composition comprises at least two antibodies or antigen binding fragments.
  • 25. One or more nucleic acids encoding the antibody or antigen binding fragment of any one of claims 1-15 or the polypeptide of claim 19.
  • 26. A nucleic acid encoding an antibody heavy chain, wherein the nucleic acid has at least 70% sequence identity to one of SEQ ID NOS:1621-1710 or 2707-2755.
  • 27. A nucleic acid encoding an antibody light chain, wherein the nucleic acid has at least 70% sequence identity to one of SEQ ID NOS:1711-1800 or 2756-2804.
  • 28. A vector comprising the nucleic acid(s) of any one of claims 25-27.
  • 29. A host cell comprising the nucleic acid of any one of claims 25-27 or the vector of claim 28.
  • 30. The host cell of claim 29, wherein the host cell is a human cell, B cell, T cell, Chinese hamster ovary, NS0 murine myeloma cell, or PER.C6 cell.
  • 31. A method of a making a cell comprising transferring the nucleic acid(s) of any one of claims 25-27 or the vector of claim 28 into a cell.
  • 32. The method of claim 31, wherein the method further comprises culturing the cell under conditions that allow for expression of a polypeptide from the nucleic acid.
  • 33. The method of claim 32, wherein the method further comprising isolating the expressed polypeptide.
  • 34. The method of any one of claims 31-33, wherein the cell is a human cell, B cell, T cell, Chinese hamster ovary, NS0 murine myeloma cell, or PER.C6 cell.
  • 35. A method for producing a polypeptide comprising transferring the nucleic acid(s) of any one of claims 25-27 or the vector of claim 28 into a cell and isolating polypeptides expressed from the nucleic acid.
  • 36. The method of claim 35, wherein the cell is a human cell, B cell, T cell, Chinese hamster ovary, NS0 murine myeloma cell, or PER.C6 cell.
  • 37. A method for treating or preventing a coronavirus infection in a subject, the method comprising administering to the subject, the antibody or antigen binding fragment of any one of claims 1-15, the polypeptide of claim 19, or the host cell of claim 29.
  • 38. The method of claim 37, wherein the subject is a human subject.
  • 39. The method of claim 37 or 38, wherein the coronavirus infection is SARS-CoV-2.
  • 40. The method of claim 37 or 38, wherein the subject has one or more symptoms of a coronavirus infection.
  • 41. The method of claim 37 or 38, wherein the subject does not have any symptoms of a coronavirus infection.
  • 42. The method of any one of claims 37-41, wherein the subject has been diagnosed with a coronavirus infection.
  • 43. The method of any one of claims 37-41, wherein the subject has not been diagnosed with a coronavirus infection.
  • 44. The method of any one of claims 37-43, wherein the subject has been previously vaccinated for coronavirus.
  • 45. The method of any one of claims 37-43, wherein the subject has not been previously vaccinated for coronavirus.
  • 46. The method of any one of claims 37-45, wherein the antibody, antigen binding fragment, polypeptide, or cell is administered by parenteral, intravenous, subcutaneous, intramuscular, or intranasal administration.
  • 47. The method of any one of claims 37-43, wherein the subject has been previously treated for a coronavirus infection.
  • 48. The method of any one of claims 37-47, wherein the subject is administered an additional therapeutic.
  • 49. The method of claim 48, wherein the additional therapeutic comprises a steroid or an anti-viral therapeutic.
  • 50. The method of claim 49, wherein the additional therapeutic comprises dexamethasone or remdesivir.
  • 51. A method for evaluating a sample from a subject, the method comprising contacting a biological sample from the subject, or extract thereof, with at least one antibody, antigen binding fragment, or polypeptide of any one of claims 1-19.
  • 52. The method of claim 51, wherein the at least one antibody, antigen binding fragment, or polypeptide is operatively linked to a detectable label.
  • 53. The method of claim 51 or 52, wherein the method further comprises incubating the antibody, antigen binding fragment, or polypeptide under conditions that allow for the binding of the antibody, antigen binding fragment, or polypeptide to antigens in the biological sample or extract thereof.
  • 54. The method of any one of claims 51-53, wherein the method further comprises detecting the binding of an antigen to the antibody, antigen binding fragment, or polypeptide.
  • 55. The method of any one of claims 51-54, wherein the method further comprises contacting the biological sample with at least one capture antibody, antigen, or polypeptide.
  • 56. The method of claim 55, wherein the at least one capture antibody, antigen binding fragment, or polypeptide comprises at least one antibody of claims 1-19.
  • 57. The method of claim 55 or 56, wherein the capture antibody is linked to a solid support.
  • 58. The method of any one of claims 51-57, wherein the biological sample comprises a blood sample, urine sample, fecal sample, or nasopharyngeal sample.
  • 59. A method for diagnosing a SARS-CoV-2 infection in a subject, the method comprising contacting a biological sample from the subject, or extract thereof, with at least one antibody, antigen binding fragment, or polypeptide of any one of claims 1-19.
  • 60. The method of claim 59, wherein the at least one antibody, antigen binding fragment, or polypeptide is operatively linked to a detectable label.
  • 61. The method of claim 59 or 60, wherein the method further comprises incubating the antibody, antigen binding fragment, or polypeptide under conditions that allow for the binding of the antibody, antigen binding fragment, or polypeptide to antigens in the biological sample or extract thereof.
  • 62. The method of any one of claims 59-61, wherein the method further comprises detecting the binding of an antigen to the antibody, antigen binding fragment, or polypeptide.
  • 63. The method of any one of claims 59-62, wherein the method further comprises contacting the biological sample with at least one capture antibody, antigen, or polypeptide.
  • 64. The method of claim 63, wherein the at least one capture antibody, antigen, or polypeptide comprises at least one antibody, antigen, or polypeptide of claims 1-19.
  • 65. The method of claim 63 or 64, wherein the capture antibody is linked to a solid support.
  • 66. The method of any one of claims 59-65, wherein the biological sample comprises a blood sample, urine sample, fecal sample, or nasopharyngeal sample.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Patent Application No. 63/121,384 filed Dec. 4, 2020, which is hereby incorporated by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under contract numbers 75N93019C00062 and 75N93019C00051 awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US21/72723 12/3/2021 WO
Provisional Applications (1)
Number Date Country
63121384 Dec 2020 US