Polypeptides having thyrotropin-receptor activity, nucleic acid sequences coding for such receptors and polypeptides, and applications of these polypeptides

Information

  • Patent Grant
  • 6228597
  • Patent Number
    6,228,597
  • Date Filed
    Tuesday, October 15, 1991
    32 years ago
  • Date Issued
    Tuesday, May 8, 2001
    23 years ago
Abstract
The invention concerns a polypeptide possessing thyrotropin receptor activity characterized in that it comprises the amino acid sequence shown in FIG. 11 (i.e., SEQ ID NO: 59) and cDNA molecules encoding this polypeptide. The invention also relates to vectors comprising cDNAs which encode the polypeptide of FIG. 11, cells transformed with these vectors, and the use the transformed cells expressing the thyrotropin receptor as in the detection of TSH or antibodies against the thyrotropin receptor.
Description




The invention relates to polypeptides having thyrotropin-receptor activity, to nucleic acids coding for such polypeptides, to antibodies to these polypeptides and to the use of the polypeptides and antibodies in assay methods.




The literature references indicated by numbers in parentheses in this specification are listed in the form of a bibliography at the end of the description.




Pituitary glycoproteins (Luteinizing hormone, LH; follicle stimulating hormone, FHS; and thyroid stimulating hormone or thyrotropin, TSH) form a family of closely related hormones.




The pituitary hormone thyrotropin (TSH) is the main physiological agent regulating the thyroid gland. It stimulates the function and the proliferation of thyrocytes and induces the expression of differentiation (1). Most of its effects are mediated by cyclic AMP (cAMP) (1). As the other pituitary and placental glycoprotein hormones (FSH, LH, CG), TSH is a heterodimer. All these hormones share an identical alpha subunit; the beta subunit, despite sequence similarity, is specific for each (2). The activated TSH, FSH and LH-CG receptors stimulate adenylyl cyclase in their target cells via mechanisms mediated by the G protein Gs (3). In man, the TSH receptor may be the target of autoimmune reactions leading to hyper- or hypo-stimulation of the thyroid gland by autoantibodies in Grave's disease and in idiopathic myxoedema, respectively (4).




A prerequisite to studies of such diseases and to the elucidation of receptor structure and function is the availability of receptor preparations, particularly human, at a reasonable cost and in relative abundance.




To date, particulate membrane preparations and detergent-solubilised thyroid membranes, often of porcine or bovine origin (4) have been used in such studies. Human receptor preparations are not only costly but are also difficult to reproduce identically. Furthermore, the known preparations cannot be considered to be “purified” receptors; they are enriched with respect to their receptor content but do not allow purification of the receptor to a degree which would enable a partial sequence analysis, and hence its cloning. These receptor preparations have never allowed characterisation of the entity responsible for the TSH-binding activity.




Cloning and expression of the related LH-CG receptor has recently been achieved. A cDNA for the rat LH-CG receptor was isolated with use of a DNA probe generated in a polymerase chain reaction with oligonucleotide primers based on peptide sequences of purified receptor protein (15). Variants of the porcine LH-CG receptor were cloned by screening a λgt11 library with cDNA probes isolated with monoclonal antibodies (16).




Attempts have been made to clone the TSH receptor (6) using a method which exploits the sequence similarity displayed by all known G-protein coupled receptors. A pair of oligonucleotide primers corresponding to transmembrane segments III and VI were used on cDNA from thyroid tissue under conditions allowing amplification of the primed sequences by the polymerase chain reaction. The method did not allow cloning of the TSH receptor but led instead to the cloning of four new members of the G-protein coupled receptor family.




The difficulties encountered in purifying and in cloning the TSH receptor are thought to be due to its extra-ordinary low abundance even in thyroid cells.




The present inventors have succeeded in cloning the TSH receptor and variants thereof, firstly by applying the technique described in (6) but with different sets of primers, and with human genomic DNA as the template, rather than cDNA and secondly by use of a selected sequence amplified by this technique as a probe.











BRIEF DESCRIPTION OF THE DRAWINGS




Certain aspects of the invention are illustrated in the

FIGS. 1

to


12


. Figures illustrating amino-acid sequences use the one-letter abbreviation system.





FIG. 1

is a sequence comparison of clone HGMP09 with a panel of G-protein coupled receptors (6 and ref. therein). Only the sequence around transmembrane segment III of each receptor is shown in the one letter code. Residues conserved in HGMP09 and in more than 50% of the other receptors are indicated by an asterisk. The “DRY” and “Asp113” residues (9) are indicated by {circumflex over ( )}. Sequences HGMP09 through RDC1 are listed s SEQ ID NO:35 through SEQ ID NO:53 in the attached SEQUENCE LISTING.





FIGS. 2



a


-


2




d


show the primary structure of the dog TSH receptor (SEQ ID NO:75), as deduced from the nucleic acid sequence of dTSHr. The sequence was aligned (17) with full-length rat and pig LH-CG sequences (SEQ ID NO:55 and SEQ ID NO:56, respectively) (15, 16) and with HGMP09 partial sequence. Numbering is given from the first residue predicted in the mature polypeptide by von Heihne algorithm (11). Identical residues and conservative replacements in TSHr and LH-CGr are indicated by * and ., respectively. Sites for N glycosylation are underlined. Putative transmembrane segments are overlined. Lambda phages containing dTSHr inserts were subcloned in M13 and sequenced on both strands (Applied Biosystems model 370A) using a combination of forced cloning and exonuclease III deletions (21).





FIG. 2



e


is a dendogram constructed from the sequences of G-protein coupled receptors. The CLUSTAL algorithm (17) was used to construct a dendogram from the sequences of 22 receptors (6) and references therein) including rat and pig LH-CG receptors (16, 17), HGMP09 and the TSH receptor. For each receptor, a segment corresponding to the known sequence of HGMP09 (131 residues, extending from transmembrane segments II to V) was used for comparison by the program.





FIG. 3



a


shows TSH induced morphological changes in Y1 cells microinjected with TSH receptor mRNA. Y1 cells were microinjected with recombinant TSH receptor mRNA (0.1 pl at 0.25 ug/ul) (right) or water (left) as described (13) and incubated in control medium (upper panel) or with TSH (0.1 nM) (lower panel). RO 201724 and insobutylmethylxanthine (10


−6


M each) were present in all incubations.





FIG. 3



b


shows TSH induced cAMP accumulation in Xenopus oocytes microinjected with TSH receptor mRNA. Xenopus oocytes were handled as described (22) and injected with water (open symbols) or recombinant TSH receptor mRNA (13) (50 nl at 0.1 ug/ul) (filled symbols). After 3 days in control medium, batches of 35 oocytes were incubated for 90 min. in medium supplemented with various concentrations of TSH (circles), LH (squares) or FSH (triangles). cAMP was determined as described (14). RO 201724 and isobutylmethylxanthine (10


−6


M each) were present in all incubations. Incubation of control oocytes in forskolin at 10


−4


M resulted in doubling of the cAMP concentration (not shown).





FIG. 4

illustrates the displacement of


125


I TSH receptors expressed in cos7 cells. Cos7 cells were transfected with TSH receptor cDNA subcloned in pSVL (23). After 72 hours, cells were harvested and a membrane fraction was prepared (24). Membranes were similarly prepared from wild type cos7 cells and from dog thyrocytes in primary culture (20). Binding of


125


I TSH (TRAK Henning) was performed at 0° C. for 120 min. in the presence of various concentrations of competitors (TSH-Armour, FSH and LH, UCB bioproducts). Bound radioactivity was separated by centrifugation and counted. Results are expressed as percent


125


I TSH bound by transfected cells in the absence of competitor (3,000 cpm) over non-specific binding (radioactivity bound in the presence of 100 nM cold TSH, 800 cpm). Open and filled circles represent displacement by cold TSH from cos7 and thyrocyte membranes respectively. Open and filled squares represent displacement from cos7 by LH and FSH, respectively. Diamonds represent control cos7 cells in presence of various amounts of cold TSH.





FIGS. 5



a


-


5




c


show the cDNA sequence coding for the dog TSH receptor (SEQ ID NO:57), which was expressed in oocytes and culture cells.





FIG. 6

is a schematic representation of the dog thyrotropin receptor, showing the 7 putative transmembrane segments and the large NH2 terminal extracellular domain (to the exclusion of the signal peptide). The amino-acids deleted in the variant form are indicated in black. The five putative glycosylation sites are shown.





FIG. 7

shows the sequence alignment of the repeats constituting the extracellular domain of the thyrotropin receptor amino-acid sequence (SEQ ID NO:58). The signal peptide, as determined by Von Heijne algorithm is represented in italic. The repeat missing in the molecular variant of the receptor is indicated by the leftward arrow.





FIGS. 8



a


and


8




b


show the primary structure of the human TSH receptor as deduced from its cDNA sequence (SEQ ID NO:59). The amino-acid sequence corresponds to the 2292 nucleotide open reading frame determined from the sequencing of two overlapping inserts in lamda gt11 clones (see examples). It is aligned for comparison with the dog TSH receptor sequence (only non conserved amino-acids are indicated). Numbering starts from the first residue of the mature polypeptide as determined by von Heijne algorithm [11]. Potential N-glycosylation sites are underlined and putative transmembrane segments are overlined.





FIG. 9

shows the displacement by nonradioactive TSH of [


125


I]TSH from human TSH receptors expressed in cos-7 cells. Results are expressed as percentage of the [


125


I]-labelled TSH bound by transfected cells in the absence of competitor (1400 cpm) after correcting for nonspecific binding (radioactivity bound in the presence of 100 nM unlabelled TSH, 240 cpm).





FIG. 10

represents the displacement by immunoglobulins of [


125


I]TSH from human TSH receptor expressed in cos-7 cells. Results are expressed as described in the legend to FIG.


9


. Immoglobulins were prepared (see examples) from a normal individual (N), from patients with idiopathic myxoedema (IM1, IM2) or Graves' disease (GD1, GD2). The concentration of immunoglobulins in the assay is indicated. The ability of IM1 and IM2 (1.5 mg/ml) to inhibit TSH-stimulated cAMP production in a human thyrocyte assay was 100% and 85%, respectively. The thyroid stimulating activity of GD1 and GD2 (1.5 mg/ml) was equivalent to that of 10 mU/ml of TSH, respectively.





FIGS. 11



a


and


11




b


show the primary structure of a TSH receptor according to the invention, in which a plurality of letters at any one site indicates the presence of one of the given amino acid residues at that site, SEQ ID NO:29 lists the complete sequence. SEQ ID NO:81 and SEQ ID NO:82 list the first and second full sequences, respectively with all possible substitutions included. SEQ ID NO:81 lists the complete sequence shown and SEQ ID NO:82 lists the sequence with substitution shown in the figure.





FIGS. 12



a


-


12




f


illustrate the cDNA sequence of the cloned human TSH receptor (SEQ ID NO:62).











The invention relates to polypeptides possessing thyrotropin receptor activity, characterised in that they comprise the amino-acid sequence shown in

FIG. 11

, or a fragment thereof, or an amino-acid sequence derived from this sequence by substitution or deletion of any of the amino-acid residues indicated in

FIG. 11

, or by insertion of additional amino-acid residues. Such derived sequences may show, for example, about 80% homology with the sequence of FIG.


11


. The polypeptides of the invention are in substantially pure form, and are preferably in a non-thyroid environment. By ‘substantially pure form’ is meant ‘free of impurities’ associated with detergent-solubilised thyroid membrane preparations.




By “TSH-receptor activity” is meant either TSH-binding properties or anti-TSH receptor antibody-binding properties or ability to activate adenylyl cyclase or phospholipase C via G proteins when exposed to TSH or anti-TSHr antibodies. These properties are easily verified by contacting the polypeptide with for example labelled TSH or labelled anti-TSHr antibodies or by monitoring the adenylyl cyclase activity of a membrane preparation containing the polypeptide. The polypeptides of the invention include the entire TSH receptor as identified by the inventors, and fragments or variants of this polypeptide as defined below. The entire TSH receptor is composed of a signal peptide (20 residues) followed by a large putative extracellular domain (398 residues) containing 5 sites for N-glycosylation, connected to a 346 residue COOH domain containing seven putative transmembrane segments. The amino-acid sequence of the receptor is illustrated in FIG.


11


.




More particularly, the invention relates to a polypeptide characterised in that it comprises an amino-acid sequence represented by the following general formula:






[x]


n


−[y]


m


−[z]


p








wherein n=0 or 1; m=0 or 1; p=0 or 1;




with the proviso that n+m+p>0




and x, y and z are defined as follows (using the one-letter amino-acid symbol and wherein




a plurality of letters at any one site indicates the presence of one of the given amino-acid residues at that site (Sequences are listed in full with replacement residues in the SEQUENCE LISTING; i.e., x=SEQ ID NO:1 or alternately SEQ ID NO:2 with alternate residues shown below sequence.),














x = MRPADLLQLVLLLDLPRDL,







       PP  H A   A   S











y=at least the minimum number of consecutive amino-acids of the following sequence (SEQ ID NO:3 or alternately SEQ ID NO:4 which contains alternate residues shown below sequence.) necessary for the presentation of immunogenic properties:













     GGMGCSSPPCECHQEEDFRVTCKDIQRIPSLPPSTQTLKLI







       K  P         D         H   T         F













ETHLRTIPSHAFSNLP


NIS


RIYVSIDLTLQQLESHSFY


NLS


KVTHIEIRNTRNLTYIDPD






  Q K    R            L   A   R           M         S  S













ALKELPLLKFLGIFNTGLKMFPDLTKVYSTDIFFILEITDNPYMTSIPVNAFQGLC


NET


L






                  GV   V       V            A   A













TLKLYNNGFTSVQGYAF


NGT


KLDAVYLNKNKYLTVIDKDAFGGVYSGPSLLDVSQTSVTA






           I  H                  SA             T     Y













LPSKGLEHLKELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQKKIRGILESLM













C


NES


SMQSLRQRKSVNALNSPLHQEYEENLGDSIVGYKEKSKFQDTHNNAHYYVFFEEQE






     IR         T  G FD     Y    HA   DN Q    DS S













DEIIGFGQELKNPQEETLQAFDSHYDYTICGDSEDMVCTPKSDEFNPCED






   L                        V  GN











and z=[I-II-II


i


-III-III


i


-IV-V-VI-VII-VII


i


]




wherein the amino-acid sequences I-II-II


i


-III-III


i


-IV-V-VI-VII-VII


i


are independently present or absent and have the following meanings:














I = IMGYKFLRIVVWFVSLLALLGNVFVLLILLTSHYK







                              IV











(SEQ ID NO:5 or SEQ ID NO:6) or at least 12 consecutive amino-acid residues of this sequence;














II = LNVPRFLMCNLAFADFCMGMYLLLIASVDLYTHSEYYNHA







      T               I I         IH K Q H Y











(SEQ ID NO:7 or SEQ ID NO:8, respectively) or at least 12 consecutive amino-acid residues of this sequence;














II


i


=







IDWQTGPGC







      A











(SEQ ID NO:9 or SEQ ID NO:10, respectively) or at least 2 consecutive amino-acid residues of this sequence;














III = NTAGFFTVFASELSVYTLTVITL







      DA











(SEQ ID NO:11 or SEQ ID NO:12, respectively) or at least 22 consecutive amino-acid residues of this sequence;














III


i


=







ERWYAITFAMRLD







   HT  H  Q











(SEQ ID NO:13 or SEQ ID NO:14, respectively) or at least 2 consecutive amino-acid residues of this sequence;














IV = RKIRLRHACAIMVGGWVCCFLLALLPLVGISSYAKVSICL







     C VQ    YSV   M IFA AA  F IF     M











(SEQ ID NO:15, SEQ ID NO:16 or SEQ ID NO:17, respectively) or at least 12 consecutive amino-acid residues of this sequence;














V = PMDTETPLALAYIVFVLTLNIVAFVIVCCCYVKIYITVRN







       IDS  SQL VIL  L  VL  I   S







                 MSL V











(SEQ ID NO:18, SEQ ID NO:19, or SEQ ID NO:20, respectively) or at least 12 consecutive amino-acid residues of this sequence;












VI = PQYNPGDKDTKIAKRMAVLIFTDFICMAPISFYALSAILNKPLIT






                             M            LM











(SEQ ID NO:21 or SEQ ID NO:22, respectively) or at least 12 consecutive amino-acid residues of this sequence;














VII = VSNSKILLVLFYPLNSCANPFLYAIFTKAFQRD







       T











(SEQ ID NO:23 or SEQ ID NO:24, respectively) or at least 12 consecutive amino-acid residues of this sequence;













VII


i


=







VFILLSKFGICKRQAQAYRGQRVPPKNSTDIQVQKVTHDMRQGLHNMEDVYELIENS






                       S    AG  I    R    S P  Q E   L













HLTPKKQGQISEEYMQTVL






    N      K  N











(SEQ ID NO:25 or SEQ ID NO:26, respectively) or at least 12 consecutive amino-acid residues of this sequence;




it being understood that any of the above-specified amino-acids can be replaced or deleted, and that extra amino-acid residues may be inserted provided the thyrotropin receptor activity is maintained.




The sequence represented by [x]


n


in the above general formula corresponds to the signal sequence of the TSH receptor. This part of the polypeptide naturally ensures the transport to the cell membrane of the adjoining [y] and/or [z] fragments, after its production in the cell. Clearly the signal sequence does not need to be present in the polypeptide in cases where transport to the membrane is not required (for example in in vitro translation of the mRNA encoding the polypeptide), or may be replaced by other signal sequences to facilitate production of the recombinant receptor in certain host cells.




The sequence represented by [z]


p


in the above general formula corresponds to the COOH domain of the entire polypeptide containing the seven putative transmembrane fragments I-VII, which show homology with the corresponding region of other G-protein coupled receptors. The polypeptides of the invention include, as indicated above, variants of the basic TSH receptor sequence lacking part or all of the transmembrane domain. It is thought that these types of variants may exist naturally as a result of an alternative splicing phenomenom. By homology with other, known G-protein coupled receptors, the seven putative transmembrane segments have tentatively been identified as shown in

FIG. 11

(numbered I to VII). The variant polypeptides of the invention include polypeptides missing some or all of the fragments I-VII


i


as defined above, which definition includes the putative extracellular and intracellular “loops” occuring between the transmembrane segments (see FIG.


6


). The transmembrane segment(s) missing may therefore, for example, be a segment selected from segments I to VII as indicated in

FIG. 11

or may be part of one of those segments, or may be a transmembrane segment in conjunction with its adjoining intracellular and/or extracellular loop.




It is also within the terms of the invention to replace some or all of the transmembrane domain by the transmembrane domain, or part of this domain, of a different receptor, thus giving rise to a hybrid receptor. This type of receptor is particularly interesting in cases where the extracellular part of the TSH receptor needs to be anchored in a cell membrane having characteristics which are different from, or even incompatible with, the transmembrane portion of the TSH receptor. It is also possible to use as the transmembrane domain in a hybrid receptor any amino-acid sequence exhibiting suitable anchoring properties. Such a sequence could be entirely synthetic or based on any transmembrane protein.




It is to be noted that the invention also embraces polypeptides having thyrotropin receptor activity which lack the entire transmembrane domain. In this case, the polypeptide corresponds to the extracellular domain of the naturally occuring receptor. This extracellular part of the receptor which is apparently responsible for ligand binding, is identified by the region [y] in the general formula. A polypeptide lacking the entire transmembrane domain is respresented by the general formula [y]


m


, where m=1, the [z] part of the sequence being absent. This extracellular part of the receptor [y], is characterised by an imperfect repeat structure which can be aligned as shown in FIG.


7


. The polypeptides of the invention include variants in which one or more of these repeats is missing. It is however important that sufficient aminoacids be present to allow formation of antibodies (monoclonal or polyclonal). Such immunogenic amino-acid sequences may comprise for example 5, 6, 7, 8 or 9 consecutive amino-acids of the “y” sequence defined above. The immunogenic nature of the fragments of the invention is tested by injection of the fragment in question into a laboratory animal, followed by investigation of the reactivity between any antibodies thus formed and the immunising fragment.




In particular, the invention encompasses polypeptides in which the second repeat (marked by an arrow in

FIG. 7

) is missing.




The invention also relates to nucleic acid sequences coding for the polypeptides of the invention as well as the corresponding complementary sequences. Examples of such sequences are those shown in

FIGS. 5 and 12

, and fragments of these sequences, as well as corresponding degenerate sequences. The nucleic acid fragments embraced by the invention normally have at least 8 nucleotides and have preferably at least 12 or preferably at least 16 nucleotides. Such fragments, or their complementary sequences can be used as primers in the amplification of segments of DNA using the polymerase chain reaction, for example in the production of cDNA coding for the polypeptides having thyrotropin receptor activity.




The nucleic acid sequences of the invention coding for the entire TSH receptor are in a genetic environment other than that found naturally in thyroid cells. For example, the genetic environment may be that of a Cos-7 cell, a CH0 cell or Y1 cells.




The polypeptides of the invention can be produced in several different ways. For example, a host cell such as COS 7 cells, CHO cells, NIH3T3 cells, Xenopus oocytes or Y1 cells can be transformed by a vector containing a nucleic acid insert coding for the desired peptide, in conjunction with all the necessary regulatory elements such as promoter, transcription termination signals etc, or can be microinjected with recombinant mRNA transcribed from appropriate vectors containing the receptor encoded sequence. Expression of the insert normally leads to the insertion of the recombinant polypeptide in the membrane of the cell used as host. In this way, the receptor polypeptide can be used in this form, the receptor thus being present in a non-thyroidal eukaryotic cellular environment, or in a solubilised membrane fragment form. The non-thyroid cells expressing the recombinant receptor exhibit a receptor density of up to ten times that observed in thyroid cells.




Furthermore, in the case where only a fragment of the polypeptide is required, the correspondingly shorter nucleic acid sequence can be used to transform a suitable host cell, for example, a DNA coding for the putative extracellular region only, or one or more repeats of the repetitive portion of this region. It is also within the terms of the invention to synthesise the polypeptide chemically, by successive assembly of the required amino-acid residues. In cases where larger fragments are desired, it is possible to synthesise first a series of smaller fragments and to ultimately assemble these fragments to form the larger fragment.




The invention also relates to antibodies, both polyclonal and monoclonal, to the thyrotropin-receptor polypeptides. The antibodies of the invention are preferably in a purified form, and may be of animal origin e.g. rabbit or mouse. As mentioned earlier, in man the TSH-receptor may be the target of auto-immune reactions giving rise to hyper- or hypo-stimulation of the thyroid gland by stimulating or blocking autoantibodies respectively. The antigenic nature of the polypeptides of the invention, particularly the putative extracellular domain, permits the preparation of antibodies, which can be used in a variety of studies and assays. The TSH-receptor binds both TSH and anti-TSHr antibodies, thus it is possible in certain studies to replace TSH by anti-TSHr antibodies. The phenomenon of competition between labelled and unlabelled species is particularly useful in such assays. Use of specific fragments of the TSH receptor allows the preparation of antibodies against defined epitopes, and, by using a panel of such antibodies, allows further characterisation of the type of disorder present in auto-immune patients.




One such assay falling within the terms of the invention is a process for the quantitative detection of thyrotropine (TSH) or of anti-thyrotropine receptor antibodies (anti-TSHr) in a biological sample characterised in that a polypeptide according to the invention is contacted with the biological sample suspected of containing TSH or anti-TSHr antibodies and, either simultaneously or subsequently, contacted with labelled TSH, or with labelled anti-TSHr antibodies and the remaining, bound labelled TSH or bound labelled anti-TSHr antibodies after competition between the labelled and unlabelled species, is measured.




In this type of assay, the competition between the labelled TSH or labelled antibodies with the unlabelled TSH or antibodies present in the biological sample is measured as an indication of the concentration of that species in the sample.




Alternatively, instead of using competition between two like-species to measure TSH, it is also possible to use a receptor polypeptide to bind the TSH in the biological sample, and then after washing to add labelled anti-TSH antibodies which selectively detect the bound TSH. This type of assay can also be carried out using immobilized or solubilised receptor polypeptide to bind the anti-TSHr-antibody in a biological sample, followed by detection of the bound antibody by labelled anti immunoglobulins or protein A or protein G or any other agent capable of recognizing an antibody.




Another means of assaying the TSH or anti-TSHr antibodies in a sample exploits the effect which the binding of these species with the TSH receptor has on the adenylyl cyclase activity of the cell bearing the receptor. Thus, this aspect of the inventions relates to a process for the quantitative detection of TSH or of anti-TSHr antibodies characterised by contacting intact cells operationally transformed by a nucleotide sequence, encoding a polypeptide of the invention or membrane preparations of such cells with the biological sample suspected of containing TSH or anti-TSHr antibodies and measuring in the intact cells or membranes the change in adenylyl cyclase activity, for example by measuring C-AMP generation or release.




The binding of TSH itself or of stimulating anti-TSHr antibodies to the receptor polypeptide leads to an increase in adenylyl cyclase activity, whereas the binding of blocking anti-TSHr antibodies leads to an inhibition of TSH-induced adenylyl cyclase stimulation. By comparing the adenyl cyclase activity induced by exposure of the receptor polypeptide to TSH with that induced by antibodies in a sample, it is possible, according to the invention, to distinguish blocking antibodies from stimulating antibodies. In order to quantitatively determine blocking antibodies in a sample, the sample is contacted with the receptor polypeptides either at the same time as with TSH, or before contacting with TSH. In this way the adenylyl cyclase stimulating effect of TSH on the receptor is blocked by the blocking antibodies and is quantified to indicate the concentration of blocking antibodies present in the sample. Such measurements can be carried out in intact cells bearing the TSH receptors of the invention, or in membrane preparations of such cells. Other effector systems which can be used in this type of detection are, for example, activities of phospholiphase C, protein tyrosine kinase, phospholipase A2 etc.




The labels used in the assays of the invention are those conventionally used in the art, for example, radioactive labelling, enzymatic labelling, labelled anti-immunoglobulins, protein A, protein G, depending upon the type of assay.




Another aspect of the invention relates to a process for the quantitative detection of fragments of TSH receptor in a biological fluid. Such fragments may be found circulating in patients suffering from thyroid disorders. This aspect of the invention involves contacting the sample with antibodies according to the invention which have previously been labelled, if necessary, and determining the binding, if any, in the sample by any method involving separation of bound labelled antibody from unbound labelled antibody or by competition between the said fragments and a polypeptide according to the invention. In this latter case it is necessary to label the receptor polypeptide, for example with


125


I.




The antibodies of the invention may also be used in the immunohistochemical detection of TSH receptors, for example in endocrinological investigations or in anatomopathology. In this type of process, the antibodies are again labelled to permit their detection.




The polypeptides of the invention may also be used in the purification of stimulating or blocking antibodies to TSHr and of TSH by contacting the polypeptide with a source of TSH or anti-TSHr antibodies, separating the bound and free fractions and finally dissociating the receptor-bound entity. If necessary, further successive purification steps known per se may be added. Such a purification process is facilitated by the immobilisation of the receptor polypeptide, for example in a column or any other solid support.




The invention also embraces kits suitable for the detection of TSH or anti-TSHr antibodies. Such kits are characterised in that they contain:




a) a polypeptide according to the invention and defined above, said polypeptide having thyrotropin receptor activity and being either in an immobilised or solibilised form;




b) at least one of the following reagents:




i) labelled TSH




ii) labelled anti-TSHr antibodies




iii) reagents necessary for the measurement of adenylyl cyclase activity.




For example, a kit for effecting the detection of autoantibodies directed against the TSH receptor by competition would include the polypeptide of the invention, in immobilised or solubilised form, with labelled TSH or unlabelled TSH in combination with agents permitting the TSH to be labelled. Alternatively, such a kit might include antibodies to the TSH receptor and means of labelling them, instead of the TSH.




The invention will be illustrated by the following examples:




EXAMPLES




I—Cloning of Dog TSHr




a) Identification of HGMP09




As most G protein-coupled receptor genes do not contain introns in their coding sequence, a similar strategy to that previously described (6) was used, but using different sets of degenerated primers and with human genomic DNA as starting material. Eleven clones displaying sequence similarity with G-protein coupled receptors where thus obtained (7). Out of these, one clone (HGMP09) which was amplified with primers corresponding to transmembrane segments II and VII, presented sequence characteristics suggesting that it belonged to a distinct subfamily of receptors.




The primers used in this amplification were:














5′ TAGATCTAGACCTGGCGITTGCCGATCT 3′







              T  T C GC  T  CA







                      G















and 5′ ACTTAAGCTTGCAGTAGCCCAIAGGATT 3′







                    A  AAAG  G  G











a plurality of nucleotides at any one site indicating the presence of one of the given nucleotides at that site. Sequences are listed sequentially as SEQ ID NO:51 through SEQ ID NO:55 with alternative nucleotides inserted.




A dendrogram constructed from the alignment shown in

FIG. 1

demonstrated that it is equally distant from all receptors cloned to date (7); in particular, it does not contain the canonical Asp Arg Tyr (DRY) tripeptide close to transmembrane segment III


(8)


and lacks the Asp residue implicated in the binding of charged amines is adrenergic (Asp113), muscarinic, dopaminergic and serotonergic receptors (9).




b) Identification of dog TSHr




In the frame of a systematic screening for the expression of the new receptors in thyroid tissue, HGMP09 was used as a probe both in Northern blotting experiments with thyroid and non-thyroid tissues, and in screening of a dog thyroid cDNA library. HGMP09 did not hybridize to thyroid mRNA but identified a major 2.6 kb transcript in the ovary and the testis. However, under moderate conditions of stringency it hybridized to one out of 50,000 thyroid cDNA clones suggesting cross-hybridization with a relatively abundant putative receptor of the thyroid. From these characteristics, it was hypothesized that HGMP09 encoded a receptor fragment, distinct from the TSH receptor, but with sequence characteristics expected from close relatives like LH or FSH receptors. A full-length cross-hybridizing clone (dTSHr) was isolated and used as a probe in Northern blots of ten different dog tissues. It hybridized to a 4.9 kb transcript present only in the thyroid gland and in cultured thyrocytes. Interestingly, the signal was much stronger in cultured thyrocytes exposed for several days to the cAMP agonist forskolin than in thyroid tissue. This is a characteristic one would expect from the TSH receptor whose expression is known to be up-regulated by cAMP agonists in cultured cells (10). A 4,417 bp cDNA clone was sequenced completely. It contains an open reading frame of 764 aminoacids beginning with a 20 residue signal peptide, as predicted by Von Heijne algorithm (11) (

FIG. 2



a


). Comparison to known G-protein coupled receptors (see hereunder and

FIG. 2



b


) and hydropathy profile analysis (not shown) demonstrated a 346 residue C-terminal structure with seven putative transmembrane domains preceded by 398 aminoacids constituting a large putative extracellular domain.




c) Expression of dog TSHr




The encoded polypeptide was unambiguously identified as the TSH receptor by expression of the cDNA in a variety of systems. Microinjection of recombinant mRNA in adrenocortical Y1 cells and in Xenopus oocytes conferred a TSH responsive phenotype to both systems. Y1 cells responded to TSH by a characteristic morphological change which is triggered by elevation of cAMP in the cytoplasm (12,13). Xenopus oocytes (

FIG. 3

) displayed a dose-dependant increase in cAMP which was specific for stimulation by TSH and corresponded to the expected sensivity of the dog receptor to bovine TSH (half-maximal effect around 0.3 nM) (14). Transient expression of the receptor cDNA was obtained in Cos7 cells (FIG.


4


). Specific binding of


125


I TSH to membranes was observed only in transfected cells. The displacement curve of the label by TSH presented characteristics very similar to that obtained with membranes from dog thyrocytes (half-maximal displacement at 0.4 nM and 0.16 nM for cos cells and thyrocytes, respectively) (

FIG. 4



c


). The slight rightward shift of the displacement curve obtained with Cos7 cell membranes may reflect the higher amount of receptors in this system.




The cDNA coding for the dog TSH receptor was sequenced completely. The sequence is given in FIG.


5


.




d) Comparison of TSHr with LH-CGr




Comparison of the TSH receptor with the LH-CG receptor cloned recently (15, 16) reveals interesting common characteristics which make them members of a new subfamily of G-protein coupled receptors. They both display a long aminoterminal extension containing multiple sites for N glycosylation (five in the TSH receptor). The TSH receptor has an extra 52 residue insert close to the junction between the putative extracellular domain and the first transmembrane segment (

FIG. 2



a


). The overall sequence similarity between the extracellular domains of the TSH and LH-CG receptors is 45% (

FIG. 2



a


). The similarity between a segment of soybean lectin and the rat LH receptor (15) is not conserved in the TSH receptor, which suggests that it may be fortuitous. The C-terminal half of the TSH receptor containing the transmembrane segments is 70% similar to both the pig and rat LH receptors (

FIG. 2



a


). The homology is particularly impressive in the transmembrane segments themselves, where stretches of up to 24 identical residues are observed in a row (transmembrane region III). Also, the carboxyl terminal region of the third putative intracellular loop, which is particularly short in TSH and LH receptors and which has been implicated in the interaction with G


αs


(8, 9), is identical in both receptor types. This pattern of similarities gives support to the view that the extracellular domain would be involved in the recognition of the ligands


(4)


, while the membrane-inserted domain would be responsible for the activation of G


αs


(15, 16). Together, the TSH and LH-CG receptors, and HGMP09 (there is strong preliminary evidence that HGMP09 could actually be the FSH receptor (7)) constitute clearly a distinct subfamily of G-protein coupled receptors. A sequence similarity dendrogram (17) including most of the G-protein coupled receptors cloned to date demonstrates both their close relationships and their distance from the bulk of the other receptors (

FIG. 2



b


). The complete sequence of the FSH receptor will reveal whether the known ability of LH-CG to stimulate the TSH receptor (18) is reflected by a higher sequence similarity of the extracellular domains of LH and TSH receptors.




e) Identification of a dog TSHr variant




Screening of the dog thyroid cDNA library (30) with the HGMP09 clone (thought to be part of the FSH receptor), gave rise to 16 positive clones out of the 840,000 screened plaques. Hybridization was carried out at 42° C. in 35% formamide and the filters were washed at 65° C. in 2×SSC, 0.1% SDS before autoradiography. 12 clones were purified to homogeneity and analyzed by EcoRI digestion. Three clones (dTSHR1, dTSHR2 and dTSHR3) were subcloned in M13mp18 and pBS vectors. dTSHR1 and dTSHR2 consisted of two EcoRI fragments of respectively 2800 and 1500 bp. dTSHR3 was shorter, and consisted of 2200 and 1500 bp EcoRI fragments. Restriction analysis of the 2800 bp fragments of dTSHR1 and dTSHR2 revealed slight differences in the restriction map, the main discordance being the presence of a PstI restriction site in dTSHR1 and its absence in dTSGR2. dTSHR1 was sequenced completely and revealed an open reading frame of 764 codons which was identified as the thyrotropin receptor by expression of the cDNA in oocytes and cell cultures (see example I(b)+FIG.


5


). dTSHR3 was shown by sequencing to be completely colinear with dTSHR1 but this cloned lacked 600 bp at its 5′ end. Because of the difference in the restriction map of dTSHR1 and dTSHR2, this latter clone was also sequenced on both strands.




The sequence revealed a number of mutations when compared with the dTSHR1 clone. A total of 5 mutations, including two single base substitutions, one single base deletion, one single base insertion and one 5 base insertion were found scattered in the 2060 bp long 3′ untranslated region (not shown). However, the main difference between dTSHR2 and dTSHR1 was located in the coding region, and consisted in a 75 bp deletion located 240 bp after the start codon. The corresponding 25 amino-acids deletion in the protein itself is located in the long NH2 terminal extracellular domain which is characteristic of the TSH receptor (25) and its recently cloned close relative, the LH receptor (15, 16) (FIG.


6


). As in the LH receptor, the NH2 terminal part of the thyrotropin receptor is characterized by an imperfect repeat structure that can be aligned as indicated in FIG.


7


. These repeats are similar in structure to the leucine-rich repeats found in the various proteins comprising the family of leucine-rich glycoproteins (26, 15), and references therein). The deletion in the dTSHR2 clone corresponds exactly to one of these repeats, in a region of the protein where the repeat length is regular and their alignment unambiguous. The existence of such variant reinforces considerably the significance of this repeated structure and sets up interesting questions concerning its functional meaning and the structure of the chromosomal gene.




The extracellular domains of TSH and LH receptors are apparently responsible for the ligand binding (4). The deleted repeat also contains one of the 5 consensus sequences for N-glycosylation. Glycosylation of the TSH receptor could be important for ligand binding or signal transduction. If, and to what extent, the lack of this repeat influences the binding capabilities and/or the function of the receptor variant, is not yet known. Comparison of cell lines expressing this variant with the presently available stable transfectants expressing the full size receptor should partially answer this question. The functional analysis of other in-vitro generated mutants of the TSH receptor will complete the study.




The deletion of a full repeat gives also some insight on the structure of the TSH receptor gene. It is highly probable that the repeat unit corresponds to a complete exon, and it is therefore possible that all repeats would be separated by introns. It is interesting to note that most of the genes coding for G-protein coupled receptors are completely devoid of intronic structures. The functional or evolutionary significance of this observation is not known, but a highly fragmented exonic structure of the glycoprotein hormone receptor genes would be in clear contrast to the rest of the receptor family.




II—Cloning of the Human TSHr




A human lambda gt11 cDNA library (29) was screened with a fragment of the dog TSHr (25). Out of the 218 clones scored as positive (1/6000), 24 were plaque-purified to homogeneity and the size of the inserts was determined. Two clones which harbored inserts of 2370 bp and 3050 bp, respectively, were subcloned as overlapping fragments in M13 derivatives and sequenced (FIG.


12


). A total of 4272 bp were determined in which a 2292 bp open reading frame was identified. When translated into protein, the coding sequence showed an overall 90.3% similarity with the dog TSHr (

FIG. 8

) [1]. It displayed all the characteristics described recently for the subfamily of G protein-coupled receptors binding glycoprotein hormones (25, 15, 16); a signal peptide (20 residues) followed by a large putative extracellular domain (398 residues) containing 5 sites for N-glycosylation, connected to a 346 residue carboxyl-terminal domain containing seven putative transmembrane segments (FIG.


8


). It has been suggested that the amino-terminal domain, which is not found in other G protein-coupled receptors, might correspond to the region involved in the binding of the bulky pituitary and placental glycoprotein hormones (25, 15, 16).




Variants of the hTSHr




When probed with the putative human TSHr, a Northern blot of RNA from human placenta, testis and thyroid revealeld two major 4.6 and 4.4 kb thyroid-specific transcripts. Minor thyroid-specific RNA species of smaller size were also observed. Although the former could simply correspond to multiple polyadenylation sites in the 3′ region of the gene, this situation is reminiscent of what has been observed for the porcine LH-CG receptor. In this case, multiple transcripts were found to correspond to variants of the receptor cDNA lacking the potential to encode the membrane spanning segments (16). Whether this observation with important implications on receptor function and regulation also applies to the human TSHr will await sequencing of additional clones from the cDNA library.




Expression of hTSHr




To provide definite proof that the clones isolated encoded a human TSH receptor, the coding sequence was inserted in the SV40-based vector pSVL, and the resulting construct transfected in Cos-7 cells (24). Membranes prepared from transfected cells demonstrated specific binding of [


125


I]TSH (FIG.


9


). The unlabelled competitor TSH was bovine. The characteristics of the displacement curve with unlabelled TSH were similar to those observed with the dog TSHr assayed under similar conditions (half maximal displacement around 0.5 nM) (25).




From the sequence similarity with dog TSHr, the tissue specific expression of the corresponding transcripts and the binding studies on membranes from transfected COS-7 cells, it was concluded that a bona fide human TSHr has been cloned.




Antibodies to hTSHr




To investigate the relevance of the cloned human TSHr to thyroid autoimmunity, competition was tested between [


125


I]TSH and immunoglobulins prepared from patients, for binding to the recombinant receptor expressed in Cos-7 cells (FIG.


10


). Immunoglobulins were prepared from the serum of patients or normal individuals by ammonium sulphate precipitation. They were dissolved in water and dialysed extensively against Dulbecco's modified Eagle medium. While immunoglobulins from normal individuals did not displace [


125


I]TSH, samples from two patients with idiopathic myxoedema clearly did, in a dose-dependant manner. The steep dose-response which was observed suggests that immunoglobulins from these patients present a very high affinity for the recombinant receptor. When samples from two patients with Graves' disease having high levels of thyroid stimulating immunoglobulins in the circulation were tested, one of them showed limited ability to displace labelled TSH under the conditions of the assay (FIG.


10


). The difference in the potency of these two categories of immunoglobulins to displace TSH from the receptor expressed in Cos-7 cells may reflect differences in their affinity for a common antigen. Alternatively, despite previous studies suggesting that both stimulating and blocking antibodies would bind to the same part of the TSHr (26, 27), it may correspond to more basic differences in the actual nature of their respective antigenic targets. Studies where binding activity of a larger collection of immunoglobulins are compared to their ability to activate adenylate cyclase in permanently transfected cells will help to clarify this point.




BIBLIOGRAPHY




1. J. E. Dumont, G. Vassart & S. Refetoff, in The Metabolic Bases of Inherited Diseases, C. R. Scrivers, A. L. Beaudet, W. S. Sly & D. Vale eds. McGraw-Hill, pp 1843-1880 (1989).




2. I. A. Kourides, J. A. Gurr & O. Wolw, Rec. Progr. Horm. Res. 40, 79-120 (1984)




3. F. Ribeiro-Neto, L. Birnbaumer and J M. B. Field, Mol. Endo. 1, pp 482-490 (1987).




4. B. Rees-Smith, S. M. McLachlan & J. Furmaniak, Endocrine Rev. 9, 106-121 (1988).




5. R. K. Saiki et al., Science 239, pp. 487-491 (1988).




6. F. Libert et al., Science 244, pp. 569-572 (1988).




7. M. Parmentier et al; to be published elsewhere.




8. B. F. O'Dowd, et al. J. Biol. Chem. 263, 15985-15992 (1988).




9. C. Strader, I. S. Sigal & R. Dixon. FASEB J 3, 1825-1832 (1989)




10. S. Lissitzky, G. Fayet and B. Verrier. Adv. Cyclic Nucl. Res. 5, 133-152 (1975).




11. G. von Heijne, Nucl. Acids Res. 14, 4683 (1986).




12. B. P. Schimmer, in Functionally Differentiated cell lines. pp 61-92. G. Sato, ed. AlanR. Riss Inc. (1981) N.Y.




13. C. Maenhaut & F. Libert, submitted. Y1 cells were grown as monolayers as described (12). 1 mm


2


areas were marked on the bottom of the dishes and all cells in these areas were microinjected with mRNA at 0.25 ug/ul in water. mRNA was synthesized from TSH receptor cDNA subcloned in pSP64 (Promega). After 30 min;, TSH was added and the cells were photographed 120 min. later. The morphological changes (stable for 20 hours) were observed with TSH concentrations down to 0.1 nM. FSH, LH and hCG were ineffective (not shown).




14. J. Van Sande, P. Cochaux and J. E. Dumont. FEBS Lett. 150, 137-141 (1982).




15. K. C. McFarland et al., Science 245, 494 (1989).




16. H Loosfelt et al., ibid 245, 525, (1989).




17. D. G. Higgins and P. M. Sharp, Gene, 73, 237-244 (1988).




18 J. G. Kenimer, J. M. Hershman & H. P. Higgins. J. Clin. Endpe. Metab. 40, 482 (1975).




19. T. Maniatis, E. F. Fritsch and J. Sambrook, (1982) In Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York).




20. P. Roger et al. Eur. J. Biochem. 152, 239-245 (1985).




21. F. Sanger, S. Nicklen & A. R. Coulson. Proc Natl. Acad. SCi. U.S.A. 74, 5463 (1977). S. Henikoff. Gene 28, 351 (1984).




22. B. K. Kobilka et al. J. Biol. Chem. 262, 7321 (1987).




23. G. Wong, Y. S. et al. Science 228, 810-815 (1985).




24. R. A. F. Dixon et al. Nature 326, 73-77 (1987).




25. Parmentier, M., Libert, F., Maenhaut, C., Lefort, A., Gerard, C., Perret, J., Van Sande, J, Dumont J. E. and Vassart, G. (1989). Submitted.




26. Takahashi, N., Takahashi, Y. and Putman, F. W. (1985). Proc. Natl. Acad. Sci. U.S.A. 82, 1906.




27. Davies Jones, E., Hashim, F., Creagh, F. Williams, S. and Rees Smith, B. (1985) Mol. Cell. Endo. 41, 257-265.




28. Amino, N., Watanabe, Y., Tamaki, H., Iwatani, Y; and Miyai, K. (1987) Clin. Endo. 27, 615-620.




29. Libert, F., Ruel, J., Ludgate, M., Swillens, S., Alexander, N., Vassart, G. and Dinsart, C. (1987) EMBO J. T, 4193-4196.




30. Lefort, A., Lecocq, R., Libert, F., Lamy, F., Swillens, S., Vassart, G. and Dumont, J. E. (1989) EMBO J. 8, 111-116.







62





19 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “A or P”





Modified-site


/label= Xaa
/note= “D or P”





Modified-site


/label= Xaa
/note= “Q or H”





Modified-site


10


/label= Xaa
/note= “V or A”





Modified-site


14


/label= Xaa
/note= “D or A”





Modified-site


18


/label= Xaa
/note= “D or S”




1
Met Arg Pro Xaa Xaa Leu Leu Xaa Leu Xaa Leu Leu Leu Xaa Leu Pro
1 5 10 15
Arg Xaa Leu






391 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “K or M”





Modified-site


/label= Xaa
/note= “S or P”





Modified-site


16


/label= Xaa
/note= “E or D”





Modified-site


26


/label= Xaa
/note= “Q or H”





Modified-site


30


/label= Xaa
/note= “S or T”





Modified-site


40


/label= Xaa
/note= “L or F”





Modified-site


44


/label= Xaa
/note= “H or Q”





Modified-site


46


/label= Xaa
/note= “R or K”





Modified-site


51


/label= Xaa
/note= “H or R”





Modified-site


64


/label= Xaa
/note= “L or V”





Modified-site


68


/label= Xaa
/note= “L or A”





Modified-site


72


/label= Xaa
/note= “Q or R”





Modified-site


84


/label= Xaa
/note= “V or M”





Modified-site


94


/label= Xaa
/note= “N or S”





Modified-site


97


/label= Xaa
/note= “Y or S”





Modified-site


120


/label= Xaa
/note= “K or G”





Modified-site


121


/label= Xaa
/note= “M or V”





Modified-site


125


/label= Xaa
/note= “L or V”





Modified-site


133


/label= Xaa
/note= “I or V”





Modified-site


146


/label= Xaa
/note= “T or A”





Modified-site


150


/label= Xaa
/note= “V or A”





Modified-site


173


/label= Xaa
/note= “V or I”





Modified-site


176


/label= Xaa
/note= “Y or H”





Modified-site


195


/label= Xaa
/note= “T or S”





Modified-site


196


/label= Xaa
/note= “V or A”





Modified-site


210


/label= Xaa
/note= “S or T”





Modified-site


216


/label= Xaa
/note= “Q or Y”





Modified-site


287


/label= Xaa
/note= “M or I”





Modified-site


288


/label= Xaa
/note= “Q or R”





Modified-site


298


/label= Xaa
/note= “A or T”





Modified-site


301


/label= Xaa
/note= “S or G”





Modified-site


303


/label= Xaa
/note= “L or F”





Modified-site


304


/label= Xaa
/note= “H or D”





Modified-site


310


/label= Xaa
/note= “N or Y”





Modified-site


315


/label= Xaa
/note= “I or H”





Modified-site


316


/label= Xaa
/note= “V or A”





Modified-site


320


/label= Xaa
/note= “E or D”





Modified-site


321


/label= Xaa
/note= “K or N”





Modified-site


323


/label= Xaa
/note= “K or Q”





Modified-site


328


/label= Xaa
/note= “H or D”





Modified-site


329


/label= Xaa
/note= “N or S”





Modified-site


331


/label= Xaa
/note= “A or S”





Modified-site


345


/label= Xaa
/note= “I or L”





Modified-site


370


/label= Xaa
/note= “I or V”





Modified-site


373


/label= Xaa
/note= “D or G”





Modified-site


374


/label= Xaa
/note= “S or N”




2
Gly Gly Xaa Gly Cys Xaa Ser Pro Pro Cys Glu Cys His Gln Glu Xaa
1 5 10 15
Asp Phe Arg Val Thr Cys Lys Asp Ile Xaa Arg Ile Pro Xaa Leu Pro
20 25 30
Pro Ser Thr Gln Thr Leu Lys Xaa Ile Glu Thr Xaa Leu Xaa Thr Ile
35 40 45
Pro Ser Xaa Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg Ile Tyr Xaa
50 55 60
Ser Ile Asp Xaa Thr Leu Gln Xaa Leu Glu Ser His Ser Phe Tyr Asn
65 70 75 80
Leu Ser Lys Xaa Thr His Ile Glu Ile Arg Asn Thr Arg Xaa Leu Thr
85 90 95
Xaa Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu Lys Phe Leu
100 105 110
Gly Ile Phe Asn Thr Gly Leu Xaa Xaa Phe Pro Asp Xaa Thr Lys Val
115 120 125
Tyr Ser Thr Asp Xaa Phe Phe Ile Leu Glu Ile Thr Asp Asn Pro Tyr
130 135 140
Met Xaa Ser Ile Pro Xaa Asn Ala Phe Gln Gly Leu Cys Asn Glu Thr
145 150 155 160
Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Xaa Gln Gly Xaa
165 170 175
Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn Lys Asn Lys
180 185 190
Tyr Leu Xaa Xaa Ile Asp Lys Asp Ala Phe Gly Gly Val Tyr Ser Gly
195 200 205
Pro Xaa Leu Leu Asp Val Ser Xaa Thr Ser Val Thr Ala Leu Pro Ser
210 215 220
Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn Thr Trp Thr
225 230 235 240
Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu Thr Arg Ala
245 250 255
Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn Gln Lys Lys
260 265 270
Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser Ser Xaa Xaa
275 280 285
Ser Leu Arg Gln Arg Lys Ser Val Asn Xaa Leu Asn Xaa Pro Xaa Xaa
290 295 300
Gln Glu Tyr Glu Glu Xaa Leu Gly Asp Ser Xaa Xaa Gly Tyr Lys Xaa
305 310 315 320
Xaa Ser Xaa Phe Gln Asp Thr Xaa Xaa Asn Xaa His Tyr Tyr Val Phe
325 330 335
Phe Glu Glu Gln Glu Asp Glu Ile Xaa Gly Phe Gly Gln Glu Leu Lys
340 345 350
Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His Tyr Asp Tyr
355 360 365
Thr Xaa Cys Gly Xaa Xaa Glu Asp Met Val Cys Thr Pro Lys Ser Asp
370 375 380
Glu Phe Asn Pro Cys Glu Asp
385 390






35 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


27


/label= Xaa
/note= “L or I”





Modified-site


28


/label= Xaa
/note= “I or V”




3
Ile Met Gly Tyr Lys Phe Leu Arg Ile Val Val Trp Phe Val Ser Leu
1 5 10 15
Leu Ala Leu Leu Gly Asn Val Phe Val Leu Xaa Xaa Leu Leu Thr Ser
20 25 30
His Tyr Lys
35






40 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “N or T”





Modified-site


18


/label= Xaa
/note= “M or I”





Modified-site


20


/label= Xaa
/note= “M or I”





Modified-site


30


/label= Xaa
/note= “L or I”





Modified-site


31


/label= Xaa
/note= “Y or H”





Modified-site


33


/label= Xaa
/note= “H or K”





Modified-site


35


/label= Xaa
/note= “E or Q”





Modified-site


37


/label= Xaa
/note= “Y or H”





Modified-site


39


/label= Xaa
/note= “Y or H”




4
Leu Xaa Val Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe
1 5 10 15
Cys Xaa Gly Xaa Tyr Leu Leu Leu Ile Ala Ser Val Asp Xaa Xaa Thr
20 25 30
Xaa Ser Xaa Tyr Xaa Asn Xaa Ala
35 40






9 amino acids


amino acid


single


linear




peptide




unknown



5
Ile Asp Trp Gln Thr Gly Pro Gly Cys
1 5






9 amino acids


amino acid


single


linear




peptide




unknown



6
Ile Asp Trp Gln Thr Gly Ala Gly Cys
1 5






23 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “N or D”





Modified-site


/label= Xaa
/note= “T or A”




7
Xaa Xaa Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr
1 5 10 15
Thr Leu Thr Val Ile Thr Leu
20






13 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “Y or H”





Modified-site


/label= Xaa
/note= “A or T”





Modified-site


/label= Xaa
/note= “F or H”





Modified-site


11


/label= Xaa
/note= “R or Q”




8
Glu Arg Trp Xaa Xaa Ile Thr Xaa Ala Met Xaa Leu Asp
1 5 10






40 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “R or C”





Modified-site


/label= Xaa
/note= “I or V”





Modified-site


/label= Xaa
/note= “R or Q”





Modified-site


/label= Xaa
/note= “C or Y or A”





Modified-site


10


/label= Xaa
/note= “A or S”





Modified-site


11


/label= Xaa
/note= “I or V”





Modified-site


15


/label= Xaa
/note= “G or M”





Modified-site


17


/label= Xaa
/note= “V or I”





Modified-site


18


/label= Xaa
/note= “C or F”





Modified-site


19


/label= Xaa
/note= “C or A”





Modified-site


21


/label= Xaa
/note= “L or A”





Modified-site


22


/label= Xaa
/note= “L or A”





Modified-site


25


/label= Xaa
/note= “L or F”





Modified-site


27


/label= Xaa
/note= “L or I”





Modified-site


28


/label= Xaa
/note= “V or F”





Modified-site


34


/label= Xaa
/note= “A or M”




9
Xaa Lys Xaa Xaa Leu Arg His Ala Xaa Xaa Xaa Met Val Gly Xaa Trp
1 5 10 15
Xaa Xaa Xaa Phe Xaa Xaa Ala Leu Xaa Pro Xaa Xaa Gly Ile Ser Ser
20 25 30
Tyr Xaa Lys Val Ser Ile Cys Leu
35 40






40 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “T or I”





Modified-site


/label= Xaa
/note= “E or D”





Modified-site


/label= Xaa
/note= “T or S”





Modified-site


/label= Xaa
/note= “A or S”





Modified-site


10


/label= Xaa
/note= “L or Q”





Modified-site


11


/label= Xaa
/note= “A or L”





Modified-site


13


/label= Xaa
/note= “I or V”





Modified-site


14


/label= Xaa
/note= “V or I or M”





Modified-site


15


/label= Xaa
/note= “F or L or S”





Modified-site


16


/label= Xaa
/note= “V or L”





Modified-site


18


/label= Xaa
/note= “T or L or V”





Modified-site


21


/label= Xaa
/note= “I or V”





Modified-site


22


/label= Xaa
/note= “V or L”





Modified-site


25


/label= Xaa
/note= “V or I”





Modified-site


29


/label= Xaa
/note= “C or S”




10
Pro Met Asp Xaa Xaa Xaa Pro Leu Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa
1 5 10 15
Leu Xaa Leu Asn Xaa Xaa Ala Phe Xaa Ile Val Cys Xaa Cys Tyr Val
20 25 30
Lys Ile Tyr Ile Thr Val Arg Asn
35 40






45 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


25


/label= Xaa
/note= “I or M”





Modified-site


38


/label= Xaa
/note= “I or L”





Modified-site


39


/label= Xaa
/note= “L or M”




11
Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys Arg Met
1 5 10 15
Ala Val Leu Ile Phe Thr Asp Phe Xaa Cys Met Ala Pro Ile Ser Phe
20 25 30
Tyr Ala Leu Ser Ala Xaa Xaa Asn Lys Pro Leu Ile Thr
35 40 45






33 amino acids


amino acid


single


linear




peptide




unknown



12
Val Ser Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser
1 5 10 15
Cys Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg
20 25 30
Asp






33 amino acids


amino acid


single


linear




peptide




unknown



13
Val Thr Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser
1 5 10 15
Cys Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg
20 25 30
Asp






76 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


24


/label= Xaa
/note= “P or S”





Modified-site


29


/label= Xaa
/note= “T or A”





Modified-site


30


/label= Xaa
/note= “D or G”





Modified-site


33


/label= Xaa
/note= “V or I”





Modified-site


38


/label= Xaa
/note= “H or R”





Modified-site


43


/label= Xaa
/note= “G or S”





Modified-site


45


/label= Xaa
/note= “H or P”





Modified-site


48


/label= Xaa
/note= “E or Q”





Modified-site


50


/label= Xaa
/note= “V or E”





Modified-site


54


/label= Xaa
/note= “I or L”





Modified-site


62


/label= Xaa
/note= “K or N”





Modified-site


69


/label= Xaa
/note= “E or K”





Modified-site


72


/label= Xaa
/note= “M or N”




14
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln
1 5 10 15
Ala Tyr Arg Gly Gln Arg Val Xaa Pro Lys Asn Ser Xaa Xaa Ile Gln
20 25 30
Xaa Gln Lys Val Thr Xaa Asp Met Arg Gln Xaa Leu Xaa Asn Met Xaa
35 40 45
Asp Xaa Tyr Glu Leu Xaa Glu Asn Ser His Leu Thr Pro Xaa Lys Gln
50 55 60
Gly Gln Ile Ser Xaa Glu Tyr Xaa Gln Thr Val Leu
65 70 75






37 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “M or K”





Modified-site


/label= Xaa
/note= “S or P”





Modified-site


15


/label= Xaa
/note= “E or D”





Modified-site


25


/label= Xaa
/note= “Q or H”





Modified-site


29


/label= Xaa
/note= “S or T”




15
Gly Xaa Met Gly Cys Xaa Ser Pro Pro Cys Glu Cys His Gln Glu Xaa
1 5 10 15
Asp Phe Arg Val Thr Cys Lys Asp Ile Xaa Arg Ile Pro Xaa Leu Pro
20 25 30
Pro Ser Thr Gln Thr
35






24 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “L or F”





Modified-site


/label= Xaa
/note= “H or Q”





Modified-site


/label= Xaa
/note= “R or K”





Modified-site


14


/label= Xaa
/note= “H or R”




16
Leu Lys Xaa Ile Glu Thr Xaa Leu Xaa Thr Ile Pro Ser Xaa Ala Phe
1 5 10 15
Ser Asn Leu Pro Asn Ile Ser Arg
20






25 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “V or L”





Modified-site


/label= Xaa
/note= “L or A”





Modified-site


11


/label= Xaa
/note= “Q or R”





Modified-site


23


/label= Xaa
/note= “V or M”




17
Ile Tyr Xaa Ser Ile Asp Xaa Thr Leu Gln Xaa Leu Glu Ser His Ser
1 5 10 15
Phe Tyr Asn Leu Ser Lys Xaa Thr His
20 25






25 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “N or S”





Modified-site


11


/label= Xaa
/note= “Y or S”




18
Ile Glu Ile Arg Asn Thr Arg Xaa Leu Thr Xaa Ile Asp Pro Asp Ala
1 5 10 15
Leu Lys Glu Leu Pro Leu Leu Lys Phe
20 25






25 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “K or G”





Modified-site


10


/label= Xaa
/note= “M or V”





Modified-site


14


/label= Xaa
/note= “L or V”





Modified-site


22


/label= Xaa
/note= “I or V”




19
Leu Gly Ile Phe Asn Thr Gly Leu Xaa Xaa Phe Pro Asp Xaa Thr Lys
1 5 10 15
Val Tyr Ser Thr Asp Xaa Phe Phe Ile
20 25






25 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


10


/label= Xaa
/note= “T or A”





Modified-site


14


/label= Xaa
/note= “V or A”




20
Leu Glu Ile Thr Asp Asn Pro Tyr Met Xaa Ser Ile Pro Xaa Asn Ala
1 5 10 15
Phe Gln Gly Leu Cys Asn Glu Thr Leu
20 25






25 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


12


/label= Xaa
/note= “V or I”





Modified-site


15


/label= Xaa
/note= “Y or H”




21
Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Xaa Gln Gly Xaa Ala
1 5 10 15
Phe Asn Gly Thr Lys Leu Asp Ala Val
20 25






24 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “T or S”





Modified-site


10


/label= Xaa
/note= “V or A”





Modified-site


24


/label= Xaa
/note= “S or T”




22
Tyr Leu Asn Lys Asn Lys Tyr Leu Xaa Xaa Ile Asp Lys Asp Ala Phe
1 5 10 15
Gly Gly Val Tyr Ser Gly Pro Xaa
20






25 amino acids


amino acid


single


linear




peptide




unknown



23
Leu Leu Asp Val Ser Gln Thr Ser Val Thr Ala Leu Pro Ser Lys Gly
1 5 10 15
Leu Glu His Leu Lys Glu Leu Ile Ala
20 25






25 amino acids


amino acid


single


linear




peptide




unknown



24
Leu Leu Asp Val Ser Tyr Thr Ser Val Thr Ala Leu Pro Ser Lys Gly
1 5 10 15
Leu Glu His Leu Lys Glu Leu Ile Ala
20 25






23 amino acids


amino acid


single


linear




peptide




unknown



25
Arg Asn Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu
1 5 10 15
His Leu Thr Arg Ala Asp Leu
20






25 amino acids


amino acid


single


linear




peptide




unknown



26
Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn Gln Lys Lys Ile Arg
1 5 10 15
Gly Ile Leu Glu Ser Leu Met Cys Asn
20 25






25 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “M or I”





Modified-site


/label= Xaa
/note= “Q or R”





Modified-site


15


/label= Xaa
/note= “A or T”





Modified-site


18


/label= Xaa
/note= “S or G”





Modified-site


20


/label= Xaa
/note= “L or F”





Modified-site


21


/label= Xaa
/note= “H or D”




27
Glu Ser Ser Met Xaa Xaa Leu Arg Gln Arg Lys Ser Val Asn Xaa Leu
1 5 10 15
Asn Xaa Pro Xaa Xaa Gln Glu Tyr Glu
20 25






83 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “N or Y”





Modified-site


/label= Xaa
/note= “I or H”





Modified-site


/label= Xaa
/note= “V or A”





Modified-site


12


/label= Xaa
/note= “E or D”





Modified-site


13


/label= Xaa
/note= “K or N”





Modified-site


15


/label= Xaa
/note= “K or Q”





Modified-site


20


/label= Xaa
/note= “H or D”





Modified-site


21


/label= Xaa
/note= “N or S”





Modified-site


23


/label= Xaa
/note= “A or S”





Modified-site


37


/label= Xaa
/note= “I or L”





Modified-site


62


/label= Xaa
/note= “I or V”





Modified-site


65


/label= Xaa
/note= “D or G”





Modified-site


66


/label= Xaa
/note= “S or N”




28
Glu Xaa Leu Gly Asp Ser Xaa Xaa Gly Tyr Lys Xaa Xaa Ser Xaa Phe
1 5 10 15
Gln Asp Thr Xaa Xaa Asn Xaa His Tyr Tyr Val Phe Phe Glu Glu Gln
20 25 30
Glu Asp Glu Ile Xaa Gly Phe Gly Gln Glu Leu Lys Asn Pro Gln Glu
35 40 45
Glu Thr Leu Gln Ala Phe Asp Ser His Tyr Asp Tyr Thr Xaa Cys Gly
50 55 60
Xaa Xaa Glu Asp Met Val Cys Thr Pro Lys Ser Asp Glu Phe Asn Pro
65 70 75 80
Cys Glu Asp






764 amino acids


amino acid


single


linear




peptide




unknown




Modified-site


/label= Xaa
/note= “A or P”





Modified-site


/label= Xaa
/note= “D or P”





Modified-site


/label= Xaa
/note= “Q or H”





Modified-site


10


/label= Xaa
/note= “V or A”





Modified-site


14


/label= Xaa
/note= “D or A”





Modified-site


18


/label= Xaa
/note= “D or S”





Modified-site


22


/label= Xaa
/note= “M or K”





Modified-site


25


/label= Xaa
/note= “S or P”





Modified-site


35


/label= Xaa
/note= “E or D”





Modified-site


45


/label= Xaa
/note= “Q or H”





Modified-site


49


/label= Xaa
/note= “S or T”





Modified-site


59


/label= Xaa
/note= “L or F”





Modified-site


63


/label= Xaa
/note= “H or Q”





Modified-site


65


/label= Xaa
/note= “R or K”





Modified-site


70


/label= Xaa
/note= “H or R”





Modified-site


83


/label= Xaa
/note= “V or L”





Modified-site


87


/label= Xaa
/note= “L or A”





Modified-site


91


/label= Xaa
/note= “Q or R”





Modified-site


103


/label= Xaa
/note= “V or M”





Modified-site


113


/label= Xaa
/note= “N or S”





Modified-site


116


/label= Xaa
/note= “Y or S”





Modified-site


139


/label= Xaa
/note= “K or G”





Modified-site


140


/label= Xaa
/note= “M or V”





Modified-site


144


/label= Xaa
/note= “L or V”





Modified-site


152


/label= Xaa
/note= “I or V”





Modified-site


165


/label= Xaa
/note= “T or A”





Modified-site


169


/label= Xaa
/note= “V or A”





Modified-site


192


/label= Xaa
/note= “V or I”





Modified-site


195


/label= Xaa
/note= “Y or H”





Modified-site


214


/label= Xaa
/note= “T or S”





Modified-site


215


/label= Xaa
/note= “V or A”





Modified-site


229


/label= Xaa
/note= “S or T”





Modified-site


235


/label= Xaa
/note= “Q or Y”





Modified-site


306


/label= Xaa
/note= “M or I”





Modified-site


307


/label= Xaa
/note= “Q or R”





Modified-site


317


/label= Xaa
/note= “A or T”





Modified-site


320


/label= Xaa
/note= “A or T”





Modified-site


322


/label= Xaa
/note= “S or G”





Modified-site


323


/label= Xaa
/note= “L or F”





Modified-site


329


/label= Xaa
/note= “N or Y”





Modified-site


334


/label= Xaa
/note= “I or H”





Modified-site


335


/label= Xaa
/note= “V or A”





Modified-site


339


/label= Xaa
/note= “E or D”





Modified-site


340


/label= Xaa
/note= “K or N”





Modified-site


342


/label= Xaa
/note= “K or Q”





Modified-site


347


/label= Xaa
/note= “H or D”





Modified-site


348


/label= Xaa
/note= “N or S”





Modified-site


350


/label= Xaa
/note= “A or S”





Modified-site


364


/label= Xaa
/note= “I or L”





Modified-site


389


/label= Xaa
/note= “I or V”





Modified-site


392


/label= Xaa
/note= “D or G”





Modified-site


393


/label= Xaa
/note= “S or N”





Modified-site


437


/label= Xaa
/note= “L or I”





Modified-site


438


/label= Xaa
/note= “I or V”





Modified-site


447


/label= Xaa
/note= “N or T”





Modified-site


463


/label= Xaa
/note= “M or I”





Modified-site


465


/label= Xaa
/note= “M or I”





Modified-site


475


/label= Xaa
/note= “L or I”





Modified-site


476


/label= Xaa
/note= “Y or H”





Modified-site


478


/label= Xaa
/note= “H or K”





Modified-site


480


/label= Xaa
/note= “E or Q”





Modified-site


482


/label= Xaa
/note= “Y or H”





Modified-site


484


/label= Xaa
/note= “H or Y”





Modified-site


492


/label= Xaa
/note= “P or A”





Modified-site


495


/label= Xaa
/note= “N or D”





Modified-site


496


/label= Xaa
/note= “T or A”





Modified-site


521


/label= Xaa
/note= “Y or A”





Modified-site


522


/label= Xaa
/note= “A or T”





Modified-site


525


/label= Xaa
/note= “F or H”





Modified-site


528


/label= Xaa
/note= “R or Q”





Modified-site


531


/label= Xaa
/note= “R or C”





Modified-site


533


/label= Xaa
/note= “I or V”





Modified-site


534


/label= Xaa
/note= “R or Q”





Modified-site


539


/label= Xaa
/note= “C or Y or A”





Modified-site


540


/label= Xaa
/note= “A or S”





Modified-site


541


/label= Xaa
/note= “I or V”





Modified-site


545


/label= Xaa
/note= “G or M”





Modified-site


547


/label= Xaa
/note= “V or I”





Modified-site


548


/label= Xaa
/note= “C or F”





Modified-site


549


/label= Xaa
/note= “C or A”





Modified-site


551


/label= Xaa
/note= “L or A”





Modified-site


552


/label= Xaa
/note= “L or A”





Modified-site


555


/label= Xaa
/note= “L or F”





Modified-site


557


/label= Xaa
/note= “L or I”





Modified-site


558


/label= Xaa
/note= “V or F”





Modified-site


564


/label= Xaa
/note= “A or M”





Modified-site


574


/label= Xaa
/note= “T or I”





Modified-site


575


/label= Xaa
/note= “E or D”





Modified-site


576


/label= Xaa
/note= “T or S”





Modified-site


579


/label= Xaa
/note= “A or S”





Modified-site


580


/label= Xaa
/note= “L”





Modified-site


581


/label= Xaa
/note= “A or Q”





Modified-site


583


/label= Xaa
/note= “I or V”





Modified-site


584


/label= Xaa
/note= “V or I or M”





Modified-site


585


/label= Xaa
/note= “F or L or S”





Modified-site


586


/label= Xaa
/note= “V or L”





Modified-site


588


/label= Xaa
/note= “T or L or V”





Modified-site


591


/label= Xaa
/note= “I or V”





Modified-site


592


/label= Xaa
/note= “V or L”





Modified-site


595


/label= Xaa
/note= “V or I”





Modified-site


599


/label= Xaa
/note= “C or S”





Modified-site


635


/label= Xaa
/note= “I or M”





Modified-site


648


/label= Xaa
/note= “I or L”





Modified-site


649


/label= Xaa
/note= “L or M”





Modified-site


657


/label= Xaa
/note= “S or T”





Modified-site


712


/label= Xaa
/note= “P or S”





Modified-site


717


/label= Xaa
/note= “T or A”





Modified-site


718


/label= Xaa
/note= “D or G”





Modified-site


721


/label= Xaa
/note= “V or I”





Modified-site


726


/label= Xaa
/note= “H or R”





Modified-site


731


/label= Xaa
/note= “G or S”





Modified-site


733


/label= Xaa
/note= “H or P”





Modified-site


736


/label= Xaa
/note= “E or Q”





Modified-site


738


/label= Xaa
/note= “V or E”





Modified-site


742


/label= Xaa
/note= “I or L”





Modified-site


750


/label= Xaa
/note= “K or N”





Modified-site


757


/label= Xaa
/note= “E or K”





Modified-site


760


/label= Xaa
/note= “M or N”




29
Met Arg Pro Xaa Xaa Leu Leu Xaa Leu Xaa Leu Leu Leu Xaa Leu Pro
1 5 10 15
Arg Xaa Leu Gly Gly Xaa Gly Cys Xaa Ser Pro Pro Cys Glu Cys His
20 25 30
Gln Glu Xaa Asp Phe Arg Val Thr Cys Lys Asp Ile Xaa Arg Ile Pro
35 40 45
Xaa Leu Pro Pro Ser Thr Gln Thr Leu Lys Xaa Ile Glu Thr Xaa Leu
50 55 60
Xaa Thr Ile Pro Ser Xaa Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg
65 70 75 80
Ile Tyr Xaa Ser Ile Asp Xaa Thr Leu Gln Xaa Leu Glu Ser His Ser
85 90 95
Phe Tyr Asn Leu Ser Lys Xaa Thr His Ile Glu Ile Arg Asn Thr Arg
100 105 110
Xaa Leu Thr Xaa Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Xaa Xaa Phe Pro Asp Xaa
130 135 140
Thr Lys Val Tyr Ser Thr Asp Xaa Phe Phe Ile Leu Glu Ile Thr Asp
145 150 155 160
Asn Pro Tyr Met Xaa Ser Ile Pro Xaa Asn Ala Phe Gln Gly Leu Cys
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Xaa
180 185 190
Gln Gly Xaa Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn
195 200 205
Lys Asn Lys Tyr Leu Xaa Xaa Ile Asp Lys Asp Ala Phe Gly Gly Val
210 215 220
Tyr Ser Gly Pro Xaa Leu Leu Asp Val Ser Xaa Thr Ser Val Thr Ala
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn
245 250 255
Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu
260 265 270
Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn
275 280 285
Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser
290 295 300
Ser Xaa Xaa Ser Leu Arg Gln Arg Lys Ser Val Asn Xaa Leu Asn Xaa
305 310 315 320
Pro Xaa Xaa Gln Glu Tyr Glu Glu Xaa Leu Gly Asp Ser Xaa Xaa Gly
325 330 335
Tyr Lys Xaa Xaa Ser Xaa Phe Gln Asp Thr Xaa Xaa Asn Xaa His Tyr
340 345 350
Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Ile Xaa Gly Phe Gly Gln
355 360 365
Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His
370 375 380
Tyr Asp Tyr Thr Xaa Cys Gly Xaa Xaa Glu Asp Met Val Cys Thr Pro
385 390 395 400
Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Lys Phe
405 410 415
Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn
420 425 430
Val Phe Val Leu Xaa Xaa Leu Leu Thr Ser His Tyr Lys Leu Xaa Val
435 440 445
Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Xaa Gly
450 455 460
Xaa Tyr Leu Leu Leu Ile Ala Ser Val Asp Xaa Xaa Thr Xaa Ser Xaa
465 470 475 480
Tyr Xaa Asn Xaa Ala Ile Asp Trp Gln Thr Gly Xaa Gly Cys Xaa Xaa
485 490 495
Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu
500 505 510
Thr Val Ile Thr Leu Glu Arg Trp Xaa Xaa Ile Thr Xaa Ala Met Xaa
515 520 525
Leu Asp Xaa Lys Xaa Xaa Leu Arg His Ala Xaa Xaa Xaa Met Val Gly
530 535 540
Xaa Trp Xaa Xaa Xaa Phe Xaa Xaa Ala Leu Xaa Pro Xaa Xaa Gly Ile
545 550 555 560
Ser Ser Tyr Xaa Lys Val Ser Ile Cys Leu Pro Met Asp Xaa Xaa Xaa
565 570 575
Pro Leu Xaa Xaa Xaa Tyr Xaa Xaa Xaa Xaa Leu Xaa Leu Asn Xaa Xaa
580 585 590
Ala Phe Xaa Ile Val Cys Xaa Cys Tyr Val Lys Ile Tyr Ile Thr Val
595 600 605
Arg Asn Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys
610 615 620
Arg Met Ala Val Leu Ile Phe Thr Asp Phe Xaa Cys Met Ala Pro Ile
625 630 635 640
Ser Phe Tyr Ala Leu Ser Ala Xaa Xaa Asn Lys Pro Leu Ile Thr Val
645 650 655
Xaa Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys
660 665 670
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp
675 680 685
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln
690 695 700
Ala Tyr Arg Gly Gln Arg Val Xaa Pro Lys Asn Ser Xaa Xaa Ile Gln
705 710 715 720
Xaa Gln Lys Val Thr Xaa Asp Met Arg Gln Xaa Leu Xaa Asn Met Xaa
725 730 735
Asp Xaa Tyr Glu Leu Xaa Glu Asn Ser His Leu Thr Pro Xaa Lys Gln
740 745 750
Gly Gln Ile Ser Xaa Glu Tyr Xaa Gln Thr Val Leu
755 760






28 base pairs


nucleic acid


single


linear




DNA (genomic)




unknown



30
TAGATCTAGA CYTGKCSNKB GCYGAYMT 28






28 base pairs


nucleic acid


single


linear




DNA (genomic)




unknown



31
TAGATCTAGA CTTGTCCNGCG CTGAGAT 28






28 base pairs


nucleic acid


single


linear




DNA (genomic)




unknown



32
TAGATCTAGA CCTGGCGNTGG CCGATCT 28






29 base pairs


nucleic acid


single


linear




DNA (genomic)




unknown



33
ACTTTAAGCT TGCARTARMM SANRGGRTT 29






29 base pairs


nucleic acid


single


linear




DNA (genomic)




unknown



34
ACTTTAAGCT TGCAATAAAA GANGGGGTT 29






57 amino acids


amino acid


single


linear




peptide




unknown



35
Cys Asp Ala Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val
1 5 10 15
Tyr Thr Leu Thr Ala Ile Thr Leu Glu Arg Trp His Thr Ile Thr His
20 25 30
Ala Met Gln Leu Asp Cys Lys Val Gln Leu Arg His Ala Ala Ser Val
35 40 45
Met Val Met Gly Trp Ile Phe Ala Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



36
Cys Asp Leu Trp Leu Ala Leu Asp Tyr Val Val Ser Asn Ala Ser Val
1 5 10 15
Met Asn Leu Leu Ile Ile Ser Phe Asp Arg Tyr Phe Cys Val Thr Lys
20 25 30
Pro Leu Thr Tyr Pro Val Lys Arg Thr Thr Lys Met Ala Gly Met Met
35 40 45
Ile Ala Ala Ala Trp Val Leu Ser Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



37
Cys Asp Leu Trp Leu Ala Leu Asp Tyr Val Val Ser Asn Ala Ser Val
1 5 10 15
Met Asn Leu Leu Ile Ile Ser Phe Asp Arg Tyr Phe Cys Val Thr Lys
20 25 30
Pro Leu Thr Tyr Pro Ala Arg Arg Thr Thr Lys Met Ala Gly Leu Met
35 40 45
Ile Ala Ala Ala Trp Val Leu Ser Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



38
Cys Asp Leu Trp Leu Ala Leu Asp Tyr Val Ala Ser Asn Ala Ser Val
1 5 10 15
Met Asn Leu Leu Leu Ile Ser Phe Asp Arg Tyr Phe Ser Val Thr Arg
20 25 30
Pro Leu Ser Tyr Arg Ala Lys Arg Thr Pro Arg Arg Ala Ala Leu Met
35 40 45
Ile Gly Leu Ala Trp Leu Val Ser Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



39
Cys Asp Leu Trp Leu Ala Ile Asp Tyr Val Ala Ser Asn Ala Ser Val
1 5 10 15
Met Asn Leu Leu Val Ile Ser Phe Asp Arg Tyr Phe Ser Ile Thr Arg
20 25 30
Pro Leu Thr Tyr Arg Ala Lys Arg Thr Thr Lys Arg Ala Gly Val Met
35 40 45
Ile Gly Leu Ala Trp Val Ile Ser Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



40
Cys Asp Ile Trp Ala Ala Val Asp Val Leu Cys Cys Thr Ala Ser Ile
1 5 10 15
Leu Ser Leu Cys Ala Ile Ser Ile Asp Arg Tyr Ile Gly Val Arg Tyr
20 25 30
Ser Leu Gln Tyr Pro Thr Leu Val Thr Arg Arg Lys Ala Ile Leu Ala
35 40 45
Leu Leu Ser Val Trp Val Leu Ser Thr
50 55






58 amino acids


amino acid


single


linear




peptide




unknown



41
Cys Asp Ile Phe Val Thr Leu Asp Val Met Met Cys Thr Ala Ser Ile
1 5 10 15
Leu Asn Leu Cys Ala Ile Ser Ile Asp Arg Tyr Thr Ala Val Ala Met
20 25 30
Pro Met Leu Tyr Asn Thr Arg Tyr Ser Ser Lys Arg Arg Val Thr Val
35 40 45
Met Ile Ala Ile Val Trp Val Leu Ser Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



42
Cys Glu Leu Trp Thr Ser Val Asp Val Leu Cys Val Thr Ala Ser Ile
1 5 10 15
Glu Thr Leu Cys Val Ile Ala Leu Asp Arg Tyr Leu Ala Ile Thr Ser
20 25 30
Pro Phe Arg Tyr Gln Ser Leu Leu Thr Arg Ala Arg Ala Arg Gly Leu
35 40 45
Val Cys Thr Val Trp Ala Ile Ser Ala
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



43
Cys Glu Phe Trp Thr Ser Ile Asp Val Leu Cys Val Thr Ala Ser Ile
1 5 10 15
Glu Thr Leu Cys Val Ile Ala Val Asp Arg Tyr Phe Ala Ile Thr Ser
20 25 30
Pro Phe Lys Tyr Gln Ser Leu Leu Thr Lys Asn Lys Ala Arg Val Ile
35 40 45
Ile Leu Met Val Trp Ile Val Ser Gly
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



44
Cys Glu Phe Trp Thr Ser Ile Asp Val Leu Cys Val Thr Ala Ser Ile
1 5 10 15
Glu Thr Leu Cys Val Ile Ala Val Asp Arg Tyr Ile Ala Ile Thr Ser
20 25 30
Pro Phe Lys Tyr Gln Ser Leu Leu Thr Lys Asn Lys Ala Arg Met Val
35 40 45
Ile Leu Met Val Trp Ile Val Ser Gly
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



45
Cys Asp Ile Trp Leu Ser Ser Asp Ile Thr Cys Cys Thr Ala Ser Ile
1 5 10 15
Leu His Leu Cys Val Ile Ala Leu Asp Arg Tyr Trp Ala Ile Thr Asp
20 25 30
Ala Leu Glu Tyr Ser Lys Arg Arg Thr Ala Gly Arg Ala Ala Val Met
35 40 45
Ile Ala Thr Val Trp Val Ile Ser Ile
50 55






56 amino acids


amino acid


single


linear




peptide




unknown



46
Cys Glu Ile Tyr Leu Ala Leu Asp Val Leu Phe Cys Thr Ser Ser Ile
1 5 10 15
Val His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Trp Ser Ile Thr Gln
20 25 30
Ala Ile Glu Tyr Asn Leu Lys Arg Thr Arg Arg Arg Ile Lys Ala Ile
35 40 45
Ile Thr Cys Trp Val Ile Ser Ala
50 55






56 amino acids


amino acid


single


linear




peptide




unknown



47
Cys Asp Leu Phe Ile Ala Leu Asp Val Leu Cys Cys Thr Ser Ser Ile
1 5 10 15
Leu His Leu Cys Ala Ile Ala Leu Asp Arg Tyr Trp Ala Ile Thr Asp
20 25 30
Pro Ile Asp Tyr Val Asn Lys Arg Thr Pro Arg Pro Arg Ala Leu Ile
35 40 45
Ser Leu Thr Trp Leu Ile Gly Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



48
Cys Pro Val Trp Ile Ser Leu Asp Val Leu Phe Ser Thr Ala Ser Ile
1 5 10 15
Met His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala Ile Arg Asn
20 25 30
Pro Ile Glu His Ser Arg Phe Asn Ser Arg Thr Lys Ala Ile Met Lys
35 40 45
Ile Ala Ile Val Trp Ala Ile Ser Ile
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



49
Cys Ala Ile Trp Ile Tyr Leu Asp Val Leu Phe Ser Thr Ala Ser Ile
1 5 10 15
Met His Leu Cys Ala Ile Ser Leu Asp Arg Tyr Val Ala Ile Gln Asn
20 25 30
Pro Ile His His Ser Arg Phe Asn Ser Arg Thr Lys Ala Phe Leu Lys
35 40 45
Ile Ile Ala Val Trp Thr Ile Ser Val
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



50
Cys Leu Phe Phe Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile
1 5 10 15
Phe Ser Leu Leu Ala Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile
20 25 30
Pro Leu Arg Tyr Asn Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile
35 40 45
Ile Ala Val Cys Trp Val Leu Ser Phe
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



51
Cys Leu Met Val Ala Cys Pro Val Leu Ile Leu Thr Gln Ser Ser Ile
1 5 10 15
Leu Ala Leu Leu Ala Ile Ala Val Asp Arg Tyr Leu Arg Val Lys Ile
20 25 30
Pro Leu Arg Tyr Lys Thr Val Val Thr Pro Arg Arg Ala Ala Val Ala
35 40 45
Ile Ala Gly Cys Trp Ile Leu Ser Phe
50 55






55 amino acids


amino acid


single


linear




peptide




unknown



52
Cys Tyr Phe Gln Asn Leu Phe Pro Ile Thr Ala Met Phe Val Ser Ile
1 5 10 15
Tyr Ser Met Thr Ala Ile Ala Ala Asp Arg Tyr Met Ala Ile Val His
20 25 30
Pro Phe Gln Pro Arg Leu Ser Ala Pro Gly Thr Arg Ala Val Ile Ala
35 40 45
Gly Ile Trp Leu Val Ala Leu
50 55






57 amino acids


amino acid


single


linear




peptide




unknown



53
Cys Lys Ile Thr His Leu Ile Phe Ser Ile Asn Leu Phe Gly Ser Ile
1 5 10 15
Phe Phe Leu Thr Cys Met Ser Val Asp Arg Tyr Leu Ser Ile Thr Tyr
20 25 30
Phe Ala Ser Thr Ser Ser Arg Arg Lys Lys Val Val Arg Arg Ala Val
35 40 45
Cys Val Leu Val Trp Leu Leu Ala Phe
50 55






764 amino acids


amino acid


single


linear




peptide




unknown



54
Met Arg Pro Pro Pro Leu Leu His Leu Ala Leu Leu Leu Ala Leu Pro
1 5 10 15
Arg Ser Leu Gly Gly Lys Gly Cys Pro Ser Pro Pro Cys Glu Cys His
20 25 30
Gln Glu Asp Asp Phe Arg Val Thr Cys Lys Asp Ile His Arg Ile Pro
35 40 45
Thr Leu Pro Pro Ser Thr Gln Thr Leu Lys Phe Ile Glu Thr Gln Leu
50 55 60
Lys Thr Ile Pro Ser Arg Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg
65 70 75 80
Ile Tyr Leu Ser Ile Asp Ala Thr Leu Gln Arg Leu Glu Ser His Ser
85 90 95
Phe Tyr Asn Leu Ser Lys Met Thr His Ile Glu Ile Arg Asn Thr Arg
100 105 110
Ser Leu Thr Ser Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Gly Val Phe Pro Asp Val
130 135 140
Thr Lys Val Tyr Ser Thr Asp Val Phe Phe Ile Leu Glu Ile Thr Asp
145 150 155 160
Asn Pro Tyr Met Ala Ser Ile Pro Ala Asn Ala Phe Gln Gly Leu Cys
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Ile
180 185 190
Gln Gly His Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn
195 200 205
Lys Asn Lys Tyr Leu Ser Ala Ile Asp Lys Asp Ala Phe Gly Gly Val
210 215 220
Tyr Ser Gly Pro Thr Leu Leu Asp Val Ser Tyr Thr Ser Val Thr Ala
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn
245 250 255
Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu
260 265 270
Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn
275 280 285
Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser
290 295 300
Ser Ile Arg Ser Leu Arg Gln Arg Lys Ser Val Asn Thr Leu Asn Gly
305 310 315 320
Pro Phe Asp Gln Glu Tyr Glu Glu Tyr Leu Gly Asp Ser His Ala Gly
325 330 335
Tyr Lys Asp Asn Ser Gln Phe Gln Asp Thr Asp Ser Asn Ser His Tyr
340 345 350
Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Ile Leu Gly Phe Gly Gln
355 360 365
Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His
370 375 380
Tyr Asp Tyr Thr Val Cys Gly Gly Asn Glu Asp Met Val Cys Thr Pro
385 390 395 400
Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Lys Phe
405 410 415
Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn
420 425 430
Val Phe Val Leu Ile Val Leu Leu Thr Ser His Tyr Lys Leu Thr Val
435 440 445
Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Met Gly
450 455 460
Met Tyr Leu Leu Leu Ile Ala Ser Val Asp Leu Tyr Thr His Ser Glu
465 470 475 480
Tyr Tyr Asn His Ala Ile Asp Trp Gln Thr Gly Pro Gly Cys Asn Thr
485 490 495
Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu
500 505 510
Thr Val Ile Thr Leu Glu Arg Trp Tyr Ala Ile Thr Phe Ala Met Arg
515 520 525
Leu Asp Arg Lys Ile Arg Leu Arg His Ala Tyr Ala Ile Met Val Gly
530 535 540
Gly Trp Val Cys Cys Phe Leu Leu Ala Leu Leu Pro Leu Val Gly Ile
545 550 555 560
Ser Ser Tyr Ala Lys Val Ser Ile Cys Leu Pro Met Asp Thr Glu Thr
565 570 575
Pro Leu Ala Leu Ala Tyr Ile Ile Leu Val Leu Leu Leu Asn Ile Val
580 585 590
Ala Phe Ile Ile Val Cys Ser Cys Tyr Val Lys Ile Tyr Ile Thr Val
595 600 605
Arg Asn Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys
610 615 620
Arg Met Ala Val Leu Ile Phe Thr Asp Phe Met Cys Met Ala Pro Ile
625 630 635 640
Ser Phe Tyr Ala Leu Ser Ala Leu Met Asn Lys Pro Leu Ile Thr Val
645 650 655
Thr Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys
660 665 670
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp
675 680 685
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln
690 695 700
Ala Tyr Arg Gly Gln Arg Val Ser Pro Lys Asn Ser Ala Gly Ile Gln
705 710 715 720
Ile Gln Lys Val Thr Arg Asp Met Arg Gln Ser Leu Pro Asn Met Gln
725 730 735
Asp Glu Tyr Glu Leu Leu Glu Asn Ser His Leu Thr Pro Asn Lys Gln
740 745 750
Gly Gln Ile Ser Lys Glu Tyr Asn Gln Thr Val Leu
755 760






795 amino acids


amino acid


single


linear




protein




unknown



55
Arg Ala Thr His Cys Gly Met Gly Arg Arg Val Pro Ala Leu Arg Gln
1 5 10 15
Leu Leu Val Leu Ala Val Leu Leu Leu Lys Pro Ser Gln Leu Gln Ser
20 25 30
Arg Glu Leu Ser Gly Ser Arg Cys Pro Glu Pro Cys Asp Cys Ala Pro
35 40 45
Asp Gly Ala Leu Arg Ala Thr His Cys Gly Arg Cys Pro Gly Pro Arg
50 55 60
Ala Gly Leu Ala Arg Leu Ser Leu Thr Tyr Leu Pro Val Lys Val Ile
65 70 75 80
Pro Ser Gln Ala Phe Arg Gly Leu Asn Glu Val Val Lys Ile Glu Ile
85 90 95
Ser Gln Ser Asp Ser Leu Glu Arg Ala Thr His Cys Gly Arg Ile Glu
100 105 110
Ala Asn Ala Phe Asp Asn Leu Leu Asn Leu Ser Glu Leu Leu Ile Gln
115 120 125
Asn Thr Lys Asn Leu Leu Tyr Ile Glu Pro Gly Ala Phe Thr Asn Leu
130 135 140
Pro Arg Leu Lys Tyr Leu Ser Ile Cys Asn Thr Gly Ile Arg Thr Arg
145 150 155 160
Ala Thr His Cys Gly Leu Pro Asp Val Thr Lys Ile Ser Ser Ser Glu
165 170 175
Phe Asn Phe Ile Leu Glu Ile Cys Asp Asn Leu His Ile Thr Thr Ile
180 185 190
Pro Gly Asn Ala Phe Gln Gly Met Asn Asn Glu Ser Val Thr Leu Lys
195 200 205
Leu Tyr Gly Asn Gly Phe Glu Arg Ala Thr His Cys Gly Glu Val Gln
210 215 220
Ser His Ala Phe Asn Gly Thr Thr Leu Ile Ser Leu Glu Leu Lys Glu
225 230 235 240
Asn Ile Tyr Leu Glu Lys Met His Ser Gly Ala Phe Gln Gly Ala Thr
245 250 255
Gly Pro Ser Ile Leu Asp Ile Ser Ser Thr Lys Leu Gln Ala Arg Ala
260 265 270
Thr His Cys Gly Leu Pro Ser His Gly Leu Glu Ser Ile Gln Thr Leu
275 280 285
Ile Ala Leu Ser Ser Tyr Ser Leu Lys Thr Leu Pro Ser Lys Glu Lys
290 295 300
Phe Thr Ser Leu Leu Val Ala Thr Leu Thr Tyr Pro Ser His Cys Cys
305 310 315 320
Ala Phe Arg Asn Leu Pro Arg Ala Thr His Cys Gly Lys Lys Glu Gln
325 330 335
Asn Phe Ser Phe Ser Ile Phe Glu Asn Phe Ser Lys Gln Cys Glu Ser
340 345 350
Thr Val Arg Lys Ala Asp Asn Glu Thr Leu Tyr Ser Ala Ile Phe Glu
355 360 365
Glu Asn Glu Leu Ser Gly Trp Asp Arg Ala Thr His Cys Gly Tyr Asp
370 375 380
Tyr Gly Arg Ala Thr His Cys Gly Phe Ser Pro Lys Thr Leu Gln Cys
385 390 395 400
Ala Pro Glu Pro Asp Ala Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr
405 410 415
Ala Phe Leu Arg Val Leu Ile Trp Leu Ile Asn Ile Leu Ala Ile Phe
420 425 430
Gly Asn Leu Thr Val Leu Phe Val Arg Ala Thr His Cys Gly Leu Leu
435 440 445
Thr Ser Arg Tyr Lys Leu Thr Val Pro Arg Phe Leu Met Cys Asn Leu
450 455 460
Ser Phe Ala Asp Phe Cys Met Gly Leu Tyr Leu Leu Leu Ile Ala Ser
465 470 475 480
Val Asp Ser Gln Thr Lys Gly Gln Tyr Tyr Asn His Ala Ile Asp Trp
485 490 495
Arg Ala Thr His Cys Gly Gln Thr Gly Ser Gly Cys Gly Ala Ala Gly
500 505 510
Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu Thr Val
515 520 525
Ile Thr Leu Glu Arg Trp His Thr Ile Thr Tyr Ala Val Gln Leu Asp
530 535 540
Gln Lys Leu Arg Leu Arg His Ala Arg Ala Thr His Cys Gly Ile Pro
545 550 555 560
Ile Met Leu Gly Gly Trp Leu Phe Ser Thr Leu Ile Ala Thr Met Pro
565 570 575
Leu Val Gly Ile Ser Asn Tyr Met Lys Val Ser Ile Cys Leu Pro Met
580 585 590
Asp Val Glu Ser Thr Leu Ser Gln Val Tyr Ile Leu Ser Ile Leu Ile
595 600 605
Arg Ala Thr His Cys Gly Leu Asn Val Val Ala Phe Val Val Ile Cys
610 615 620
Ala Cys Tyr Ile Arg Ile Tyr Phe Ala Val Gln Asn Pro Glu Leu Thr
625 630 635 640
Ala Pro Asn Lys Asp Thr Lys Ile Ala Lys Lys Met Ala Ile Leu Ile
645 650 655
Phe Thr Asp Phe Thr Cys Met Ala Arg Ala Thr His Cys Gly Pro Ile
660 665 670
Ser Phe Phe Ala Ile Ser Ala Ala Phe Lys Val Pro Leu Ile Thr Val
675 680 685
Thr Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Val Asn Ser Cys
690 695 700
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp
705 710 715 720
Arg Ala Thr His Cys Gly Phe Leu Leu Leu Leu Ser Arg Phe Gly Cys
725 730 735
Cys Lys Arg Arg Ala Glu Leu Tyr Arg Arg Lys Glu Phe Ser Ala Tyr
740 745 750
Thr Ser Asn Cys Lys Asn Gly Phe Pro Gly Ala Ser Lys Pro Ser Gln
755 760 765
Ala Thr Leu Lys Leu Ser Thr Val Arg Ala Thr His Cys Gly His Cys
770 775 780
Gln Gln Pro Ile Pro Pro Arg Ala Leu Thr His
785 790 795






792 amino acids


amino acid


single


linear




protein




unknown



56
Pro Ile Gly His Cys Gly Met Arg Arg Arg Ser Leu Ala Leu Arg Leu
1 5 10 15
Leu Leu Ala Leu Leu Leu Leu Pro Pro Pro Leu Pro Gln Thr Leu Leu
20 25 30
Gly Ala Pro Cys Pro Glu Pro Cys Ser Cys Arg Pro Asp Gly Ala Leu
35 40 45
Pro Ile Gly His Cys Gly Arg Cys Pro Gly Pro Arg Ala Gly Leu Ser
50 55 60
Arg Leu Ser Leu Thr Tyr Leu Pro Ile Lys Val Ile Pro Ser Gln Ala
65 70 75 80
Phe Arg Gly Leu Asn Glu Val Val Lys Ile Glu Ile Ser Gln Ser Asp
85 90 95
Ser Leu Glu Pro Ile Gly His Cys Gly Lys Ile Glu Ala Asn Ala Phe
100 105 110
Asp Asn Leu Leu Asn Leu Ser Glu Ile Leu Ile Gln Asn Thr Lys Asn
115 120 125
Leu Val Tyr Ile Glu Pro Gly Ala Phe Thr Asn Leu Pro Arg Leu Lys
130 135 140
Tyr Leu Ser Ile Cys Asn Thr Gly Ile Arg Lys Pro Ile Gly His Cys
145 150 155 160
Gly Leu Pro Asp Val Thr Lys Ile Phe Ser Ser Glu Phe Asn Phe Ile
165 170 175
Leu Glu Ile Cys Asp Asn Leu His Ile Thr Thr Val Pro Ala Asn Ala
180 185 190
Phe Gln Gly Met Asn Asn Glu Ser Ile Thr Leu Lys Leu Tyr Gly Asn
195 200 205
Gly Phe Glu Pro Ile Gly His Cys Gly Glu Ile Gln Ser His Ala Phe
210 215 220
Asn Gly Thr Leu Leu Ile Ser Leu Glu Leu Lys Glu Asn Ala His Leu
225 230 235 240
Lys Lys Met His Asn Asp Ala Phe Arg Gly Ala Arg Gly Pro Ser Ile
245 250 255
Leu Asp Ile Ser Ser Thr Lys Leu Gln Ala Pro Ile Gly His Cys Gly
260 265 270
Leu Pro Ser Tyr Gly Leu Glu Ser Ile Gln Thr Leu Ile Ala Thr Ser
275 280 285
Ser Tyr Ser Leu Lys Lys Leu Pro Ser Arg Glu Lys Phe Thr Asn Leu
290 295 300
Leu Asp Ala Thr Leu Thr Tyr Pro Ser His Cys Cys Ala Phe Arg Asn
305 310 315 320
Leu Pro Pro Ile Gly His Cys Gly Thr Lys Glu Gln Asn Phe Ser Phe
325 330 335
Ser Ile Phe Lys Asn Phe Ser Lys Gln Cys Glu Ser Thr Ala Arg Arg
340 345 350
Pro Asn Asn Glu Thr Leu Tyr Ser Ala Ile Phe Ala Glu Ser Glu Leu
355 360 365
Ser Asp Trp Asp Pro Ile Gly His Cys Gly Tyr Asp Tyr Gly Pro Ile
370 375 380
Gly His Cys Gly Phe Cys Ser Pro Lys Thr Leu Gln Cys Ala Pro Glu
385 390 395 400
Pro Asp Ala Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Asp Phe Leu
405 410 415
Arg Val Leu Ile Trp Leu Ile Asn Ile Leu Ala Ile Met Gly Asn Val
420 425 430
Thr Val Leu Phe Ala Pro Ile Gly His Cys Gly Leu Leu Thr Ser His
435 440 445
Tyr Lys Leu Thr Val Pro Arg Phe Leu Met Cys Asn Leu Ser Phe Ala
450 455 460
Asp Phe Cys Met Gly Leu Tyr Leu Leu Leu Ile Ala Ser Val Asp Ala
465 470 475 480
Gln Thr Lys Gly Gln Tyr Tyr Asn His Ala Ile Asp Trp Pro Ile Gly
485 490 495
His Cys Gly Gln Thr Gly Asn Gly Cys Ser Val Ala Gly Phe Phe Thr
500 505 510
Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu Thr Val Ile Thr Leu
515 520 525
Glu Arg Trp His Thr Ile Thr Tyr Ala Ile Gln Leu Asp Gln Lys Leu
530 535 540
Arg Leu Arg His Ala Pro Ile Gly His Cys Gly Ile Pro Ile Met Leu
545 550 555 560
Gly Gly Trp Leu Phe Ser Thr Leu Ile Ala Met Leu Pro Leu Val Gly
565 570 575
Val Ser Ser Tyr Met Lys Val Ser Ile Cys Leu Pro Met Asp Val Glu
580 585 590
Thr Thr Leu Ser Gln Val Tyr Ile Leu Thr Ile Leu Ile Pro Ile Gly
595 600 605
His Cys Gly Leu Asn Val Val Ala Phe Ile Ile Ile Cys Ala Cys Tyr
610 615 620
Ile Lys Ile Tyr Phe Ala Val Gln Asn Pro Glu Leu Met Ala Thr Asn
625 630 635 640
Lys Asp Thr Lys Ile Ala Lys Lys Met Ala Val Leu Ile Phe Thr Asp
645 650 655
Phe Thr Cys Met Ala Pro Ile Gly His Cys Gly Pro Ile Ser Phe Phe
660 665 670
Ala Ile Ser Ala Ala Leu Lys Val Pro Leu Ile Thr Val Thr Asn Ser
675 680 685
Lys Val Leu Leu Val Leu Phe Tyr Pro Val Asn Ser Cys Ala Asn Pro
690 695 700
Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Arg Arg Asp Pro Ile Gly
705 710 715 720
His Cys Gly Phe Phe Leu Leu Leu Ser Lys Ser Gly Cys Cys Lys His
725 730 735
Gln Ala Glu Leu Tyr Arg Arg Lys Asp Phe Ser Ala Tyr Cys Lys Asn
740 745 750
Gly Phe Thr Gly Ser Asn Lys Pro Ser Arg Ser Thr Leu Lys Leu Thr
755 760 765
Thr Leu Pro Ile Gly His Cys Gly Gln Cys Gln Tyr Ser Thr Val Met
770 775 780
Asp Lys Thr Cys Tyr Lys Asp Cys
785 790






4417 base pairs


nucleic acid


single


linear




cDNA




unknown



57
CAGGCGCAGA GGGGCCCAGA CGACCGTGGA GGATGAAGAA ATAGCCTTGG GACCCTTGGA 60
AAATGAGGCC GCCGCCCCTG CTGCACCTGG CGCTGCTTCT CGCCCTGCCC AGGAGCCTGG 120
GGGGGAAGGG GTGTCCTTCT CCCCCCTGTG AGTGCCACCA GGAGGATGAC TTCAGAGTCA 180
CCTGCAAGGA TATCCACCGC ATCCCCACCC TACCACCCAG CACGCAGACT CTGAAGTTTA 240
TAGAGACTCA GCTGAAAACC ATTCCCAGTC GTGCATTTTC AAATCTGCCC AATATTTCCA 300
GGATCTACTT GTCAATAGAT GCAACTCTGC AGCGGCTGGA ATCACATTCC TTCTACAATT 360
TAAGTAAAAT GACTCACATA GAGATTCGGA ATACCAGAAG CTTAACATCC ATAGACCCTG 420
ACGCCCTAAA AGAGCTCCCA CTCCTGAAGT TCCTTGGCAT TTTCAACACT GGACTTGGAG 480
TATTCCCTGA TGTGACCAAA GTTTATTCCA CTGATGTATT CTTTATACTT GAAATCACAG 540
ACAACCCTTA CATGGCTTCC ATCCCTGCCA ATGCTTTCCA GGGGCTGTGC AATGAAACCC 600
TGACACTGAA ACTATACAAC AATGGCTTTA CTTCAATCCA AGGACATGCT TTCAATGGGA 660
CAAAACTGGA TGCTGTTTAC CTGAACAAGA ATAAATACCT GTCAGCTATC GACAAAGATG 720
CATTTGGAGG AGTGTACAGT GGACCAACCT TGCTGGATGT CTCTTACACC AGTGTTACTG 780
CCCTGCCATC CAAAGGCCTG GAGCATCTAA AGGAGCTGAT AGCAAGAAAC ACTTGGACTC 840
TAAAGAAACT CCCACTTTCC TTGAGTTTCC TTCACCTTAC ACGGGCTGAC CTTTCTTATC 900
CAAGCCACTG CTGTGCTTTT AAGAATCAGA AGAAAATCAG AGGAATCCTT GAGTCCTTAA 960
TGTGTAATGA AAGCAGTATT CGGAGCCTGC GCCAGAGAAA ATCTGTGAAT ACTTTGAATG 1020
GCCCCTTTGA CCAGGAATAT GAAGAGTATC TGGGTGACAG CCATGCTGGG TACAAGGACA 1080
ACTCTCAGTT CCAGGATACC GATAGCAATT CTCATTATTA TGTCTTCTTC GAAGAACAAG 1140
AAGATGAGAT CCTCGGTTTT GGGCAGGAGC TTAAAAACCC ACAGGAAGAG ACCCTCCAGG 1200
CCTTTGATAG CCATTATGAC TACACTGTGT GTGGTGGCAA TGAAGACATG GTGTGTACTC 1260
CTAAGTCAGA TGAGTTCAAC CCCTGTGAAG ACATAATGGG CTACAAGTTC CTGAGGATTG 1320
TGGTGTGGTT TGTTAGTCTG CTGGCTCTCC TGGGCAATGT CTTTGTCCTG ATCGTCCTCC 1380
TTACCAGTCA CTACAAATTG ACTGTCCCAC GCTTTCTCAT GTGCAACTTG GCCTTTGCAG 1440
ATTTCTGCAT GGGGATGTAT CTGCTCCTCA TCGCCTCCGT AGACCTCTAC ACTCATTCTG 1500
AGTACTACAA CCATGCCATC GACTGGCAGA CAGGCCCTGG GTGTAACACA GCTGGTTTCT 1560
TCACTGTCTT TGCCAGTGAA TTATCAGTGT ATACACTGAC AGTCATCACC CTGGAGCGCT 1620
GGTATGCCAT TACCTTCGCC ATGCGCCTGG ACAGGAAGAT CCGCCTCAGG CATGCATATG 1680
CCATCATGGT TGGGGGCTGG GTTTGCTGCT TCCTGCTCGC CCTGCTCCCT CTGGTGGGAA 1740
TAAGCAGCTA TGCCAAGGTC AGCATCTGCC TGCCCATGGA CACTGAGACA CCTCTTGCCC 1800
TGGCATATAT TATCCTTGTT CTGTTGCTCA ACATAGTTGC CTTTATCATT GTCTGCTCCT 1860
GTTATGTGAA GATCTACATC ACAGTCCGAA ATCCCCAGTA CAACCCGGGG GACAAAGACA 1920
CCAAAATTGC CAAAAGGATG GCTGTATTGA TCTTCACTGA CTTCATGTGC ATGGCCCCAA 1980
TCTCATTCTA CGCTCTGTCA GCACTTATGA ACAAGCCTCT CATCACTGTT ACCAACTCCA 2040
AAATCTTGCT GGTTCTCTTC TATCCACTTA ACTCCTGTGC CAATCCATTT CTCTATGCTA 2100
TTTTCACGAA AGCCTTCCAG AGGGATGTAT TTATCCTGCT CAGCAAGTTT GGCATCTGTA 2160
AACGCCAGGC TCAGGCATAC CGGGGCCAGA GGGTTTCTCC AAAGAATAGT GCTGGTATTC 2220
AGATCCAAAA GGTTACCCGG GACATGAGGC AAAGTCTCCC CAACATGCAG GATGAGTATG 2280
AACTGCTTGA AAACTCCCAT CTAACCCCAA ATAAGCAGGG CCAAATCTCA AAAGAGTATA 2340
ACCAAACAGT TCTGTAAGCA GACCCTATAC TACTCGCAGT GGCAGGTGGA CTTCTAAAAA 2400
TCTAGTTTCT TGAACACGTA TTCCAAATTC ATTATATACA CAAGACAGCT GACCTAACCC 2460
TTTGCAGGTG ATGTTTCATG GGGCAAATTT CATCTCCAAA AAGGGGGTAG CTCTACCACC 2520
TAATCATTAC CTCCCAGAAG GAAGAGAGGC TACCAGCACT TCTGAACCCT GGTGATATCA 2580
AGATAACTGA CACTTTCTAG AAAACTTGTT TGATGCTAAC TGCTTTAACA ACATTGTATA 2640
AGATGTCCAA CAGATATTAA CTGAACCAGG TCAACATTGA GCTTCTCACT TTCAAATAGC 2700
ATTTCATAGT AAAGATTCTG CAAATGGCAA ATGCTATTAA CTGAGTTGGT GACCACAAGA 2760
TAGAATTAGC CCCATGTTGG CTTGGTCCAC CTTCATGTTC TTGGATACAA CCAAAGAGAA 2820
TGTGAATTCC TCGAAACTGA AAAGTCCAGC AGGATACATG CATGAAGCAG CTATTATGAG 2880
GTGGAAGGAG GGGAAAGGCT TAGCTTAGTT GTTATTTCAG CCTCTGAAAC TATATCATCT 2940
CTTCACAAGG ACCTACCTGA TGTGACCCAA CTGTTAGGTG TTGCCCAGGG GGGAAAAAAA 3000
CTGGCAAGAT TTCAGCTTAT GTGGCTGAGC AAAGTAAGAA TTGTTCTTCT TGGCTAGTCT 3060
TATAGCATAA AATACGTGAA CCCTAGAAAT ATTTCTAAGT AGCAGCAAGT GGGAATTATG 3120
AGCAGGGCAC ACTAAATCAC ACACTGATTA ATAAAGCAGG GCCACAAGGT AACTGTTGGA 3180
GCTTGGGCAA ATCACTGGGC CACTTCTAAG TCTAGAAATG AGAGAGCCTG ATTGCTTCTT 3240
CAGTTTCAAA ACTCTATGTA TATCCCTTCC CCTTAAAATA TGTTTCCATG ACAAAAAAGA 3300
AAAGCACTAA AAAAGAAAAG AAAAGAAAAG CACTAAGAAA GAAAAATTTA TTTTTCCTAT 3360
CTTGTAGTGC AGCCACCTCT TTCTCTTTGG AGGCTGGATA TATGACCCAG GACATTTCTT 3420
TCTTTTTTTT ATTTTTTTTT TCATTTTTGA TTATAATGTC TGATCCATGT TGGGCTGGAT 3480
CTAAATCACT CAACTAATTA CTAGATCTCT ACAGCTACAA TTATCAGGCC AAAAACAGAC 3540
TCATATTCAC ATAACAGAAT AAAAGGTGGT TTTGCAAATT TTGGTTATTC AGAGTTACTA 3600
CTTCACTGTA TAGATTAACT TGAAAACATT TAACTTGTCC AGGGATTGGA AGCTATCAAA 3660
CACTCAGGCA AAGCAACACT AAAGCTATCA AGAGAAGTTT CTTCTCTCCA AAACTGCTAG 3720
CCTTTTCCAA CCTGTTGATC ATTGGACATA ATCTCTATTG CCCAATAGTG TTCTCTTACT 3780
TAAAATGGTT AGGATCAATC TTTTAATATA GACGTACTCT TCAGATTACC TGTCAAAACA 3840
GTCCCTTAAT TTCCTCCCAA GCAGAGATGG CATTTGCTTC TCAATGTTCA TGAAGCACAC 3900
CAAGGAATTA GAAGCATTTG TTGTTTCAAG TCTGTGGAGT AGGGTTACTG GGCCCAATGC 3960
CCCCCCCCCC ACAGAGATGG TCCCCCAACC CACCTAGGAT ATCCCAATAG CAATACCCAT 4020
TTCTGATTAT CATTGAGATT GGACATCTTA GTAGAAATAT TATACACACT CGAAATCATG 4080
ACTTATCCAC CAGTTCACTT GTAACTAATA ACTAAACAGT TGTGTTATCG TTTGGCATGT 4140
GTTTCTCACC TGTGACATTT TGAAATAGTA CATCCTGATA ATGTATTTTA TCTTAAGTAG 4200
TTGAAATAAC ACTTTGGAAA CCGTCCTAGA AAAGTAACTT CAACACAATT GTTACTAAAA 4260
TTTGCATTCA CAACATGAAA TAAATTTTCT TCCTATGAAA TGATTGTGCT GAGTCCTACA 4320
GTATGGCATT TTGTAATTTG TGAGCTTCTT TTAATGTTAC CGTTATATGT GTTACAACTG 4380
AAGACAGGGA AAAAAAAACA ACTGGCAAAT TTGCTAA 4417






277 amino acids


amino acid


single


linear




protein




unknown



58
Met Arg Pro Pro Pro Leu Leu His Leu Ala Leu Leu Leu Ala Leu Pro
1 5 10 15
Arg Ser Leu Gly Gly Lys Gly Cys Pro Ser Pro Pro Cys Glu Cys His
20 25 30
Gln Glu Asp Asp Phe Arg Val Thr Cys Lys Asp Ile His Arg Ile Pro
35 40 45
Thr Leu Pro Pro Ser Thr Gln Thr Leu Lys Phe Ile Glu Thr Gln Leu
50 55 60
Lys Thr Ile Pro Ser Arg Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg
65 70 75 80
Ile Tyr Leu Ser Ile Asp Ala Thr Leu Gln Arg Leu Glu Ser His Ser
85 90 95
Phe Tyr Asn Leu Ser Lys Met Thr His Ile Glu Ile Arg Asn Thr Arg
100 105 110
Ser Leu Thr Ser Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Gly Val Phe Pro Asp Val
130 135 140
Thr Lys Val Tyr Ser Thr Asp Val Phe Phe Ile Leu Glu Ile Thr Asp
145 150 155 160
Asn Pro Tyr Met Ala Ser Ile Pro Ala Asn Ala Phe Gln Gly Leu Cys
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Ile
180 185 190
Gln Gly His Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn
195 200 205
Lys Asn Lys Tyr Leu Ser Ala Ile Asp Lys Asp Ala Phe Gly Gly Val
210 215 220
Tyr Ser Gly Pro Thr Leu Leu Asp Val Ser Tyr Thr Ser Val Thr Ala
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn
245 250 255
Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu
260 265 270
Thr Arg Ala Asp Leu
275






764 amino acids


amino acid


single


linear




protein




unknown



59
Met Arg Pro Ala Asp Leu Leu Gln Leu Val Leu Leu Leu Asp Leu Pro
1 5 10 15
Arg Asp Leu Gly Gly Met Gly Cys Ser Ser Pro Pro Cys Glu Cys His
20 25 30
Gln Glu Glu Asp Phe Arg Val Thr Cys Lys Asp Ile Gln Arg Ile Pro
35 40 45
Ser Leu Pro Pro Ser Thr Gln Thr Leu Lys Leu Ile Glu Thr His Leu
50 55 60
Arg Thr Ile Pro Ser His Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg
65 70 75 80
Ile Tyr Val Ser Ile Asp Leu Thr Leu Gln Gln Leu Glu Ser His Ser
85 90 95
Phe Tyr Asn Leu Ser Lys Val Thr His Ile Glu Ile Arg Asn Thr Arg
100 105 110
Asn Leu Thr Tyr Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Lys Met Phe Pro Asp Leu
130 135 140
Thr Lys Val Tyr Ser Thr Asp Ile Phe Phe Ile Leu Glu Ile Thr Asp
145 150 155 160
Asn Pro Tyr Met Thr Ser Ile Pro Val Asn Ala Phe Gln Gly Leu Cys
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Val
180 185 190
Gln Gly Tyr Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn
195 200 205
Lys Asn Lys Tyr Leu Thr Val Ile Asp Lys Asp Ala Phe Gly Gly Val
210 215 220
Tyr Ser Gly Pro Ser Leu Leu Asp Val Ser Gln Thr Ser Val Thr Ala
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn
245 250 255
Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu
260 265 270
Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn
275 280 285
Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser
290 295 300
Ser Met Gln Ser Leu Arg Gln Arg Lys Ser Val Asn Ala Leu Asn Ser
305 310 315 320
Pro Leu His Gln Glu Tyr Glu Glu Asn Leu Gly Asp Ser Ile Val Gly
325 330 335
Tyr Lys Glu Lys Ser Lys Phe Gln Asp Thr His Asn Asn Ala His Tyr
340 345 350
Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Ile Ile Gly Phe Gly Gln
355 360 365
Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His
370 375 380
Tyr Asp Tyr Thr Ile Cys Gly Asp Ser Glu Asp Met Val Cys Thr Pro
385 390 395 400
Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Lys Phe
405 410 415
Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn
420 425 430
Val Phe Val Leu Leu Ile Leu Leu Thr Ser His Tyr Lys Leu Asn Val
435 440 445
Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Met Gly
450 455 460
Met Tyr Leu Leu Leu Ile Ala Ser Val Asp Leu Tyr Thr His Ser Glu
465 470 475 480
Tyr Tyr Asn His Ala Ile Asp Trp Gln Thr Gly Pro Gly Cys Asn Thr
485 490 495
Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu
500 505 510
Thr Val Ile Thr Leu Glu Arg Trp Tyr Ala Ile Thr Phe Ala Met Arg
515 520 525
Leu Asp Arg Lys Ile Arg Leu Arg His Ala Cys Ala Ile Met Val Gly
530 535 540
Gly Trp Val Cys Cys Phe Leu Leu Ala Leu Leu Pro Leu Val Gly Ile
545 550 555 560
Ser Ser Tyr Ala Lys Val Ser Ile Cys Leu Pro Met Asp Thr Glu Thr
565 570 575
Pro Leu Ala Leu Ala Tyr Ile Val Phe Val Leu Thr Leu Asn Ile Val
580 585 590
Ala Phe Val Ile Val Cys Cys Cys Tyr Val Lys Ile Tyr Ile Thr Val
595 600 605
Arg Asn Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys
610 615 620
Arg Met Ala Val Leu Ile Phe Thr Asp Phe Ile Cys Met Ala Pro Ile
625 630 635 640
Ser Phe Tyr Ala Leu Ser Ala Ile Leu Asn Lys Pro Leu Ile Thr Val
645 650 655
Ser Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys
660 665 670
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp
675 680 685
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln
690 695 700
Ala Tyr Arg Gly Gln Arg Val Pro Pro Lys Asn Ser Thr Asp Ile Gln
705 710 715 720
Val Gln Lys Val Thr His Asp Met Arg Gln Gly Leu His Asn Met Glu
725 730 735
Asp Val Tyr Glu Leu Ile Glu Asn Ser His Leu Thr Pro Lys Lys Gln
740 745 750
Gly Gln Ile Ser Glu Glu Tyr Met Gln Thr Val Leu
755 760






764 amino acids


amino acid


single


linear




protein




unknown



60
Met Arg Pro Pro Pro Leu Leu His Leu Ala Leu Leu Leu Ala Leu Pro
1 5 10 15
Arg Ser Leu Gly Gly Lys Gly Cys Pro Ser Pro Pro Cys Glu Cys His
20 25 30
Gln Glu Asp Glu Phe Arg Val Thr Cys Lys Asp Ile His Arg Ile Pro
35 40 45
Thr Leu Pro Pro Ser Thr Gln Thr Leu Lys Phe Ile Glu Thr Gln Leu
50 55 60
Lys Thr Ile Pro Ser Arg Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg
65 70 75 80
Ile Tyr Leu Ser Ile Asp Ala Thr Leu Gln Arg Leu Glu Ser His Ser
85 90 95
Phe Tyr Asn Leu Ser Lys Met Thr His Ile Glu Ile Arg Asn Thr Arg
100 105 110
Ser Leu Thr Ser Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Gly Val Phe Pro Asp Val
130 135 140
Thr Lys Val Tyr Ser Thr Asp Val Phe Phe Ile Leu Glu Ile Thr Asp
145 150 155 160
Asn Pro Tyr Met Ala Ser Ile Pro Ala Asn Ala Phe Gln Gly Leu Cys
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Ile
180 185 190
Gln Gly His Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn
195 200 205
Lys Asn Lys Tyr Leu Ser Ala Ile Asp Lys Asp Ala Phe Gly Gly Val
210 215 220
Tyr Ser Gly Pro Thr Leu Leu Asp Val Ser Tyr Thr Ser Val Thr Ala
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn
245 250 255
Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu
260 265 270
Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn
275 280 285
Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser
290 295 300
Ser Ile Arg Ser Leu Arg Gln Arg Lys Ser Val Asn Thr Leu Asn Gly
305 310 315 320
Pro Phe Asp Gln Glu Tyr Glu Glu Tyr Leu Gly Asp Ser His Ala Gly
325 330 335
Tyr Lys Asp Asn Ser Gln Phe Gln Asp Thr Asp Ser Asn Ser His Tyr
340 345 350
Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Ile Leu Gly Phe Gly Gln
355 360 365
Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His
370 375 380
Tyr Asp Tyr Thr Val Cys Gly Gly Asn Glu Asp Met Val Cys Thr Pro
385 390 395 400
Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Lys Phe
405 410 415
Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn
420 425 430
Val Phe Val Leu Ile Val Leu Leu Thr Ser His Tyr Lys Leu Thr Val
435 440 445
Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Ile Gly
450 455 460
Ile Tyr Leu Leu Leu Ile Ala Ser Val Asp Ile His Thr Lys Ser Gln
465 470 475 480
Tyr His Asn Tyr Ala Ile Asp Trp Gln Thr Gly Ala Gly Cys Asp Ala
485 490 495
Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu
500 505 510
Thr Val Ile Thr Leu Glu Arg Trp His Thr Ile Thr His Ala Met Gln
515 520 525
Leu Asp Cys Lys Val Gln Leu Arg His Ala Tyr Ser Ala Met Val Gly
530 535 540
Met Trp Ile Phe Ala Phe Ala Ala Ala Leu Phe Pro Ile Phe Gly Ile
545 550 555 560
Ser Ser Tyr Met Lys Val Ser Ile Cys Leu Pro Met Asp Ile Asp Ser
565 570 575
Pro Leu Ser Leu Gln Tyr Val Ile Leu Leu Leu Leu Leu Asn Val Leu
580 585 590
Ala Phe Ile Ile Val Cys Ser Cys Tyr Val Lys Ile Tyr Ile Thr Val
595 600 605
Arg Asn Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys
610 615 620
Arg Met Ala Val Leu Ile Phe Thr Asp Phe Met Cys Met Ala Pro Ile
625 630 635 640
Ser Phe Tyr Ala Leu Ser Ala Leu Met Asn Lys Pro Leu Ile Thr Val
645 650 655
Thr Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys
660 665 670
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp
675 680 685
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln
690 695 700
Ala Tyr Arg Gly Gln Arg Val Ser Pro Lys Asn Ser Ala Gly Ile Gln
705 710 715 720
Ile Gln Lys Val Thr Arg Asp Met Arg Gln Ser Leu Pro Asn Met Gln
725 730 735
Asp Glu Tyr Glu Leu Leu Glu Asn Ser His Leu Thr Pro Asn Lys Gln
740 745 750
Gly Gln Ile Ser Lys Glu Tyr Asn Gln Thr Val Leu
755 760






764 amino acids


amino acid


single


linear




protein




unknown



61
Met Arg Pro Ala Asp Leu Leu Gln Leu Val Leu Leu Leu Asp Leu Pro
1 5 10 15
Arg Asp Leu Gly Gly Met Gly Cys Ser Ser Pro Pro Cys Glu Cys His
20 25 30
Gln Glu Glu Asp Phe Arg Val Thr Cys Lys Asp Ile Gln Arg Ile Pro
35 40 45
Ser Leu Pro Pro Ser Thr Gln Thr Leu Lys Leu Ile Glu Thr His Leu
50 55 60
Arg Thr Ile Pro Ser His Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg
65 70 75 80
Ile Tyr Val Ser Ile Asp Leu Thr Leu Gln Gln Leu Glu Ser His Ser
85 90 95
Phe Tyr Asn Leu Ser Lys Val Thr His Ile Glu Ile Arg Asn Thr Arg
100 105 110
Asn Leu Thr Tyr Ile Asp Pro Asp Ala Leu Lys Glu Leu Pro Leu Leu
115 120 125
Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Lys Met Phe Pro Asp Leu
130 135 140
Thr Lys Val Tyr Ser Thr Asp Ile Phe Phe Ile Leu Glu Ile Thr Asp
145 150 155 160
Asn Pro Tyr Met Thr Ser Ile Pro Val Asn Ala Phe Gln Gly Leu Cys
165 170 175
Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Val
180 185 190
Gln Gly Tyr Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn
195 200 205
Lys Asn Lys Tyr Leu Thr Val Ile Asp Lys Asp Ala Phe Gly Gly Val
210 215 220
Tyr Ser Gly Pro Ser Leu Leu Asp Val Ser Gln Thr Ser Val Thr Ala
225 230 235 240
Leu Pro Ser Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn
245 250 255
Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu
260 265 270
Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn
275 280 285
Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser
290 295 300
Ser Met Gln Ser Leu Arg Gln Arg Lys Ser Val Asn Ala Leu Asn Ser
305 310 315 320
Pro Leu His Gln Glu Tyr Glu Glu Asn Leu Gly Asp Ser Ile Val Gly
325 330 335
Tyr Lys Glu Lys Ser Lys Phe Gln Asp Thr His Asn Asn Ala His Tyr
340 345 350
Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Ile Ile Gly Phe Gly Gln
355 360 365
Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His
370 375 380
Tyr Asp Tyr Thr Ile Cys Gly Asp Ser Glu Asp Met Val Cys Thr Pro
385 390 395 400
Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Lys Phe
405 410 415
Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn
420 425 430
Val Phe Val Leu Leu Ile Leu Leu Thr Ser His Tyr Lys Leu Asn Val
435 440 445
Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Met Gly
450 455 460
Met Tyr Leu Leu Leu Ile Ala Ser Val Asp Leu Tyr Thr His Ser Glu
465 470 475 480
Tyr Tyr Asn His Ala Ile Asp Trp Gln Thr Gly Pro Gly Cys Asn Thr
485 490 495
Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu
500 505 510
Thr Val Ile Thr Leu Glu Arg Trp Tyr Ala Ile Thr Phe Ala Met Arg
515 520 525
Leu Asp Arg Lys Ile Arg Leu Arg His Ala Ala Ala Ile Met Val Gly
530 535 540
Gly Trp Val Cys Cys Phe Leu Leu Ala Leu Leu Pro Leu Val Gly Ile
545 550 555 560
Ser Ser Tyr Ala Lys Val Ser Ile Cys Leu Pro Met Asp Thr Glu Thr
565 570 575
Pro Leu Ala Leu Ala Tyr Ile Met Ser Val Leu Val Leu Asn Ile Val
580 585 590
Ala Phe Val Ile Val Cys Cys Cys Tyr Val Lys Ile Tyr Ile Thr Val
595 600 605
Arg Asn Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys
610 615 620
Arg Met Ala Val Leu Ile Phe Thr Asp Phe Ile Cys Met Ala Pro Ile
625 630 635 640
Ser Phe Tyr Ala Leu Ser Ala Ile Leu Asn Lys Pro Leu Ile Thr Val
645 650 655
Ser Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys
660 665 670
Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp
675 680 685
Val Phe Ile Leu Leu Ser Lys Phe Gly Ile Cys Lys Arg Gln Ala Gln
690 695 700
Ala Tyr Arg Gly Gln Arg Val Pro Pro Lys Asn Ser Thr Asp Ile Gln
705 710 715 720
Val Gln Lys Val Thr His Asp Met Arg Gln Gly Leu His Asn Met Glu
725 730 735
Asp Val Tyr Glu Leu Ile Glu Asn Ser His Leu Thr Pro Lys Lys Gln
740 745 750
Gly Gln Ile Ser Glu Glu Tyr Met Gln Thr Val Leu
755 760






3710 base pairs


nucleic acid


single


linear




cDNA




unknown



62
AGGCAGCAGT TTCCTCCTGG GACCTGATGG CTCCCAGATC ACTATCTTGG GCCCAGACTT 60
TCTGGAGCTG AATCTCCAGT TGCCTCGGAG CCTCCTCAGA CTCAGTGTGG CCAGAATGGT 120
GGTCCTGGCT TCCCCTCGGG CCTGCCCTTC TGCCTCCTTC TGCACCCTGA GATGGTCATC 180
AGCTTTTCTC CCACTGCTGC CCTGTATGCA GGGAAGGCCT GCCTGTGGCT GTATCTGTAG 240
TACTTCTTGA ATGTGTTTCC TTCTCCCCCA GGCCAGAGCT GAGAATGAGG CGATTTCGGA 300
GGATGGAGAA ATAGCCCCGA GTCCCGTGGA AAATGAGGCC GGCGGACTTG CTGCAGCTGG 360
TGCTGCTGCT CGACCTGCCC AGGGACCTGG GCGGAATGGG GTGTTCGTCT CCACCCTGCG 420
AGTGCCATCA GGAGGAGGAC TTCAGAGTCA CCTGCAAGGA TATTCAACGC ATCCCCAGCT 480
TACCGCCCAG TACGCAGACT CTGAAGCTTA TTGAGACTCA CCTGAGAACT ATTCCAAGTC 540
ATGCATTTTC TAATCTGCCC AATATTTCCA GAATCTACGT ATCTATAGAT CTGACTCTGC 600
AGCAGCTGGA ATCACACTCC TTCTACAATT TGAGTAAAGT GACTCACATA GAAATTCGGA 660
ATACCAGGAA CTTAACTTAC ATAGACCCTG ATGCCCTCAA AGAGCTCCCC CTCCTAAAGT 720
TCCTTGGCAT TTTCAACACT GGACTTAAAA TGTTCCCTGA CCTGACCAAA GTTTATTCCA 780
CTGATATATT CTTTATACTT GAAATTACAG ACAACCCTTA CATGACGTCA ATCCCTGTGA 840
ATGCTTTTCA GGGACTATGC AATGAAACCT TGACACTGAA GCTGTACAAC AATGGCTTTA 900
CTTCAGTCCA AGGATATGCT TTCAATGGGA CAAAGCTGGA TGCTGTTTAC CTAAACAAGA 960
ATAAATACCT GACAGTTATT GACAAAGATG CATTTGGAGG AGTATACAGT GGACCAAGCT 1020
TGCTGGACGT GTCTCAAACC AGTGTCACTG CCCTTCCATC CAAAGGCCTG GAGCACCTGA 1080
AGGAACTGAT AGCAAGAAAC ACCTGGACTC TTAAGAAACT TCCACTTTCC TTGAGTTTCC 1140
TTCACCTCAC ACGGGCTGAC CTTTCTTACC CAAGCCACTG CTGTGCTTTT AAGAATCAGA 1200
AGAAAATCAG AGGAATCCTT GAGTCCTTGA TGTGTAATGA GAGCAGTATG CAGAGCTTGC 1260
GCCAGAGAAA ATCTGTGAAT GCCTTGAATA GCCCCCTCCA CCAGGAATAT GAAGAGAATC 1320
TGGGTGACAG CATTGTTGGG TACAAGGAAA AGTCCAAGTT CCAGGATACT CATAACAACG 1380
CTCATTATTA CGTCTTCTTT GAAGAACAAG AGGATGAGAT CATTGGTTTT GGCCAGGAGC 1440
TCAAAAACCC CCAGGAAGAG ACTCTACAAG CTTTTGACAG CCATTATGAC TACACCATAT 1500
GTGGGGACAG TGAAGACATG GTGTGTACCC CCAAGTCCGA TGAGTTCAAC CCGTGTGAAG 1560
ACATAATGGG CTACAAGTTC CTGAGAATTG TGGTGTGGTT CGTTAGTCTG CTGGCTCTCC 1620
TGGGCAATGT CTTTGTCCTG CTTATTCTCC TCACCAGCCA CTACAAACTG AACGTCCCCC 1680
GCTTTCTCAT GTGCAACCTG GCCTTTGCGG ATTTCTGCAT GGGGATGTAC CTGCTCCTCA 1740
TCGCCTCTGT AGACCTCTAC ACTCACTCTG AGTACTACAA CCATGCCATC GACTGGCAGA 1800
CAGGCCCTGG GTGCAACACG GCTGGTTTCT TCACTGTCTT TGCAAGCGAG TTATCGGTGT 1860
ATACGCTGAC GGTCATCACC CTGGAGCGCT GGTATGCCAT CACCTTCGCC ATGCGCCTGG 1920
ACCGGAAGAT CCGCCTCAGG CACGCATGTG CCATCATGGT TGGGGGCTGG GTTTGCTGCT 1980
TCCTCCTCGC CCTGCTTCCT TTGGTGGGAA TAAGTAGCTA TGCCAAAGTC AGTATCTGCC 2040
TGCCCATGGA CACCGAGACC CCTCTTGCTC TGGCATATAT TGTTTTTGTT CTGACGCTCA 2100
ACATAGTTGC CTTCGTCATC GTCTGCTGCT GTTATGTGAA GATCTACATC ACAGTCCGAA 2160
ATCCGCAGTA CAACCCAGGG GACAAAGATA CCAAAATTGC CAAGAGGATG GCTGTGTTGA 2220
TCTTCACCGA CTTCATATGC ATGGCCCCAA TCTCATTCTA TGCTCTGTCA GCAATTCTGA 2280
ACAAGCCTCT CATCACTGTT AGCAACTCCA AAATCTTGCT GGTACTCTTC TATCCACTTA 2340
ACTCCTGTGC CAATCCATTC CTCTATGCTA TTTTCACCAA GGCCTTCCAG AGGGATGTGT 2400
TCATCCTACT CAGCAAGTTT GGCATCTGTA AACGCCAGGC TCAGGCATAC CGGGGGCAGA 2460
GGGTTCCTCC AAAGAACAGC ACTGATATTC AGGTTCAAAA GGTTACCCAC GACATGAGGC 2520
AGGGTCTCCA CAACATGGAA GATGTCTATG AACTGATTGA AAACTCCCAT CTAACCCCAA 2580
AGAAGCAAGG CCAAATCTCA GAAGAGTATA TGCAAACGGT TTTGTAAGTT AACACTACAC 2640
TACTCACAAT GCTAGGGGAA CTTACAAAAT AATAGTTTCT TGAATATGCA TTCCAATCCC 2700
ATGACACCCC CAACACATAG CTGCCCTCAC TCTTGTGCAG GCGATGTTTC AATGTTTCAT 2760
GGGGCAAGAG TTTATCTCTG GAGAGTGATT AGTATTAACC TAATCATTGC CCCCAAGAAG 2820
GAAGTTAGGC TACCAGCATA TTTGAATGCC AGGTGAAATC AAAATAATCT ACACTATCTA 2880
GAAGACTTTC TTGATGCCAA GTCCAGAGAT GTCATTGTGT AGGATGTTCA GTAAATATTA 2940
ACTGAGCTAT GTCAATATAG AGCTTCTCAG TTTTGTATAA CATTTCATAC TAAAGATTCA 3000
GCAAATGGAA AATGCTATTA ATTTGGTTGG TGACCACAAG ATAAAATCAG TCCCACGTTG 3060
GCTCAGTTCA ACTAGATGTT CCCTGATACA AAGAGAACTT GATTTCCTTA AAACTGAAAA 3120
GCCAAACACA GCTAGCTGTC ATACAAGAAA CAGCTATTAT GAGACATGAA GGAGGGTAAG 3180
AATTAGCTTT AAGTTTTGTT TTGCTTTGTT TTGTTTTTTA ACTCAACCTA TTAATCATCT 3240
CTTCACAAGA ATCCACCTGA TGTGACCAAG CTATTATGTG TTGCCTGGAA AAACTGGCAA 3300
GATTTCAGCT TATGTGGCCT AGCAAACTAA GAATTGCTCT TCTTGGCCAG CCTCATAGCA 3360
TAAAAGATGT GAACTCTAGG AAGTCTTTCT CAGTAGCAAT AAGTGGGAAT TATGGGCAGA 3420
GCACACTCAA TCCCCTGTTG ATTAATAAAA CAGGCTGGAC ACTAATTAAC TATGGGACTT 3480
AAATCTGTAG AAATGAAGGA GTCCAATAGC TTCTTCCAAT TTTAAAACTC TAGTACATCC 3540
CTTTCCCTCA AATATATATT TCTAAGATAA AGAGAAAGAA GAGCACTAAG TAAGTAGAAT 3600
CTGTTTTTCC TATTTTGTAG GGCTGCTGAC TCCTAGTCCT TGAAGCTTAG ACACATGACC 3660
CAGGAAATTT TCCTTTGTTT CACTTTTGAT TATGATGTCT GAGCCAAAAA 3710







Claims
  • 1. Process for the quantitative detection of TSH or of anti-TSHr antibodies comprising the steps of:contacting intact cells operationally transformed by a vector comprising a cDNA sequence encoding the amino acid sequence represented in SEQ ID NO:50 or membrane preparations of such cells with biological sample suspected of containing TSH or anti-TSHr antibodies; measuring in the intact cells or membranes the change in adenylyl cyclase activity; and correlating results from the measuring step to the presence of TSH or anti-TSHr antibodies.
  • 2. The process according to claim 1 wherein the cDNA sequence is represented in SEQ ID NO:62.
  • 3. Process for the quantitative detection of TSH or of anti-TSHr antibodies comprising the steps of:contacting intact cells operationally transformed by a vector comprising a cDNA sequence encoding the amino acid sequence represented in SEQ ID NO:59, or membrane preparations of such cells with a biological sample suspected of containing TSH or anti-TSHr antibodies; measuring adenylyl cyclase as an indicator of the activating effect of TSH or by “blocking” anti-TSHr antibodies present in the biological sample; and correlating results from the measuring step to the presence of TSH or anti-TSHr antibodies.
  • 4. The process according to claim 3 wherein the cDNA sequence is represented in SEQ ID NO:62.
  • 5. A biologically active preparation of human TSH receptor in the form of an isolated recombinant polypeptide expressed by a transformed host cell, said polypeptide comprising the amino acid sequence set forth in SEQ ID NO:59, and being free of impurities associated with detergent-solubilized thyroid membrane preparations.
  • 6. An isolated cDNA encoding the polypeptide according to claim 5.
  • 7. The isolated nucleotide sequence according to claim 6 characterised in that the sequence is a DNA sequence having the sequence listed in SEQ ID NO:62 (shown in FIG. 12).
  • 8. Process for the preparation of a polypeptide according to claim 5, comprising the steps of:inserting a vector, which operationally contains a cDNA sequence encoding the polypeptide, into a host cell such that the cell is transformed; and expressing said nucleic acid to obtain said polypeptide.
  • 9. Process for the quantitative detection of anti-thyrotropin receptor antibodies (anti-TSHr) in a biological sample comprising the steps of:contacting a polypeptide according to claim 5 with the biological sample suspected of containing anti-TSHr antibodies, incubating with labelled TSH, or with labelled anti-TSHr antibodies; measuring the remaining, bound labelled TSH or bound labelled anti-TSHr antibodies, after competition between the labelled and unlabelled species; and correlating results from the measuring step to the presence of anti-TSHr antibodies.
  • 10. Kit for the detection of anti-TSHr antibodies characterized in that it contains:a) Polypeptide according to claim 5, having thyrotropin receptor activity and being either in an immobilised or detergent-solubilised form; b) at least one of the following reagents: i) labelled TSH ii) labelled anti-TSHr antibodies.
  • 11. Kit according to claim 10, wherein the polypeptide is present in the form of intact cells previously operationally transformed by a vector comprising a cDNA sequence encoding said polypeptide and consequently bearing said polypeptide in their membranes, or in the form of detergent-solubilized membranes of such cells.
Priority Claims (1)
Number Date Country Kind
89403493 Dec 1989 EP
PCT Information
Filing Document Filing Date Country Kind 102e Date 371c Date
PCT/EP90/02154 WO 00 10/15/1991 10/15/1991
Publishing Document Publishing Date Country Kind
WO91/09121 6/27/1991 WO A
US Referenced Citations (3)
Number Name Date Kind
4448764 Smith et al. May 1984
5144007 Pfahl Sep 1992
5614363 Cone Mar 1997
Non-Patent Literature Citations (20)
Entry
Nagayama et al., Mol. Endo. 6(2): 145-155, 1992.
Chan et al., Endrocrinology 120 (suppl.) T16 (Abstract 32), 1987.
Chan et al., J. Biol. Chem. 264(7): 3651-3654, 1989.
Frazier-Seabrook et al., Abstract 1072, Endocrine Society, 1989.
Rudinger J. Caracteristics of the amino acids as components of a peptide hormone sequence. Chapter 1 in “Peptide Hormones,” edited by J. A.Parsons, University Park Press, Baltimore, pp. 1-7, 1976.*
Watson et al . The G-protein linked receptor facts book. Academic Press, San Diego p. 5, 1994.*
Costa et al. Immunohistochemiustry on whole mount preparations. Chapter 14 in “Immunohistochemistry” edited by A.C. Cuello John Wiley and Sons, New York, pp. 373-393, 1983.*
Harlow et al. Labeling of antibodies with iodine in “Antibodies a laboratory manual” Cold Sping Harbor Press, pp. 324-339, 1988.*
Koizumi et al Endocrinology 110 #4pp 1381-1391 (1982).*
Valente et al PNAS 79 pp 6680-6684 (1984).*
Massart et al Clin.Chem. 32/7, 1332-1335(1986).*
McFarland et al Science 245 pp 494-499 (1989).*
Frazier-Seabrook et al, Program 64th Meeting of American Thyroid Ass. Abstract T-51(1989).*
Bedin et al Mol. and Cellular Endicronology 65 pp 135-144(1989).*
Webster et al Cell 54 pp 199-207 (1988).*
Rees Smith et al Meth. Enx. 74 pp 405-420 (1981).*
Nagayama et al Biochem. and Biophy. Res, Comm. 165 #3 pp 1184-1190 (1989).*
Yoshida et al Clinical Research 36 3(1988) 610A “Molecular Cloning of a cDNA Encoding a Human Thyrotropin (hTSH) Receptor: Identification of Receptor mRNA in Thyroid and IM9 Lymphocytes”.*
Young et al Proc.Natl. Acad. Sci. 80 (1983) pp. 1194-1198“Efficient isolation of genes by using antibody probes”.*
Catty Antibodies vol. 1: A Practical Approach (1988) IRL Press Limited, pp 7-18.