The instant application contains a Sequence Listing which has been submitting electronically in text file format and is hereby incorporated by reference in its entirety. Said copy, created Jun. 28, 2021, is named “40450-10502_SL.txt” and is 40,319 bytes in size.
The present invention relates to polypeptides comprising a region which is capable of binding a target with high affinity, especially those comprising immunoglobulin chain variable domains (ICVD) as well as to constructs comprising said polypeptides and pharmaceutical compositions comprising such polypeptides and constructs. The polypeptides, constructs and pharmaceutical compositions of the invention are all suitable for oral administration. The present invention also relates to methods of increasing the intestinal stability of a polypeptide comprising an immunoglobulin chain variable domain, methods of making a polypeptide comprising an immunoglobulin chain variable domain, and methods which utilise such polypeptides, constructs comprising such polypeptides, nucleic acids encoding such polypeptides, cDNA and vectors comprising nucleic acids encoding such polypeptides, host cells expressing or capable of expressing such polypeptides, pharmaceutical compositions comprising such polypeptides and to uses of such polypeptides.
Pharmaceutical research and development is becoming increasingly focussed on biopharmaceuticals such as therapeutic polypeptides, including antibodies. Typically, therapeutic polypeptides are administered either directly or indirectly into the circulation, via a systemic route. However, many therapeutic polypeptides would ideally be delivered via the oral route. Delivering therapeutic polypeptides orally could provide the following advantages: (a) direct targeting to the gastrointestinal tract (GIT) for localised treatment of gastrointestinal diseases (Jones and Martino 2015 Crit Rev Biotechnol 20:1-15), (b) the risk of adverse immune reactions could be reduced due to the naturally immuno-tolerant nature of the GIT, ensuring the long-term safety of repeatedly ingesting therapeutic polypeptide materials, (c) without the stringent regulatory requirements of manufacturing injectable therapeutic polypeptides, production costs could be reduced and (d) higher levels of patient acceptance and long term compliance could be achieved (Shaji and Patole Indian J Pharm Sci 2008 70(3):269-277).
Many therapeutic polypeptides are, however, unstable in the intestinal tract and therefore the beneficial effect obtained from oral administration is generally limited (Bruno et al 2013 Ther Deliv 4(11):1443-1467). Consequently, oral dosage forms used for conventional small molecule drugs have been employed for oral polypeptide delivery. Various strategies currently under investigation include formulation vehicles, use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers (Shaji and Patole, ibid).
Alternative strategies involving modifications to the therapeutic polypeptides themselves have also been employed, such as the introduction of (additional) cysteine bridges. Hussack et al 2011 PLoS ONE 6(11):e28218 describe the introduction of additional cysteine bridges into anti-TcdA VHHs. The effectiveness of these additional cysteine bridges on increasing proteolytic stability was highly dependent on the specific protease concerned and in some circumstances these additional cysteine bridges were detrimental to recombinant production levels. Similarly, Kim et al 2014 mAbs 6:1 219-235 engineered human VL domains with disulphide bridges, with mixed results.
In theory, one could consider substituting specific amino acids in a therapeutic polypeptide which are believed to be responsible for low intestinal stability of the therapeutic polypeptide, in order to enhance stability in the intestinal tract. However, in the context of immunoglobulin chain variable domains, single substitutions in amino acid sequence may detrimentally impact binding capability. This is particularly relevant to the complementarity determining regions (CDRs) of an immunoglobulin chain variable domain, which are responsible for binding target antigen. For example, regarding in particular CDR3 of a VHH, it is known that “ . . . inasmuch as the CDR3 amino acids either are in direct contact with the antigen or maintain and influence the conformation of the CDR3 amino acids that directly contact the antigen, the CDR3 amino acids responsible for reduced stability cannot be replaced without serious loss of affinity.” (Muyldermans Annu Rev Biochem 2013 82:775-797). This view is reinforced by, for example, the finding that substitutions to a VHH targetting C. jejuni flagella, including in particular an R to G substitution in CDR2, caused a large decrease in binding capability of the VHH (approaching control) (Hussack et al 2014 Protein Engineering, Design & Selection 27(6):191-198).
There is a long-felt need therefore for polypeptides which have increased intestinal stability, and for methods to increase the intestinal stability of such polypeptides.
Polypeptides of the present invention may, in at least some embodiments, have one or more of the following advantages compared to substances of the prior art:
The present inventors have produced surprisingly advantageous polypeptides comprising immunoglobulin chain variable domains, suitable for oral administration. These polypeptides are particularly advantageous due to their increased intestinal stability (i.e. increased stability in the intestinal tract). It may be expected that these polypeptides have particular utility in the prevention or treatment of diseases of the gastrointestinal tract such as autoimmune and/or inflammatory disease such as inflammatory bowel disease, or in the prevention or treatment of infection from intestinal tract resident pathogenic microbe. Also provided are methods of increasing the intestinal stability of a polypeptide comprising an immunoglobulin chain variable domain and methods of making a polypeptide comprising an immunoglobulin chain variable domain having increased stability.
Accordingly, the present invention provides a polypeptide comprising an immunoglobulin chain variable domain comprising three complementarity determining regions (CDR1-CDR3) and four framework regions, wherein: (a) at least one lysine residue in CDR1, CDR2 and/or CDR3 has been substituted with at least one histidine residue, and/or (b) at least one arginine residue in CDR1, CDR2 and/or CDR3 has been substituted with at least one histidine residue; wherein the polypeptide has increased intestinal stability relative to a corresponding polypeptide not having said histidine substitutions.
Also provided is a method of increasing the intestinal stability of a polypeptide comprising an immunoglobulin chain variable domain, wherein the immunoglobulin chain variable domain comprises three complementarity determining regions (CDR1-CDR3) and four framework regions, wherein the method comprises the step of substituting: (a) at least one lysine residue in CDR1, CDR2 and/or CDR3 with at least one histidine residue, and/or (b) at least one arginine residue in CDR1, CDR2 and/or CDR3 with at least one histidine residue.
Also provided is a method of making a polypeptide comprising an immunoglobulin chain variable domain, wherein the immunoglobulin chain variable domain comprises three complementarity determining regions (CDR1-CDR3) and four framework regions, wherein the method comprises the step of substituting: (a) at least one lysine residue in CDR1, CDR2 and/or CDR3 with at least one histidine residue, and/or (b) at least one arginine residue in CDR1, CDR2 and/or CDR3 with at least one histidine residue wherein the polypeptide has increased intestinal stability relative to a corresponding polypeptide not having said histidine substitutions.
Also provided is a polypeptide comprising a region which is capable of binding a target with high affinity wherein: (a) at least one lysine residue in the region has been substituted with at least one histidine residue, and/or (b) at least one arginine residue in the region has been substituted with at least one histidine residue; wherein the polypeptide has increased intestinal stability relative to a corresponding polypeptide not having said histidine substitutions.
SEQ ID NO: 1—Polypeptide sequence of anti-TNF-alpha ICVD Q65B1
SEQ ID NO: 2—Polypeptide sequence of anti-TNF-alpha ICVD ID8F-EV (ID32F)
SEQ ID NO: 3—Polypeptide sequence of anti-TNF-alpha ICVD ID43F
SEQ ID NO: 4—Polypeptide sequence of anti-TNF-alpha ICVD ID44F
SEQ ID NO: 5—Polypeptide sequence of anti-TNF-alpha ICVD ID34F
SEQ ID NO: 6—Polypeptide sequence of anti-TcdB ICVD B10F1
SEQ ID NO: 7—Polypeptide sequence of anti-TcdB ICVD Q31B1
SEQ ID NO: 8—Polypeptide sequence of anti-TcdB ICVD ID1B
SEQ ID NO: 9—Polypeptide sequence of anti-TcdB ICVD ID2B
SEQ ID NO: 10—Polypeptide sequence of anti-TcdB ICVD ID20B
SEQ ID NO: 11—Polypeptide sequence of anti-TcdB ICVD ID21B
SEQ ID NO: 12—Polypeptide sequence of anti-TcdB ICVD ID22B
SEQ ID NO: 13—Polypeptide sequence of anti-TcdB ICVD ID24B
SEQ ID NO: 14—Polypeptide sequence of anti-TcdB ICVD ID25B
SEQ ID NO: 15—Polypeptide sequence of anti-TcdB ICVD ID27B
SEQ ID NO: 16—Polypeptide sequence of anti-TcdB construct ID41B
SEQ ID NO: 17—Polypeptide sequence of anti-TcdB construct ID43B
SEQ ID NO: 18—Polypeptide sequence of anti-TcdB ICVD ID45B
SEQ ID NO: 19—Polypeptide sequence of anti-TcdB ICVD ID46B
SEQ ID NO: 20—Polypeptide sequence of anti-TcdB ICVD ID47B
SEQ ID NO: 21—Polypeptide sequence of anti-TcdB ICVD ID48B
SEQ ID NO: 22—Polypeptide sequence of anti-TcdB ICVD ID49B
SEQ ID NO: 23—Polypeptide sequence of anti-TcdB ICVD ID50B
SEQ ID NO: 24—Polypeptide sequence of anti-TcdA construct ID17A
SEQ ID NO: 25—Polypeptide sequence of anti-TcdA construct ID29A
SEQ ID NO: 26—Example CDR A
SEQ ID NO: 27—First third of Example CDR A
SEQ ID NO: 28—Second third of Example CDR A
SEQ ID NO: 29—Third third of Example CDR A
SEQ ID NO: 30—Example CDR B
SEQ ID NO: 31—Second third of Example CDR B
SEQ ID NO: 32—Polypeptide sequence of anti-IL-6R ICVD 7F6
SEQ ID NO: 33—Polypeptide sequence of anti-IL-6R ICVD ID-3V
SEQ ID NO: 34—Polypeptide sequence of anti-IL-6R ICVD 5G9
SEQ ID NO: 35—Polypeptide sequence of anti-IL-6R ICVD ID-54V
Polypeptides, Antigen-Binding Polypeptides, Antibodies and Antibody Fragments Including Immunoglobulin Chain Variable Domains (ICVD) Such as the VH and VHH
Polypeptides are organic polymers consisting of a number of amino acid residues bonded together in a chain. As used herein, ‘polypeptide’ is used interchangeably with ‘protein’ and ‘peptide’. Polypeptides are said to be antigen-binding when they contain one or more stretches of amino acid residues which form an antigen-binding site, capable of binding to an epitope on a target antigen with an affinity (suitably expressed as a Kd value, a Ka value, a kon-rate and/or a koff-rate, as further described herein). Antigen-binding polypeptides include polypeptides such as antibodies, antibodies modified to comprise additional binding regions, and antigen-binding fragments.
A polypeptide may comprise a region which is capable of binding a target with high affinity (suitably expressed as a Kd value, a Ka value, a kon-rate and/or a Koff-rate, as further described herein). Such polypeptides include DARPins (Binz et al. Journal of Molecular Biology 332(2):489-503), Affimers™, Fynomers™, Centyrins, Nanofitins® and cyclic peptides.
A conventional antibody or immunoglobulin (Ig) is a protein comprising four polypeptide chains: two heavy (H) chains and two light (L) chains. Each chain is divided into a constant region and a variable domain. The heavy chain variable domains are abbreviated herein as VHC, and the light (L) chain variable domains are abbreviated herein as VLC. These domains, domains related thereto and domains derived therefrom, are referred to herein as immunoglobulin chain variable domains. The VHC and VLC domains can be further subdivided into regions of hypervariability, termed “complementarity determining regions” (“CDRs”), interspersed with regions that are more conserved, termed “framework regions” (“FRs”). The framework and complementarity determining regions have been precisely defined (Kabat et al 1991 Sequences of Proteins of Immunological Interest, Fifth Edition U.S. Department of Health and Human Services, NIH Publication Number 91-3242, herein incorporated by reference in its entirety). In a conventional antibody, each VHC and VLC is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The conventional antibody tetramer of two heavy immunoglobulin chains and two light immunoglobulin chains is formed with the heavy and the light immunoglobulin chains inter-connected by e.g. disulfide bonds, and the heavy chains similarity connected. The heavy chain constant region includes three domains, CH1, CH2 and CH3. The light chain constant region is comprised of one domain, CL. The variable domain of the heavy chains and the variable domain of the light chains are binding domains that interact with an antigen. The constant regions of the antibodies typically mediate the binding of the antibody to host tissues or factors, including various cells of the immune system (e.g. effector cells) and the first component (C1q) of the classical complement system. The term antibody includes immunoglobulins of types IgA, IgG, IgE, IgD, IgM (as well as subtypes thereof), wherein the light chains of the immunoglobulin may be kappa or lambda types. The overall structure of immunoglobulin-gamma (IgG) antibodies assembled from two identical heavy (H)-chain and two identical light (L)-chain polypeptides is well established and highly conserved in mammals (Padlan 1994 Mol Immunol 31:169-217).
An exception to conventional antibody structure is found in sera of Camelidae. In addition to conventional antibodies, these sera possess special IgG antibodies. These IgG antibodies, known as heavy-chain antibodies (HCAbs), are devoid of the L chain polypeptide and lack the first constant domain (CH1). At its N-terminal region, the H chain of the homodimeric protein contains a dedicated immunoglobulin chain variable domain, referred to as the VHH, which serves to associate with its cognate antigen (Muyldermans 2013 Annu Rev Biochem 82:775-797, Hamers-Casterman et al 1993 Nature 363(6428):446-448, Muyldermans et al 1994 Protein Eng 7(9):1129-1135, herein incorporated by reference in their entirety).
The total number of amino acid residues in a VHH or VH may be in the region of 105-140, is suitably 108-130, and is most suitably 110-125.
An antigen-binding fragment (or “antibody fragment”, “immunoglobulin fragment” or “antigen-binding polypeptide”) as used herein refers to a portion of an antibody that specifically binds to a target (e.g. a molecule in which one or more immunoglobulin chains is not full length, but which specifically binds to a target). An antigen-binding fragment comprises an immunoglobulin chain variable domain. Examples of binding fragments encompassed within the term antigen-binding fragment include:
Suitably the polypeptide of the invention consists of an immunoglobulin chain variable domain. Suitably the polypeptide of the invention is an antibody, a modified antibody containing additional antibody binding regions or an antibody fragment such as a VHH, a VH, a VL, a V-NAR, scFv, a Fab fragment or a F(ab′)2 fragment
Polypeptides of the invention may for example be obtained by preparing a nucleic acid encoding the polypeptide using techniques for nucleic acid synthesis, followed by expression of the nucleic acid thus obtained (as detailed further herein).
The examples provided herein relate to immunoglobulin chain variable domains per se. The principles of the invention disclosed herein are, however, equally applicable to at least any polypeptide comprising an immunoglobulin chain variable domain, such as antibodies and antibody fragments. For example, the immunoglobulin chain variable domains disclosed herein may be incorporated into a polypeptide such as a full length antibody. Such an approach is demonstrated by McCoy et al Retrovirology 2014 11:83, who provide an anti-HIV VHH engineered as a fusion with a human Fc region (including hinge, CH2 and CH3 domains), expressed as a dimer construct.
Polypeptide and Polynucleotide Sequences
As used herein, numbering of polypeptide sequences and definitions of CDRs and FRs are as defined according to the Kabat system (Kabat et al, ibid). A “corresponding” amino acid residue between a first and second polypeptide sequence is an amino acid residue in a first sequence which shares the same position according to the Kabat system with an amino acid residue in a second sequence, whilst the amino acid residue in the second sequence may differ in identity from the first. Suitably corresponding residues will share the same number (and letter) if the framework and CDRs are the same length according to Kabat definition. Alignment can be achieved manually or by using, for example, a known computer algorithm for sequence alignment such as NCBI BLAST v2.0 (BLASTP or BLASTN) using standard settings. Two or more polypeptides are ‘corresponding’ if they share the same sequence but for any changes specified.
The Kabat Numbering System Applied to ICVD Q65B1
The Kabat Characterisation System Applied to ICVD and ICVD Construct Sequences
Suitably at least one, such as two, such as three arginine and/or lysine residues in the CDRs of a polypeptide of the invention are substituted with a histidine residue. Suitably one arginine and/or lysine residue is substituted. Suitably the substitutions are made in at least one, such as at least two, such as three CDRs. Suitably 1 to 3, such as 1 to 2, such as 1 substitution(s) are made in all three, two or one CDR(s) of a polypeptide of the invention. Suitably no more than three, such as no more than 2 lysine and/or arginine residues are substituted.
Suitably each lysine and/or arginine residue in CDR1, CDR2 and/or CDR3 of a polypeptide of the invention has been substituted with at least one, more suitably one, histidine residue each.
Suitably each CDR of a polypeptide of the invention which includes a substitution is no shorter than 3, more suitably no shorter than 4, more suitably no shorter than 5, more suitably no shorter than 6, more suitably no shorter than 7, more suitably no shorter than 8, more suitably no shorter than 9, more suitably no shorter than 10, more suitably no shorter than 11, more suitably no shorter than 12, more suitably no shorter than 13 amino acids.
Suitably each CDR of a polypeptide of the invention which includes a substitution is no longer than 35, more suitably no longer than 30, more suitably no longer than 25, more suitably no longer than 23, more suitably no longer than 21, more suitably no longer than 20, more suitably no longer than 19, more suitably no longer than 18, more suitably no longer than 17 amino acids.
Suitably the polypeptide of the invention is no longer than 2000, more suitably no longer than 1500, more suitably no longer than 1200, more suitably no longer than 900, more suitably no longer than 700, more suitably no longer than 600, more suitably no longer than 500, more suitably no longer than 400, more suitably no longer than 300, more suitably no longer than 250, more suitably no longer than 200, more suitably no longer than 150 amino acids.
Windows Defined within CDRs
The residues within a CDR may be considered to belong to a particular fraction of that CDR. For example, a CDR consisting of fifteen amino acids (ARNECDQGHILKMFP, SEQ ID NO: 26) can be considered to consist of three thirds: a first third (a window consisting of ARNEC, SEQ ID NO: 27), a second third (a window consisting of DQGHI, SEQ ID NO: 28) and a third third (a window consisting of LKMFP, SEQ ID NO: 29). Similarly, this CDR can be considered to consist of five fifths: a first fifth (a window consisting of ARN), a second fifth (a window consisting of ECD), a third fifth (a window consisting of QGH), a fourth fifth (a window consisting of ILK) and a fifth fifth (a window consisting of MFP). The numbering of the fractions of a CDR is from N- to C-terminus. If a CDR consists of a number of residues such that division into fractions would result in a non-whole number of residues residing in each fraction (such as sevenths of a CDR consisting of ARNECDQGHILKMFP, SEQ ID NO: 26) then (a) if the CDR consists of an odd number of residues, then the number of residues in the central fraction (e.g. the second third or the third fifth, etc) is rounded up to the nearest odd number or (b) if the CDR consists of an even number of residues, then the number of residues in the central fraction is rounded up and to the nearest even number. For example, the fourth seventh of a CDR consisting of ARNECDQGHILKMFP is the window consisting of QGH and the second third of a CDR consisting of ARNECDQG (SEQ ID NO: 30) is the window consisting of NECD (SEQ ID NO: 31).
Suitably the at least one lysine and/or arginine residue is present in a window defined as the second third of CDR1 and/or the second third of CDR2 and/or the second third of CDR3 and/or the third fifth of CDR1 and/or the third fifth of CDR2 and/or the third fifth of CDR3 and/or the fourth seventh of CDR1 and/or the fourth seventh of CDR2 and/or the fourth seventh of CDR3.
According to a specific embodiment, a polypeptide according to the invention does not have an amino acid sequence which is exactly the same as (i.e. shares 100% sequence identity with) the amino acid sequence of a naturally occurring polypeptide.
In one embodiment there is provided a polypeptide comprising an immunoglobulin chain variable domain comprising three complementarity determining regions (CDR1-CDR3) and four framework regions, having: (a) at least one histidine residue in place of at least one lysine residue in CDR1, CDR2 and/or CDR3, and/or (b) at least one histidine residue in place of at least one arginine residue in CDR1, CDR2 and/or CDR3; wherein the polypeptide has increased intestinal stability relative to a corresponding progenitor polypeptide not having said histidine substitutions.
A progenitor polypeptide is suitably a polypeptide which has not undergone the inventive histidine substitutions disclosed herein. Suitably the corresponding progenitor polypeptide is the ‘wild type’ polypeptide (for example an antibody) which was directly produced by an animal, for example by V(D)J recombination and somatic mutation (such as a llama, such as following immunisation), and which may have optionally undergone further synthetic modifications, before undergoing the inventive histidine substitutions disclosed herein.
Specificity, Affinity and Avidity
Specificity refers to the number of different types of antigens or antigenic determinants to which a particular antigen-binding polypeptide can bind. The specificity of an antigen-binding polypeptide is the ability of the antigen-binding polypeptide to recognise a particular antigen as a unique molecular entity and distinguish it from another.
Affinity, represented by the equilibrium constant for the dissociation of an antigen with an antigen-binding polypeptide (Kd), is a measure of the binding strength between an antigenic determinant and an antigen-binding site on an antigen-binding polypeptide: the lesser the value of the Kd, the stronger the binding strength between an antigenic determinant and the antigen-binding polypeptide (alternatively, the affinity can also be expressed as the affinity constant (Ka), which is 1/Kd). Affinity can be determined by known methods, depending on the specific antigen of interest.
Avidity is the measure of the strength of binding between an antigen-binding polypeptide and the pertinent antigen. Avidity is related to both the affinity between an antigenic determinant and its antigen-binding site on the antigen-binding polypeptide and the number of pertinent binding sites present on the antigen-binding polypeptide.
Suitably, polypeptides of the invention bind to their target with a dissociation constant (Kd) of 10−6 to 10−12 M, more suitably 10−7 to 10−12 M, more suitably 10−8 to 10−12 M and more suitably 10−9 to 10−12 M.
Any Kd value less than 10−6 is considered to indicate specific binding. Specific binding of an antigen-binding polypeptide to an antigen or antigenic determinant can be determined in any suitable known manner, including, for example, Scatchard analysis and/or competitive binding assays, such as radioimmunoassays (RIA), enzyme immunoassays (EIA) and sandwich competition assays, and the different variants thereof known in the art.
Potency, Inhibition and Neutralisation
Potency is a measure of the activity of a therapeutic agent expressed in terms of the amount required to produce an effect of given intensity. A highly potent agent evokes a greater response at low concentrations compared to an agent of lower potency that evokes a smaller response at low concentrations. Potency is a function of affinity and efficacy. Efficacy refers to the ability of therapeutic agent to produce a biological response upon binding to a target ligand and the quantitative magnitude of this response. The term half maximal effective concentration (EC50) refers to the concentration of a therapeutic agent which causes a response halfway between the baseline and maximum after a specified exposure time. The therapeutic agent may cause inhibition or stimulation. It is commonly used, and is used herein, as a measure of potency.
A neutralising polypeptide for the purposes of the invention is a polypeptide which binds to an agent (such as TNF-alpha) inhibiting the binding of the agent to one or more of its cognate receptors (such as TNFR1 and TNFR2), as measured by ELISA. Alternatively, or in addition, a neutralising polypeptide for the purposes of the invention is a polypeptide which defends a cell from the effects of an agent (such as TN F-alpha) by, for example, inhibiting the biological effect of the agent. For example, a neutralising polypeptide for the purposes of the invention is a polypeptide which defends a cell from the effects of a toxin (such as Clostridium Difficile Toxin A or B—“TcdA/TcdB”) by, for example, inhibiting the biological effect of the toxin. Alternatively, or in addition, a neutralising polypeptide for the purposes of the invention is a polypeptide which binds to IL-6R (and therefore the IL-6R/IL-6 complex), inhibiting binding of the IL-6R/IL-6 complex to gp130, as measured by ELISA.
The effectiveness (e.g. neutralising ability) of a therapeutic agent can be ascertained using a potency assay. A particularly suitable potency assay is the measurement of Vero cell viability using Alamar Blue (Fields and Lancaster American Biotechnology Laboratory 1993 11(4):48-50). Using a range of known concentrations of a toxin, this assay can be performed to ascertain the ability of a therapeutic polypeptide to neutralise the effects of the toxin by producing a dose-response curve and/or by ascertaining the half maximal effective concentration (EC50) of the therapeutic polypeptide. This Vero Cell Cytotoxicity Standard Assay is used herein and detailed further in the Examples section below.
Another particularly suitable potency assay is the Standard TNFR2/TNF Interference ELISA Assay (detailed further in the Examples section below), which tests the effectiveness of a therapeutic agent in blocking TNF-alpha binding to TNFR2, in respect of a range of known concentrations of agent, producing a dose-response curve and/or by ascertaining the half maximal effective concentration (EC50) of the therapeutic polypeptide.
Another particularly suitable potency assay is the Standard gp130 ELISA Assay (detailed further in the Examples section below), which tests the effectiveness of a therapeutic agent in blocking the sIL-6/IL-6R complex binding to gp130, in respect of a range of known concentrations of agent, producing a dose-response curve and/or by ascertaining the half maximal effective concentration (EC50) of the therapeutic polypeptide.
Suitably the potency of the polypeptide of the invention is substantially the same as the potency of a corresponding polypeptide not having histidine substitutions of the invention.
Suitably, the polypeptide of the invention or the polypeptide of the methods of the invention inhibits binding of a binding agent to a binding partner, such as TNF-alpha to TNFR2 in the Standard TNF/TNFR2 Interference ELISA Assay, with an EC50 of 300 nM or less, more suitably 200 nM or less, more suitably 100 nM or less, more suitably 80 nM or less, more suitably 60 nM or less, more suitably 40 nM or less, more suitably 20 nM or less, more suitably 10 nM or less, more suitably 5 nM or less.
Suitably, the EC50 of the polypeptide of the invention or the polypeptide of the methods of the invention is increased by no more than 300 pM, more suitably no more than 200 pM, more suitably no more than 100 pM, more suitably no more than 50 pM, more suitably no more than 25 pM, more suitably no more than 10 pM, more suitably no more than 5 pM, relative to a corresponding polypeptide not having histidine substitutions of the invention, such as in inhibiting binding of TNF alpha to TNFR2 in the Standard TNF/TNFR2 Interference ELISA Assay.
Suitably, the EC50 of the polypeptide of the invention or the polypeptide of the methods of the invention is increased by no more than 500%, more suitably 400%, more suitably 300%, more suitably 200%, more suitably 100%, more suitably 70%, more suitably 60%, more suitably 50%, more suitably 40%, more suitably 30%, more suitably 25%, more suitably 20%, more suitably 15%, more suitably 10%, more suitably 5%, more suitably 2%, more suitably 1%, relative to a corresponding polypeptide not having histidine substitutions of the invention, such as in inhibiting binding of TNF-alpha to TNFR2 in the Standard TNF/TNFR2 Interference ELISA Assay.
Suitably the polypeptide of the invention or the polypeptide of the methods of the invention neutralizes the cytotoxicity of a toxin, such as TcdA or TcdB, in the Vero Cell Cytotoxicity Standard Assay with an EC50 of 100 nM or less, more suitably 80 nM or less, more suitably 60 nM or less, more suitably 40 nM or less, more suitably 30 nM or less, more suitably 20 nM or less, more suitably 10 nM or less, more suitably 9 nM or less, more suitably 8 nM or less, more suitably 7 nM or less, more suitably 6 nM or less more suitably 5 nM or less, more suitably 4 nM or less, more suitably 3 nM or less, more suitably 2 nM or less, more suitably 1 nM or less.
Suitably, the EC50 of the polypeptide of the invention or the polypeptide of the methods of the invention is increased by no more than 200 nM, more suitably 150 nM, more suitably 100 nM, more suitably 80 nM, more suitably 60 nM, more suitably 40 nM, more suitably 20 nM, more suitably 10 nM, more suitably 5 nM, relative to a corresponding polypeptide not having histidine substitutions of the invention, in neutralising the cytotoxicity of a toxin, such as TcdA or TcdB, in the Vero Cell Cytotoxicity Standard Assay.
Suitably, the EC50 of the polypeptide of the invention or the polypeptide of the methods of the invention is increased by no more than 500%, more suitably 400%, more suitably 300%, more suitably 200%, more suitably 100%, more suitably 70%, more suitably 60%, more suitably 50%, more suitably 40%, more suitably 30%, more suitably 25%, more suitably 20%, more suitably 15%, more suitably 10%, more suitably 5%, more suitably 2%, more suitably 1%, relative to a corresponding polypeptide not having histidine substitutions of the invention, in neutralising the cytotoxicity of a toxin, such as TcdA or TcdB, in the Vero Cell Cytotoxicity Standard Assay.
Suitably, the polypeptide of the invention or the polypeptide of the methods of the invention inhibits binding of a binding agent to a binding partner, such the sIL-6/IL-6R complex binding to gp130 in the Standard gp130 ELISA Assay, with an EC50 of 300 nM or less, more suitably 200 nM or less, more suitably 100 nM or less, more suitably 80 nM or less, more suitably 60 nM or less, more suitably 40 nM or less, more suitably 20 nM or less, more suitably 10 nM or less, more suitably 5 nM or less, more suitably 1 nM or less, more suitably 0.5 nM or less, more suitably 0.3 nM or less, more suitably 0.2 nM or less, more suitably 0.15 nM or less.
Suitably, the EC50 of the polypeptide of the invention or the polypeptide of the methods of the invention is increased by no more than 300 pM, more suitably no more than 200 pM, more suitably no more than 100 pM, more suitably no more than 80 pM, more suitably no more than 70 pM, more suitably no more than 60 pM, more suitably no more than 50 pM, more suitably no more than 25 pM, more suitably no more than 20 pM, more suitably no more than 15 pM, more suitably no more than 10 pM, more suitably no more than 5 pM, relative to a corresponding polypeptide not having histidine substitutions of the invention, such as in inhibiting binding of a binding agent to a binding partner, such the sIL-6/IL-6R complex binding to gp130 in the Standard gp130 ELISA Assay.
Suitably, the EC50 of the polypeptide of the invention or the polypeptide of the methods of the invention is increased by no more than 600%, more suitably no more than 500%, more suitably 400%, more suitably 300%, more suitably 200%, more suitably 100%, more suitably 70%, more suitably 60%, more suitably 50%, more suitably 40%, more suitably 30%, more suitably 25%, more suitably 20%, more suitably 15%, more suitably 10%, more suitably 5%, more suitably 2%, more suitably 1%, relative to a corresponding polypeptide not having histidine substitutions of the invention, such the sIL-6/IL-6R complex binding to gp130 in the Standard gp130 ELISA Assay.
Substitutions may be made to a polypeptide with the objective of introducing pH sensitivity, for example to significantly reduce the affinity of an antibody for an antigen upon entry of the antibody into the acidic endosome. However, the substitutions of the present invention suitably do not invoke substantial pH sensitivity. Suitably the substitutions to the polypeptide of the invention or the substitutions to the polypeptide of the methods of the invention are not for engineering pH dependency of target binding. Suitably the affinity of the polypeptide of the invention or the polypeptide of the methods of the invention remains substantially the same at any pH from 3 to 9, more suitably any pH from 4 to 8.
The Gastrointestinal Tract (GIT) and Digestive Enzymes
The GIT is an organ system responsible for consuming and digesting foodstuffs, absorbing nutrients, and expelling waste. In humans and other mammals, the GIT consists of the mouth, oesophagus, stomach, small intestine (duodenum, jejunum and ileum) and large intestine (cecum, colon, rectum and anal canal). The intestinal tract, as opposed to the gastrointestinal tract, consists of only the small intestine and the large intestine. Various pathogens may colonise, and various diseases may manifest in, different areas of the gastrointestinal tract.
The different parts of the gastrointestinal tract each contain a complex mixture of digestive enzymes. These digestive enzymes include proteases, lipases, amylases and nucleases. Proteases include serine proteases, threonine proteases, cysteine proteases, aspartate proteases, glutamic acid proteases and metalloproteases. Proteases are involved in digesting polypeptide chains into shorter fragments by splitting the peptide bonds that link amino acid residues (proteolysis). Some detach the terminal amino acids from the protein chain (exopeptidases); others attack internal peptide bonds of a protein (endopeptidases). The intestinal tract comprises a vast array of different proteases.
Proteolysis in the intestinal tract can be highly promiscuous such that a wide range of protein substrates are hydrolysed by the wide variety of proteases present. This is the case for proteases which cleave the wide array of ingested polypeptides in the intestinal tract into smaller polypeptide fragments.
Suitably the substitutions made to the polypeptide of the invention or to the polypeptide of the methods of the invention increase the stability of the polypeptide to one or more proteases present in the small or large intestine, relative to a corresponding polypeptide not having histidine substitutions of the invention. Suitably the proteases include proteases originating from intestinal microbiota or pathogenic bacteria, for example wherein the proteases are cell membrane-attached proteases, secreted proteases and/or proteases released on cell lysis. Suitably the one or more proteases are selected from the group consisting of trypsin, chymotrypsin, host inflammatory proteases, proteases originating from microbiota and proteases originating from pathogenic bacteria such as C. difficile-specific proteases. Suitably the intestinal tract is a mammalian intestinal tract, such as a human, simian, murine, bovine, ovine, canine, feline, equine or porcine intestinal tract.
Suitably the substitutions made to the polypeptide of the invention, or substitutions made to the polypeptide of the methods of the invention, increase the stability of the polypeptide in the intestinal tract, or in a model of the intestinal tract, such as in the small and/or large intestine, such as in the duodenum, jejunum, ileum cecum, colon, rectum and/or anal canal, relative to a corresponding polypeptide not having histidine substitutions of the invention. Suitably the model of the intestinal tract is the Standard Human Faecal Supernatant Intestinal Tract Model, the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model, or the Standard Trypsin Intestinal Tract Model.
Suitably at least 20%, more suitably at least 25%, more suitably at least 30%, more suitably at least 35%, more suitably at least 40%, more suitably at least 50%, more suitably at least 60% of the polypeptide of the invention or the polypeptide of the methods of the invention remains viable, as determined for example by the Standard TNFR2/TNF Interference ELISA Assay when the ICVD is an anti-TNF-alpha ICVD or the Standard Toxin ELISA Assay when the ICVD is an anti-toxin ICVD, after 6 or 16 hours incubation in the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model.
Suitably the stability of a polypeptide of the invention or the polypeptide of the methods of the invention, as determined for example by the Standard TNFR2/TNF Interference ELISA Assay when the ICVD is an anti-TNF-alpha ICVD or the Standard Toxin ELISA Assay when the ICVD is an anti-toxin ICVD, is increased by at least 1%, more suitably 2%, more suitably 3%, more suitably 5%, more suitably 7%, more suitably 10%, more suitably 15%, more suitably 20%, more suitably 30%, more suitably 40%, more suitably 50%, more suitably 60%, more suitably 70%, relative to a corresponding polypeptide not having histidine substitutions of the invention, after 6 or 16 hours incubation in the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model.
Suitably at least 20%, more suitably at least 25%, more suitably at least 30%, more suitably at least 35%, more suitably at least 40%, more suitably at least 50%, more suitably at least 60%, more suitably at least 70%, more suitably at least 80%, more suitably at least 90% of the polypeptide of the invention or the polypeptide of the methods of the invention remains viable, as determined for example by the Standard TNFR2/TNF Interference ELISA Assay when the ICVD is an anti-TNF-alpha ICVD, the Standard Toxin ELISA Assay when the ICVD is an anti-toxin ICVD or the Standard Western Blot Stability Assay after 30 minutes, 1 hour, 4 hours or 16 hours incubation in the Standard Human Faecal Supernatant Intestinal Tract Model.
Suitably the stability of a polypeptide of the invention or the polypeptide of the methods of the invention, as determined for example by the Standard TNFR2/TNF Interference ELISA Assay when the ICVD is an anti-TNF-alpha ICVD, the Standard Toxin ELISA Assay when the ICVD is an anti-toxin ICVD or the Standard Western Blot Stability Assay, is increased by at least 1%, more suitably 2%, more suitably 3%, more suitably 5%, more suitably 7%, more suitably 10%, more suitably 15%, more suitably 20%, more suitably 25%, more suitably 30%, more suitably 40%, more suitably 50%, more suitably 60%, more suitably 70%, relative to a corresponding polypeptide not having histidine substitutions of the invention, after 30 minutes, 1 hour, 4 hours or 16 hours incubation in the Standard Human Faecal Supernatant Intestinal Tract Model.
Suitably at least 5%, more suitably at least 10%, more suitably at least at least 20%, more suitably at least 25%, more suitably at least 30%, more suitably at least 35%, more suitably at least 40%, more suitably at least 50%, more suitably at least 60% of the polypeptide of the invention or the polypeptide of the methods of the invention remains viable, as determined for example by the Standard gp130 ELISA Assay when the ICVD is an anti-IL-6R ICVD, after 4 hours incubation in the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model.
Suitably the stability of a polypeptide of the invention or the polypeptide of the methods of the invention, as determined for example by the Standard gp130 ELISA Assay when the ICVD is an anti-IL-6R ICVD, is increased by at least 1%, more suitably 2%, more suitably 3%, more suitably 5%, more suitably 7%, more suitably 10%, more suitably 15%, more suitably 20%, more suitably 30%, more suitably 40%, more suitably 50%, more suitably 60%, more suitably 70%, relative to a corresponding polypeptide not having histidine substitutions of the invention, after 4 hours incubation in the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model.
Suitably at least 20%, more suitably at least 25%, more suitably at least 30%, more suitably at least 35%, more suitably at least 40%, more suitably at least 50%, more suitably at least 60%, more suitably at least 70%, more suitably at least 80%, more suitably at least 90% of the polypeptide of the invention or the polypeptide of the methods of the invention remains viable, as determined for example by the Standard gp130 ELISA Assay when the ICVD is an anti-IL-6R ICVD after 16 hours incubation in the Standard Human Faecal Supernatant Intestinal Tract Model.
Suitably the stability of a polypeptide of the invention or the polypeptide of the methods of the invention, as determined for example by the Standard gp130 ELISA Assay when the ICVD is an anti-IL-6R ICVD, is increased by at least 1%, more suitably 2%, more suitably 3%, more suitably 5%, more suitably 7%, more suitably 10%, more suitably 15%, more suitably 20%, more suitably 25%, more suitably 30%, more suitably 40%, more suitably 50%, more suitably 60%, more suitably 70%, relative to a corresponding polypeptide not having histidine substitutions of the invention, after 16 hours incubation in the Standard Human Faecal Supernatant Intestinal Tract Model.
The percentage of ‘viable’ ICVD remaining after incubation refers to the proportion of intact ICVD (for example in the Standard Western Blot Stability Assay), or the proportion of functional ICVD (for example in the Standard TNFR2/TNF Interference ELISA Assay when the ICVD is an anti-TNF-alpha ICVD or Standard Toxin ELISA Assay when the ICVD is an anti-toxin ICVD). Alternatively, or in addition, the percentage of ‘viable’ ICVD remaining after incubation refers to the proportion of intact ICVD (for example in the Standard Western Blot Stability Assay), or the proportion of functional ICVD (for example in the Standard gp130 ELISA Assay when the ICVD is an anti-IL-6R ICVD).
Diseases of the Gastrointestinal Tract
Diseases of the gastrointestinal tract refer to diseases involving the gastrointestinal tract, namely the oesophagus, stomach, small intestine (duodenum, jejunum and ileum) and large intestine (cecum, colon, rectum and anal canal). The polypeptide of the invention or the polypeptide of the methods of the invention may be used in the treatment or prevention of such diseases. Suitably the polypeptide of the invention or the polypeptide of the methods of the invention is used in local and/or topical treatment or prevention of such diseases.
Exemplary diseases of the gastrointestinal tract are described below.
Autoimmune Diseases and/or Inflammatory Diseases of the Gastrointestinal Tract
Autoimmune diseases develop when the immune system responds adversely to normal body tissues. Autoimmune disorders may result in damage to body tissues, abnormal organ growth and/or changes in organ function. The disorder may affect only one organ or tissue type or may affect multiple organs and tissues. Organs and tissues commonly affected by autoimmune disorders include blood components such as red blood cells, blood vessels, connective tissues, endocrine glands such as the thyroid or pancreas, muscles, joints and skin. An inflammatory disease is a disease characterised by inflammation. Many inflammatory diseases are autoimmune diseases and vice-versa.
The chronic inflammatory bowel diseases (IBDs) Crohn's disease and ulcerative colitis, which afflict both children and adults, are examples of autoimmune and inflammatory diseases of the gastrointestinal tract (Hendrickson et al 2002 Clin Microbiol Rev 15(1):79-94, herein incorporated by reference in its entirety). Ulcerative colitis is defined as a condition where the inflammatory response and morphologic changes remain confined to the colon. The rectum is involved in 95% of patients. Inflammation is largely limited to the mucosa and consists of continuous involvement of variable severity with ulceration, edema, and hemorrhage along the length of the colon (Hendrickson et al 2002 Clin. Microbiol Rev 15(1):79-94, herein incorporated by reference in its entirety). Ulcerative colitis is usually manifested by the presence of blood and mucus mixed with stool, along with lower abdominal cramping which is most severe during the passage of bowel movements. Clinically, the presence of diarrhoea with blood and mucus differentiates ulcerative colitis from irritable bowel syndrome, in which blood is absent. Unlike ulcerative colitis, the presentation of Crohn's disease is usually subtle, which leads to a later diagnosis. Factors such as the location, extent, and severity of involvement determine the extent of symptoms. Patients who have ileocolonic involvement usually have postprandial abdominal pain, with tenderness in the right lower quadrant and an occasional inflammatory mass.
Suitably the composition of the invention is for use in the treatment of an autoimmune and/or inflammatory disease of the gastrointestinal tract, suitably selected from the list consisting of Crohn's disease, ulcerative colitis, irritable bowel syndrome, diabetes type II, glomerulonephritis, autoimmune hepatitis, Sjogren's syndrome, coeliac disease and drug- or radiation-induced mucositis (most suitably Crohn's disease).
Infection of the Gastrointestinal Tract
Viral, bacterial, parasitic and other pathogenic infections can occur in the gastrointestinal tract. These may be confined to the gastrointestinal tract or initiated in the gastrointestinal tract before spreading to other parts of the body. The polypeptide of the invention may be used for the treatment or prevention of bacterial infection including infection by common bacterial gastrointestinal tract pathogens including Escherichia coli, Salmonella, Campylobacter, Vibrio cholerae, Shigella, Clostridium perfringens, Clostridium difficile, Bacillus cereus, Vibrio parahaemolyticus and Yersinia enerocolitica. The polypeptide of the invention may be used for the treatment or prevention of viral infection including common viral gastrointestinal tract pathogens which include rotavirus, norovirus and small round viruses. Suitably the polypeptide of the invention is for use in the treatment or prevention of nosocomial infection. Suitably the polypeptide of the invention is for use in the treatment or prevention of C. difficile infection.
Suitably, the polypeptide of the invention binds to a target accessible via the intestinal tract, such as a target within the intestinal tract. Suitably the target is a deleterious agent originating from an intestinal tract resident pathogenic microbe. Suitably the target is a target originating from host microbiota which may induce pathogenesis, a host cell, host derived inflammatory mediators or a protein involved in disease pathogenesis. Suitably the target is selected from the group consisting of: TNF-alpha, C. difficile toxin A, or C. difficile toxin B. Alternatively the target is selected from the group consisting of: IL-6R, TNF-alpha, C. difficile toxin A, or C. difficile toxin B.
Linkers and Multimers
A construct according to the invention comprises multiple polypeptides and therefore may suitably be multivalent. Such a construct may comprise at least two identical polypeptides according to the invention. A construct consisting of two identical polypeptides according to the invention is a “homobihead”. In one aspect of the invention there is provided a construct comprising a polypeptide of the invention. In a further aspect there is provided a construct comprising two or more (possibly identical) polypeptides of the invention.
Alternatively, a construct may comprise at least two polypeptides which are different, but are both still polypeptides according to the invention (a “heterobihead”).
Alternatively, such a construct may comprise (a) at least one polypeptide according to the invention and (b) at least one polypeptide such as an antibody or antigen-binding fragment thereof, which is not a polypeptide of the invention (also a “heterobihead”). The at least one polypeptide of (b) may bind TNF-alpha, TcdA or TcdB (for example via a different epitope to that of (a)), or alternatively may bind to another target altogether. Suitably the different polypeptide (b) binds to, for example, another pro inflammatory cytokine or chemokine or their respective receptors, other inflammatory mediators or immunologically relevant ligands involved in human pathological processes.
Constructs can be multivalent and/or multispecific. A multivalent construct (such as a bivalent construct) comprises two or more binding polypeptides therefore presents two or more sites at which attachment to one or more antigens can occur. An example of a multivalent construct could be a homobihead or a heterobihead. A multispecific construct (such as a bispecific construct) comprises two or more different binding polypeptides which present two or more sites at which either (a) attachment to two or more different antigens can occur or (b) attachment to two or more different epitopes on the same antigen can occur. An example of a multispecific construct could be a heterobihead. A multispecific construct is multivalent.
Suitably, the polypeptides comprised within the construct are antibody fragments. More suitably, the polypeptides comprised within the construct are selected from the list consisting of: a VHH, a VH, a VL, a V-NAR, scFv, a Fab fragment or a F(ab′)2 fragment. More suitably, the polypeptides comprised within the construct are VHHs.
The polypeptides of the invention can be linked to each other directly (i.e. without use of a linker) or via a linker. The linker is suitably a polypeptide and will be selected so as to allow binding of the polypeptides to their epitopes. If used for therapeutic purposes, the linker is suitably non-immunogenic in the subject to which the polypeptides are administered. Suitably the polypeptides are all connected by linkers. Suitably the linker is of the format (G4S)x. Most suitably x is 6.
Therapeutic Use and Delivery
Suitably the polypeptide of the invention is for use as a medicament, delivered by oral administration, suitably for use in the treatment or prevention of diseases of the gastrointestinal tract (see supra). The polypeptide of the invention or the polypeptide of the methods of the invention may also be used in the treatment or prevention of other medical conditions by oral administration such as metabolic disorders, such as obesity. In one embodiment, the polypeptide of the invention is intended to have local effect in the intestinal tract. In one embodiment, the polypeptide of the invention or the polypeptide of the methods of the invention is not for use in the treatment or prevention of diseases by delivery into the circulation in therapeutically effective quantities.
In one aspect of the invention there is provided a method of treating diseases of the gastrointestinal tract comprising administering to a person in need thereof a therapeutically effective amount of the inventive polypeptide.
A therapeutically effective amount of a polypeptide is an amount which is effective, upon single or multiple dose administration to a subject, in neutralising the biological effects of a chosen target to a significant extent in a subject. A therapeutically effective amount may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the polypeptide to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the polypeptide are outweighed by the therapeutically beneficial effects. The polypeptide of the invention can be incorporated into pharmaceutical compositions suitable for oral administration to a subject. The polypeptide of the invention can be in the form of a pharmaceutically acceptable salt.
In one aspect of the invention, there is provided a pharmaceutical composition comprising a polypeptide of the invention and one or more pharmaceutically acceptable diluents or carriers.
A pharmaceutical composition of the invention may be formulated for oral delivery. The pharmaceutical compositions of the invention may be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions, dispersions or suspensions, tablets, pills and powders. Solid dosage forms are preferred. The pharmaceutical composition may comprise a pharmaceutically acceptable excipient, and suitably may be used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
Typically, the composition of the invention or pharmaceutical composition of the invention comprises a polypeptide of the invention and a pharmaceutically acceptable excipient such as a carrier. Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol and the like, as well as combinations thereof. Pharmaceutically acceptable carriers may further comprise minor amounts of auxiliary substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the polypeptide of the invention. Pharmaceutical compositions may include antiadherents, binders, coatings, disintegrants, flavours, colours, lubricants, sorbents, preservatives, sweeteners, freeze dry excipients (including lyoprotectants) or compression aids. Suitably, the polypeptide of the invention is lyophilised before being incorporated into a pharmaceutical composition.
A polypeptide of the invention may also be provided with an enteric coating. An enteric coating is a polymer barrier applied on oral medication which protects the polypeptide from the low pH of the stomach. Materials used for enteric coatings include fatty acids, waxes, shellac, plastics, and plant fibers. Suitable enteric coating components include methyl acrylate-methacrylic acid copolymers, cellulose acetate succinate, hydroxy propyl methyl cellulose phthalate, hydroxy propyl methyl cellulose acetate succinate (hypromellose acetate succinate), polyvinyl acetate phthalate (PVAP), methyl methacrylate-methacrylic acid copolymers, sodium alginate and stearic acid. Suitable enteric coatings include pH-dependent release polymers. These are polymers which are insoluble at the highly acidic pH found in the stomach, but which dissolve rapidly at a less acidic pH. Thus, suitably, the enteric coating will not dissolve in the acidic juices of the stomach (pH ˜3), but will do so in the higher pH environment present in the small intestine (pH above 6) or in the colon (pH above 7.0). The pH-dependent release polymer is selected such that the polypeptide of the invention will be released at about the time that the dosage reaches the target region of the intestinal tract.
The composition of the invention may be formulated in a buffer, in order to stabilise the pH of the composition, at a concentration between 5-50, or more suitably 15-40 or more suitably 25-30 g/litre. Examples of suitable buffer components include physiological salts such as sodium citrate and/or citric acid. Suitably buffers contain 100-200, more suitably 125-175 mM physiological salts such as sodium chloride. Suitably the buffer is selected to have a pKa close to the pH of the composition or the physiological pH of the patient.
Exemplary polypeptide concentrations in a pharmaceutical composition may range from about 10 ng/mL to about 200 mg/mL, such as about 50 ng/mL to about 100 mg/mL, such as about 1 ug/mL to about 80 mg/mL, such as about 10 ug/mL to about 50 mg/mL, such as about 50 ug/mL to about 30 mg/mL, such as about 100 ug/mL to about 20 mg/mL, or about 1 mg/mL to about 200 mg/ml or from about 50 mg/mL to about 200 mg/mL, or from about 150 mg/mL to about 200 mg/mL.
An aqueous formulation of the polypeptide of the invention may be prepared in a pH-buffered solution, e.g., at pH ranging from about 4.0 to about 7.0, or from about 5.0 to about 6.0, or alternatively about 5.5. Examples of suitable buffers include phosphate-, histidine-, citrate-, succinate-, acetate-buffers and other organic acid buffers. The buffer concentration can be from about 1 mM to about 100 mM, or from about 5 mM to about 50 mM, depending, for example, on the buffer and the desired tonicity of the formulation.
The tonicity of the pharmaceutical composition may be altered by including a tonicity modifier. Such tonicity modifiers can be charged or uncharged chemical species. Typical uncharged tonicity modifiers include sugars or sugar alcohols or other polyols, preferably trehalose, sucrose, mannitol, glycerol, 1,2-propanediol, raffinose, sorbitol or lactitol (especially trehalose, mannitol, glycerol or 1,2-propanediol). Typical charged tonicity modifiers include salts such as a combination of sodium, potassium or calcium ions, with chloride, sulfate, carbonate, sulfite, nitrate, lactate, succinate, acetate or maleate ions (especially sodium chloride or sodium sulphate); or amino acids such as arginine or histidine. Suitably, the aqueous formulation is isotonic, although hypertonic or hypotonic solutions may be suitable. The term “isotonic” denotes a solution having the same tonicity as some other solution with which it is compared, such as physiological salt solution or serum. Tonicity agents may be used in an amount of about 5 mM to about 350 mM, e.g., in an amount of 1 mM to 500 nM. Suitably, at least one isotonic agent is included in the composition.
A surfactant may also be added to the pharmaceutical composition to reduce aggregation of the formulated polypeptide and/or minimize the formation of particulates in the formulation and/or reduce adsorption. Exemplary surfactants include polyoxyethylensorbitan fatty acid esters (Tween), polyoxyethylene alkyl ethers (Brij), alkylphenylpolyoxyethylene ethers (Triton-X), polyoxyethylene-polyoxypropylene copolymer (Poloxamer, Pluronic), and sodium dodecyl sulfate (SDS). Examples of suitable polyoxyethylenesorbitan-fatty acid esters are polysorbate 20, and polysorbate 80. Exemplary concentrations of surfactant may range from about 0.001% to about 10% w/v.
A lyoprotectant may also be added in order to protect the polypeptide of the invention against destabilizing conditions during the lyophilization process. For example, known lyoprotectants include sugars (including glucose, sucrose, mannose and trehalose); polyols (including mannitol, sorbitol and glycerol); and amino acids (including alanine, glycine and glutamic acid). Lyoprotectants can be included in an amount of about 10 mM to 500 mM.
The dosage ranges for administration of the pharmaceutical composition of the invention are those to produce the desired therapeutic effect. The dosage range required depends on the precise nature of the pharmaceutical composition, the target region of the intestinal tract, the nature of the formulation, the age of the patient, the nature, extent or severity of the patient's condition, contraindications, if any, and the judgement of the attending physician. Variations in these dosage levels can be adjusted using standard empirical routines for optimisation.
The increased intestinal stability of a polypeptide of the invention means that a lower dose may be delivered orally than would otherwise need to be delivered orally in the case of a corresponding polypeptide not having histidine substitutions of the invention.
Suitable daily dosages of a polypeptide of the invention or pharmaceutical composition of the invention are in the range of 50 ng-50 mg per kg, such as 50 ug-40 mg per kg, such as 5-30 mg per kg of (e.g. human) body weight, such as less than 25, such as less than 20, such as less than 15, such as less than 10 mg, such as less than 50 ug, such as less than 50 ng per kg of body weight. The unit dose will typically will be in the region of 250-2000 mg per dose, such as from less than 1000 mg, such as less than 700 mg, such as less than 400 mg, such as less than 100 mg, such as less than 100 ug, such as less than 50 ug, such as less than 10 ug, such as less than 100 ng, such as less than 50 ng.
A dose may be administered daily or more frequently, for example 2, 3 or 4 times per day or less frequently for example every other day, once per week, once per fortnight or once per month.
Treatment of diseases also embraces treatment of exacerbations thereof and also embraces treatment of patients in remission from disease symptoms to prevent relapse of disease symptoms.
Combination Therapy
A pharmaceutical composition of the invention may also comprise one or more active agents (e.g. active agents suitable for treating diseases such as those mentioned herein). It is within the scope of the invention to use the pharmaceutical composition of the invention in therapeutic methods for the treatment of bacterial infection, autoimmune and/or inflammatory diseases as an adjunct to, or in conjunction with, other established therapies normally used in the treatment of bacterial, autoimmune and/or inflammatory diseases.
For the treatment of inflammatory bowel disease (such as Crohn's disease or ulcerative colitis), possible combinations include combinations with, for example, one or more active agents selected from the list comprising: 5-aminosalicylic acid, or a prodrug thereof (such as sulfasalazine, olsalazine or bisalazide); corticosteroids (e.g. prednisolone, methylprednisolone, or budesonide); immunosuppressants (e.g. cyclosporin, tacrolimus, methotrexate, azathioprine or 6-mercaptopurine); anti-TNF-alpha antibodies (e.g., infliximab, adalimumab, certolizumab pegol or golimumab); anti-IL12/IL23 antibodies (e.g., ustekinumab); anti-IL-6R antibodies or small molecule IL12/IL23 inhibitors (e.g., apilimod); Anti-alpha-4-beta-7 antibodies (e.g., vedolizumab); MAdCAM-1 blockers (e.g., PF-00547659); antibodies against the cell adhesion molecule alpha-4-integrin (e.g., natalizumab); antibodies against the IL2 receptor alpha subunit (e.g., daclizumab or basiliximab); JAK3 inhibitors (e.g., tofacitinib or R348); Syk inhibitors and prodrugs thereof (e.g., fostamatinib and R-406); Phosphodiesterase-4 inhibitors (e.g., tetomilast); HMPL-004; probiotics; Dersalazine; semapimod/CPSI-2364; and protein kinase C inhibitors (e.g. AEB-071). The most suitable combination agents are infliximab, adalimumab, certolizumab pegol or golimumab.
For the treatment of bacterial infections, such as Clostridium difficile infection, possible combinations include combinations with, for example, one or more active agents selected from the list comprising C. difficile toxoid vaccine, ampicillin, amoxicillin, vancomycin, metronidazole, fidaxomicin, linezolid, nitazoxanide, rifaximin, ramoplanin, difimicin, clindamycin, cephalosporins (such as second and third generation cephalosporins), fluoroquinolones (such as gatifloxacin or moxifloxacin), macrolides (such as erythromycin, clarithromycin, azithromycin), penicillins, aminoglycosides, trimethoprim-sulfamethoxazole, chloramphenicol, tetracycline, imipenem, meropenem, antibacterial agents, bactericides, or bacteriostats. Possible combinations also include combinations with one or more active agents which are probiotics, for example Saccharomyces boulardii or Lactobacillus rhamnosus GG.
Hence another aspect of the invention provides a pharmaceutical composition of the invention in combination with one or more further active agents, for example one or more active agents described above. In a further aspect of the invention, the pharmaceutical composition or polypeptide is administered sequentially, simultaneously or separately with at least one active agent selected from the list above.
Similarly, another aspect of the invention provides a combination product comprising:
The invention also encompasses a kit of parts comprising components:
Component (i) of the kit of parts is thus component (A) above in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier. Similarly, component (ii) is component (B) above in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier. The one or more other active agents (i.e. component (B) above) may be, for example, any of the agents mentioned above in connection with the treatment of bacterial infection such as Clostridium difficile infection, autoimmune and/or inflammatory diseases such as IBD (e.g. Crohn's disease and/or ulcerative colitis). If component (B) is more than one further active agent, these further active agents can be formulated with each other or formulated with component (A) or they may be formulated separately. In one embodiment component (B) is one other therapeutic agent. In another embodiment component (B) is two other therapeutic agents. The combination product (either a combined preparation or kit-of-parts) of this aspect of the invention may be used in the treatment or prevention of an autoimmune disease (e.g. the autoimmune diseases mentioned herein).
Vectors and Hosts
The term “vector”, as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a plasmid, which refers to a circular double stranded DNA loop into which additional DNA segments may be ligated. Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian and yeast vectors). Other vectors (e.g. non-episomal mammalian vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “recombinant expression vectors” (or simply, “expression vectors”). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” may be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g. replication defective retroviruses. adenoviruses and adeno-associated viruses), which serve equivalent functions, and also bacteriophage and phagemid systems. The invention also relates to nucleotide sequences that encode polypeptides of the invention. The term “recombinant host cell” (or simply “host cell”), as used herein, is intended to refer to a cell into which a recombinant expression vector has been introduced. Such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell.
In one aspect of the invention there is provided a polynucleotide encoding a polypeptide of the invention. In a further aspect of the invention there is provided a vector comprising the polynucleotide or cDNA comprising said polynucleotide. In a further aspect of the invention there is provided a host cell transformed with said vector, which is capable of expressing the polypeptide of the invention. Suitably the host cell is a mammalian cell, a plant cell, a yeast cell such as a yeast cell belonging to the genera Aspergillus, Saccharomyces, Kluyveromyces, Hansenula or Pichia, such as S. cerevisiae or P. pastoris; or a bacterial cell such as E. coli.
Preparative Methods
Polypeptides of the invention can be obtained and manipulated using the techniques disclosed for example in Green and Sambrook 2012 Molecular Cloning: A Laboratory Manual 4th Edition Cold Spring Harbour Laboratory Press. Suitably the substitutions made to the polypeptide of the invention, or substitutions made in the methods of the invention, are introduced synthetically. Suitably, the substitutions are not introduced by V(D)J recombination or somatic mutation.
In particular, artificial gene synthesis may be used to produce a polypeptide according to the invention (Nambiar et al 1984 Science 223:1299-1301, Sakamar and Khorana 1988 Nucl. Acids Res 14:6361-6372, Wells et al 1985 Gene 34:315-323 and Grundstrom et al 1985 Nucl. Acids Res 13:3305-3316, herein incorporated by reference in their entirety). A gene encoding a polypeptide of the invention can be synthetically produced by, for example, solid-phase DNA synthesis. Entire genes may be synthesized de novo, without the need for precursor template DNA. To obtain the desired oligonucleotide, the building blocks are sequentially coupled to the growing oligonucleotide chain in the order required by the sequence of the product. Upon the completion of the chain assembly, the product is released from the solid phase to solution, deprotected, and collected. Products can be isolated by high-performance liquid chromatography (HPLC) to obtain the desired oligonucleotides in high purity (Verma and Eckstein 1998 Annu Rev Biochem 67:99-134).
The constructs of the invention may be fused genetically at the DNA level i.e. a polynucleotide construct which encodes the complete construct comprising one or more polypeptides. One way of joining multiple polypeptides via the genetic route is by linking the polypeptide coding sequences via a labile peptide linker coding sequence. For example, the carboxy-terminal end of the first polypeptide may be linked to the amino-terminal end of the next polypeptide via a labile peptide linker coding sequence. This linking mode can be extended in order to link polypeptides for the construction of tri-, tetra-, etc. functional constructs. A method for producing multivalent (such as bivalent) VHH polypeptide constructs is disclosed in WO96/34103 (herein incorporated by reference in its entirety).
Mutations can be made to the DNA or cDNA that encode polypeptides which are silent as to the amino acid sequence of the polypeptide, but which provide preferred codons for translation in a particular host. The preferred codons for translation of a nucleic acid in, e.g., E. coli and S. cerevisiae, are known.
Mutation of polypeptides can be achieved for example by substitutions, additions or deletions to a nucleic acid encoding the polypeptide. A substitution is the replacement of a residue with a different residue in the same, corresponding location. The substitutions, additions or deletions to a nucleic acid encoding the polypeptide can be introduced by many synthetic methods, including for example error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, PCR mutagenesis, in vivo mutagenesis, cassette mutagenesis, recursive ensemble mutagenesis, exponential ensemble mutagenesis, site-specific mutagenesis (Ling et al 1997 Anal Biochem 254(2):157-178, herein incorporated by reference in its entirety), gene reassembly, Gene Site Saturation Mutagenesis (GSSM), synthetic ligation reassembly (SLR) or a combination of these methods. The modifications, additions or deletions to a nucleic acid can also be introduced by a method comprising recombination, recursive sequence recombination, phosphothioate-modified DNA mutagenesis, uracil-containing template mutagenesis, gapped duplex mutagenesis, point mismatch repair mutagenesis, repair-deficient host strain mutagenesis, chemical mutagenesis, radiogenic mutagenesis, deletion mutagenesis, restriction-selection mutagenesis, restriction-purification mutagenesis, ensemble mutagenesis, chimeric nucleic acid multimer creation, or a combination thereof.
Expression of polypeptides comprising immunoglobulin chain variable domains such as VHs and VHHs can be achieved using a suitable expression vector such as a prokaryotic cell such as bacteria, for example E. coli (for example according to the protocols disclosed in WO94/04678 and WO96/34103, which are incorporated herein by reference). Expression of immunoglobulin chain variable domains such as VHs and VHHs can also be achieved using eukaryotic cells, for example insect cells, CHO cells, Vero cells or suitably yeast cells such as yeasts belonging to the genera Aspergillus, Saccharomyces, Kluyveromyces, Hansenula or Pichia. Suitably S. cerevisiae is used (for example according to the protocols disclosed in WO94/025591, which is incorporated herein by reference).
Suitably, a polypeptide of the invention can be produced in a fungus such as a yeast (for example, S. cerevisiae) comprising growth of the fungus on a medium comprising a carbon source wherein 50-100 wt % of said carbon source is ethanol, according to the methods disclosed in WO02/48382.
A set of clauses defining the invention and its preferred aspects is as follows:
A set of further clauses defining the invention and its preferred aspects is as follows. The features recited in the claims recited below optionally apply mutatis mutandis to these further clauses 1 to 3.
The present invention will now be further described by means of the following non-limiting examples.
The intestinal stability and potency of a polypeptide comprising an immunoglobulin chain variable domain can be assayed using the following methods. The methods below refer to ICVDs, but are equally applicable to any polypeptide which comprises an ICVD, such as an antibody.
1.1 Standard Intestinal Tract Models
Ex vivo samples from human faeces and mouse small intestine samples are highly relevant matrices for estimation of stability in the human intestinal tract. Such samples contain native host-produced, and associated microbial-produced, proteases along with any chaotropic agents or surfactants that may influence ICVD stability in the presence of proteases. The enzymatic cleavage sites of at least some proteases present in the small intestine from murine and human origin are well characterised and conserved between the two species. Murine small intestinal supernatants were found to be a particularly stringent challenge in terms of total protease activity by comparison to small intestinal samples from pigs and clinically-derived human lavage samples of the small intestine.
The intestinal tract models detailed below, which utilise ex vivo samples from human faeces and mouse small intestine, therefore allow one to assay the stability of a polypeptide comprising an ICVD in an environment which is highly representative of the conditions of the intestinal tract. The percentage of viable ICVD remaining after incubation is assessed after incubation in an intestinal tract model using an appropriate assay such as the Standard Western Blot Stability Assay (for assaying proportions of intact ICVD) or the Standard TNFR2/TNF Interference ELISA Assay or Standard Toxin ELISA Assay (both for assaying proportions of functional ICVD).
Note that from the point of sampling from mouse or human up to the point of use in an ICVD stability assay, all faecal/intestinal samples, slurries and supernatants should be kept chilled on ice or manipulations such as centrifugation carried out at 4° C. Once generated, supernatant samples may be frozen at −80° C. and thawed once (or twice) before use. Repeat freeze-thawing is likely to result in loss of protease stability. Prolonged storage (>1 year) at −80° C. does not appear to reduce total protease activity. However, slurries and supernatants should be monitored on a case-by-case basis over time.
1.1.1 The Standard Human Faecal Supernatant Intestinal Tract Model
Faecal Supernatant Pool Production
To generate supernatants for stability testing, Ix PBS is added to faecal samples at a ratio of 1 or 2 mLs 1×PBS per gram of faeces. The samples are then vortexed to homogeneity. The resulting material is referred to as a faecal slurry (in the case of a very limited number of particularly firm samples used in the examples below, it was necessary to add 3 mLs 1×PBS per gram faeces in order to generate a homogenous faecal slurry). To generate supernatants for testing, slurries are centrifuged at 4.5 k rpm or 13.5 k rpm (4° C.) for 1-5 minutes to remove the bulk of the solid material and all cellular material. The supernatant from the first spin is then re-centrifuged at 13.5 k rpm (4° C.) for 5 minutes, leaving only the soluble fraction, including proteases. Supernatants from multiple individuals are pooled together such that each pool represents the combined protease output from the faeces of multiple individuals.
For the purposes of the worked examples below, hospital-derived human faecal samples were obtained (and the presence of C. difficile in the samples was established), before supernatant pools were then generated as described above. The pools were characterised according to Table 1.
Performing the Assay
Prepare 20× protease inhibitor solution by adding 1 tab of Sigmafast Protease Inhibitor Cocktail (Sigma S8830, containing AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride, Bestatin, E-64, Pepstatin A, Phosphoramidon, Leupeptin, Aprotinin) to 5 mL protease stop buffer (1×PBS, 2% BSA, 5 mM EDTA). This solution may be stored for 2 weeks at 2-8 degrees C. On the day of the assay, briefly vortex the supernatant matrix to ensure homogeneity. Prepare all reactions on ice and keep chilled until the assay is first incubated.
Prepare 2× protease stop solution by diluting 20× protease inhibitor solution in protease stop buffer and adding PMSF to a concentration of 1 mM in the 2× stop buffer (1/100 dilution of 0.1 M solution Sigma 93482). Keep this solution chilled on ice at all times before use.
Prepare ICVD (or antibody) solutions at 250 μg/mL in 0.1% BSA. On ice, in thin-walled PCR tubes or plates, dilute the 250 μg/mL ICVD into the supernatant matrix to give a final ICVD concentration (at time zero) of 20 μg/mL. Mix the resulting solution on ice by pipetting, ensuring the solution does not warm up. Once homogenous, immediately remove one volume of the sample matrix plus 20 μg/mL ICVD and mix with an equal volume of 2× protease stop solution. Mix the stopped matrix solution on ice and immediately freeze at −80 degrees C. This is the time zero sample. Incubate the remaining test matrix sample plus 20 μg/mL ICVD at 37 degrees C. in a PCR machine or similar apparatus. At the required timepoints repeat the procedure above to generate stopped supernatant samples for comparison to the time zero sample. In addition, generate a protease-stopped matrix control that does not contain ICVD by adding one volume of matrix sample (containing no ICVD) from time zero with an equal volume of 2× protease stop solution. This will be used as a control in downstream analysis to assess the effect of the matrix on, for example, ELISAs or western blotting profiles.
Following measurement using the Standard Western Blot Stability Assay, the Standard TNFR2/TNF Interference ELISA Assay or the Standard Toxin ELISA Assay, the amount of viable ICVD remaining after incubation in a matrix sample at a given timepoint is divided by the amount present at the zero timepoint. The resulting figure is then multiplied by 100 to give % stability. In the case of the Standard Western Blot Stability Assay, this provides proportion of intact ICVD. In the case of the Standard TNFR2/TNF Interference ELISA Assay or the Standard Toxin ELISA Assay, this provides the proportion of functional ICVD.
1.1.2 The Standard Mouse Small Intestinal Supernatant Intestinal Tract Model
Faecal Supernatant Pool Production
C57BL/6 (‘black 6’) mice are sacrificed. The small intestine, including the full duodenum, jejunum and ileum are excised from the body cavity of mice carefully so as to minimise unnecessary tissue damage. The solid contents of the small intestine are collected and the internal surface of the small intestine flushed with 1 mL 0.9% saline (to preserve the native pH of the intestinal contents). The 1 mL intestinal washout solution and intestinal contents samples are then mixed together and homogenised fully by vortexing to generate a small intestinal slurry. To generate supernatants for testing, slurries are centrifuged at 13.5 k rpm (4° C.) for 2 minutes to remove the bulk of the solid material and all cellular material. The supernatant from the first spin are then re-centrifuged at 13.5 k rpm (4° C.) for 5 minutes, leaving only the soluble fraction, including proteases. Supernatants from multiple mice (5 on average per pool) are mixed together such that each pool represents the combined protease output from the small intestine of multiple mice.
In the examples below, it was found that different pools of mouse small intestinal supernatant used over time demonstrated similar proteolytic activity.
Performing the Assay
The supernatants are used in the same manner as described above under The Standard Human Faecal Supernatant Intestinal Tract Model under ‘Performing the Assay’.
1.2 The Standard Western Blot Stability Assay
For Assessment of Percentage Viable ICVD Remaining after Incubation in an Intestinal Tract Model
Preparation of Samples for SDS-PAGE (Under Reducing Conditions):
Use a Novex 10% Bis-Tris gel (NP0302Box) in combination with Ix SDS-MES running buffer (Novex NP0002-02) to visualise ICVDs by SDS-PAGE.
The amount of viable ICVD in a matrix sample at a given timepoint is divided by the amount present at the zero timepoint. The resulting figure is then multiplied by 100 to give % stability.
1.3 The Standard Toxin ELISA Assay
For Assessing the Potency of an Anti-TcdA or Anti-TcdB ICVD and for Assessment of Percentage Viable Anti-TcdA or Anti-TcdB ICVD Remaining after Incubation in an Intestinal Tract Model.
Materials:
Block buffer plus 2× Protease inhibitor is used as the assay diluent to prepare ICVD solutions prior to addition to the ELISA plate, when the ICVD sample is present in a digestive matrix such as mouse small intestinal supernatant or human faecal supernatant that may otherwise interfere with the performance of the ELISA. 1/200 dilution of 0.1 M PMSF solution Sigma 93482 can be used to achieve 0.5 mM PMSF. EDTA must also be added to a final concentration of 2.5 mM. Sigmafast protease Inhibitor cocktail (Sigma S8830, contains AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride, Bestatin, E-64, Pepstatin A, Phosphoramidon, Leupeptin, Aprotinin) is used in this buffer. A stock of 20× protease inhibitor solution can be made by adding 1 tab of Sigmafast Protease Inhibitor Cocktail (Sigma S8830) to 5 mL protease stop buffer (1×PBS, 2% BSA, 5 mM EDTA). This solution may be stored for 2 weeks at 2-8° C. and diluted into block buffer on the day of the ELISA.
Anti-TcdA ICVD Detection by ELISA
This assay is designed to test anti-TcdA specific ICVDs for their ability to bind to Clostridium difficile toxin A bound to an ELISA plate. The plate coating toxin for this assay is full-length TcdA VP110463 (087).
Method:
This assay is designed to test anti-TcdB specific ICVDs for their ability to bind to Clostridium difficile TcdB Cell Binding Domain (CBD-B) bound to an ELISA plate. It is critical to check before running this assay that the ICVD being tested does not bind elsewhere on TcdB, otherwise no signal will be observed.
Method:
This assay detects binding of recombinant human TNF to the fusion protein, Enbrel (etanercept). This protein is comprised of soluble TNRF2 bound to the Fc region of human IgG, and can be used for capture of TNFα. This interaction can be competed for by anti-TNF ICVDs, causing reduced binding of TNFα to Enbrel. Bound TNF is then detected by an anti-hTNFα antibody. Therefore, high signal in this ELISA represents a low concentration of anti-TNF ICVD, and vice versa. Due to an overnight incubation step with the primary detection antibody, this assay usually takes approximately one and a half days to complete.
2. Materials
Solutions Required:
Block buffer plus 2× Protease inhibitor is used as the assay diluent to prepare ICVD and TNF solutions, prior to mixing and addition to the ELISA plate, when the ICVD sample is present in a digestive matrix such as mouse small intestinal supernatant or human faecal supernatant that may otherwise interfere with the performance of the ELISA. 1/200 dilution of 0.1 M PMSF solution Sigma 93482 can be used to achieve 0.5 mM PMSF. EDTA must also be added to a final concentration of 2.5 mM. Sigmafast protease Inhibitor cocktail (Sigma S8830, contains AEBSF (4-(2-Aminoethyl) benzenesulfonyl fluoride, Bestatin, E-64, Pepstatin A, Phosphoramidon, Leupeptin, Aprotinin) is used in this buffer. A stock of 20× protease inhibitor solution can be made by adding 1 tab of Sigmafast Protease Inhibitor Cocktail (Sigma S8830) to 5 mL protease stop buffer (1×PBS, 2% BSA, 5 mM EDTA). This solution may be stored for 2 weeks at 2-8° C. and diluted into block buffer on the day of the ELISA.
Reagents Required:
Determine number of plates required for the assay. Coat Maxisorb 96-well ELISA plate (Nunc) with 50 μl/well 1 μg/ml Enbrel in 1×PBS. Shake plate briefly, seal and incubate at 4° C. overnight.
Assay:
In Step 6, equal volumes of diluted ICVD and TNFα are mixed before addition to the ELISA plate. This step effectively dilutes by twofold the concentrations of ICVD and TNFα. Therefore, the final concentration of TNFα on the plate will be 2.5 ng/ml and the final concentration of the ICVD standard curve will be from 0.02 nM to 5 nM. This dilution should be accounted for when estimating appropriate sample dilution factors. The TMB substrate reaction may progress quickly. The colour of the plate should be checked periodically, and if a very bright blue colour appears before 30 mins, the reaction should be stopped since very high absorbance can lead to high background. Appropriate controls should include triplicate wells of: BSA only, no ICVD (i.e. 2.5 ng/ml TNFα only), and if desired, no TNFα (i.e. 5 nM ICVD only). For digestion analysis ELISAs, a no-ICVD matrix sample that has been stopped by the addition of 2× protease stop solution should be added to TNF. The lowest dilution (or highest concentration) of the background matrix in the control should match the lowest dilution (or highest concentration) of digestive matrix in the highest ICVD concentration mixed with TNF/applied to the plate.
1.5 The Vero Cell Cytotoxicity Standard Assay
For Assessing the Potency of an Anti-Toxin ICVD
Culture and Maintenance of Vero Cells Prior to Use
Routine subculture of Vero cells can be achieved as follows:
Ideally, plates should be prepared the day before use in the cytotoxicity assay. However, plates may also be prepared on the day of use if necessary. If the latter is the case, prepare plates in the morning (for use in the afternoon) and ensure that at least 3 hours are allowed for cell attachment to the microplate prior to use. A fully confluent flask of Vero cells should be used to make the cell suspension for plating.
Note: All solutions described in this section are prepared in Vero cell culture medium. You should calculate the required final volume of toxin and ICVD to cover the number of plates/combinations before starting the assay. Mix all solutions well (by vortexing and/or multiple inversions) between dilution steps.
For ease of interpretation in the main assay, the appropriate concentration of toxin to use should be determined beforehand by conducting a toxin dose-response experiment on Vero cells. Prepare 10 serial dilutions of toxin in a 12 well dilution trough. Use the remaining two wells for 0.01% Triton and a medium only control. Prepare a minimum of 330 μL of each solution in the dilution trough (this allows three replicates at 100 μl each). If there is no indication of how potent the toxin preparation is in advance, choose a broad dilution range for the preliminary experiment. This can be repeated over a finer concentration range, if necessary. Apply these solutions to Vero cells in a flat-bottomed microplate, incubate and process the plate as described above.
To assay an ICVD, or full antibody, for neutralisating activity against a given concentration of toxin, the minimum concentration of each toxin preparation capable of inducing the maximum reduction in cell viability is selected. An exemplary toxin dose-response curve on Vero cells is provided in
1.6 The Standard gp130 ELISA Assay
For Assessing the Potency of an Anti-IL-6R ICVD
The objective of this assay is to measure the potency of anti-IL-6R ICVDs by measuring interference in the binding to gp130 of a sIL-6/IL-6R complex. This assay detects binding of hIL-6R/hIL-6 complexes to recombinant human gp130. This interaction can be competitively inhibited by anti-IL-6R ICVDs, causing reduced binding of hIL-6R-hIL-6 complexes to gp130. Therefore, high signal in this ELISA represents a low concentration of anti-IL-6R ICVD, and vice versa.
Materials
Solutions Required:
The objective of this assay is to measure the remaining concentration of active anti-IL-6R ICVDs which have previously been incubated in the presence of proteolytic material, such as mouse small intestinal supernatant or human faecal extract, thereby elucidating the impact on the ICVD of any proteolysis which may have taken place during incubation and therefore the proteolytic stability of the anti-IL-6R ICVDs. This assay detects binding of hIL-6R/hIL-6 complexes to recombinant human gp130. This interaction can be competitively inhibited by anti-IL-6R ICVDs, causing reduced binding of hIL-6R-hIL-6 complexes to gp130. Therefore, high signal in this ELISA represents a low concentration or low affinity of anti-IL-6R ICVD remaining active, and vice versa. The % survival is the percentage concentration of active ICVD, interpolated using the standard curve, maintained between a sample before and after digestion.
Materials
Solutions required:
Q65B1 is an anti-TNF-alpha ICVD isolated, cloned and purified from a llama immunised with soluble human recombinant TNF-alpha. Residue K59 of the Q65B1 polypeptide sequence was substituted with alanine, histidine or glutamine and the impact of each substitution on intestinal tract stability and potency was tested.
DNA encoding each ICVD was cloned into vector pMEK222, expressed, and purified from the periplasm of E. coli (either by Talon or Nickel NTA column). All ICVDs tested here carry an identical C-terminal Flag-His6 tag.
Residue K59 resides in CDR2 of Q65B1. Q65B1 with a K59A substitution is labelled “ID43F”, Q65B1 with a K59H substitution is labelled “ID8F-EV”, and Q65B1 with a K59Q substitution is labelled “ID44F”.
2.1.1 Potency—Standard TNFR2/TNF Interference ELISA Assay—Experiment 1
Dose-response curves of each ICVD were generated using the Standard TNFR2/TNF Interference ELISA Assay, which were used to generate EC50 values (
2.1.2 Potency—Standard TNFR2/TNF Interference ELISA Assay—Experiment 2
In a repeat experiment, dose-response curves of Q65B1 and ID8F-EV were generated again using the Standard TNFR2/TNF Interference ELISA assay (
2.2.1 Intestinal stability—Standard Mouse Small Intestinal Supernatant Intestinal Tract Model—Experiment 1
ICVDs were digested in mouse small intestinal material for 6 hours according to the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard TNFR2/TNF Interference ELISA Assay. The results are shown in
2.2.2 Intestinal stability—Standard Mouse Small Intestinal Supernatant Intestinal Tract Model—Experiment 2
Q65B1 and ID8F-EV were digested in mouse small intestinal material for 16 hours according to the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model. Percentage stability of ICVDs were calculated using the Standard TNFR2/TNF Interference ELISA Assay. The results are shown on the right hand side of
2.2.3 Intestinal stability—Standard Human Faecal Supernatant Intestinal Tract Model
Q65B1 and ID8F-EV were digested for 16 hours in human faecal supernatant according to the the Standard Human Faecal Supernatant Intestinal Tract Model. Percentage stability of ICVDs were calculated using the Standard TNFR2/TNF Interference ELISA Assay. The results are shown on the left hand side of
2.3 Conclusion
K59A and K59Q reduced potency compared to K59 and K59H (see
K59A and K59Q reduced stability in mouse small intestinal material after 6 hours incubation, compared to K59 (see
K59H increased stability in mouse small intestinal material after 6 hours incubation and after 16 hours incubation, compared to K59 (see
The stability increases of K59H were achieved without significantly compromising potency.
Both residues K59 and K101 of Q65B1 were substituted with histidine (making “ID34F”). Residue K59 resides in CDR2 of Q65B1 and residue K101 resides in CDR3 of Q65B1. DNA encoding ID34F was cloned and expressed in yeast.
Q65B1 substituted with a K59H residue (as in Example 2) was produced again, having the same sequence as ID8F-EV described above. However, on this occasion DNA encoding this ICVD was cloned and expressed in yeast (therefore lacking the C-terminal Flag-His6 tag) and is therefore labelled “ID32F” in this example.
3.1 Potency—Standard TNFR2/TNF Interference ELISA Assay
Dose-response curves of each ICVD were generated using the Standard TNFR2/TNF Interference ELISA Assay. A concentration range of 0-3 nM was used (
3.2.1 Intestinal stability—Standard Mouse Small Intestinal Supernatant Intestinal Tract Model
ICVDs were digested for 16 hours in mouse small intestinal material according to the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard TNFR2/TNF Interference ELISA Assay. The results are shown in
3.2.2 Intestinal Stability—Standard Human Faecal Supernatant Intestinal Tract Model
ICVDs were digested for 16 hours in human faecal supernatant according to the Standard Human Faecal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard TNFR2/TNF Interference ELISA Assay. The results are shown in
3.3 Conclusion
The additional K101H substitution in CDR3 of ID34F further increased intestinal stability of the ICVD according to both the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model (
ID45B is a modified anti-TcdB ICVD derived from a progenitor ICVD (Q31B1). Q31B1 was isolated, cloned and purified from a llama immunised with TcdB toxoids prepared by formalin inactivation of purified TcdB. Residue R107 of the ID45B polypeptide sequence was substituted with alanine, histidine, glutamine, phenylalanine or tryptophan and the impact of each substitution on intestinal stability and potency was tested.
DNA encoding each ICVD was cloned into vector pMEK222, expressed, and purified from the periplasm of E. coli (either by Talon or Nickel NTA column). All ICVDs tested here carry an identical C-terminal Flag-His6 tag.
Residue R107 resides in CDR3 of ID45B. The substituted ICVDs were labelled according to Table 4.
4.1 Potency—Vero Cell Cytotoxicity Standard Assay
Dose-response curves of each ICVD were generated using the Vero Cell Cytotoxicity Standard Assay (
4.2 Intestinal Stability—Standard Human Faecal Supernatant Intestinal Tract Model
ICVDs were digested for 30 minutes in human faecal supernatant pool 4 according to the Standard Human Faecal Supernatant Intestinal Tract Model. Percentage survival of ICVDs was calculated using the Standard Western Blot Stability Assay. The results are shown in
4.3 Conclusion
All substitutions reduced potency relative to ‘unsubstituted’ ID45B. However, R107H and R107F substitutions (ID46B and ID49B) resulted in only a minor potency reduction, whilst R107A, R107Q and R107W substitutions (ID47B, ID48B and ID50B) resulted in substantial potency reduction (
Whilst both R107H and R107F substitutions resulted in a similar minor potency reduction, R107H resulted in the highest intestinal stability increase of all substitutions tested (see
R107H provided the largest increase in stability, with only a minor impact on potency.
ID2B is a modified anti-TcdB ICVD derived from a progenitor ICVD (Q31B1). Residues R53 and R56 in CDR2 of the ID2B polypeptide sequence were both substituted with histidine residues (making “ID20B”). Independently, residues R107 and R109 in CDR3 of the ID2B polypeptide sequence were each substituted with a histidine residue (the sole R107H substitution making “ID21B” and the sole R109H substitution making “ID22B”). These ICVDs are summarised in Table 5. The impact of these substitutions on trypsin stability, intestinal stability and potency was tested.
DNA encoding ID2B was cloned into vector pMEK222, expressed, and purified from the periplasm of E. coli. ID2B carries a C-terminal Flag-His6 tag. DNA encoding I D20B, ID21B and I D22B was cloned and expressed in yeast.
5.1 Potency—Vero Cell Cytotoxicity Standard Assay
Dose-response curves of each ICVD were generated using TcdB from the 027 C. difficile ribotype in the Vero Cell Cytotoxicity Standard Assay (
5.2.1 The Standard Trypsin Intestinal Tract Model
The ICVDs were assayed for trypsin stability. A buffered (10 mM acetic acid, pH 3.2, containing 0.01% thimerosal) aqueous suspension of TPCK-treated Trypsin-agarose beads (trypsin from bovine pancreas; T4019; Sigma Aldrich) is used for the assay. The beads are washed 3 times with water (250 μl beads+1.25 ml water) followed by washing 5 times with Trypsin buffer (TRYP buffer; 1 mM Tris-HCl, 20 mM CaCl2 [pH 8.0]). Finally, the resin is resuspended in TRYP buffer as a 50% (v/v) suspension.
100 μl of a 2 mg/ml construct solution is mixed with 225 μl 50% (v/v) immobilized TPCK-treated Trypsin in TRYP buffer. After time intervals of 0, 10, 15, 30, 45 and 60 minutes of incubation at 37° C. in a shaker, samples are taken as follows: resin is pelleted by a 1 min centrifugation step at 500×g, and a 40 μl sample is taken from the supernatant and mixed with 2× sample loading buffer (such as Laemmli buffer). The remaining suspension is mixed again, and put back at 37° C. in the shaker.
For analysis, 15 μl of each sample is mixed with 5 μl 4× loading dye, boiled for 10 mins and 15 μl is loaded per lane on a polyacrylamide gel (such as NuPAGE 10% acrylamide Bis-Tris gel). Gels are run in SDS-MES buffer at 200 V for 35 mins. Gels are fixed in 40% methanol, 7% acetic acid for 30 mins and stained in colloidal Coomassie Brilliant Blue stain overnight. Gels are destained in water before imaging (such as using ImageQuant LAS4000 with 7 secs exposure) (
5.2.2 Intestinal Stability—Standard Human Faecal Supernatant Intestinal Tract Model
ID2B and ID21B were digested for 1 hour in Faecal Pools 3 and 4 (
5.3 Conclusion
The single CDR3 substitutions resulted in a minor reduction in potency (
Due to the presence of the His-tag in ID2B, the results from the electrophoresis gel in
The faecal supernatant stability of ID21B (R107H) was substantially increased in both pool 3 (C. diff positive patient faeces) and pool 4 (C. diff negative patent faeces) compared to unsubstituted ID2B (
ID1B is a modified anti-TcdB ICVD derived from a progenitor ICVD (B10F1). B10F1 was isolated, cloned and purified from a llama immunised with 100 ug of TcdB toxoids prepared by formalin inactivation of purified TcdB.
Residue R58 in CDR2 of the ID1B polypeptide sequence was substituted with a histidine residue (making “ID24B”). Independently, residues R105 and R108 in CDR3 of the ID1B polypeptide sequence were each substituted with a histidine residue (the R105H substitution making “ID27B” and the R108H substitution making “ID25B”). These ICVDs are summarised in Table 6. The impact of these substitutions on intestinal stability and potency was tested.
DNA encoding ID1B, ID24B, ID25B and ID27B was cloned and expressed in yeast.
6.1 Potency—Vero Cell Cytotoxicity Standard Assay
Dose-response curves of each ICVD were generated using TcdB from the 027 C. difficile ribotype in the Vero Cell Cytotoxicity Standard Assay (
6.2.1 Intestinal Stability—Standard Human Faecal Supernatant Intestinal Tract Model
ID1B, ID24B, ID25B and ID27B were digested for 1 hour in Faecal Pool 2 (
6.2.2 Intestinal stability—The Standard Trypsin Intestinal Tract Model
The ICVDs were assayed for trypsin stability, in the manner described in Example 5 above (
6.3 Conclusion
The single CDR3 substitutions resulted in a minor reduction in potency (
The density of the main band in the ID1B gel (
The faecal supernatant stability of all substituted ICVDs was increased (
ID41B is an anti-TcdB bivalent construct consisting of modified versions of wild type ICVDs Q31B1 and B10F1. An R108H (CDR3) substitution was made in the B10F1 arm of ID41B (making “ID43B”). The impact of this substitution on potency and intestinal stability was tested. DNA encoding ID41B and ID43B was cloned and expressed in yeast.
7.1 Potency—Vero Cell Cytotoxicity Standard Assay
Dose-response curves of each construct were generated using TcdB from the 017 C. difficile ribotype in the Vero Cell Cytotoxicity Standard Assay (
7.2 Intestinal Stability—Standard Toxin ELISA Assay
Constructs were digested for 4 hours in Faecal Pools 2, 3 and 4 according to the Standard Human Faecal Supernatant Intestinal Tract Model. Three repeat ELISAs were run for each faecal pool. Percentage survival was calculated using the Standard Toxin ELISA Assay (
7.3 Conclusion
The R108H substitution (ID43B) had a very minor impact on potency (
ID17A is an anti-TcdA bivalent construct consisting of modified versions of wild type ICVDs B4F10 and Q34A3 (B4F10 and Q34A3 were isolated, cloned and purified from a llama immunised with TcdA toxoids prepared by formalin inactivation of purified TcdA).
An R109H (CDR3) substitution was made in the B4F10 arm of ID17A (making “ID29A”). The impact of this substitution on potency and intestinal stability was tested. DNA encoding ID17A and ID29A was cloned and expressed in yeast.
8.1 Potency—Vero Cell Cytotoxicity Standard Assay
Dose-response curves of each construct were generated using TcdA in the Vero Cell Cytotoxicity Standard Assay (
8.2 Intestinal Stability—Standard Human Faecal Supernatant Intestinal Tract Model
Constructs were digested for 1 hour in Faecal Pools 2, 3 and 4 according to the Standard Human Faecal Supernatant Intestinal Tract Model. Percentage survival was calculated using the Standard Toxin ELISA Assay (
8.3 Conclusion
The R109H (CDR3) substitution in one arm of this anti-TcdA bihead had a minor impact on potency (
7F6 is an anti-IL-6R ICVD. 7F6 was isolated, cloned and purified from a llama immunised with soluble human recombinant IL-6R.
Residue R102 in CDR3 of the 7F6 polypeptide sequence was substituted with a histidine residue (making “ID-3V”) and the impact of this substitution on potency and intestinal stability was tested. DNA encoding 7F6 and ID-3V was cloned and expressed in E. coli.
9.1 Potency—Standard gp130 ELISA Assay
Dose-response curves were generated using the standard gp130 ELISA assay and these were used to generate EC50 values (Table 7, graph not shown).
9.2 Intestinal Stability—Standard Mouse Small Intestinal Supernatant Intestinal Tract Model
ICVDs were digested for 4 hours in mouse small intestinal material according to the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard gp130 ELISA assay. The results are shown in Table 8.
9.3 Intestinal stability—Standard Human Faecal Supernatant Intestinal Tract Model
ICVDs were digested for 16 hours in human faecal supernatant according to the Standard Human Faecal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard gp130 ELISA assay. The results are shown in Table 9.
9.4 Conclusion
This R102H substitution in CDR3 of 7F6 further increased intestinal stability of the ICVD according to both the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model (see Tables 8 and 9), without significantly impacting potency (Table 7).
5G9 is an anti-IL-6R ICVD. 5G9 was isolated, cloned and purified from a llama immunised with soluble human recombinant IL-6R.
Residue R105 in CDR3 of the 5G9 polypeptide sequence was substituted with a histidine residue (making “ID-54V”) and the impact of this substitution on potency and intestinal stability was tested. DNA encoding 5G9 and ID-54V was cloned and expressed in E. coli.
10.1 Potency—Standard gp130 ELISA Assay
Dose-response curves were generated using the standard gp130 ELISA assay and these were used to generate EC50 values (Table 10, graph not shown).
10.2 Intestinal Stability—Standard Mouse Small Intestinal Supernatant Intestinal Tract Model
ICVDs were digested for 4 hours in mouse small intestinal material according to the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard gp130 ELISA assay. The results are shown in Table 11.
10.3 Intestinal Stability—Standard Human Faecal Supernatant Intestinal Tract Model
ICVDs were digested for 16 hours in human faecal supernatant according to the Standard Human Faecal Supernatant Intestinal Tract Model. Percentage stability of ICVDs was calculated using the Standard gp130 ELISA assay. The results are shown in Table 12.
10.4 Conclusion
This R105H substitution in CDR3 of 5G9 further increased intestinal stability of the ICVD according to both the Standard Mouse Small Intestinal Supernatant Intestinal Tract Model (see Tables 11 and 12), with only a minor impact on potency (Table 10).
Throughout the specification and the claims which follow, unless the context requires otherwise, the word ‘comprise’, and variations such as ‘comprises’ and ‘comprising’, will be understood to imply the inclusion of a stated integer, step, group of integers or group of steps but not to the exclusion of any other integer, step, group of integers or group of steps. All patents and patent applications mentioned throughout the specification of the present invention are herein incorporated in their entirety by reference. The invention embraces all combinations of preferred and more preferred groups and suitable and more suitable groups and embodiments of groups recited above.
Number | Date | Country | Kind |
---|---|---|---|
15162115 | Mar 2015 | EP | regional |
16152320 | Jan 2016 | EP | regional |
This patent application is a continuation of, and therefore claims priority from, U.S. patent application Ser. No. 15/717,230 entitled POLYPEPTIDES filed Sep. 27, 2017, which is a continuation of, and therefore claims priority from, International Application No. PCT/EP2016/057024 entitled POLYPEPTIDES filed Mar. 31, 2016, which claims priority from EP 15162115.8 filed Mar. 31, 2015 and EP 16152320.4 filed Jan. 21, 2016, the contents each of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3300077 | David et al. | Jan 1967 | A |
5512459 | Wagner et al. | Apr 1996 | A |
5780028 | Graham | Jul 1998 | A |
7442159 | Riechmann et al. | Oct 2008 | B1 |
8399188 | Zhao et al. | Mar 2013 | B2 |
8697654 | Cheng et al. | Apr 2014 | B2 |
9080157 | Convents et al. | Jul 2015 | B2 |
9527925 | Gschwind et al. | Dec 2016 | B2 |
9932412 | Kim et al. | Apr 2018 | B2 |
10633438 | Crowe et al. | Apr 2020 | B2 |
10772839 | Crowe et al. | Sep 2020 | B2 |
10980748 | Crowe et al. | Apr 2021 | B2 |
20040041867 | Lapstun et al. | Mar 2004 | A1 |
20050147612 | Yayon et al. | Jul 2005 | A1 |
20060034833 | Beirnaert | Feb 2006 | A1 |
20060034845 | Silence et al. | Feb 2006 | A1 |
20060057197 | Han et al. | Mar 2006 | A1 |
20060138181 | Thom et al. | Jun 2006 | A1 |
20070020267 | Fuh et al. | Jan 2007 | A1 |
20070042399 | Wright et al. | Feb 2007 | A1 |
20070077249 | Silence et al. | Apr 2007 | A1 |
20070178082 | Silence et al. | Aug 2007 | A1 |
20070237769 | Silence et al. | Oct 2007 | A1 |
20080026820 | Okada | Jan 2008 | A1 |
20080031770 | Heselton et al. | Feb 2008 | A1 |
20080039761 | Heaton et al. | Feb 2008 | A1 |
20080122965 | Fang | May 2008 | A1 |
20080145420 | Simon | Jun 2008 | A1 |
20080149143 | Chou et al. | Jun 2008 | A1 |
20080260738 | Moore et al. | Oct 2008 | A1 |
20080260820 | Borrelly et al. | Oct 2008 | A1 |
20090064457 | Brustle | Mar 2009 | A1 |
20090064460 | Tang et al. | Mar 2009 | A1 |
20100077422 | Bushinsky | Mar 2010 | A1 |
20100137213 | Fernandez et al. | Jun 2010 | A1 |
20100239682 | Andremont et al. | Sep 2010 | A1 |
20100260857 | Fallon et al. | Oct 2010 | A1 |
20110028695 | Revets et al. | Feb 2011 | A1 |
20110098518 | Minoux et al. | Apr 2011 | A1 |
20110109365 | Mai | May 2011 | A1 |
20110112229 | Nagaoka et al. | May 2011 | A1 |
20110229476 | Liu et al. | Sep 2011 | A1 |
20120130872 | Baughman et al. | May 2012 | A1 |
20120151199 | Shriver | Jun 2012 | A1 |
20130173687 | Tuchman et al. | Jul 2013 | A1 |
20140030049 | Imai et al. | Jan 2014 | A1 |
20140044730 | Yancopoulos | Feb 2014 | A1 |
20140141152 | Sostek et al. | May 2014 | A1 |
20140170212 | Ortenzi et al. | Jun 2014 | A1 |
20140186365 | Robinson et al. | Jul 2014 | A1 |
20140294826 | Shoemaker | Oct 2014 | A1 |
20140377287 | Govindan et al. | Dec 2014 | A1 |
20150017183 | Seidah | Jan 2015 | A1 |
20150058173 | Schmeling et al. | Feb 2015 | A1 |
20150147318 | Bergeron | May 2015 | A1 |
20150176031 | Streffer | Jun 2015 | A1 |
20150337035 | Anderson et al. | Nov 2015 | A1 |
20160060338 | Barrett et al. | Mar 2016 | A1 |
20160156465 | Vaikuntanathan et al. | Jun 2016 | A1 |
20160264659 | Heavner et al. | Sep 2016 | A1 |
20170002069 | Crowe et al. | Jan 2017 | A1 |
20170022271 | Hoffman et al. | Jan 2017 | A1 |
20170260266 | Ahmed et al. | Sep 2017 | A1 |
20180009881 | Crowe et al. | Jan 2018 | A1 |
20180037639 | Crowe et al. | Feb 2018 | A1 |
20180100008 | Crowe et al. | Apr 2018 | A1 |
20180100009 | Crowe et al. | Apr 2018 | A1 |
20190008778 | Crowe et al. | Jan 2019 | A1 |
20190040156 | Demarest et al. | Feb 2019 | A1 |
20190092855 | Crowe et al. | Mar 2019 | A1 |
20190137495 | Shaked et al. | May 2019 | A1 |
20190307891 | Crowe et al. | Oct 2019 | A1 |
20200079844 | Beirnaert | Mar 2020 | A1 |
20200317769 | Crowe et al. | Oct 2020 | A1 |
20210198345 | Crowe et al. | Jul 2021 | A1 |
20220242945 | Crowe et al. | Aug 2022 | A1 |
20220332810 | Crowe et al. | Oct 2022 | A1 |
20220363769 | Crowe et al. | Nov 2022 | A1 |
20230056445 | Crowe et al. | Feb 2023 | A1 |
20230143091 | Crowe et al. | May 2023 | A1 |
20230287098 | Crowe et al. | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
2014214850 | Aug 2015 | AU |
2817265 | Oct 2004 | CA |
1809383 | Jul 2006 | CN |
101128182 | Feb 2008 | CN |
102090373 | Jun 2011 | CN |
102388069 | Mar 2012 | CN |
102971341 | Mar 2013 | CN |
103703129 | Apr 2014 | CN |
106715471 | May 2017 | CN |
2275443 | Jan 2011 | EP |
2275443 | Dec 2015 | EP |
2955196 | Dec 2015 | EP |
WO-9102078 | Feb 1991 | WO |
WO-9201047 | Jan 1992 | WO |
WO-9300077 | Jan 1993 | WO |
WO-9404678 | Mar 1994 | WO |
WO-9425591 | Nov 1994 | WO |
WO-9508562 | Mar 1995 | WO |
WO-9634103 | Oct 1996 | WO |
WO-9923221 | May 1999 | WO |
WO-0212502 | Feb 2002 | WO |
WO-0248382 | Jun 2002 | WO |
WO-03035694 | May 2003 | WO |
WO-2004009776 | Jan 2004 | WO |
WO-2004037205 | May 2004 | WO |
WO-2004041862 | May 2004 | WO |
WO-2004041863 | May 2004 | WO |
WO-2004041865 | May 2004 | WO |
WO-2004041867 | May 2004 | WO |
WO-2004041862 | Jun 2004 | WO |
WO-2006056306 | Jun 2006 | WO |
WO-2006071877 | Jul 2006 | WO |
WO-2006122786 | Nov 2006 | WO |
WO-2006122787 | Nov 2006 | WO |
WO-2006138181 | Dec 2006 | WO |
WO-2007005955 | Jan 2007 | WO |
WO-2006122786 | Mar 2007 | WO |
WO-2007025977 | Mar 2007 | WO |
WO-2007027714 | Mar 2007 | WO |
WO-2007048022 | Apr 2007 | WO |
WO-2007070948 | Jun 2007 | WO |
WO-2007104529 | Sep 2007 | WO |
WO-2008020079 | Feb 2008 | WO |
WO-2008031770 | Mar 2008 | WO |
WO-2008039761 | Apr 2008 | WO |
WO-2008049897 | May 2008 | WO |
WO-2008074840 | Jun 2008 | WO |
WO-2008101985 | Aug 2008 | WO |
WO-2008101985 | Oct 2008 | WO |
WO-2008122965 | Oct 2008 | WO |
WO-2008124170 | Oct 2008 | WO |
WO-2008144753 | Nov 2008 | WO |
WO-2008124170 | Dec 2008 | WO |
WO-2008149143 | Dec 2008 | WO |
WO-2009021754 | Feb 2009 | WO |
WO-2008149143 | Apr 2009 | WO |
WO-2009046168 | Apr 2009 | WO |
WO-2009064457 | May 2009 | WO |
WO-2009064460 | May 2009 | WO |
WO-2009068627 | Jun 2009 | WO |
WO-2009147248 | Dec 2009 | WO |
WO-2010020811 | Feb 2010 | WO |
WO-2010045506 | Apr 2010 | WO |
WO-2010056550 | May 2010 | WO |
WO-2010045506 | Jul 2010 | WO |
WO-2010077422 | Jul 2010 | WO |
WO-2010085643 | Jul 2010 | WO |
WO-2010115998 | Oct 2010 | WO |
WO-2011009365 | Jan 2011 | WO |
WO-2011083175 | Jul 2011 | WO |
WO-2011094259 | Aug 2011 | WO |
WO-2011098518 | Aug 2011 | WO |
WO-2011104687 | Sep 2011 | WO |
WO-2011112229 | Sep 2011 | WO |
WO-2011135026 | Nov 2011 | WO |
WO-2011135040 | Nov 2011 | WO |
WO-2011139269 | Nov 2011 | WO |
WO-2011139629 | Nov 2011 | WO |
WO-2012007880 | Jan 2012 | WO |
WO-2011139629 | Apr 2012 | WO |
WO-2012055030 | May 2012 | WO |
WO-2012078878 | Jun 2012 | WO |
WO-2012130872 | Oct 2012 | WO |
WO-2012131053 | Oct 2012 | WO |
WO-2012151199 | Nov 2012 | WO |
WO-2012175741 | Dec 2012 | WO |
WO-2013024059 | Feb 2013 | WO |
WO-2013056984 | Apr 2013 | WO |
WO-2013058833 | Apr 2013 | WO |
WO-2013064701 | May 2013 | WO |
WO-2013087857 | Jun 2013 | WO |
WO-2013087874 | Jun 2013 | WO |
WO-2013091103 | Jun 2013 | WO |
WO-2013173687 | Nov 2013 | WO |
WO-2013184871 | Dec 2013 | WO |
WO-2014030049 | Feb 2014 | WO |
WO-2014058875 | Jun 2014 | WO |
WO-2014141152 | Sep 2014 | WO |
WO-2015009996 | Jan 2015 | WO |
WO-2015058173 | Apr 2015 | WO |
WO-2015065987 | May 2015 | WO |
WO-2015100409 | Jul 2015 | WO |
WO-2015144852 | Oct 2015 | WO |
WO-2015176031 | Nov 2015 | WO |
WO-2015189302 | Dec 2015 | WO |
WO-2016065323 | Apr 2016 | WO |
WO-2016103093 | Jun 2016 | WO |
WO-2016156465 | Oct 2016 | WO |
WO-2016156466 | Oct 2016 | WO |
WO-2016162537 | Oct 2016 | WO |
WO-2016202411 | Dec 2016 | WO |
WO-2016202414 | Dec 2016 | WO |
WO-2016202415 | Dec 2016 | WO |
WO-2018060453 | Apr 2018 | WO |
WO-2018104483 | Jun 2018 | WO |
WO-2020254826 | Dec 2020 | WO |
WO-2020254827 | Dec 2020 | WO |
WO-2020254828 | Dec 2020 | WO |
Entry |
---|
Paul, Fundamental Immunology, 3rd Edition, 1993, pp. 292-295. |
Rudikoff et al., Proc. Natl. Acad. Sci. USA, 1982, 79(6):1979-1983. |
Colman, Research in Immunology, 145:33-36, 1994. |
Murphy et al., Journal of Immunological Methods, vol. 463, p. 127-133, 2018. |
Muyldermans et al (Annu. Rev. Biochem., 82:775-97, 2013. |
Zabetakis et al., PLOS ONE, 2013, 8(10), 1-7. |
Saerens et al.,J Mol. Biol., 2005, 352: 597-607. |
Vincke et al.,J. Biol. Chem., 2009, 284(5): 3273-3284. |
Julian et al.,Scientific Reports, 2017, 7:45259, pp. 1-13. |
Murtaugh et al.,Protein Science 2011, 20:1619-1631. |
Lu et al.,Frontiers in Immunology, 2018, 9:1012, pp. 1-20. |
Burkovitz et al., FEBS Journal, 2014, 281:306-319. |
Clark et al.,J Immunol, 2006, 177(1):333-340. |
Thomassen et al., Enzyme and Microbial Technology, 30:273-278. (Year: 2002). |
Barata et al. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 20(12):1584-1593 (2019). |
Lee et al. Anti-IL-7 receptor-α reverses established type 1 diabetes in nonobese diabetic mice by modulating effector T-cell function. PNAS USA 109(31):12674-12679 (2012). |
Marković et al. Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Front Immunol 11:1557 (2020). |
Casset et al. A peptide mimetic of an anti-CD4 monoclonal antibody by rational design. Biochemical and Biophysical Research Communication 307:198-205 (2003). |
Chen et al. Enhancement and destruction of antibody function U by somatic mutation: unequal occurrence is controlled by V gene combinatorial associations. The EMBO Journal 14(12):2784-2794 (1995). |
MacCallum et al.: Antibody-antigen interactions: contact analysis and binding site topography. J Mol Biol. 262(5):732-745 (1996). |
U.S. Appl. No. 16/821,287 Office Action dated Oct. 21, 2022. |
U.S. Appl. No. 17/752,710 Office Action dated Nov. 4, 2022. |
2005 Drug Bank Data (https://wwwdrugbank.caldrugs/DB00085) for Pancrelipase. |
Arbabi-Ghahroudi et al.: Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Letters 414(3):521-526 (1997). |
Baumgart et al.: Crohn's disease. Lancet 380(9853):1590-1605 (2012). |
Biancheri et al. Differential Cleavage of Anti-Tumor Necrosis Factor-Alpha Agents By Matrix Metalloproteinase (MMP)-10 and MMP-12 In Inflammatory Bowel Disease. ECCO, Abstract, 1 page, Dublin (2011). |
Bjerkan et al. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP). Pharmaceuticals (Basel) 9(3):E41 (2016). |
Blattler et al. New heterobifunctional protein crosslinking reagent that forms an acid-labile link. Biochemistry 24(6):1517-1524 (1985). |
Bruno, et al. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. Nov. 2013;4(11):1443-67. |
Caldas et al. Humanization of the anti-CD18 antibody 6.7: an unexpected effect of a framework residue in binding to antigen. Mol Immunol. 39(15):941-952 (2003). |
Chen et al. Fusion Protein Linkers: Property, Design and Functionality. Adv Drug Deliv Rev 65:1357-1369 (2013). Available online Sep. 29, 2012. |
Chomczynski, et al. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. Apr. 1987; 162(1):156-9. |
Cianferoni et al. Eosinophilic Esophagitis and Gastroenteritis. Curr Allergy Asthma Rep. 15(9):58 (2015). |
Colombel et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: the CHARM trial. Gastroenterology 132:52-65 (2007). |
Coppieters et al.: Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54(6):1856-1866 (2006). |
Corren et al. Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med. 377(10):936-946 (2017). |
Crawley et al. Soluble IL-7R alpha (sCD127) inhibits IL-7 activity and is increased in HIV infection. J Immunol. 184(9):4679-4687 (2010). |
Croxford et al. IL-23: one cytokine in control of autoimmunity. Eur J Immunol. 42:2263-2273 (2012). |
Danese: New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918-932 (2012). |
Desmet et al. Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Nature Communications 5:5237 (2014). |
Desmyter et al.: Neutralization of Human Interleukin 23 by Multivalent Nanobodies Explained by the Structure of Cytokine-Nanobody Complex. Front Immunol. 8:884 (2017). |
Dooms. Interleukin-7: Fuel for the autoimmune attack. J Autoimmun. 45:40-48 (2013). |
Ebersbach et al.: Affilin-novel binding molecules based on human gamma-B-crystallin, an all beta-sheet protein. J. Molecular Biology 372(1):172-185 (2007). |
Eken et al. Interleukin 23 in Crohn's disease. Inflamm Bowel Dis. 20:587-595 (2014). |
Ellis et al. Anti-IL-7 receptor α monoclonal antibody (GSK2618960) in healthy subjects—a randomized, double-blind, placebo-controlled study. Br J Clin Pharmacol. 85(2):304-315 (2019). |
Fadda et al.: Physiological bicarbonate buffers: stabilisation and use as dissolution media for modified release systems. Int. J. Pharm. 382(1-2):56-60 (2009). |
Faisst et al.: Isolation of a fully infectious variant of parvovirus H-1 supplanting the standard strain in human cells. Journal of Virology 69(7):4538-4543 (1995). |
Fornasa et al. Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. J Allergy Clin Immunol. 136(2):413-422 (2015). |
Fry et al. Interleukin-7: from bench to clinic. Blood 99(11):3892-3904 (2002). |
Fry et al. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol. 174(11):6571-6576 (2005). |
Furfaro et al. IL-23 Blockade for Crohn's disease: next generation of anti-cytokine therapy. Expert Rev Clin Immunol. 13:457-467 (2017). |
Garbacz et al.: A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds. Eur J Pharm Sci. 51:224-231 (2014). |
Goldberg et al.: Engineering a targeted delivery platform using Centyrins. Protein Eng Des Sel. 29(12):563-572 (2016). |
Goldberg et al. The unusual suspects—innate lymphoid cells as novel therapeutic targets in IBD. Nat Rev Gastroenterol Hepatol (5):271-283 (2015). |
Gomes et al., Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6(2):38 [1-23] (2018). |
Goyanes et al.: Gastrointestinal release behaviour of modified-release drug products: dynamic dissolution testing of mesalazine formulations. Int. J. Pharm. 484(1-2):103-108 (2015). |
Grabulovski et al. A novel, non-immunogenic Fyn SH3-derived binding protein with tumor vascular targeting properties. J Biol Chem. 282(5):3196-3204 (2007). |
Guerra et al.: Management of inflammatory bowel disease in poor responders to infliximab. Clin Exp Gastroenterol 7:359-367 (2014). |
Hafler et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 357(9):851-862 (2007). |
Hanauer et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn's disease: the CLASSIC-I trial. Gastroenterology 130:323-333 (2006). |
Hanauer et al, Maintenance infliximab for Crohn's disease: the ACCENT I randomized trial. Lancet 359:1541-1549 (2002). |
Harmsen et al.: Effect of a pmr 1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba alpha-galactosidase by Saccharomyces cerevisiae. Gene 125(2):115-123 (1993). |
Harmsen et al. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77:13-22 (2007). |
Hashimoto et al.: Effects of signal sequences on the secretion of hen lysozyme by yeast: construction of four secretion cassette vectors. Protein Engineering 11(2):75-77 (1998). |
Henikoff et al. Amino acid substitution matrices from protein blocks. PNAS USA 89(22):10915-10919 (1992) . |
Heninger et al. IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J Immunol. 189(12):5649-5658 (2012). |
Hoogenboom et al. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19(15):4133-4137 (1991). |
Hu et al., A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol. 17(6):1204-1214 (2004). |
Humphreys et al.: Modes of L929 cell death induced by TNF-alpha and other cytotoxic agents. Cytokine 11(10):773-782 (1999). |
Huse et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246(4935):1275-1281 (1989). |
Hussan et al. A review on recent advances ofenteric coating. IOSR J Pharm 2(6):5-11 (2012). |
Johnson et al.: Sensitive affimer and antibody based impedimetric label-free assays for c-reactive protein. Analytical Chemistry 84(15):6553-6560 (2012). |
Karlin, et al. Applications and statistics for multiple high-scoring segments in molecular sequences. PNAS USA 90:5873-5877 (1993). |
Knezevic et al. Quantitation of affinity, avidity, and binding kinetics of protein analytes with a dynamically switchable biosurface. J Am Chem Soc 134(37):15225-15228 (2012). |
Kohler et al. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256(5517):495-497 (1975). |
Koide et al. Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain. Methods in Molecular Biology 352:95-111 (2007). |
Krehenbrink et al.: Artificial binding proteins (Affitins) as probes for conformational changes in secretin PulD. J Mol Biol. 383(5):1058-1068 (2008). |
Lipovsek: Adnectins: engineered target-binding protein therapeutics. Protein Engineering, Design & Selection 24(1-2):3-9 (2011). |
Liu et al. Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat Med. 16(2):191-197 (2010) (retraction in: Nat Med. 2013 19(12):1673). |
Liu. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 203(2):269-273 (2006). |
Lopes et al.: Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene. 105(1):83-90 (1991). |
McGovern et al. The IL23 axis plays a key role in the pathogenesis of IBD. Gut 56:1333-1336 (2007). |
Merchant et al.: Predicting the gastrointestinal behaviour of modified-release products: utility of a novel dynamic dissolution test apparatus involving the use of bicarbonate buffers. Int. J. Pharm. 475(1-2):585-591 (2014). |
Merchlinksy et al.: Construction of an infectious molecular clone of the autonomous parvovirus minute virus of mice. Journal of Virology 47(1):227-232 (1983). |
Michael. The role of digestive enzymes in orally induced immune tolerance. Immunol Invest. 18(9-10):1049-1054 (1989) (Abstract). |
Miethe et al.: Production of Single Chain Fragment Variable (scFv) Antibodies in Escherichia coli Using the LEX TM Bioreactor. Journal of Biotechnology 163(2):105-111 (2012). |
Muszewska et al., Fungal lifestyle reflected in serine protease repertoire. Sci Rep. 7(1):9147 [1-12] (2017). |
Nelson et al.: Nonoclonal antibodies. Molecular Pathology 53(3):111-117 (2000). |
Nguyen et al. Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261-296 (2001). |
Nixon et al. Engineered protein inhibitors of proteases. Curr Opin Drug Discov Devel. 9(2):261-268 (2006). |
Nogi et al.: Nucleotide sequence of the transcriptional initiation region of the yeast GAL7 gene. Nucleic Acid Research 11(24):8555-8568 (1983). |
Noti et al. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med. 19(8):1005-1013 (2013). |
Nygren. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J. 275(11):2668-2676 (2008). |
Ordas et al.: Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 91(4):635-646 (2012). |
Ortonne. Recent developments in the understanding of the pathogenesis of psoriasis. British Journal of Dermatology 140(Suppl 54):1-7 (1999). |
Patnaik et al. Penicillin fermentation: mechanisms and models for industrial-scale bioreactors. Crit Rev Biotechnol 20:1-15 (2015). |
PCT/EP2016/057021 International Search Report and Written Opinion dated Aug. 8, 2016. |
PCT/EP2016/057022 International Search Report and Written Opinion dated Jun. 14, 2016. |
PCT/EP2016/057032 International Search Report and Written Opinion dated Aug. 4, 2016. |
PCT/EP2016/057034 International Search Report and Written Opinion dated Aug. 3, 2016. |
PCT/EP2017/057775 International Search Report and Written Opinion dated Jul. 7, 2017. |
PCT/GB2020/051495 International Search Report and Written Opinion dated Sep. 30, 2020. |
PCT/GB2020/051496 International Search Report and Written Opinion dated Oct. 20, 2020. |
PCT/GB2020/051497 International Search Report and Written Opinion dated Sep. 17, 2020. |
PCT/MT2017/000001 International Search Report and Written Opinion dated Oct. 20, 2017. |
Peters et al. Innate lymphoid cells in inflammatory bowel diseases. Immunol Lett. 172:124-131 (2015). |
Rimoldi et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol. 6(5):507-514 (2005). |
Rose et al. Identification and biochemical characterization of human plasma soluble IL-7R: lower concentrations in HIV-1-infected patients. J Immunol. 182(12):7389-7397 (2009). |
Sandborn et al. Certolizumab pegol for the treatment of Crohn's disease. N Engl J Med. 357:228-238 (2007). |
Schreiber et al. Maintenance therapy with certolizumab pegol for Crohn's disease. N Engl J Med. 357:239-250 (2007). |
Shealy et al.: Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor a. MAbs 2(4):428-439 (2010). |
Silverman et al., Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat. Biotechnol. 23 (12):1556-1561 (2005). |
Skerra: Alternative binding proteins: anticalins—harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J. 275(11):2677-2683 (2008). |
Skerra et al. Assembly of a functional Immunoglobulin Fv fragment in Escherichia coli. Science 240(4855):1038-1041 (1988). |
STIC report (2019). |
Suderman et al.: Development of polyol-responsive antibody mimetics for single-step protein purification. Protein Expr Purif. 134:114-124 (2017). |
Tal et al.: Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci. 71(3):365-378 (2014). |
Tanha et al.: Selection by phage display of llama conventional V(H) fragments with heavy chain antibody V(H)H properties. Journal of Immunological Methods 263(1-2):97-109 (2002). |
Teng et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 21:719-729 (2015). |
Teutsch et al. Identification of 11 novel and common single nucleotide polymorphisms in the interleukin-7 receptor-alpha gene and their associations with multiple sclerosis. Eur J Hum Genet. 11(7):509-515 (2003). |
Thomassen et al.: Large-scale production of VHH antibody fragments by Saccharomyces cerevisiae. Enzyme and Microbial Technology 30(3):273-278 (2002). |
Tsilingiri et al. Thymic Stromal Lymphopoietin: To Cut a Long Story Short. Cell Mol Gastroenterol Hepatol. 3(2):174-182 (2017). |
Ungar et al.: Optimizing Anti-TNF-a Therapy: Serum Levels of Infliximab and Adalimumab Are Associated With Mucosal Healing in Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 14(4):550-557 (2016). |
UniProt Database: Uncharacterized protein. Accession No. B5H131, 2 pages (2008) http://www.uniprot.org/uniprot/B5H131. |
U.S. Appl. No. 15/273,353 Office Action dated Aug. 16, 2018. |
U.S. Appl. No. 15/273,353 Office Action dated Jan. 23, 2018. |
U.S. Appl. No. 15/273,353 Office Action dated Jun. 4, 2019. |
U.S. Appl. No. 15/717,174 Office Action dated Apr. 22, 2020. |
U.S. Appl. No. 15/717,174 Office Action dated Aug. 8, 2019. |
U.S. Appl. No. 15/717,174 Office Action dated Mar. 6, 2019. |
U.S. Appl. No. 15/717,174 Office Action dated Sep. 16, 2020. |
U.S. Appl. No. 16/140,843 Office Action dated Nov. 26, 2019. |
U.S. Appl. No. 16/988,506 Office Action dated Oct. 6, 2020. |
Van Schie et al.: The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region. Ann Rheum Dis. 74(1):311-314 (2015). |
Vandenbroucke et al. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunology 3(1):49-56 (2010). |
Vandeventer: Anti-TNF antibody treatment of Crohn's disease. Ann Rheum Dis. 58(Suppl I):1114-1120 (1999). |
Verstraete et al. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat Commun. 8:14937 (2017). |
Vetter et al. Emerging oral targeted therapies in inflammatory bowel diseases: opportunities and challenges. Therap Adv Gastroenterol. 10(10):773-790 (2017). |
Volkel et al.: Optimized linker sequences for the expression of monomeric and dimeric bispecific single-chain diabodies. Protein Eng. 14(10):815-823 (2001). |
Vossenkamper et al.: A CD3-specific antibody reduces cytokine production and alters phosphoprotein profiles in intestinal tissues from patients with inflammatory bowel disease. Gastroenterology 147(1):172-183 (2014). |
Walsh. Structural insights into the common y-chain family of cytokines and receptors from the interleukin-7 pathway. Immunol Rev. 250(1):303-316 (2012). |
Winkler et al. Changing the antigen binding specificity by single point mutations of an anti-p24 (HIV-1) antibody. J Immunol. 165(8):4505-4514 (2000). |
Bendig. Humanization of Rodent Monoclonal Antibodies by CDR Grafting. Methods A Companion To Methods In Enzymology 8:83-93 (1995). |
Biancheri et al.: Proteolytic cleavage and loss of function of biologic agents that neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology 149(6):1564-1574 (2015). |
Binz et al.: Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biology 332(2):489-503 (2003). |
Bruno et al.: Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 4(11):1443-1467 (2013). |
Colman et al., Effects of amino acid sequence changes on antibody-antigen interactions, Research in Immunology, 1994; 145(1):33-36. |
Crowe et al.: Gastrointestinal Stability and Tissue Penetration of V565: a Novel Orally Administered Anti-TNFa VorabodyTM. Poster from 10th Annual Proteins and Antibodies Congress [1] (2017). |
Crowe et al.: Gastrointestinal Stability and Tissue Penetration of V565: A Novel Orally Administered Anti-TNFa VorabodyTm. Vhsquared, Poster from PEGS Europe Protein and Antibody Engineering Summit, Lisbon, Portugal [1] (2017). |
Crowe et al.: Oral Delivery of a Novel Engineered Anti TNFa Domain Antibody (VorabodyTM) for the Treatment of Intestinal Bowel Disease. PEGS Europe Protein & Antibody Engineering Summit [1] (2017). |
Crowe et al.: Preclinical Assessment of a Novel Anti-TNFa VorabodyTM as an Oral Therapy for Crohn's Disease. 18th International Congress of Mucosal Immunology, Washington D.C. [1] (2017). |
Crowe et al.: Preclinical Development of a Novel, Orally-Administered Anti-Tumour Necrosis Factor Domain Antibody for the Treatment of Inflammatory Bowel Disease. Scientific Reports 8:4941 [1-13] (2018). |
Deschacht et al.: A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J. Immmunol 184(10):5696-5704 (2010). |
Fields et al. Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am Biotechnol Lab 11(4):48-50 (1993). |
Frenken et al. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78(1):11-21 (2000). |
Giusti et al. Somatic diversification of S107 from an antiphosphocholine to an anti-DNA autoantibody is due to a single base change in its heavy chain variable region. PNAS USA 84(9):2926-30 (1987). |
Griffiths et al.: Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications. Antibodies 2(1):66-81 (2013). |
Grundstrom et al.: Oligonucleotide-directed mutagenesis by microscale ‘shot-gun’ gene synthesis. Nucleic Acids Research 13(9):3305-3316 (1985). |
Hamers-Casterman et al. Naturally occurring antibodies devoid of light chains. Nature 363(6428):446-8 (1993). |
Harmsen et al.: Selection and Optimization of Proteolytically Stable Llama Single-Domain Antibody Fragments for Oral Immunotherapy. Applied Microbiology and Biotechnology 72(3):544-551 (2006). |
Hendrickson et al.: Clinical aspects and pathophysiology of inflammatory bowel disease. Clinical Microbiology Reviews 15(1):79-94 (2002). |
Hoefman et al.: Pre-Clinical Intravenous Serum Pharmacokinetics of Albumin Binding and Non-Half-Life Extended Nanobodies(R). Antibodies 4(3):141-156 (2015). |
Horwitz et al.: Secretion of functional antibody and Fab fragment from yeast cells. Proc. Natl. Acad. Sci. U.S.A. 85(22):8678-8682 (1988). |
Hussack et al: A V(L) single-domain antibody library shows a high-propensity to yield non-aggregating binders. Protein Eng Des Sel. 25(6):313-318 (2012). |
Hussack et al. Chapter 14: Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol Biol. 911:211-239 (2012). |
Hussack et al. Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability. PLOS One. 6(11):e28218 (2011). |
Hussack et al.: Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J. Biol. Chem. 286(11):8961-8976 (2011). |
Hussack et al.: Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility. Protein Eng Des Sel. 27(6):191-198 (2014). |
Hussack et al.: Single-domain Antibody Inhibitors of Clostridium difficile Toxins. Thesis submitted to the Faculty of Graduate and Postdoctoral Studies, Dept. of Biochemistry, Microbiology and Immunology [1-227] (2011). |
Hussack: Single-domain Antibody Inhibitors of Clostridium difficule Toxins. Universite d'Ottawa website [1-3] https://ruor.uottawa.ca/handle/10393/20362 (2013). |
Jones et al.: Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit Rev Biotechnol 36(3):506-520 (2015). |
Kabat et al. Sequences of proteins of immunological interest. NIH Publ. No. 91-3242 1:647-669 (1991). |
Kamm et al.: Practical application of anti-TNF therapy for luminal Crohn's disease. Inflammatory Bowel Diseases. 17(11):2366-2391 (2011). |
Khantasup, et al. Design and Generation of Humanized Single-chain Fv Derived from Mouse Hybridoma for Potential Targeting Application. Monoclon Antib Immunodiagn Immunother. Dec. 2015;34(6):404-17. |
Kim et al.: A Dual Target-directed Agent against Interleukin-6 Receptor and Tumor Necrosis Factor α ameliorates experimental arthritis. Scientific Reports 6:20150 doi: 10.1038/srep20150 [1-12] (2015). |
Kim et al.: Antibody light chain variable domains and their biophysically improved versions for human immunotherapy. Mabs. 6(1):219-235 (2014). |
Ling et al.: Approaches to DNA Mutagenesis: An Overview. Analytical Biochemistry 254(2):157-178 (1997). |
Liu et al.: Targeting TNF-alpha with a tetravalent mini-antibody TNF-TeAb. Biochemical Journal 406(2):237-246 (2007). |
McCoy et al.: Neutralisation of HIV-1 cell-cell spread by human and llama antibodies. Retrovirology 11:83 doi:10.1186/s12977-014-0083-y [1-15] (2014). |
Molhoj et al. CD19-/CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis. Mol Immunol. 44(8):1935-43 (2007). |
Muyldermans. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775-797 (2013). |
Muyldermans et al. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Engineering 7(9):1129-1133 (1994). |
Nambiar, et al. Total synthesis and cloning of a gene coding for the ribonuclease S protein. Science 223(4642):1299-301 (1984). |
Nurbhai et al.: Measured and Modelled Data Suggest That Oral Administration of V565, A Novel Domain Antibody to TNF-alpha, Could Be Beneficial in the Treatment of IBD. 13th Congress of ECCO, Vienna, Austria, 1 page (2018). |
Nurbhai et al.: Oral Anti-Tumour Necrosis Factor Domain Antibody V565 Provides High Intestinal Concentrations, and Reduces Markers of Inflammation in Ulcerative Colitis Patients. Sci Rep. 9(1):14042 (2019). |
Padlan. Anatomy of the Antibody Molecule. Mol Immunol 31(3):169-217 (1994). |
Paul. Fundamental Immunology. 3rd Edition, pp. 292-295, Raven Press (1993). |
PCT/EP2016/057024 International Search Report and Written Opinion dated Jun. 16, 2016. |
Robinson et al.: A Protease-Resistant Oral Domain Antibody to TNFa Delivers High Concentrations of Active Compound in lleal Fluid of Subjects with an lleostomy. 25th United European Gastroenterology Week, Barcelona, Spain [1] (2017). |
Rose-John: IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8(9):1237-1247 (2012). |
Roux et al.: Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. PNAS USA 95(20):11804-11809 (1998). |
Rudikoff et al. Single amino acid substitution altering antigen-binding Specificity. PNAS USA 79:1979-1983 (1982). |
Saerens et al. Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J Mol Biol. 352(3):597-607 (2005). |
Sakmar et al.: Total synthesis and expression of a gene for the alpha-subunit of bovine rod outer segment guanine nucleotide-binding protein (transducin). Nucleic Acids Research 16(14A):6361-6372 (1988). |
Shaji, et al. Protein and Peptide drug delivery: oral approaches. Indian J Pharm Sci. May-Jun. 2008;70(3):269-77. |
Siontorou: Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine 8:4215-4227 (2013). |
Unger et al.: Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Scientific Reports 5:7850 [1-10] (2015). |
U.S. Appl. No. 15/717,230 Office Action dated Jan. 21, 2020. |
U.S. Appl. No. 15/717,230 Office Action dated May 18, 2020. |
U.S. Appl. No. 15/717,230 Office Action dated Sep. 3, 2019. |
Verma et al. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67:99-134 (1998). |
Vincke et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284(5):3273-3284 (2009). |
Vu et al.: Comparison of llama VH sequences from conventional and heavy chain antibodies. Molecular Immunology 34(16-17):1121-1131 (1997). |
Wahlich et al.: Oral Delivery of a Novel Domain Antibody (VorabodyTM) for the Treatment of Chron's Disease. PEGS Europe Protein & Antibody Engineering Summit, Lisbon, Portugal, 1 page (2017). |
Ward et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341(6242):544-546 (1989). |
Wells et al. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene 34:315-323 (1985). |
West et al.: Predicting intestinal tract luminal concentrations after oral dosing of an anti-TNFa domain antibody engineered for intestinal protease resistance. VHsquared Antibody Engineering & Therapeutics Meeting, San Diego, USA, 1 page (2017). |
Yan et al. Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. Journal of Translational Medicine 12:343 (2014). |
Yu et al., Interaction between Bevacizumab and Murine VEGF-A: A Reassessment, Investigative Ophthalmology & Visual Science, 2008, vol. 49 (2), pp. 522-527. |
Zabetakis et al. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody. PLoS One 8(10):e77678 (2013). |
U.S. Appl. No. 17/196,498 Office Action dated Dec. 14, 2023. |
U.S. Appl. No. 17/196,498 Office Action dated Jul. 19, 2023. |
Wallace et al. Immunopathology of inflammatory bowel disease. World J Gastroenterol 20(1):6-21 (2014). |
Yusakul et al. Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. Biosci Biotechnol Biochem 80(7):1306-1312 (2016). |
Gustot et al. Profile of soluble cytokine receptors in Crohn's disease. Gut. 54(4):488-495 (2005). |
Hosokawa et al. Interleukin-6 and soluble interleukin-6 receptor in the colonic mucosa of inflammatory bowel disease. Journal of Gastroenterology and Hepatology 14(10):987-996 (1999). |
Ito et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology 126(4):989-996 (2004). |
Katoh et al. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772-780 (2013). |
Koh et al. Generation of a family-specific phage library of llama single chain antibody fragments that neutralize HIV-1. Journal of Biological Chemistry 285(25):19116-19124 (2010). |
Kusugami et al. Elevation of interleukin-6 in inflammatory bowel disease is macrophage-and epithelial cell-dependent. Dig Dis Sci. 40(5):949-959 (1995). |
Merchlinsky et al. Construction of an infectious molecular clone of the autonomous parvovirus minute virus of mice. Journal of Virology 47(1):227-232 (1983). |
Mitsuyama et al. Therapeutic strategies for targeting the IL-6/STAT3 cytokine signaling pathway in inflammatory bowel disease. Anticancer Research 27(6A):3749-3756 (2007). |
Nelson et al. Monoclonal antibodies. Mol Pathol. 53(3):111-117 (2000). |
Reimund et al. Increased production of tumour necrosis factor-alpha interleukin-1 beta, and interleukin-6 by morphologically normal intestinal biopsies from patients with Crohn's disease. Gut 39(5):684-689 (1996). |
Reimund et al. Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn's disease. Journal of Clinical Immunology 16(3):144-150 (1996). |
Reinecker et al., Enhanced secretion of tumor necrosis factor-alpha, IL-6 and IL-1 beta by isolated lamina propia mononuclear cells from patients with ulcerative colitis and Crohn's disease Clin Exp Immunol 94:174-181 (1993). |
U.S. Appl. No. 17/196,498 Office Action dated Jun. 7, 2024. |
Waetzig et al. Hitting a complex target: an update on interleukin-6 trans-signalling. Expert Opin Ther Targets. 16(2):225-236 (2012). |
Number | Date | Country | |
---|---|---|---|
20210317195 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15717230 | Sep 2017 | US |
Child | 16950758 | US | |
Parent | PCT/EP2016/057024 | Mar 2016 | WO |
Child | 15717230 | US |