The present invention relates to polysaccharide hydrogels with tunable properties like stiffness and provasculogenic properties.
The organization of cells into tissue-like structures involves a complex interplay between soluble signals and those originating from the extracellular matrix (ECM).
In recent years several studies have shown that cells can respond to physical cues (substrate stiffness and nanoroughness) in a very well-defined manner, and this may constitute a new form of signaling (1-3). Mechanobiology—the interplay between biological and physical signals in establishing cell function—constitutes a new avenue for deciphering the signaling environment during tissue morphogenesis. In this regard, there is a need to develop systems that can enable the investigation and translation of mechanobiology paradigms into regenerative medicine solutions in vivo (4-6).
Such a system should meet the following criteria: offer precise tailoring of the mechanical environment in vivo, be cytocompatible, enable predictable evolution of cellular function, and exhibit human biocompatibility.
Hydrogels, by virtue of their ability to mimic several aspects of physiological environments such as hydration state and interconnected pore architecture, have been explored extensively in this context as mimics of extracellular matrices (ECM (4)) and in the de novo development of tissue (7-9).
Hydrogels can be formed from either synthetic or natural water-soluble polymers, and the transformation of a polymer network into a gel requires the introduction of cross-links (net points) between polymer chains. Hydrogels of polyethylene glycol (PEG) and hyaluronic acid (HA), an ECM component, constitute the most prominent class of hydrogels for regenerative medicine applications, and they are formed through radical photopolymerization (10), Michael addition (vinyl sulfone) (11), click chemistry (thiolene) (12)] or enzymatic (trans-glutaminase) cross-linking (13). In addition to HA, other polysaccharides such as alginate (14), which undergoes calcium-induced gelation (15, 16), and chitin (17) have also been explored. More recently, self-assembled peptides have emerged as yet another class of biologically derived hydrogels (18, 19).
To use hydrogels as instructive materials in the context of mechanobiology, precise control over the mechanics and biology within the hydrogel is desirable.
In a chemically cross-linked system varying the modulus necessitates changing the polymer concentration and/or polymer chain length. Additionally, implementation of chemical cross-linking in vivo can be challenging as it requires initiators and chemistries, which can also react with ECM components and proteins, and when not consumed can lead to toxicity.
Agarose, a polysaccharide extracted from marine red algae composed of D-galactose-3,6-anhydro-L-galactopyranose repeat units, has received considerable attention in regenerative medicine in recent years due to its cytocompatibility, tissue compatibility in humans (20, 21), and ability to induce, in vivo, the de novo formation of hyaline-like cartilage (8) and is currently undergoing phase-3 clinical trials in humans as a carrier for chondrocytes (22). Unlike PEG, HA, and alginate, agarose forms a hydrogel through physical cross-linking (23), which in comparison with chemical and ionic cross-linking offers several advantages including the absence of reactive chemistry and ease of implementation.
Vascularization is an important biological process that is necessary for the development, repair and sustenance of tissue in mammals. Vascularization is the formation of new blood vessels from existing blood vessels through sprouting (angiogenesis) or the de novo organization of endothelial progenitor cells into vascular structures (vasculogenesis).
The constriction, or damage or loss of vasculature can lead to irreversible damage to tissue and is the cause of many pathologies and clinical conditions. For example, the constriction of coronary arteries (vessels that supply oxygenated blood to the heart muscle), which results in the formation of local ischemia (loss of blood supply) will lead to damage to the heart tissue resulting in a myocardial infarct.
Diabetes mellitus, a systemic disorder can lead to peripheral vascular disease resulting in loss of function in the extremities such as limbs due to ischemia and associated avascular necrosis. Constriction or damage to vasculature in the limbs can promote muscle degeneration.
In all of the aforementioned pathologies, the induction of new blood vessels (angiogenesis or vasculogenesis) is considered to be an important step in stabilizing or reversing the negative effects of ischemia.
The deliberate induction of new vasculature in a tissue through an external intervention is called Therapeutic Angiogenesis (TA). The goal of therapeutic angiogenesis is to stimulate the creation of new blood vessels in ischemic organs, tissues or parts with the goal to increase the level of oxygen-rich blood reaching these areas
Formation of new blood vessels can be triggered by the local administration of proteins such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), genetic material (plasmid or viral vectors) that encode for VEGF or FGF and/or endothelial progenitor cells (EPCs) with or without association with an injectable carrier. These efforts have largely resulted in the induction of vasculature that lacks appropriate physiological structural and functional traits and tends to regress over a period of time.
It was an object of the present invention to provide hydrogels, the physicochemical properties of which may be tuned over a wide range of properties. These hydrogels preferably should be suitable for use in therapeutic angiogenesis as described above.
This object has been achieved by injectable hydrogels comprising polysaccharides based on disaccharides the backbones of which form an α-helix structure and in which in at least 10% of the disaccharide units of the primary hydroxyl groups are oxidized.
The term hydrogel, as used herein, is intended to denote a water insoluble network of polymer chains in which water is the dispersion medium. Hydrogels possess a degree of flexibility similar to natural tissues.
Hydrogels are three-dimensional networks composed of hydrophilic polymers crosslinked either through covalent bonds or held together via physical intramolecular and/or intermolecular attractions.
Hydrogels differ from normal gels in a number of properties. Whereas gels are semi-solid materials made of hydrophilic polymers comprising small amounts of solids dispersed in relatively large amounts of liquid, hydrogels are also made up of hydrophilic polymer chains, but these chains are crosslinked. This enables hydrogels to swell while retaining their three dimensional structure without dissolving. Thus, the principle feature of hydrogels differentiating them from gels is their inherent crosslinking.
The injectable hydrogels in accordance with the present invention comprise polysaccharides based on disaccharides.
In a preferred embodiment the polysaccharide is derived from agarose. Agar, a structural polysaccharide of the cell walls of a variety of red seaweed, consists of two groups of polysaccharides, namely agarose and agaropectin. Agarose is a neutral, linear polysaccharide with no branching and has a backbone consisting of 1,3-linked β-D-galactose-(1-4)-α-L-3,6 anhydrogalactose repeating units. This dimeric repeating unit, called agarobiose differs from a similar dimeric repeating unit called carrabiose which is derived from carrageenan in that it contains 3,6-anhydrogalactose in the L-form and does not contain sulfate groups.
Other polysaccharides which may be mentioned here are hyaluronic acid, heparan sulfate, dermatan sulfate, chondroitin sulfate, alginate, chitosan, pullulan and κ-carrageenan.
Preferred examples of polysaccharides the backbones of which form an α-helix structure are agarose and ε-carrageenan.
The degree of oxidation of the primary hydroxyl groups may vary over a wide range and is at least 10%, preferably at least 11%, more preferably at least 20% and most preferably 35% or more. In some cases degrees of oxidation of from 50% to 95%, preferably of from 55 to 93% have shown to be advantageous. While it is in principle possible to completely oxidize the primary hydroxyl groups, degrees of modification of at maximum 99%, preferably at maximum 95% and even more preferably at max. 93% are preferred.
In certain cases oxidation of from 20 to 70%, preferably of from 25 to 60% has proved to be advantageous.
The percentages for the degree of modification are in per cent of the number of the respective groups in the polysaccharide.
Preferably the primary hydroxyl groups are oxidized into carboxylic acid groups.
The oxidation of primary hydroxyl groups in saccharide units can be effected in a variety of ways which are known to the skilled person, who will select the appropriate process based on his or her professional experience and suitable for the specific needs of the individual application.
Just by way of example, the oxidation with the well known oxidizing agent TEMPO ((2,2,6,6-Tetramethyl-piperidin-1-yl)oxyl), reactivated with NaOCl and catalyzed by potassium bromide may be mentioned here. Sodium hydroxide may be added during the reaction to maintain the optimum pH and to compensate the acidification of the solution due to the formation of the carboxylic acid groups. NaOH not only stabilizes the pH but also provides a quantitative measurement of the degree of oxidation as it compensates the carboxylic acid groups formed.
A possible side reaction, the conversion of the carboxylic acid group formed into an aldehyde group can be compensated by the addition of a reducing agent such as sodium borohydride (NaBH4) which reduces the aldehyde formed back to the primary alcohol which can then be oxidized into the carboxyl group again.
The formation of carboxylic acid along the polysaccharide backbone can be monitored by the amount of NaOH during the reaction and afterwards by the quantitative analysis using FTIR spectrometry.
In order to determine as precisely as possible the percentage of the oxidized primary alcohol groups it is possible either to perform the oxidation reaction in a controlled manner or alternatively the polysaccharide is oxidized completely so that about 100% of the primary alcohol groups are oxidized. Such completely oxidized polysaccharide can be blended with unmodified polysaccharide which may either be the same polysaccharide or another polysaccharide. Thus, the chemical modification can be precisely controlled during the reaction or by controlling the blending with another polysaccharide or the same unmodified polysaccharide.
In accordance with a preferred embodiment of the present invention, the polysaccharide in the hydrogel is covalently modified with cell adhesion motifs such as the integrin binding sequence arginine-glycine-aspartic acid (RGD, which may occur in various alternatives, e.g. cyclic RGD, or variants), or with peptide sequences like YIGSR, IKVAV. MNYYSNS or PHSRN to name just a few examples.
In accordance with another preferred embodiment, the hydrogels in accordance with the present invention contain soluble signals such as e.g. vascular endothelial growth factor (VEGF), phorbol 12 myristate acetate (PMA), fibroblast growth factors (FGF), insulin growth factors (IGF), transforming growth factor beta-1(TGF-β) or platelet derived growth factor (PDGF).
The hydrogels in accordance with the present invention in accordance with another embodiment comprise components of the extracellular matrix (ECM) e.g. basement membrane proteins (BMP) such as collagen type 4 (Col4), laminins (LAM) or entactin (also known as nidogen) or mixtures thereof.
The BMPs can be introduced into the hydrogel using e.g. Matrigel, a gelatinous protein mixture commercially available from various sources.
BMP mimicking peptide sequences or BMP's extracted from other mammalian tissue than Matrigel may also be mentioned. The skilled person will select the appropriate system based on the individual needs of the specific application.
Polysaccharides whose backbones are organized into a-helices such as agarose and κ-carrageenan can undergo thermally reversible gelation from aqueous solutions. The key step in their physical gelation is the aggregation of the double-stranded α-helices (24, 25). It has been reported that oxidation of the D-galactose primary alcohol residue in agarose results in weaker gels (26).
Introduction of charged moieties such as carboxylic acid groups alters helical interactions and thus the gelation behaviour. Carboxylation of the primary hydroxyl group is an example for this effect.
The formation of double-stranded helices in proteins and oligonucleotides is driven by the ability of the macromolecular chains to form weak interactions through H bonds. It is therefore reasonable to assume that the potential for the formation of such interactions would be a function of the distance between the H atoms and the electronegative oxygen (alcohol or carboxylic acid). Carboxylation promotes separation of the polymer chains, which diminishes the likelihood of H-bonding interactions. The analysis of the frequency of H bonds on a per frame basis shows that carboxylation indeed decreases the propensity of at least one H-bond formation by over 75% compared with unmodified agarose. These observations taken in sum suggest the possibility that the introduction of a charged carboxylic acid group can potentially alter the associative behavior of the agarose helices.
As has been found in the course of the present invention, carboxylation promotes a β-sheet secondary structure. One potential outcome of introducing charges along a polymer backbone is a transition of the polymer chains from a coiled morphology to a more extended morphology due to increased electrostatic repulsion between the chains (27).
In the following the results of various investigations are described showing the influence of a partial oxidation of the primary hydroxyl groups with agarose as preferred polysaccharide. The results apply in an equal manner to other polysaccharides which have backbones forming an α-helix structure.
The analytical methods described below were used as follows:
Circular dichroism spectra were obtained using a Jasco spectropolarimeter
J-810 equipped with a Peltier temperature cell Jasco PFD-425S. Solution of 0.15% w/v of agarose was made in Milli-Q water at 90° C. for 15 min then the solution was cooled down at 5° C. in the CD chamber for 30 min prior to measurement. Each spectrum has been recorded three times and summed together. Each spectrum for a given modification is a mean of three different syntheses.
Zeta potential has been measured on a Beckman Coulter Delsa Nano C particle analyzer. The same solutions have been used as for the light scattering experiment. Measurements have been made in a flow cell that has been aligned with the laser prior to every measurement. Each measurement has been made three times and an average has been calculated, each spectrum for a given modification is a mean of three different syntheses.
SEM pictures were obtain with a ref agarose gels of 2% w/v were prepared and 2 ml of this solution was frozen dried for 24 hours under 0.1 mbar vacuum in a 5 ml glass vial. The sample has then been vertically cut and the inside of the sample has been imaged at different magnification. Images shown here are representative of different areas of a given sample at different magnification, which have been reproduced with three different gels prepared from different batches.
AFM pictures were obtained with a Veeco Dimension 2100. Samples were prepared on a 3 mm microscopic glass holder that had been passivated. The glass slide was washed with 0.1 M NaOH and dried in an oven. The dry slides were then passivated with few drops of dichloromethylsilane. Two slides were sandwiched together to have a uniform passivation. After 10 min the slides were washed with water and the excess of dichloromethylsilane was washed with soap and the slides were dried. Slides side was prepared in a hydrophobic way. Agarose samples were prepared as 2% w/v gels and 25 μl of the solution was poured onto an unmodified glass slide, a dichloromethylsilane passivated slide was then adjusted on top of the solution. Slides of 0.5 mm were put as spacer between the hydrophobic and the normal glass slide, the whole montage was then allowed to gel for 30 min at 4° C. The upper slide (hydrophobic) was removed thereafter and a thin layer of agarose gel was obtained. This gel was then allowed to stabilize at room temperature for 30 min before measurement in order to avoid any shrinkage or dilatation of the gel during the measurement.
MD simulations have been done using the Desmond package of the Maestro version 8.5 from Schrodinger. Initial conformation has been obtained from the x-ray structure of the agarose that has been downloaded from the PDB library. Modified agarose has been drawn from the PDB file directly inside the Maestro software. Implicit water model has been build using the Desmond tool, resulting in a 10 Å square box build by following the TIP3 solution model. The simulations have been run in the model NPV at 300° K. at atmospheric pressure for 15 ns. Analysis of the results was done using the VMD software and the tools available in the standard package.
A technique commonly used to study secondary structure in biological molecules is circular dichroism (CD) (28). CD is very sensitive toward changes in the coupling of transition dipole moments, which serves as a probe for secondary structure, e.g., α-helices or β-sheets in proteins (28). In unmodified agarose the CD arises from coupling of C—O—C ether chromophores, leading to positive residual ellipticity with a maximum at 183 nm for α-helices (
The changes to the agarose secondary structure upon carboxylation (to obtain carboxylated agarose, which will be referred to hereinafter as CA), can be seen by using 93% carboxylated agarose (93-CA) as a model system. Like unmodified agarose (natural agarose, referred to hereinafter as NA), 93-CA exhibits strong positive ellipticity; however, in comparison with NA the maximum is even stronger and red-shifted (191 nm) (
To ascertain the impact of the β-sheet structure on the organization of agarose molecules, tapping mode atomic force microscopy (AFM) (32) was used to visualize NA and carboxylated agarose (CA) molecules (
Without being bound to any theory, one could postulate a prominent role for reduced H bonding and increased electrostatic repulsion between chains upon carboxylation, which, in sum, may promote more hydrophobic interactions leading to hitherto unknown interactions between agarose molecules.
In proteins, changes to secondary structure can alter protein folding (tertiary structure) in a manner that favors aggregation. In fact, soluble Aβ has a disordered structure; however, aggregates of Aβ have a significant amount of β-sheet structure (35). If the paradigm for structure evolution is conserved between polysaccharides and proteins, then one might expect that the switch from a-helix to β-sheet could also impact the supramolecular assembly of the agarose molecules and hence the microstructure of the gel. To determine whether this indeed occurs and to what extent, the interior of freeze-dried 2% wt/vol hydrogels was characterized using environmental scanning electron microscopy (ESEM). Whereas the microstructure of the NA gel was composed of tufts of disordered fibers, microstructures of the CA gel bear no resemblance to NA and reveal an astonishing transformation in the organization of agarose fibers with an increasing degree of carboxylation (
The gelation of NA involves association of α-helices through H bonding mediated by the C6 primary hydroxyl group. Because carboxylation modifies helical interactions, it also imposes changes to the physicochemical characteristics of CA gels. The gelation behavior of agarose shows a hysteresis in that the melting temperature of the gel (Tm, >80 ° C.) is significantly higher than the gelation temperature (Tgel ˜40° C.) (23). This is expected, as the formation of the gel requires H bonding, which is more likely to occur as the entropy of the system is reduced. A key prediction of the MD simulation is that CA chains have markedly diminished associative tendencies, resulting in lower H-bond formation. One implication is a decrease of the gelation temperature, as promotion of H bonding requires lower kinetic energy. In fact, the complete carboxylation of agarose results in the lowering of the Tgel to below 10° C. (i.e., δ=−30° C.) over agarose, with intermediate carboxylation yielding intermediate Tgel (
The lower gelation temperature is advantageous for cell encapsulation and tissue regeneration applications, as activation of heat-shock proteins can be avoided (37).
Concrete proof for the direct involvement of the β-sheet in the gelation of the CA gels was obtained by following the CD spectrum of 93-CA (fully carboxylated agarose) as a function of temperature. The CD spectrum of the 93-CA gel above its Tm shows a complete abolishment of the ellipticity at 203 nm associated with the β-sheet structure and additionally a further red shift of the ellipticity at 199 nm in comparison with the gel at 5° C. (
Without being bound to any theory, the results obtained would be in accordance with a mechanism for the gelation of CA involving four steps of: (i) reorganization of the polymer backbone due to disruption of helices, resulting in a-helix to β-sheet switch; (ii) followed by aggregation of polymer chains through β-sheet motifs; (iii) elongation of these aggregates into high-aspect ratio structures; and (iv) the assembly of these high-aspect ratio structures in higher lamellar sheets.
Cross-links are often described as knots or entanglements of two and more chains. Because the gelation in both NA and CA can be attributed to association of secondary structure of a specific conformation, the cross-links can be imagined as assimilation of these secondary structures into soft spheres, and its formation can be linked to the growth of nano-particles through phase inversion. These highly specific associative processes can manifest in dilute solutions as aggregates. The size, polydispersity (PD), and zeta potential (ζ) of aggregates that are spontaneously formed in dilute solutions of NA and CA were determined using dynamic light scattering. The average size of aggregates formed in NA solution (0.15% wt/vol) was 1.09 μm, with a PD of ˜0.6, suggesting a rather heterogeneous associative process. In contrast, the aggregates formed from CA solutions were almost half the size, around 600 nm, and more narrowly dispersed (PD ˜0.3), implying a higher homogeneity. In fact, the changes to the size of the cross-links manifest themselves as a loss of turbidity in the gels, which is concomitant with increased carboxylation.
As these aggregates represent the origins of physical cross-linking, their charge characteristics influence their crystallization into a gel network. Although aggregates of NA have only a slightly negative ζ (−5 mV), ζ of the CA aggregate becomes increasingly negative (maximum −27 mV). Rheology studies reveal that increasing surface charge favors a more highly organized structure (38) but a much looser association due to electrostatic repulsion (39), thereby resulting in gels with a very well-defined microstructure, but which are physically weaker. CA gels have lower G′ and G″in comparison with NA. A typical rheology curve of storage (G′) and loss (G″) modulus as a function of angular frequency for NA and 60-CA is shown in FIG. 3A. The reduction in G′ is consistent with the predictions from the MD simulations, as a lower tendency for H bonding coupled with an increased charged density along the polysaccharide lowers friction at the molecular level, thereby reducing the shear modulus of the gel (39). More importantly, by varying the degree of carboxylation, the G′ of the hydrogels in accordance with the present invention can be tailored independent of the polysaccharide concentration, for example for a 2% wt/vol gel over four orders of magnitude (from 3.6×104 Pa to 6 Pa), spanning the entire range of soft tissues found in the mammalian anatomy (40), and over a slightly reduced range of G′ for a 4% wt/vol gel (
The reduction of the shear modulus G′ of hydrogels based on disaccharides by a process wherein the hydrogel is subjected to a partial oxidation of the primary hydroxyl groups of the disaccharides constitutes a further embodiment of the present invention.
The origin of the changes to G′ can be exclusively attributed to the new secondary structure as both NA and CA have identical molecular weights and PDI.
The ability to influence secondary structure of polysaccharides via carboxylation is not limited to agarose but can also be demonstrated in other polysaccharides. κ-carrageenan, a polysaccharide, like agarose, also organizes into helical structures. Carboxylation of the primary alcohol at C6 position of sulfated D-galactose in κ-carrageenan results in changes to the CD spectra that are identical to those in agarose. Upon carboxylation, the negative residual ellipticity of κ-carrageenan β-helices undergoes a red shift from 183 nm to 189 nm, which is again accompanied by a new residual ellipticity with a maximum at 203 nm. The opposite sign of these two spectral features clearly demonstrates the co-existence of two secondary structural elements, β-helix and β-sheet, in a single polysaccharide. Furthermore, AFM images reveal that carboxylation of κ-carrageenan promotes the transition of polymer fibers from helical to disk-shaped assemblies as observed in CA. Even more remarkable is that the switch from helices to β-sheets, like in the case of agarose, induces reorganization of the microstructure of the freeze-dried gels from fibrous (unmodified κ-carrageenan, KC) to a high-ordered lamellar structure (carboxylated κ-carrageenan, CKC). The organization of polymer fibers in carboxylated κ-carrageenan is also driven by the association of β-sheets, like in CA, as can be seen from a lower modulus for carboxylated κ-carrageenan in comparison with κ-carrageenan. The G′ for carboxylated κ-carrageenan is three orders of magnitude lower than that for κ-carrageenan.
This shows that carboxylation of primary hydroxyl groups in hydrogels based on disaccharides provides a general approach for altering the secondary structure of α-helical polysaccharides.
CA60 Gels Promote Human Umbilical Vein Endothelial Cell (HUVEC) Organization into Lumens. The organization of cells into tissue-like structures involves a complex interplay between the soluble signals and those originating from the ECM (matrix stiffness, cell-ECM binding motifs, bound growth factors). Because stiffness of a biomaterial has been shown to impact stem cell lineage choices (1) and the metastasis of cancer cells (41), it can be expected that the injectable CA gels with tunable mechanical and structural properties in accordance with the present invention will be highly desirable for cell delivery and as a clinically translatable system for controlled tissue morphogenesis.
Vascularization is critical for the survival of cells and necessary for the transport of signaling molecules to aid in regeneration. Vasculogenesis, as it pertains to in vitro studies, is the formation of lumens from dispersed endothelial cells (ECs), and it differs from angiogenesis where endothelial structures form from an already existing blood vessel or an EC monolayer (42). It is well established that during vascular lumen morphogenesis, i.e., the formation of arteriole-like structures, cell-cell contacts and mural (support) cells play a vital role. To identify the factors that influence EC organization, several in vitro models have been established, including collagen gel, fibrin gel, and matrigel (43-46). These studies have revealed that arginine-glycine-aspartic acid (RGD) integrin binding sequence and soluble signals such as vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) are essential and that the mechanical aspects of the gel impact the formation of EC networks (43-46).
Nevertheless, the factors that impact the organization of multiple ECs in freestanding tubular structures are not fully understood. Because vasculogenesis primarily occurs during embryonic development when ECM is immature, a screening of the impact of the gel modulus and bound and soluble signals on human umbilical vein endothelial cell (HUVEC) organization was performed to evaluate the role of the immediate cellular environment in how soluble and bound signals are perceived by ECs. To investigate this premise further the organization of HUVECs in CA gels of two moduli, 0.02 kPa (CA60) and 1 kPa (CA28) was studied by systematically altering three parameters: basement membrane proteins (±0.01% wt/vol Matrigel), cell-binding motif (±RGD), and soluble signals [±VEGF, FGF, and Phorbol 12-myristate 13-acetate (PMA)]. In comparison, HUVECs were also cultured in fibrin gel and collagen gel supplemented with 0.01% Matrigel and soluble signals and in Matrigel supplemented with soluble signals.
The organization of HUVECs into lumens can be categorized into four types as shown in
Apical-basal polarization of ECs is a critical step in the formation of stable blood vessels (47). Immunofluorescent staining against human podocalyxin (PODXL) and type-4 collagen (COL4A1) revealed apical and basal localization of PODXL and COL4A1, respectively, in HUVECs in CA60 gels, suggesting that they had undergone apical-basal polarization (
Several mechanisms might contribute to the provasculogenic characteristics of the low-modulus CA gels. In biological gels such as fibrin and collagen, proteolytic degradation of the matrix by membrane-type matrix metalloproteinases is necessary and critical, as it paves the way for the migration and organization of the ECs (43). CA without additional factors or components cannot undergo proteolytic degradation, but could be slowly degraded through hydrolytic dissolution and possibly other as yet not completely understood mechanisms. At any rate, these are slow processes that take place at a much longer time-scale (weeks) than endothelial cell organization (1-2 days). Therefore, the role of matrix degradation in the organization of HUVECs in CA gels can be ruled out. However, it is possible that the stiffness and the chemistry of the gel can modulate the organization and affinity of ECM components and soluble signals. Because the stiffness of fibrin and collagen gels is similar to that of CA60, this suggests that the origin of the provasculogenic nature of CA60 may lie in its unique physicochemical properties (backbone charge and secondary structure) and not solely in its stiffness. Another aspect worth considering is the modulation of HUVEC function by the CA gel through a mechanobiology paradigm. This would require mechanical coupling between the gel matrix and the cell through the RGD motif and a unique role for this motif in HUVEC function. It has long been recognized that RGD signaling is important for EC survival and proliferation (48). Furthermore, it is well known that β1-integrin signaling is important in arterial tubulogenesis and β1 integrins have a binding site for RGD (49). Therefore, it is conceivable that β1 integrins on the HUVECs (50) mechanically couple to the gel through the RGD ligand and thereby sense the mechanical environment provided by the gel. Interestingly, among 32 conditions screened, HUVEC organization into lumens occurs only in CA60 gels modified with RGD. On the basis of these findings, it can be concluded that CA gels are well suited for understanding and leveraging the role of mechanobiology in tissue morphogenesis and provide a potential translational platform for regenerative therapies.
In this invention, injectable gels for Therapeutic Angiogenesis are disclosed. In particular gels comprising of carboxylated agarose of various degrees of carboxylation (CAXX, where XX denotes the degree of carboxylation from 10-100), optionally covalently modified with cell adhesion motifs such as the integrin binding sequence arginine-glycine-aspartic acid (RGD) and additionally containing VEGF, phorbol myristate acetate, and basement membrane proteins laminin, collagen type IV and entactin are disclosed. These gel formulations can induce morphologically accurate and physiological functional blood vessels with appropriate branching structures in vivo.
The following Examples show the hydrogels in accordance with the invention and their use.
Modified agarose was obtained as follows:
Agarose type I has been obtained from Calbiochem. TEMPO (((2,2,6,6-Tetramethylpiperidin-1-yl)oxyl), NaOCl, NaBH4, NaBr, EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)), MES buffer (2-(N-morpholino)-ethanesulfonic acid) have been obtained from Sigma Aldrich and used as received. Solution of 0.5 M NaOH have been freshly made every three months as well as solution of 5 M HCl. Peptide GGGGRGDSP has been obtained from Peptide International. Ethanol technical grade was used without any further purification. De-ionized water was used for non-sterile synthesis.
Agarose was modified under sterile conditions: All the chemicals were dissolved in autoclaved water and filtered with a 0.2 μm filter. All the glassware was autoclaved and the reaction was conducted under a laminar flow. Agarose (1 g) was autoclaved in MilliQ water. Autoclaved agarose was poured into a 3-necked round bottom flask. A mechanical stirrer was adapted to one of the necks. A pH-meter was adapted on the round bottom flask. The reactor was then cooled down to 0-5° C. and vigorously stirred. TEMPO (0.160 mmol, 20.6 mg) was added, NaBr (0.9 mmol, 0.1 g) and NaOCl (2.5 ml, 15% solution) was as well poured inside the reactor. The solution was adjusted to pH=10.8 with HCI and NaOH. The pH was maintained at 10.8 by adding NaOH. At the end of the reaction NaBH4 (0.1 g) was added and pH=8 was reached. The solution was stirred for 1 hour and NaCl (0.2 mol, 12 g) and ethanol (500 ml) was added. The agarose was precipitated and extracted in a funnel. The two layers were then filtered on a frit glass. The agarose was then dialyzed in Spectra Pore 4, MWCO=12-14000 for 2 days and the water was changed two times. Prior to dialysis the membranes were left overnight in a 70% ethanol solution, 2 hours before use they were rinsed in autoclaved water. Finally the product was put on a Christ LD 2-8 LD plus at 0.1 mbar for the main drying and at 0.001 mbar during the desorption phase. Samples were put in round bottle flask and frozen in liquid nitrogen bath on a rotary evaporator modified for this purpose. Thin layers of frozen solution were obtained on the flask wall reducing the lyophilization time.
Five different hydrogels were prepared as follows:
NA stands for unmodified agarose, CA28 for agarose in which 28% of the primary hydroxyl groups are converted to carboxyl groups and CA60 for an agarose where 60% of the primary hydroxyl groups have been converted into carboxyl groups.
Growth Factors (GF) were introduced into the hydrogels using Matrigel (Mat), obtaining seven hydrogel formulations as follows:
1 60RGD+Mat+GF
2 28RGD+Mat+GF
3 NA—unmodified control
4 6ORGD+Mat
5 28RGD+Mat
6 CA60+Mat+GF
7 CA28+Mat+GF
The different gels were preloaded inside insulin syringes (BD Bioscience) and were kept on ice until injection.
In vivo Intramuscular Injection
Mice were anaesthetized before injection. 50 μL of cold phosphate buffer solution (PBS) were injected in the Gastrocnemius (two injections per leg, i.e. 4 in total per animal). The cold PBS injection was used to cool down the injection site before the injection of the gel. Directly thereafter 50 μL of the gel formulations formulation was injected at the same injection point that was marked with a pen. Only one condition was injected per leg. The animals were left 2 weeks under normal diet and then sacrificed.
Mice were anesthetized and tissues were fixed by vascular perfusion with 1% paraformaldehyde in PBS pH 7.4. Gastrocnemius muscles were harvested, embedded in OCT compound (CellPath, Newtown, Powys, UK), frozen in freezing isopentane, and cryosectioned. Sections of 25 μm in thickness were stained with the following primary antibodies and dilutions: rat monoclonal anti-mouse CD31 (clone MEC 13.3, BD Biosciences, Basel, Switzerland) at 1:100; mouse monoclonal anti-mouse α-SMA (clone 1A4, MP Biomedicals, Basel, Switzerland) at 1:400; rabbit polyclonal anti-NG2 (Chemicon International, Hampshire, UK) at 1:200. Fluorescently labeled secondary antibodies (Invitrogen, Basel, Switzerland) were used at 1:200.
Physiological perfusion of induced vessels was assessed by intravascular staining with a fluorescently labeled Lycopersicum esculentum (tomato) lectin or biotinylated Lycopersicon esculentum lectin (Vector Laboratories, Burlingame, Calif., USA) that binds the luminal surface of blood vessels. Biotinylated Lycopersicon esculentum lectin was detected with fluorescently labeled streptavidin (eBioscience, Vienna, Austria). Briefly, mice were anesthetized and lectin was injected intravenously (50 μl of a 2 mg/ml lectin solution per mouse) and allowed to circulate for 4 min before vascular perfusion of 1% PFA in PBS pH 7.4 for 3 min under 120 mm/Hg of pressure.
Vessel diameters and vessel length density were measured in muscle frozen sections after staining for CD31 (marker for endothelial cells), NG2 (marker for pericyite cells) and SMA (marker for smooth muscle cells). Briefly, vessel diameters were measured by overlaying captured microscopic images with a square grid. Squares were selected randomly and the diameter of each vessel, if present, in the defined square was measured (in μm). At least 100 diameters were randomly quantified for each experimental condition. Vessel length density was measured in at least 15 representative fields per muscle tracing the total length of vessels in each field and dividing it by the area of the field, which was kept constant for all measurements and all experimental conditions (mm of vessel length/mm2 of surface area). Vascular segment length was defined as the average length (in μm) of the linear vessel segments comprised between two branch points. It was also measured in the same analyzed microscopy fields by counting the number of branching points in the vascular network (n) and dividing the total vessel length by n+1. All analyses were performed using the Cell P imaging software (Olympus, Volketswil, Switzerland).
The significance of differences was assessed using analysis of variance (ANOVA) followed by the Sidak test for multiple comparisons (GraphPad Prism 6). p<0.05 was considered statistically significant.
The vessel growth induced by different compositions 2 weeks after implantation and the corresponding quantifications of vascular parameters were investigated. As expected, the unmodified Agar condition (NA) also contained vascular structures, since it is based on a fully biocompatible material. The CA28 and, more extensively, the CA60 modifications alone caused a loss of vascular ingrowth despite the combination with matrigel and GF, but this was restored to various extents by the addition of the RGD sequence. Analysis of vessel diameter showed a homogeneous distribution in the size range of normal capillaries for all conditions, without enlarged aberrant structures.
It is interesting to note that
The 28RGD and 60RGD conditions, without addition of either matrigel or GF, displayed the best examples of morphologically ideal vascular structures, with properly branched capillary networks, mature and associated with NG2-positive and SMA-negative pericytes.
Lectin perfusion experiments showed that already after 2 weeks practically all induced vessels were functionally connected with the general circulation, without major differences in any condition, suggesting that in all conditions a process of angiogenesis (growth of new vessels from pre-existing ones) takes place rather than vasculogenesis (de novo assembly of endothelial structures from progenitor cells).
In order to be therapeutically useful, newly induced vascular structures must be able to persist long-term. This important step is defined as vascular stabilization and has been shown to take place within the first 4 weeks after induction of new angiogenesis (51-53). Therefore, the stabilization afforded by the different compositions to newly induced vascular structures was investigated 7 weeks after hydrogel implantation in vivo.
The unmodified agar and 28RGD hydrogel conditions displayed low vessel length density (VLD, which indicates the amount of new vessels induced; the higher the value, the more new vessels are induced), with poorly branched (segment length; the lower the segment length the more branched the vessels are) and immature endothelial structures, scarcely associated with NG2+/SMA− pericytes, indicating a significant regression of the capillaries that were induced after 2 weeks. Presence of GF in the 28RGD condition allowed a better stabilization of induced vessels, which however remained poorly covered by pericytes and poorly branched (segment length).
In contrast, the 6ORGD hydrogel displayed very dense and highly branched capillary networks, which were also mature, i.e. associated with NG2-positive and SMA-negative pericytes. Quantification of vessel length density showed that this composition ensured complete stabilization of induced angiogenesis, with no vascular regression and even further network expansion compared with the 2-week time-point.
Remarkably the addition of GF did not provide any clear benefit in terms of either amount of new vessels or branching of the induced networks compared to 60RGD hydrogel alone.
Vessel diameters did not show any statistical significance among the different groups.
Number | Date | Country | Kind |
---|---|---|---|
13177505.8 | Jul 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/065649 | 7/21/2014 | WO | 00 |