POLYSACCHARIDE-OXIDIZING COMPOSITION AND USES THEREOF

Abstract
The invention relates to a polysaccaride-oxidizing composition comprising a polysaccaride-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 as described in the specification by using the BLAST-P comparison method, (i) the said polysaccaride-oxidizing enzyme possesses an amino acid identify of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less.
Description
FIELD OF THE INVENTION

The present invention relates to field of production of sugar products by enzyme oxidation and hydrolysis of polysaccharide-containing material, and especially ligno-cellulosic biomass.


BACKGROUND OF THE INVENTION

Lignocellulosic biomass is a renewable source for the production of biofuels and platform molecules for the industry. Its conversion into valuable products requires the combined action of a variety of enzymes, most of which are obtained from fungal sources. In particular, the efficient conversion of cellulose to small molecules is carried out by the synergistic action of cellulases, i.e. endoglucanases (EG), cellobiohydrolases (CBH) and β-glucosidases. EG cleave β-1,4 linkages randomly within cellulose chains, thereby releasing new ends for the action of cellobiohydrolases (CBH) which in turn release cellobiose units. β-glucosidases produce glucose molecules from cellobiose, thereby alleviating the inhibiting effect of cellobiose on CBH. These enzymes are classified in various glycoside hydrolase (GH) families of the carbohydrate-active enzyme database (also termed CAZy; described notably at the internet address www.cazy.org, and by Lombard et al, 2014, Nucleic Acids Res, Vol. 42: 490-495). More recently, the contribution of lytic polysaccharide monooxygenase (LPMOs) to cellulose degradation has been demonstrated (Vaaje-Kolstad et al. 2010, Science, Vol. 330: 219-222; Harris et al. 2010, Biochemistry, Vol. 49: 3305-336; Quinlan et al. 2011, Proc Acad Natl Sci USA, Vol. 108: 15079-15084). In industry, addition of LPMOs to cellulolytic cocktails leads to the reduction of enzyme loading required for efficient saccharification of cellulosic biomass (Harris et al. 2010, Biochemistry, Vol. 49: 3305-3316; Johansen et al, 2016, Biochem Soc Trans, Vol. 44: 143-149).


In spite of much research effort, there remains a need for improved cellulose enzyme mixtures for the hydrolysis of cellulose in a pretreated lignocellulosic feedstock. The absence of such an enzyme mixture represents a large hurdle in the commercialization of cellulose conversion to soluble sugars including glucose for the production of ethanol and other products.


SUMMARY OF THE INVENTION

This invention provides for novel compositions comprising one or more specific polysaccharide-oxidizing enzymes.


The present invention relates to a polysaccharide-oxidizing composition comprising a polysaccharide-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less.


In some embodiments of the composition, the said polysaccharide-oxidizing enzyme has at least 30% amino acid identity with a polypeptide selected in a group comprising the polypeptides of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3 3.


In some embodiments of the composition, the said polysaccharide-oxidizing enzyme is encoded by a nucleic acid having at least 90% nucleotide identity with a nucleic acid selected in a group comprising the nucleic acids of SEQ ID NO. 4, SEQ ID NO. 5 and SEQ ID NO. 6.


In some embodiments, the said composition further comprises one or more lytic polysaccharide monooxygenases.


In some embodiments, the said composition further comprises one or more polysaccharide-degrading enzymes, selected in a group comprising cellulases, hemicellulases, ligninases, and carbohydrate oxidases. In some embodiments, the cellulases are selected in a group comprising exoglucanases, endoglucanases, cellobiohydrolases, cellulose phosphorylases, pectinases, pectate lyases, polygalacturonase, pectin esterases, cellobiose dehydrogenases, beta mannanases, arabino furnosidases, feruoyl esterases, arabino furanosidases, fructofuranosidases, alpha galactosidases, beta galactosidases, alpha amylases, acetylxylan esterases, chitin deacetylases, chitinases, and beta glucosidases. In some of these embodiments, the lytic polysaccharide monooxygenase is selected in a group comprising AA9, AA10, AA11 and AA13.


In some embodiments, the said one or more other polysaccharide degrading enzymes are comprised in an enzyme preparation containing the said one or more other polysaccharide degrading enzymes. In some embodiments, the said enzyme preparation comprises one or more enzymes originating from one or more fungus organisms or one or more bacterial organisms.


In some embodiments of the polysaccharide-oxidizing composition, one or more of the said other polysaccharide degrading enzymes are recombinant proteins.


This invention also pertains to a yeast cell recombinantly expressing a polysaccharide-oxidizing enzyme as defined in the present specification.


This invention also concerns a method for oxidizing a polysaccharide comprising a step of contacting one or more polysaccharides with a polysaccharide-oxidizing enzyme as defined in the present specification, or with a composition comprising the said polysaccharide-oxidizing enzyme. In some embodiments, the said one or more polysaccharides are contained in a lignocellulosic-containing material.


The present invention further relates to a method for the preparation of a sugar product from a polysaccharide-containing material comprising a step of treating the said polysaccharide-containing material in the presence of a polysaccharide degrading composition as described in the present specification. In some embodiments, the said method which comprises the steps of:

    • a) providing a polysaccharide-containing material,
    • b) subjecting the said polysaccharide-containing material to hydrolysis in the presence of a polysaccharide-degrading composition as defined herein, and
    • c) collecting the sugar product obtained at the end of step b).


This invention also provides for a method for the preparation of a fermentation product from a polysaccharide-containing material comprising the steps of:

    • a) providing a polysaccharide-containing material,
    • b) subjecting the said polysaccharide-containing material to hydrolysis in the presence of a polysaccharide-degrading composition as defined herein, whereby a sugar product is obtained, and
    • c) fomenting the sugar product collected at step c), whereby a fermentation product is obtained.





DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a photograph of the gel electrophoresis on SDS-PAGE of the recombinant proteins of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3 produced in Pichia pastoris. Lane 1: 10 μg of the purified protein of SEQ ID NO. 3. Lane 2:10 μg of protein of SEQ ID NO. 1. Lane 3: 10 μg of protein of SEQ ID NO. 2. Lane 4: molecular weight protein markers.



FIG. 2 illustrates the effect of enzyme concentration on H2O2 production. (i) Upper curve with symbol □: protein of SEQ ID NO. 1, (ii) Lower curve with symbol Δ: protein of SEQ ID NO. 2. (iii) Medium curve with symbol x: protein of SEQ ID NO. 3. (iv) symbol ⋄: Control containing the reaction mixture without proteins of SEQ ID NO. 1, SEQ ID NO. 2 or SEQ ID NO. 3, and shows the background level of H2O2 production (without enzyme). Abscissa:Concentration of protein, as expressed in micromolar. Ordinate:slope of hydrogen peroxide production, as expressed in Arbitrary Units.



FIG. 3 illustrates the results of a saccharification process in the presence of SEQ ID NO. 1 or SEQ ID NO. 2. Supplementation of T. reesei enzymatic cocktail with SEQ ID NO. 1 (FIG. 3A) or SEQ ID NO. 2 (FIG. 31) for the saccharification of pretreated poplar (filled bars), birchwood fibres (dashed bars), cellulose (dotted bars). Quantification of glucose release was monitored by ionic chromatography, the measured values being expressed as Arbitrary Units of glucose peak area. The synergistic effect of SEQ ID NO. 1 or SEQ ID NO. 2 with T. reesei cellulases is compared with the control (T. reesei cellulases only)



FIG. 4 illustrates the results of a saccharification process in the presence of T. reesei cellulase cocktail supplemented with increasing amounts of either SEQ ID NO. 1 or SEQ ID NO. 2 by measuring the release of glucose by ionic chromatography. FIG. 4A: Graph of the measured glucose peak area for increasing amounts of SEQ ID NO. 1. FIG. 4B: Graph of the measured glucose peak area for increasing amounts of the protein of SEQ ID NO. 2. Ordinate: chromatography signal as expressed in Arbitrary Units. Abscissa of FIG. 4A: bars from the left side to the right side of the figure: 1. absence of protein of SEQ ID NO. 1 or SEQ ID NO. 2; 2. Final concentration in the assay of 0.22 μM of protein mixture of SEQ ID NO. 1 and SEQ ID NO. 2; 3. Final concentration in the assay of 1.1 μM of a protein mixture of SEQ ID NO. 1 and SEQ ID NO. 2; 4. Final concentration in the assay of 2.2 μM of a protein mixture of SEQ ID NO. 1 and SEQ ID NO. 2


Abscissa of FIG. 4B: bars from the left side to the right side of the figure: 1. absence of protein of SEQ ID NO. 1 or SEQ ID NO. 2, 2. Final concentration in the assay of 0.22 μM of protein mixture of SEQ ID NO. 2; 3. Final concentration in the assay of 1.1 μM of a protein mixture of SEQ ID NO. 2; 4. Final concentration in the assay of 2.2 μM of a protein mixture of SEQ ID NO. 2



FIG. 5 illustrates the results of a saccharification process in the presence of T.reesei enzymatic cocktail supplemented by a AA9 lytic polysaccharide monooxygenase and protein of SEQ ID NO. 1, by measuring the release of glucose by ionic chromatography. Abscissa: bars from the left side to the right side of the figure: 1. absence of protein of SEQ ID NO. 1 or AA9, 2. 2.2 μM of protein of SEQ ID NO. 1, 3.2.2 μM of AA9, 4. 1.1 μM of a protein of SEQ ID NO. 1 and 1.1 μM of AA9.



FIG. 6: Phylogenetic tree of the AAxx family showing that the AAxx family members strongly cluster together and are very distant from AA9, AA10, AA11 and AA13 sequences respectively.



FIG. 7: Line diagram of PcAAxx LPMO active site.



FIG. 8A-8B: Consensus sequence logo based on alignment of 283 sequences belonging to the catalytic module of AAxx family revealing the first Histidine as a conserved residue amongst the family.



FIG. 9: Contribution of PcAAxx enzymes to the saccharification of woody biomass. Glucose release upon saccharification of pretreated pine and poplar by the CL847 Trichoderma reesei enzyme cocktail (18) in the presence of 1 μM of PcAAxxA or PcAAxxB and 1 mM ascorbic acid. Glucose was quantified using ionic chromatography. Error bars indicate standard deviations from triplicate independent experiments.



FIG. 10: Contribution of PcAAxx enzymes to the saccharification of woody biomass in the presence and in the absence of Ascorbate. Saccharification assays in the presence and absence of ascorbate on pine (A), and poplar (B). PcAAxxA (of SEQ ID No 1) and PcAAxxB (of SEQ ID No 2) were added to a concentration of 1 μM. Error bars indicate standard deviations from triplicate independent experiments.





DETAILED DESCRIPTION OF THE INVENTION

Any citation mentioned herein is incorporated by reference.


Throughout the present specification and the accompanying claims, the words “comprise” and “include” and variations such as “comprises”, “comprising”, “includes” and “including” are to be interpreted inclusively. That is, these words are intended to convey the possible inclusion of other elements or integers not specifically recited, where the context allows. The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to one or at least one) of the grammatical object of the article. By way of example, “an element” may mean one element or more than one element.


The inventors have identified a family of proteins endowed with a polysaccharide-degrading activity that may be used in processes requiring the production of sugar products from starting polysaccharide materials, in particular polysaccharide biomass, and especially in processes requiring the production of sugar products from starting lignocellulosic materials, such as highly refractory xylan-coated cellulose fibers.


Further, the inventors have shown herein that the said protein family members have the ability to substantially increase the rate or the level of polysaccharide hydrolysis, in an amount-dependent manner. The members of the said family of proteins that has been identified herein has the property of producing hydrogen peroxide in the presence of oxygen and of an electron donor such as ascorbic acid. This is why these proteins which are described in the present application may also be encompassed by the term “polysaccharide-oxidizing enzyme” herein.


This novel family of polysaccharide-oxidizing enzymes is also referred herein as the “AAxx” family of proteins. The inventors have further characterized structurally the reference protein PcAAxxB (Genbank #KY769370) from P.coccineus, by solving the crystallographic structure of its catalytic module at a resolution of 3 Å, thus providing a structural template for identifying all the relevant members of this AAxx family of enzymes, in complement to a sequence alignment of more than 300 proteins with significant similarity to PcAAxxB.


In particular, the polysaccharide-oxidizing enzymes of the invention are characterized by the presence of a conserved copper-binding active site, also referred herein as a copper-binding “histidine brace active site”, formed by two Histidine residues and a Tyrosine, one of those two Histidine residues being the N-terminal histidine after cleavage of the signal peptide.


Even more particularly, the inventors have shown herein that a plurality of proteins belonging to this novel AAxx family can be distinguished from other lytic polysaccharide monooxygenases in that they do not harbor a carbohydrate-binding module (CBM).


Illustratively, the examples herein show that the said protein family members substantially increase the level of polysaccharide degradation caused by a polysaccharide-degrading enzyme mixture. Notably, the examples herein show that protein members of the family of polysaccharide-oxidizing enzymes identified by the inventors substantially increase the level of glucose release caused by the action of an enzyme mixture originating from T. reesei on a cellulose-containing material, which encompasses a lignocellulosic material.


Still further, the inventors have shown that a polysaccharide-oxidizing protein that has been newly identified herein may act in synergy with known other polysaccharide-oxidizing enzymes such as lytic polysaccharide monooxygenases (which are also commonly termed LPMOs) for enhancing the polysaccharide hydrolysis caused by a polysaccharide-degrading enzyme mixture, and especially for enhancing the hydrolysis of a lignocellulosic material caused by an enzyme mixture comprising cellulases.


These further experimental evidences described herein show that the polysaccharide-oxidizing enzymes identified by the inventors may target distinct sugar units constitutive of a polysaccharide (e.g. cellulose, hemicellulose or lignocellulose), or alternatively distinct chemical groups of same sugar units, as compared to the sugar units, or the chemical groups, which are targeted by the known LPMOs, such as AA9 (also termed GH61), AA10, AA11 and AA13.


Thus, it has been unexpectedly found by the inventors that the polysaccharide-oxidizing enzymes identified herein may synergize with cellulases for degrading polysaccharide-containing material, such as cellulose-containing material like lignocellulose.


It has also been unexpectedly found herein that the polysaccharide-oxidizing enzymes identified herein may synergize with LPMOs for degrading polysaccharide-containing material, such as cellulose-containing material like lignocellulose.


Without wishing to be bound by the theory, there inventors are of the opinion that AAxx enzymes of the invention may act preferably on the xylans that are bound to cellulose, especially xylans that have a rigidity and a conformation similar to that of the underlying cellulose chains.


Accordingly, the polysaccharide-oxidizing enzymes of the invention can be considered either alone, or in combination with other polysaccharide-oxidizing and/or polysaccharide-degrading enzymes, and mixtures thereof.


Thus, the inventors have identified a novel class of polysaccharide-oxidizing enzymes that may be used in a large variety of processes for degrading polysaccharide-containing material, and especially in a large variety of processes for degrading lignocellulosic material.


The present invention provides for a novel class of polysaccharide-oxidizing enzymes which, when a polysaccharide-oxidizing enzyme thereof is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison result for the said polysaccharide-oxidizing enzyme comprises an E-value of 10 e−3 or less.


In particular, the inventors have identified a crystallographic structure of a polypeptide of sequence SEQ ID NO. 2. Thus the present invention also relates to polysaccharide-oxidizing enzymes which, when a polysaccharide-oxidizing enzyme thereof is compared to the reference polypeptide of SEQ ID NO. 2 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison result for the said polysaccharide-oxidizing enzyme comprises an E-value of 10 e−3 or less.


BLAST-P method (also termed Protein Basic Local Alignment Search Tool method) is well known from the one skilled in the art. BLAST-P method is notably described by Altschul et al. (1990. J Mol Biol, Vol. 215 (no 3):403-410), Altschul et al. (1997, Nucleic Acids Res. Vol. 25:3389-3402) and Altschul et al. (2005, FEBS J. Vol. 272:5101-5109). BLAST-P method may be performed by using the NCBI tool that is available on-line (internet address: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins).


When used herein, the BLAST-P method shall preferably be used with the following parameters: (i) Expected threshold: 10; (ii) Word Size: 6: (iii) Max Matches in a Query range: 0; (iv) Matrix: BLOSSUM62; (v) Gap costs: Existence 11, Extension 1; (vi) Compositional Adjustments: Conditional compositional score matrix adjustment, (vii) No filter (viii) No mask.


As it is well known, the score of an alignment, S, is calculated as the sum of substitution and gap scores. Substitution scores are given by a look-up table (see PAM, BLOSUM hereunder). Gap scores are typically calculated as the sum of G, the gap opening penalty and L, the gap extension penalty. For a gap of length n, the gap cost would be G+Ln. The choice of gap costs, G and L is empirical, but it is customary to choose a high value for G (10-15) and a low value for L (1-2).


An optimal alignment means an alignment of two sequences with the highest possible score.


The amino acid identity means the extent to which two amino acid sequences have the same residues at the same positions in an alignment, often expressed as a percentage.


A Blocks Substitution Matrix (BLOSSUM) is a substitution scoring matrix in which scores for each position are derived from observations of the frequencies of substitutions in blocks of local alignments in related proteins. Each matrix is tailored to a particular evolutionary distance. In the BLOSUM62 matrix, for example, the alignment from which scores were derived was created using sequences sharing no more than 62% identity. Sequences more identical than 62% are represented by a single sequence in the alignment so as to avoid over-weighting closely related family members.


As used herein, an “E-value” (also termed Expect Value”) is a parameter calculated when using the BLAST-P method, the said parameter representing the number of different alignments with scores equivalent to or better than S that is expected to occur in a database search by chance. The lower the E value, the more significant the score and the alignment.


The inventors have identified more than 300 polypeptides that display significant comparison scores over their entire sequence length, when these polypeptides are compared to the polypeptide of SEQ ID NO. 1 by using the BLAST-P method.


Accordingly, the inventors have identified more than 300 polypeptides wherein, when any one of these polypeptides is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said member possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less.


Illustratively, there is described herein the polysaccharide-oxidizing enzyme of SEQ ID NO. 2, which possesses an amino acid identity of 66% with the reference polypeptide of SEQ ID NO. 1 and has an E-value of 4 e−133, when using the BLAST-P comparison method.


As shown in the examples herein, the polysaccharide-oxidizing enzyme of SEQ ID NO. 2, like the polysaccharide-oxidizing enzyme of SEQ ID NO. 1, has the ability to produce H2O2 in the presence of oxygen and an electron donor compound. Further, the polysaccharide-oxidizing enzyme of SEQ ID NO. 2, possesses polysaccharide degrading activity, as shown herein in a sequential lignocellulose degradation assay.


Still illustratively, there is described herein the polysaccharide-oxidizing enzyme of SEQ ID NO. 3, which possesses an amino acid identity of 34% with the reference polypeptide of SEQ ID NO. 1 and has an E-value of 2 e−40, when using the BLAST-P comparison method.


As shown in the examples herein, the polysaccharide-oxidizing enzyme of SEQ ID NO. 2, like the polysaccharide-oxidizing enzyme of SEQ ID NO. 1, has the ability to produce H2O2 in the presence of oxygen and an electron donor compound, like the polysaccharide-oxidizing enzyme of SEQ ID NO. 2 and SEQ ID NO. 3.


Analyses of the sequence alignment by the inventors revealed that a conserved histidine residue is always present at the N-terminal position of each of these polypeptide sequences.


In particular, the polysaccharide-oxidizing enzymes of the invention are characterized by the presence of a conserved copper-binding active site, also referred herein as a copper-binding “histidine brace active site”, formed by two Histidine residues and a Tyrosine, one of those two Histidine residues being the N-terminal histidine.


According to another (non-mutually exclusive) embodiment, the polysaccharide-oxidizing enzymes of the invention may be N- and or O-glycosylated.


For reference, a polysaccharide-oxidizing enzyme of SEQ ID NO. 2 may be N-glycosylated on at least one Asparagine (Asn) residue, selected from Asn 13, Asn76, Asn133, Asn183 and Asn217.


As used herein, a N-glycosylation on at least one Asparagine residue, may include one residue, two, three, four or five of said Asn residues; or if applicable all of Asn residues.


As used herein, a “polysaccharide-oxidizing enzyme” encompasses a polypeptide having the following properties:

    • the said polypeptide produces hydrogen peroxide in the presence of oxygen and an electron donor compound, such as ascorbate,
    • the said polypeptide increases in a dose-dependent manner, in the presence or in the absence of an electron donor, the degradation of a polysaccharide-containing material, such as lignocellulose, caused by cellulases and/or xylanases.
    • the said polypeptide increases in a dose-dependent manner, in the presence or in the absence of an electron donor, the degradation of a polysaccharide-containing material, such as lignocellulose, caused by cellulases, in the presence of one or more LPMOs, such as LPMOs selected in a group comprising AA9, AA10, AA11 and AA13.


In particular, a “polysaccharide-oxidizing enzyme” of the invention has been shown to be particularly efficient in oxidizing xylans, especially xylans that are absorbed onto cellulose.


The term “electron donor” is used herein in its usual meaning for the one skilled in the art. Thus, an electron donor compound is a chemical entity that donates electrons to another compound. An electron donor compound is a reducing agent by virtue of its donating electrons and is itself oxidized when donating electrons to another chemical entity. An electron donor, as specified above for the polysaccharide-oxidizing properties, encompasses, in a non-exhaustive manner, ascorbate and cellobiose dehydrogenase (CDH).


In the absence of a reductant, such as ascorbate, the reducing agent may advantageously be provided by the biomass (e.g. lignin), which could act as an electron donor.


The present invention also provides for uses of the said class of polysaccharide-oxidizing enzymes in various polysaccharide degradation processes, including in processes for degrading lignocellulosic material.


The present invention also provides for compositions comprising one or more of the said polysaccharide-oxidizing enzymes, and optionally polysaccharide degrading enzymes such as cellulases or lytic polysaccharide monooxygenases (LPMOs).


The present invention provides for a polysaccharide-oxidizing composition comprising a polysaccharide-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 c or less.


In some embodiments, a polysaccharide-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less consists of the polypeptide of SEQ ID NO. 2. As already specified elsewhere herein, the polypeptide of SEQ ID NO. 2 has 66% amino acid identity with SEQ ID NO. 1 and an E value of 4 e−133.


As specified herein a polypeptide comprising SEQ ID No 2 may comprise, or consist of, a polypeptide of SEQ ID No 7.


In some other embodiments, a polysaccharide-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less consists of the polypeptide of SEQ ID NO. 3. As already specified elsewhere herein, the polypeptide of SEQ ID NO. 3 has 34% amino acid identity with SEQ ID NO. 1 and an E value of 2 e−40.


Further, the polypeptide of SEQ ID NO. 3 has 37% amino acid identity with SEQ ID NO. 2 and an E value of 5 e−44.


This invention also pertains to such compositions, wherein the said polysaccharide-oxidizing enzyme is encoded by a nucleic acid having at least 20% nucleotide identity with a nucleic acid selected in a group comprising the nucleic acids of SEQ ID NO. 4, SEQ ID NO. 5 and SEQ ID NO. 6.


This invention also pertains to such compositions, wherein the said polysaccharide-oxidizing enzyme is encoded by a nucleic acid having at least 20% nucleotide identity with a nucleic acid selected in a group comprising nucleic acids encoding a polypeptide of SEQ ID NO. 7.


Within the scope of the present invention, the “percentage identity” between two polypeptides means the percentage of identical amino acids residues between the two polypeptide sequences to be compared, obtained after optimal alignment, this percentage being purely statistical and the differences between the two polypeptide sequences being distributed randomly along their length. The comparison of two polypeptide sequences is traditionally carried out by comparing the sequences after having optimally aligned them, said comparison being able to be conducted by segment or by using an “alignment window”. Optimal alignment of the sequences for comparison is carried out, by using the comparison software BLAST-P).


In its principle, the percentage identity between two amino acid sequences is determined by comparing the two optimally-aligned sequences in which the nucleic acid sequence to compare can have additions or deletions compared to the reference sequence for optimal alignment between the two polypeptide sequences. Percentage identity is calculated by determining the number of positions at which the amino acid residue is identical between the two sequences, preferably between the two complete sequences, dividing the number of identical positions by the total number of positions in the alignment window and multiplying the result by 100 to obtain the percentage identity between the two sequences.


As intended herein, polypeptide sequences having at least 20% amino acid identity with a reference sequence encompass those having at least 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 28%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% amino acid identity with the said reference sequence.


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 30% amino acid identity with a polypeptide selected in a group comprising the polypeptides of SEQ ID NO. 1. SEQ ID NO. 2 and SEQ ID NO. 3. Particularly, the polysaccharide-oxidizing enzymes encompass those having at least 30% amino acid identity with the polypeptide of SEQ ID NO. 1


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 60% amino acid identity with a polypeptide selected in a group comprising the polypeptides of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3. Particularly, the polysaccharide-oxidizing enzymes encompass those having at least 60% amino acid identity with the polypeptide of SEQ ID NO. 1


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 90% amino acid identity with a polypeptide selected in a group comprising the polypeptides of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3. Particularly, the polysaccharide-oxidizing enzymes encompass those having at least 90% amino acid identity with the polypeptide of SEQ ID NO. 1.


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 30% amino acid identity with a polypeptide of SEQ ID NO. 3.


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 60% amino acid identity with a polypeptide of SEQ ID NO. 3.


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 90% amino acid identity with a polypeptide of SEQ ID NO. 3.


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme is encoded by a nucleic acid having at least 90% nucleotide identity with a nucleic acid selected in a group comprising the nucleic acids of SEQ ID NO. 4, SEQ ID NO. 5 and SEQ ID NO. 6.


In some embodiments of a composition described herein, the said polysaccharide-oxidizing enzyme has at least 20% (or even 30%) amino acid identity with a polypeptide of sequence SEQ ID No 7. Particularly, the polysaccharide-oxidizing enzymes encompass those having at least 60% or even 90% amino acid identity with a polypeptide of SEQ ID NO. 7.


Similarly, the “percentage identity” between two sequences of nucleic acids means the percentage of identical nucleotide residues between the two nucleic acid sequences to be compared, obtained after optimal alignment, this percentage being purely statistical and the differences between the two sequences being distributed randomly along their length. The comparison of two nucleic acid sequences is traditionally carried out by comparing the sequences after having optimally aligned them, said comparison being able to be conducted by segment or by using an “alignment window”. Optimal alignment of the sequences for comparison is carried out, by using the comparison software BLAST-N).


In its principle, the percentage identity between two nucleic acid sequences is determined by comparing the two optimally-aligned sequences in which the nucleic acid sequence to compare can have additions or deletions compared to the reference sequence for optimal alignment between the two sequences. Percentage identity is calculated by determining the number of positions at which the nucleotide residue is identical between the two sequences, preferably between the two complete sequences, dividing the number of identical positions by the total number of positions in the alignment window and multiplying the result by 100 to obtain the percentage identity between the two sequences.


As intended herein, nucleotide sequences having at least 20% nucleotide identity with a reference sequence encompass those having at least 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 28%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% and 99% nucleotide identity with the said reference sequence.


As used herein, an E-value of 10 e or less encompasses E-values of 1 e−3 or less, 1 e−4 or less, 1 e−5 or less, 1 e−6 or less, 1 e−7 or less, 1 e−8 or less, 1 e−9 or less, 1 e−10 or less, 1 e−20 or less, 1 e−30 or less, 1 e−40 or less, 1 e−50 or less, 1 e−60 or less, 1 e−70 or less, 1 e−80 or less, 1 e−90 or less and 1 e−100 or less.


Illustratively, as already specified elsewhere herein, when the polysaccharide-oxidizing enzyme of SEQ ID NO. 2 is compared to the reference polypeptide of SEQ ID NO. 1 by using the comparison method BLAST-P, (i) the said polysaccharide-oxidizing enzyme of SEQ ID NO. 2 possesses an amino acid identity of 66% with the reference polypeptide of SEQ ID NO. 1 and (ii) the BLAST-P comparison method results in an E-value of 4 e−133.


Still illustratively, as already specified elsewhere herein, when the polysaccharide-oxidizing enzyme of SEQ ID NO. 3 is compared to the reference polypeptide of SEQ ID NO. 1 by using the comparison method BLAST-P, (i) the said polysaccharide-oxidizing enzyme of SEQ ID NO. 3 possesses an amino acid identity of 34% with the reference polypeptide of SEQ ID NO. 1 and (ii) the BLAST-P comparison method results in an E-value of 2 e−10.


In preferred embodiments, the said polysaccharide-oxidizing enzyme is selected in a group comprising the polypeptides having the following GenBank reference numbers: ALO60293.1; CCA68158.1; CCA68159.1; CCA68161.1; CCA71530.1; CCA72554.1; CCA72555.1; CCO30796.1; CCT73728.1; CDM26384.1; CDO76981.1; CDO76983.1; CDO76990.1; CDR41535.1; CDZ98469.1; CDZ98532.1; CDZ98792.1; CDZ98793.1; CEJ62913.1; CEJ80690.1; CEL55274.1; CEL55761.1; CEN61973.1; CEQ41736.1; CRL20539.1; CUA74138.1; CUA75968.1; EEB87294.1; EEB88604.1; EEB93106.1; EGU12035.1; EGU79270.1; EJU02917.1; EJU04796.1; EJU04797.1; EKC98083.1; EKD01731.1; EKD04876.1; EKG10038.1; ELU37011.1; ELU44209.1; EMD31282.1; EMD34047.1; EMT65805.1; ENH74989.1; EPT05587.1; EPT05590.1; EPT05591.1; EUC56978.1; EUC64931.1; EWG51104.1; EWY85510.1; EXK29887.1; EXU99300.1; GAO89447.1; GAQ10202.1; GAT49547.1; GAT49548.1; GAT52486.1; GAT61130.1; GAT61131.1; KDE05902.1; KDE09071.1; KDN48575.1; KDN50638.1; KDQ07356.1; KDQ08649.1; KDQ08700.1; KDQ08703.1; KDQ11515.1; KDQ12702.1; KDQ15932.1; KDQ19064.1; KDQ25667.1; KDQ34148.1; KDQ59091.1; KDQ59092.1; KDR69809.1; KDR78641.1; KDR82083.1; KEP48245.1; KEY82804.1; KFG85718.1; KFH41721.1; KFY94807.1; KFZ00858.1; KFZ20368.1; KGB74552.1; KID86720.1; KII89650.1; KII89670.1; KIJ14235.1; KIJ14422.1; KIJ36788.1; KIJ36789.1; KIJ36910.1; KIJ36911.1; KIJ59037.1; KIJ62866.1; KIJ66712.1; KIJ93961.1; KIK01335.1; KIK01364.1; KIK03019.1; KIK24220.1; KIK24223.1; KIK45012.1; KIK47453.1; KIK58046.1; KIK60325.1; KIK64405.1; KIK64418.1; KIK64426.1; KIK64427.1; KIK64461.1; KIK94802.1; KIL59842.1; KIL67972.1; KIL68458.1; KIL88744.1; KIM29500.1; KIM34148.1; KIM35038.1; KIM39331.1; KIM49751.1; KIM57407.1; KIM60439.1; KIM60441.1; KIM60443.1; KIM60444.1; KIM84967.1; KIM93034.1; KIM95301.1; KIM95307.1; KIN08100.1; KIN97734.1; KIN97736.1; KIN97737.1; KIO31600.1; KIP08019.1; KIP08026.1; KIP10435.1; KIR25380.1; KIR50229.1; KIR55806.1; KIR67208.1; KIW62805.1; KIY36322.1; KIY46248.1; KIY46262.1; KIY46497.1; KIY46927.1; KIY47293.1; KIY51548.1; KIY64670.1; KIY68736.1; KIY71843.1; KJA14486.1; KJA19114.1; KJA20550.1; KJA20613.1; KJK82496.1; KKO98459.1; KKP01653.1; KLT38889.1; KLT39034.1; KLT43002.1; KLT43602.1; KLT43893.1; KLT46239.1; KMK54965.1; KNZ77897.1; KNZ78922.1; KPA38710.1; KPI34779.1; KPM37038.1; KPV71930.1; KPV77521.1; KPV77742.1; KTB29212.1; KTB33212.1; KUE98996.1; KUE99426.1; KWU44348.1; KWU44477.1; KXH42132.1; KXH43636.1; KXH51881.1; KXN82218.1; KXN84873.1; KXN89494.1; KXN90938.1; KXN93349.1; KYQ38716.1; KYQ40395.1; KYQ41811.1; KZL64940.1; KZO90689.1; KZO90691.1; KZP14545.1; KZP23879.1; KZS91941.1; KZT07581.1; KZT07590.1; KZT20429.1; KZT29895.1; KZT40257.1; KZT57664.1; KZT57666.1; KZT73200.1; KZT73202.1; KZV68182.1; KZV68185.1; KZV69208.1; KZV72373.1; KZV79310.1; KZV79844.1; KZV82398.1; KZV83782.1; KZV85461.1; KZV85472.1; KZV86197.1; KZV88440.1; KZV88442.1; KZV88448.1; KZV96582.1; KZV97371.1; KZV97738.1; KZV97742.1; KZV98356.1; KZV99282.1; KZW00468.1; KZW00469.1; OAA59408.1; OAA71978.1; OAG11613.1; OAG40496.1; OAL02191.1; OAL28870.1; OAL45637.1; OAP54840.1; OAQ60454.1; OAQ77899.1; OAQ86421.1; OAQ94383.1; OAQ97907.1; OAX34821.1; XP_001263997.1; XP_001796117.1; XP_001829371.2; XP_001835502.2; XP_001835509.1; XP_001836582.1; XP_001840021.2; XP_001877230.1; XP_001878077.1; XP_001885228.1; XP_001905249.1; XP_003035108.1; XP_003035505.1; XP_003036605.1; XP_003042172.1; XP_003191958.1; XP_006458724.1; XP_006459911.1; XP_006963793.1; XP_007001773.1; XP_007003269.1; XP_007262604.1; XP_007299807.1; XP_007301417.1; XP_007306950.1; XP_007318869.1; XP_007318871.1; XP_007319142.1; XP_007327029.1; XP_007329615.1; XP_007337360.1; XP_007343208.1; XP_007346002.1; XP_007349200.1; XP_007349275.1; XP_007351346.1; XP_007351348.1; XP_007351349.1; XP_007351518.1; XP_007352398.1; XP_007353707.1; XP_007359130.1; XP_007362490.1; XP_007362492.1; XP_007362499.1; XP_007362779.1; XP_007388801.1; XP_007388810.1; XP_007393138.1; XP_007393767.1; XP_007581903.1; XP_007600909.1; XP_007746185.1; XP_007765609.1; XP_007768205.1; XP_007792087.1; XP_007792157.1; XP_007826256.1; XP_007849383.1; XP_007867180.1; XP_007867564.1; XP_008039133.1; XP_008039347.1; XP_008039803.1; XP_008039807.1; XP_008718658.1; XP_008731148.1; XP_009256644.1; XP_009545121.1; XP_009545122.1; XP_011321625.1; XP_012046198.1; XP_01218150.1; XP_012183613.1; XP_013257070.1; XP_013271081.1; XP_013277879.1; XP_013332110.1; XP_013943298.1; XP_013944931.1; XP_013954691.1; XP_013960458.1; XP_014176455.1; XP_014180074.1; XP_014180075.1; XP_014181917.1; XP_014543483.1; XP_014573268.1; XP_016242373.1; XP_016271225.1; XP_016275235.1; XP_016275300.1; XP_016610141.1; XP_016620042.1; XP_016630521.1; XP_567250.1; XP_753127.1 and XP_778151.1.


In preferred embodiments, the said polysaccharide-oxidizing enzyme consists of a recombinant protein. In some of these preferred embodiments, the said recombinant protein is produced by a yeast cell that has been genetically transformed so as to express the said recombinant polysaccharide-oxidizing enzyme.


In some embodiments, the said polysaccharide-oxidizing composition comprises only one polysaccharide-oxidizing enzyme described herein, and especially only one polysaccharide-oxidizing enzyme having an amino acid sequence selected in a group comprising SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3, and the polysaccharide-oxidizing enzymes identified by their GenBank reference number herein.


In some embodiments, the said polysaccharide-oxidizing composition comprises only one polysaccharide-oxidizing enzyme encoded by a nucleic acid having a nucleic acid sequence selected in a group comprising SEQ ID NO. 4, SEQ ID NO. 5 and SEQ ID NO. 6.


In some other embodiments, the polysaccharide-oxidizing composition according to the invention comprises more than one polysaccharide-oxidizing enzyme described herein, and especially more than one polysaccharide-oxidizing enzyme having an amino acid sequence selected in a group comprising SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3 and the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein. In some of these embodiments, the polysaccharide-oxidizing composition according to the invention comprises the polysaccharide-oxidizing enzymes of SEQ ID NO; 1, of SEQ ID NO. 2 and of SEQ ID NO. 3.


In some other embodiments, the polysaccharide-oxidizing composition according to the invention comprises more than one polysaccharide-oxidizing enzyme encoded by a nucleic acid having a nucleic acid sequence selected in a group comprising SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6 and the nucleic acid sequences encoding the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein. In some of these other embodiments, the polysaccharide-oxidizing composition according to the invention comprises the polysaccharide-oxidizing enzymes encoded by nucleic acids having the nucleic acid sequences of SEQ ID NO. 4, of SEQ ID NO. 5 and of SEQ ID NO. 6.


According to some of these other embodiments, the polysaccharide-oxidizing composition comprises from 2 to 10 distinct polysaccharide-oxidizing enzymes having an amino acid sequence selected in a group comprising SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3 and the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein.


According to some of these other embodiments, the polysaccharide-oxidizing composition comprises from 2 to 10 distinct polysaccharide-oxidizing enzymes having an amino acid sequence selected in a group comprising SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3 and the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein.


According to some of these other embodiments, the polysaccharide-oxidizing composition comprises from 2 to 10 distinct polysaccharide-oxidizing enzymes encoded by a nucleic acid having a nucleic acid sequence selected in a group comprising SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6 and the nucleic acids encoding the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein.


According to these other embodiments, the polysaccharide-oxidizing composition comprises 2, 3, 4, 5, 6, 7, 8, 9 or 10 distinct polysaccharide-oxidizing enzymes as described herein.


In some further embodiments, a polysaccharide-oxidizing composition according to the invention further comprises one or more other polysaccharide-oxidizing enzymes, which other polysaccharide-oxidizing enzymes are preferably selected among lytic polysaccharide monooxygenases, which encompasses other polysaccharide-oxidizing enzymes selected in a group comprising AA9, AA10, AA11 and AA13 LPMOs.


In some embodiments, a polysaccharide-oxidizing composition described herein may be used as a ready-to-use composition for degrading a polysaccharide-containing material, which encompasses a ready-to-use composition for degrading a lignocellulosic material.


In other embodiments, a polysaccharide-oxidizing composition as described herein may consist of an auxiliary composition that may be used in combination with one or more distinct polysaccharide degrading enzymes in a process for degrading a polysaccharide-containing material. According to these other embodiments, the said one or more other polysaccharide degrading enzymes may be contained as an enzyme mixture in a polysaccharide-degrading composition. As it will be further described in the present specification, a variety of such polysaccharide-degrading enzyme mixtures are known in the art, which encompasses enzyme mixtures comprising cellulases, such as enzyme mixtures comprising fungus-derived cellulases.


As shown herein, a polysaccharide-oxidizing composition as described in the present specification, when used in combination with known polysaccharide-degrading enzymes, and especially when used in combination with a mixture of polysaccharide-degrading enzymes, allows a more easier and a more complete sugar product release from a polysaccharide-containing starting material. In particular, a polysaccharide-oxidizing composition as described in the present specification, when used in combination with known polysaccharide-degrading enzymes, and especially when used in combination with a mixture of polysaccharide-degrading enzymes, allows a more easier and a more complete glucose release from a cellulose-containing starting material, which includes a more easier and a more complete release of glucose from a lignocellulosic starting material.


As already specified herein, there is generally provided compositions comprising a polysaccharide-oxidizing enzyme selected in a group comprising SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3 and the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein, as well as polysaccharide-oxidizing enzymes encoded by a nucleic acid having a nucleic acid sequence selected in a group comprising SEQ ID NO. 4, SEQ ID NO. 5, SEQ ID NO. 6 and the nucleic acids encoding the polysaccharide-oxidizing enzymes identified by their respective GenBank reference number herein.


According to one embodiment, the invention further provides a method for preparing a polysaccharide-oxidizing enzyme comprising the steps of:


a) providing a composition comprising an enzyme polypeptide wherein, when the said polypeptide is compared to a reference polypeptide selected in a group comprising SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3, by using the BLAST-P comparison method, wherein (i) the said enzyme polypeptide possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less;


b) incubating said enzyme polypeptide with a copper-containing composition, thereby preparing a polysaccharide-oxidizing enzyme.


The said copper-containing composition may be selected from a composition containing one or more copper salts, such as sulphate or acetate copper salts.


Optionally, the said method may further comprise a step c) of removing an excess amount of copper (or salts thereof) from said composition comprising said enzyme polypeptide.


Methods for Identifying Polypeptides Belonging to the AAxx Protein Family

The inventors disclose herein a crystallographic structure of the PcAAxxB (JGI ID 1372210; GenBank ID #KY769370) catalytic module. They also disclose herein an extensive set of polysaccharide-oxidizing enzymes belonging to this novel enzyme family, along with reference protein sequences SEQ ID No 1, SEQ ID No 2 and SEQ ID No 3 For reference, SEQ ID No 3 corresponds to SEQ ID No 9 after peptide signal clevage; and SEQ ID No 8 corresponds to the cleaved peptide signal.


Accordingly, by combining the available structural information and the general consensus sequence derivable from said set of polysaccharide-oxidizing enzymes, it is thus also possible to determine any variant thereof having the desired polysaccharide-oxidizing activity.


In a non-limitative manner, program-implemented methods for determining a given set of engineered or native polypeptides belonging to a given family of polypeptides can be undergone in silico by homology or comparative modeling of protein three-dimensional structures based on an alignment of sequences and a given set of known related structures. Examples of programs suitable for homology and comparative modeling include:

  • MODELLER© V.9.18 (se B. Webb, A. Sali. Comparative Protein Structure Modeling Using Modeller. Current Protocols in Bioinformatics, John Wiley & Sons, Inc., 5.6.1-5.6.32, 2014);
  • I-TASSER V.5.1 (See J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8 (2015)) and
  • the SWISS-MODEL homology-modelling server (see Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L, Schwede T (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information (Nucleic Acids Research 2014 (1 Jul. 2014) 42 (W1): W252-W258).


Thus, according to one embodiment, the invention relates to a method for identifying polysaccharide-oxidizing enzymes, which comprises the steps of:


a1) providing one or more candidate polypeptides which may possess a polysaccharide-oxidizing activity;


a2) providing experimental coordinates of a reference polypeptide backbone and/or side chain, wherein said reference polypeptide backbone and/or side chain is a polypeptide comprising SEQ ID NO. 2 or SEQ ID NO 7, or a fragment thereof having a polysaccharide-oxidizing activity;


a3) providing a sequence alignment of the one or more candidate polypeptide with a reference polypeptide sequence possessing an amino acid identity of 20% or more with SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO 3 or SEQ ID NO 7 by using the BLAST-P comparison method, characterized in that the said one or more candidate polypeptides possesses an E-value of 10 e3 or less;


b) determining from a1), a2) and a3) the theorical coordinates of the one or more candidate polypeptide;


c) determining the root-mean-square deviation (RMSD) of the said theorical coordinates with the experimental coordinates of the reference polypeptide;


wherein an increased RMSD of the theorical coordinates, compared to the experimental coordinates, above a reference threshold indicates a lower probability of having a polysaccharide-oxidizing activity;


wherein a decreased RMSD of the theorical coordinates, compared to the experimental coordinates, below a reference threshold indicates a higher probability of having a polysaccharide-oxidizing activity.


d) optionally selecting the one or more candidate polypeptides of which the theorical coordinates define a copper-binding “histidine brace active site”, formed by two Histidine residues and a Tyrosine, one of those two Histidine residues being a N-terminal Histidine.


This invention also pertains to more complete compositions wherein the said compositions further comprise other enzymes contributing to the degradation of a polysaccharide-containing material, notably enzymes contributing to the degradation of a cellulose-containing material, and especially enzymes contributing to the degradation of lignocellulose-containing material.


In some embodiments of a polysaccharide-degrading composition as described herein, the said composition further comprises one or more polysaccharide-degrading enzymes selected in a group comprising cellulases, hemicellulases, ligninases, and carbohydrate oxidases.


Cellulases encompass endoglucanases and cellobiohydrolases and beta-glucosidases.


Hemicellulases encompass xylanases, mannanases, xylosidases, mannosidases, arabinofuranosidaes and esterases.


Ligninases encompass peroxidases, copper radical oxidases (e.g. laccases).


Carbohydrate oxidases encompass lytic polysaccharide monooxygenases and GMC oxidoreductases (e.g. glucose dehydrogenases, cellobiose dehydrogenases, . . . ).


According to some of these embodiments, the one or more cellulases comprised in a polysaccharide-degrading composition are selected in a group comprising exo-glucanases, endo-glucanases, cellobiohydrolases, cellulose phosphorylases, pectinases, pectate lyases, polygalacturonase, pectin esterases, cellobiose dehydrogenases, mannanases, arabino furanosidases, feruoyl esterases, arabinofuranosidases, fructofuranosidases, galactosidases, galactosidases, amylases, acetylxylan esterases, chitin deacetylases, chitinases, and glucosidases.


According to some of these embodiments, the one or more lytic polysaccharide monooxygenases comprised in a polysaccharide-degrading composition are selected in a group comprising AA9, AA10, AA11 and AA13.


According to some of these embodiments, wherein the said one or more other polysaccharide degrading enzymes are comprised in an enzyme preparation containing the said one or more other polysaccharide degrading enzymes.


According to some of these embodiments, the said enzyme preparation comprises one or more enzymes originating from one or more fungus organisms or one or more bacterial organisms.


According to some of these other embodiments, the said one or more fungus organism is selected in a group comprising fungi of the genus, but not limited to Achlya, Acremonium, Aspergillus, Cephalosporium, Chrysosporm, Cochliobolus, Endothia, Fusarium, Gliocladium, Humicola, Hypocrea, Myceliophthora, Mucor, Neurospora, Penicillium, Pyricularia, Thielavia, Tolypocladium, Trichoderma, Podospora, Pycnoporus, Fusarium, Thermonospora, Hypocrea, Humnicola, Penicillim, Myceliophthora and Aspergillus.


According to some of these other embodiments, the said enzyme preparation comprises an enzyme extract from one or more fungus organisms or from one or more bacterial organisms.


According to some of these other embodiments, one or more of the said other polysaccharide-degrading enzymes are recombinant proteins.


The polysaccharide-oxidizing enzymes of the invention are further considered in the form of a kit, especially a kit for preparing a polysaccharide-oxidizing composition or a polysaccharide-degrading composition.


According to one embodiment, the invention relates to a kit for

    • preparing a polysaccharide-oxidizing or polysaccharide-degrading composition;
    • oxidizing a polysaccharide;
    • preparing a sugar product from a polysaccharide-containing material
    • preparing a fermentation product from a polysaccharide-containing material; characterized in that it contains at least


(i) a polysaccharide-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less; and


(ii) at least another distinct enzyme selected from the group consisting of a polysaccharide-oxidizing or polysaccharide-degrading enzyme, as previously defined, which may thus include cellulases, hemicellulases, ligninases, and carbohydrate oxidases, which may thus include one or more lytic polysaccharide monooxygenases (LPMOs).


Said enzymes may also be in the form of polysaccharide-oxidizing or polysaccharide-degrading composition, as previously defined.


Alternatively, a kit of the invention may also comprise one or more yeast cells expressing a polysaccharide-oxidizing or polysaccharide-degrading enzyme, as previously defined.


Polysaccharide-Containing Material

As used herein, a polysaccharide containing material encompasses a substance or a composition comprising polysaccharide molecules.


The term “polysaccharide” is used in its conventional meaning, and designates polymeric carbohydrate molecules composed of long chains of monosaccharide units bound together by glycosidic linkages. On hydrolysis, polysaccharides release the constitutive monosaccharides or oligosaccharides.


Preferred polysaccharides according to the invention are plant-derived polysaccharides, and especially cellulose, such as cellulose contained in lignocellulose.


Other plant-derived polysaccharides which are particularly considered including xylans. Xylans belong to the group of hemicelluloses, and are polysaccharides made from units of xylose.


According to one embodiment, the polysaccharide-containing material is a material that comprises at least one (or a plurality of) polysaccharides selected from the group of cellulose, hemicellulose and lignin; which includes for instance any polysaccharide-containing material which contains at least 30 wt. % of cellulose and hemicellulose. For example, the polysaccharide-containing material may be a material such as birchwood cellulosic fibers, consisting of about 79% cellulose and about 21% xylan, as substrate.


The term “lignocellulose-containing material” used herein refers to material that primarily consists of cellulose, hemicellulose, and lignin. The term is synonymous with “lignocellulosic material”. Such material is often referred to as “biomass”.


Any lignocellulosic-containing material is contemplated according to the present invention. The lignocellulosic-containing material may be any material containing lignocellulose. In a preferred embodiment the lignocellulose-containing material contains at least 30 wt. %, preferably at least 50 wt. %, more preferably at least 70 wt. %, even more preferably at least 90 wt. % lignocellulose. It is to be understood that the lignocellulose-containing material may also comprise other constituents such as proteinaceous material, starch, sugars, such as fermentable sugars and/or un-fermentable sugars.


Lignocellulose-containing material is generally found, for example, in the stems, leaves, hulls, husks, and cobs of plants or leaves, branches, and wood of trees. Lignocellulose-containing material can also be, but is not limited to, herbaceous material, agricultural residues, forestry residues, municipal solid wastes, waste paper, and pulp and paper mill residues. It is understood herein that lignocellulose-containing material may be in the form of plant cell wall material containing lignin, cellulose, and hemi-cellulose in a mixed matrix.


In some particular embodiments, the lignocellulosic-containing material is a lignocellulosic biomass selected from the group consisting of grass, switch grass, cord grass, rye grass, reed canary grass, miscanthus, sugar-processing residues, sugarcane bagasse, agricultural wastes, rice straw, rice hulls, barley straw, corn cobs, cereal straw, wheat straw, canola straw, oat straw, oat hulls, corn fiber, stover, soybean stover, corn stover, forestry wastes, recycled wood pulp fiber, paper sludge, sawdust, hardwood, softwood, Agave, and combinations thereof. In a preferred embodiment the lignocellulose-containing material comprises one or more of corn stover, corn fiber, rice straw, pine wood, wood chips, poplar, bagasse, paper and pulp processing waste.


Preferably, the lignocellulosic-containing material is a lignocellulosic woody biomass. Other examples of lignocellulose-containing material include hardwood, such as poplar and birch, softwood, cereal straw, such as wheat straw, switchgrass, municipal solid waste, industrial organic waste, office paper, or mixtures thereof.


According to exemplary embodiments, the lignocellulosic-containing material is selected from pine, poplar and wheat straw.


Other Enzymes

As already specified herein, a polysaccharide-oxidizing composition according to the invention may comprise, in addition to one or more polysaccharide-oxidizing enzyme belonging to the enzyme family specifically identified by the inventors, also one or more other polysaccharide-oxidizing enzyme, such as one or more lytic polysaccharide monooxygenases (LPMOs).


As also already specified herein, a polysaccharide-degrading composition according to the invention may comprise, in addition to one or more polysaccharide-oxidizing enzyme belonging to the enzyme family specifically identified by the inventors, also one or more polysaccharide degrading enzyme, notably cellulolytic enzymes, which are also commonly termed cellulases.


The other enzymes may be simply combined or alternatively they may be contained in an enzyme mixture, such as a fungus-derived or a bacteria-derived enzyme mixture, for example a commercial fungus-derived enzyme mixture.


Cellulases that may be used in a polysaccharide degrading composition as described herein encompass exoglucanases, endoglucanases, cellobiohydrolases, cellulose phosphorylases, pectinases, pectate lyases, polygalacturonase, pectin esterases, cellobiose dehydrogenases, beta mannanases, arabinosidases, feruoyl esterases, arabino furanosidases, fructofuranosidases, alpha galactosidases, beta galactosidases, alpha amylases, acetylxylan esterases, chitin deacetylases, chitinases, and beta glucosidases.


In order to be efficient, degradation of cellulose may require several types of enzymes acting cooperatively. At least three categories of enzymes are often needed to convert cellulose into glucose: endoglucanases (EC 3.2.1.4) that cut the cellulose chains at random; cellobiohydrolases (EC 3.2.1.91) which cleave cellobiosyl units from the cellulose chain ends and beta-glucosidases (EC 3.2.1.21) that convert cellobiose and soluble cellodextrins into glucose. Among these three categories of enzymes involved in the biodegradation of cellulose, cellobiohydrolases are the key enzymes for the degradation of native crystalline cellulose. The term “cellobiohydrolases I” is defined herein as a cellulose 1,4-beta-cellobiosidase (also referred to as Exo-glucanase, Exo-cellobiohydrolase or 1,4-beta-cellobiohydrolase) activity, as defined in the enzyme class EC 3.2.1.91, which catalyzes the hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose and cellotetraose, by the release of cellobiose from the non-reducing ends of the chains. The definition of the term “cellobiohydrolase II activity” is identical, except that cellobiohydrolase II attacks from the reducing ends of the chains.


Cellulases preparation may further comprise a beta-glucosidase, such as a beta-glucosidase derived from a strain of the genus, but not limited to Humicola, Trichoderma, Podospora, Pycnoporus, Fusarium, Thermonospora, Hvpocrea, Chrysosporium and Aspergillus.


Cellulases may be comprised in an enzyme mixture, which encompasses an enzyme mixture derived from Trichoderma reesei.


Thus, cellulases which may be used in a polysaccharide-degrading composition as described herein may be derived from a fungal source, such as a strain of the genus Trichoderma, preferably a strain of Trichoderma reesei; or a strain of the genus Hunicola, such as a strain of Hunicoa insolens; or a strain of Chrysosporium


Other useful enzymes encompass alpha-amylases; glucoamylases or another carbohydrate-source generating enzymes, such as beta-amylases, maltogenic amylases and/or alpha-glucosidases; proteases; or mixtures of two of more thereof.


Other useful enzymes are the lytic polysaccharide monoxygenases (LPMOs), and especially those LPMOs selected in a group comprising AA9, AA10, AA11 and AA13, which are described notably by Busk et al. (2015, BMC Genomics, Vol. 16: 368) and by Hemsworth et al. (2015, Trends in Biotechnology, Vol. 33 (12): 747-761).


Recombinant Yeast Expressing a Polysaccharide-Oxidizing Enzyme

In some embodiments of a polysaccharide-oxidizing composition or of a polysaccharide degrading composition as described herein, a polysaccharide-oxidizing enzyme belonging to the enzyme family specifically identified by the inventor may consist of a recombinant polypeptide, which encompasses a recombinant polypeptide produced in a yeast organism, as it is shown in the examples herein.


Thus, this invention also relates to a recombinant yeast cell expressing a polysaccharide-oxidizing enzyme as described in the present specification.


This invention concerns a recombinant yeast cell expressing a polysaccharide-oxidizing enzyme wherein, when the said polysaccharide-oxidizing enzyme is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the said polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the said reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less. These polysaccharide-oxidizing enzymes are those which are described in the present specification.


In some embodiments, the yeast organism is selected in a group of yeast organisms comprising Saccharomyces, Kluyveromyces, Candida, Pichia, Schizosaccharomyces, Hansenula, Klowcher, Schwanniomyces, and Yarrowia. Yeast species as host cells may include, for example, S cerevisiae. S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, K. lactis, K., marxianus, or K. fragilis. In some embodiments, the yeast is selected from the group consisting of Saccharomyces cerevisiae, Schizzosacchamnyces pombe, Issatchenkia orientalis, Candida albicans, Candida mexicana, Pichia pastoris, Pichia mississippiensis, Pichia mexicana, Pichia stipitis. Pichia farinosa, Clavispora opuntiae, Clavispora lusitaniae, Yarrowia lipolytica, Hansenula polymorpha, Phaffia rhodozyma, Candida utilis, Arxula adeninivorans, Debaryomyces hansenii, Deburyomyces polymorphus, Schizosaccharomyces pombe, Hansenula polymorpha, and Schwanniomyces occ dentalis.


A nucleic acid allowing the expression of a polysaccharide-oxidizing enzyme of interest is introduced in the genome of the selected yeast organism or is introduced as a non-integrated vector according to genetic engineering methods that are well known from the one skilled in the a.


A “vector,” e.g., a “plasmid” or “YAC” (yeast artificial chromosome) refers to an extrachromosomal element often carrying one or more genes that are not part of the central metabolism of the cell, and is usually in the form of a circular double-stranded DNA molecule. Such elements may be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear, circular, or supercoiled, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3′ untranslated sequence into a cell. Preferably, the plasmids or vectors of the present invention are stable and self-replicating.


An “expression vector” is a vector that is capable of directing the expression of genes to which it is operably associated.


Promoter” refers to a DNA fragment capable of controlling the expression of a coding sequence or functional RNA. In general, a coding region is located 3′ to a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions.


A coding region is “under the control” of transcriptional and translational control elements in a cell when RNA polymerase transcribes the coding region into mRNA, which is then trans-RNA spliced (if the coding region contains introns) and translated into the protein encoded by the coding region.


The present invention also relates to vectors which include a nucleic acid encoding a polysaccharide-oxidizing enzyme belonging to the family of enzymes specifically identified by the inventors, host cells, most preferably yeast host cells, which are genetically engineered with vectors of the invention and the production of the polysaccharide-oxidizing enzymes described herein by recombinant techniques.


Host cells, most preferably yeast host cells, are genetically engineered (transduced or transformed or transfected) with the vectors described above which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the present invention. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.


The appropriate nucleic acid may be inserted into the vector by a variety of procedures. In general, the nucleic acid is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.


The nucleic acid is inserted in the expression vector is operatively associated with an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Representative examples of such promoters are as follows:


The expression vector may also contain a ribosome binding site for translation initiation and/or a transcription terminator. The vector may also include appropriate sequences for amplifying expression, or may include additional regulatory regions.


The vector containing the appropriate nucleic acid, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.


According to one embodiment, a yeast expressing a polysaccharide-oxidizing enzyme as previously defined may further express at least one additional enzyme selected from the group consisting of a polysaccharide-oxidizing or polysaccharide-degrading enzyme.


Methods of Producing Industrial Substances from Polysaccharide-Containing Material


The present invention also relates to a method for oxidizing a polysaccharide comprising a step of contacting one or more polysaccharides with a polysaccharide-oxidizing enzyme as described herein, or with a composition comprising the said polysaccharide-oxidizing enzyme.


In some embodiments of this method, the said one or more polysaccharides are comprised in a polysaccharide-containing biomass.


In some embodiments of this method, the said one or more polysaccharides are contained in a lignocellulosic-containing material.


This invention also pertains to methods for obtaining a sugar product from a polysaccharide-containing material, wherein the said methods comprise a step of hydrolyzing a polysaccharide-containing material by using a polysaccharide-oxidizing enzyme composition according to the invention, which includes by using an polysaccharide degrading composition as described in the present specification.


Thus, the present invention also concerns a method for oxidizing a polysaccharide comprising a step of contacting one or more polysaccharides with a polysaccharide-oxidizing enzyme as described in the present specification, or with a composition comprising the said polysaccharide-oxidizing enzyme.


This invention also relates to a method for the preparation of a sugar product from a polysaccharide-containing material comprising a step of treating the said polysaccharide-containing material in the presence of a polysaccharide degrading composition described in the present specification.


In preferred embodiments of these methods, the polysaccharide-containing materiel consists of a cellulose-containing material, such as preferably a lignocellulosic material, which encompasses lignocellulose.


This invention also provides a method for the preparation of a sugar product from a polysaccharide-containing material comprising the steps of:

    • a) providing a polysaccharide-containing material,
    • b) subjecting the said polysaccharide-containing material to hydrolysis in the presence of a polysaccharide-degrading composition as described in the present specification, and
    • c) collecting the sugar product obtained at the end of step b).


General methods for the preparation of a sugar product from a polysaccharide-containing material which comprise a step of hydrolysing the said polysaccharide-containing material are already known in the art. Mom specifically, methods for the preparation of a sugar product, including glucose, f m a lignocellulosic-containing material are already known in the art.


In some embodiments of such methods, a lignocellulosic material is pretreated before the step of hydrolysis so as to increase the efficiency of the hydrolysis step.


Pre-Treatment of Lignocellulose

The structure of lignocellulose is not directly accessible to enzymatic hydrolysis.


Therefore, the lignocellulose-containing material has preferably to be pre-treated, e.g., by acid hydrolysis under adequate conditions of pressure and temperature, in order to break the lignin seal and disrupt the crystalline structure of cellulose. This causes solubilization of the hemicellulose and cellulose fractions. The cellulose and hemicellulose can then be hydrolyzed enzymatically such as described in the present specification, to convert the carbohydrate polymers into fermentable sugars


A pre-treatment step enhances the digestibility of lignocellulose and thus increases the efficiency of the hydrolysis step.


Methods for pretreating lignocellulose are well known in the art, which includes steps of chemical pretreatment, mechanical pretreatment and biological pretreatment.


When lignocellulose-containing material is pre-treated, degradation products that may inhibit enzymes and/or may be toxic to fermenting organisms are produced. These degradation products severely decrease both the hydrolysis and fermentation rate. Methods for pre-treating lignocellulose-containing material are well known in the art. The pre-treated lignocellulose degradation products include lignin degradation products, cellulose degradation products and hemicellulose degradation products. The pre-treated lignin degradation products may be phenolics in nature.


The lignocellulose-containing material may be pre-treated in any suitable way. Pre-treatment may be carried out before and/or during hydrolysis and/or fermentation. In a preferred embodiment the pre-treated material is hydrolyzed, preferably enzymatically, before and/or during fermentation. The goal of pre-treatment is to separate and/or release cellulose; hemicellulose and/or lignin and this way improve the rate of hydrolysis. Pre-treatment methods such as wet-oxidation and alkaline pre-treatment targets lignin, while dilute acid and auto-hydrolysis targets hemicellulose. Steam explosion is an example of a pre-treatment that targets cellulose.


According to the invention the pre-treatment applied in step (a) may be a conventional pre-treatment step using techniques well known in the art.


The lignocellulose-containing material may according to the invention be chemically, mechanically and/or biologically pre-treated before hydrolysis and/or fermentation. Mechanical treatment (often referred to as physical treatment) may be used alone or in combination with subsequent or simultaneous hydrolysis, especially enzymatic hydrolysis.


Preferably, chemical, mechanical and/or biological pre-treatment is carried out prior to the hydrolysis and/or fermentation. Alternatively, the chemical, mechanical and/or biological pre-treatment may be carried out simultaneously with hydrolysis, such as simultaneously with addition of one or more cellulase enzymes (cellulolytic enzymes), or other enzyme activities mentioned below, to release, e.g., fermentable sugars, such as glucose and/or maltose.


In an embodiment of the invention the pre-treated lignocellulose-containing material may be washed. However, washing is not mandatory and is in a preferred embodiment eliminated.


The term “chemical treatment” refers to any chemical pre-treatment which promotes the separation and/or release of cellulose, hemicellulose and/or lignin. Examples of suitable chemical pre-treatments include treatment with; for example, dilute acid, lime, alkaline, organic solvent, ammonia, sulfur dioxide, carbon dioxide. Further, wet oxidation and pH-controlled hydrothermolysis are also considered chemical pre-treatment. Pre-treatment methods using ammonia are notably described in the PCT applications WO 2006/110891, WO 2006/110899, WO 2006/110900, and WO 2006/110901.


Other examples of suitable pre-treatment methods are described by Schell et al., 2003, Appl. Biochem and Biotechn. Vol. 105-108: 69-85, and Mosier et al., 2005, Bioresource Technology 96: 673-686, and U.S. Publication No. 2002/0164730.


The term “mechanical pre-treatment” refers to any mechanical (or physical) treatment which promotes the separation and/or release of cellulose, hemicellulose and/or lignin from lignocellulose-containing material. For example, mechanical pre-treatment includes various types of milling, irradiation, steaming/steam explosion, and hydrothermolysis.


Mechanical pre-treatment includes comminution (mechanical reduction of the size). Comminution includes dry milling, wet milling and vibratory ball milling. Mechanical pre-treatment may involve high pressure and/or high temperature (steam explosion).


In some embodiments of a pretreatment step, the said step may combine chemical and mechanical pretreatment.


As used in the present invention the term “biological pre-treatment” refers to any biological pre-treatment which promotes the separation and/or release of cellulose, hemicellulose, and/or lignin from the lignocellulose-containing material. Biological pre-treatment techniques can involve applying lignin-solubilizing microorganisms (see, for example, Hsu, 1996, Pretreatment of biomass, in Handbook on Bioethanol: Production and Utilization, Wyman, ed., Taylor & Francis, Washington, D.C., 179-212; Ghosh and Singh, 1993. Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass, Adv. Appl. Microbiol. 39: 295-333; McMillan, 1994, Pretreating lignocellulosic biomass: a review, in Enzymatic Conversion of Biomass for Fuels Production, Himmel, Baker, and Overend, eds., ACS Symposium Series 566, American Chemical Society, Washington, D.C., chapter 15; Gong, Cao, Du, and Tsao, 1999, Ethanol production from renewable resources, in Advances in Biochemical Engineering/Biotechnology, Scheper, ed., Springer-Verlag Berlin Heidelberg, Germany, 65: 207-241; Olsson and Hahn-Hagerdal, 1996, Fermentation of lignocellulosic hydrolysates for ethanol production, Enz. Microb. Tech. 18: 312-331; and Vallander and Eriksson, 1990, Production of ethanol from lignocellulosic materials: State of the art, Adv. Biochem. Eng J Biotechnol. 42: 63-95).


Enzyme Hydrolysis

General methods of enzyme hydrolysis of a polysaccharide-containing material, including a cellulose-containing material, such as a lignocellulosic material, are well known for the one skilled in the art. Some of these methods are notably disclosed in the PCT applications WO 2015/165954, WO 20101080407, WO 2009026722, WO 2008/025165 and WO 2009:135898, as well as by Mohanram et al. (2013, Sustainable Chemical Processes, Vol. 1: 15-26), Van Dyk et al. (2012, Biotechnology Advances, Vol. 30: 1458-1480), Debeire et al. (2014, FEMS Microbiol Lett, Vol. 355: 116-123), Liao et al., 2011, Biotechnol J, Vol. 6: 1-9). Kumar et al. (2012, Final Technical Report, DSM Innovation, for the US Department of Energy under Award Number DE-FG36-08GO18079), Tucer et al., 2009, Turk J Biol, Vol. 33: 291-300).


Methods described herein comprise an enzymatic hydrolysis step. The enzymatic hydrolysis includes, but is not limited to, hydrolysis for the purpose of liquefaction of the feedstock and hydrolysis for the purpose of releasing sugar from the feedstock or both. In this step optionally pretreated and optionally washed lignocellulosic material is brought into contact with the enzyme composition according to the invention. Depending on the lignocellulosic material and the pretreatment, the different reaction conditions, e.g. temperature, enzyme dosage, hydrolysis reaction time and dry matter concentration, may be adapted by the skilled person in order to achieve a desired conversion of lignocellulose to sugar. Some indications are given hereafter.


In an embodiment the enzymatic hydrolysis comprises at least a liquefaction step wherein the lignocellulosic material is hydrolyzed in at least a first container, and a saccharification step wherein the liquefied lignocellulosic material is hydrolyzed in the at least first container and/or in at least a second container. Saccharification can be done in the same container as the liquefaction (i.e. the at least first container), it can also be done in a separate container (i.e. the at least second container). So, in the enzymatic hydrolysis of the processes according to the present invention liquefaction and saccharification may be combined. Alternatively, the liquefaction and saccharification may be separate steps. Liquefaction and saccharification may be performed at different temperatures, but may also be performed at a single temperature. In an embodiment the temperature of the liquefaction is higher than the temperature of the saccharification.


In some embodiments, liquefaction may be carried out at a temperature of 60-75° C. and saccharification may be carried out at a temperature of 50-65° C.


The enzymes used in the enzymatic hydrolysis may be added before and/or during the enzymatic hydrolysis. In case the enzymatic hydrolysis comprises a liquefaction step and saccharification step, additional enzymes may be added during and/or after the liquefaction step. The additional enzymes may be added before and/or during the saccharification step. Additional enzymes may also be added ater the saccharification step.


In some embodiments the hydrolysis is conducted at a temperature of 45° C. or more, 50° or more, 55° C. or more, 60° C. or more, 65° C. or more, or 70° C. or more. The high temperature during hydrolysis has many advantages, which include working at the optimum temperature of the enzyme composition, the reduction of risk of (bacterial) contamination, reduced viscosity, smaller amount of cooling water required, use of cooling water with a higher temperature, re-use of the enzymes and more.


For performing the step of hydrolysis, the total amount of enzymes added (herein also called enzyme dosage or enzyme load) is low. In an embodiment the amount of enzyme is 30 mg protein/g dry matter weight or lower, 20 mg protein/g dry matter or lower, 15 mg protein/g dry matter or lower, 10 mg protein/g dry matter or lower, or 5 mg protein/g dry matter or lower (expressed as protein in mg protein/g dry matter).


In an embodiment, the amount of polysaccharide-oxidizing enzyme added is 15 mg polysaccharide-oxidizing enzyme/g dry matter weight or lower, 10 mg polysaccharide-oxidizing enzyme/g dry matter weight or lower, 5 mg polysaccharide-oxidizing enzyme/g dry matter weight or lower or 1 mg enzyme g dry matter weight or lower (expressed as total of polysaccharide-oxidizing enzymes in mg enzyme/g dry matter). Low enzyme dosage is possible, since because of the activity and stability of the enzymes, it is possible to increase the hydrolysis reaction time.


In a further aspect of the invention, the hydrolysis reaction time is 5 hours or more, 10 hours or more, 20 hours or more, 40 hours or more, 50 hours or more, 60 hours or more, 70 hours or more, 80 hours or more, 90 hours or more, 100 hours or more, 120 hours or more, 130 h or more. In another aspect, the hydrolysis reaction time is 5 to 150 hours, 40 to 130 hours, 50 to 120 hours, 60 to 120 hours, 60 to 110 hours, 60 to 100 hours, 70 to 100 hours, 70 to 90 hours or 70 to 80 hours. Due to the stability of the enzyme composition longer hydrolysis reaction times are possible with corresponding higher sugar yields.


The pH during hydrolysis may be chosen by the skilled person. In a further aspect of the invention, the pH during the hydrolysis may be 3.0 to 6.4. The stable enzymes of the invention may have a broad pH range of up to 2 pH units, up to 3 pH units. up to 5 pH units. The optimum pH may lie within the limits of pH 2.0 to 8.0, 3.0 to 8.0, 3.5 to 7.0, 3.5 to 6.0, 3.5 to 5.0, 3.5 to 4.5, 4.0 to 4.5 or is about 4.2.


In a further aspect of the invention the hydrolysis step is conducted until 704% or more, 80% or more, 85% or more, 90% or more, 92% or more, 95% or more of available sugar in the lignocellulosic material is released.


In preferred embodiments, the hydrolysis step is performed in the presence of an electron donor compound and of oxygen.


An electron donor is a chemical entity, compound or composition that donates directly or indirectly electrons to another compound. It is a reducing agent that, by virtue of its donating electrons capacity, is itself oxidized in the process. Examples of electron donors are vitamin C (ascorbate), gallic acid, quinones. reduced glutathione, cysteine, low molecular weight lignin, high molecular weight lignin, ferulic acid, 3-hydroxyanthranilic acid, plant photosystem, cellobiose dehydrogenase, GMC oxidoreductase


So, electron donors are chemical entities which are involved in an oxidation reaction to generate or donate electrons. For the electron donor vitamin C, 1 molecule vitamin C donates 2 electrons. Some electron donors deliver only 1 clectron per molecule. Therefore, an electron donor used in the process of the invention is quantified in vitamin C (Vit C) equivalents on basis of the electrons that will be delivered.


Production of Industrially Useful Compounds

As it is readily understood by the one skilled in the art, a sugar product which is obtained by hydrolysis of a polysaccharide-containing material as described herein may be further processed for producing a variety of industrially useful compounds through well-known methods. Industrially useful compounds encompass ethanol and methanol.


Thus, this invention also pertains to a method for the preparation of a sugar product from a polysaccharide-containing material comprising a step of treating the said polysaccharide-containing material in the presence of a polysaccharide-oxidizing composition described in the present specification.


The use of a sugar product obtained by a method comprising a step of hydrolyzing a polysaccharide-containing material, such as a cellulose-containing material like lignocellulose are well known in the art. These methods most frequently comprises a step of fermenting the said sugar product, including fermenting glucose, so as to convert it into one or more industrially useful compounds, like ethanol or methanol.


Classically, a fermentation step is performed by using a fermenting organism, e.g. a yeast, may be fermented into a desired fermentation product, such as ethanol. Optionally the fermentation product may be recovered, e.g., by distillation.


Thus, in some embodiments, a lignocellulose-containing material is fermented by at least one fermenting organism capable of fermenting fermentable sugars, such as glucose, xylose, mannose, and galactose directly or indirectly into a desired fermentation product, according to any fermentation method which is well known from the one skilled in the art.


Subsequent to fermentation the fermentation product may be separated from the fermentation medium/broth. The medium/broth may be distilled to extract the fermentation product or the fermentation product may be extracted from the fermentation medium/broth by micro or membrane filtration techniques. Alternatively the fermentation product may be recovered by stripping. Recovery methods are well known in the art.


Such methods comprising a step of hydrolysing a lignocellulosic material and a step of fermenting the sugar product issued from hydrolysis may be used for producing any fermentation product.


Fermentation products encompass alcohols (e.g., ethanol, methanol, butanol); organic acids (e.g., citric acid, acetic acid, itaconic acid, lactic acid, gluconic acid); ketones (e.g., acetone); amino acids (e.g., glutamic acid); gases (e.g., H2 and CO2); antibiotics (e.g., penicillin and tetracycline); enzymes; vitamins (e.g., riboflavin, B12, beta-carotene); and hormones.


Thus, the present invention also concerns a method for the preparation of a fermentation product from a polysaccharide-containing material comprising the steps of:

    • a) providing a polysaccharide-containing material,
    • b) subjecting the said polysaccharide-containing material to hydrolysis in the presence of a polysaccharide-degrading composition as described in the present specification, whereby a sugar product is obtained, and
    • c) fermenting the sugar product collected at step c), whereby a fermentation product is obtained.


In preferred embodiments of the method, the polysaccharide-containing material is a lignocellulosic material.


Fermentation methods are notably described by Gupta et al. (2016, Trends in Biochemical Sciences, Vol. 41(7): 633-645).


This invention is further illustrated, without in any way being limited to, the examples below.


EXAMPLES

A. Materials and Methods


A.1. Cloning and Production of Genes

The nucleotide sequence was synthesized with codon optimization for P. pastoris (GenScript, Piscataway, USA) and further inserted with the native signal sequence into a pPICZαA vector (Invitrogen, Cergy-Pontoise, France) using BstBI and XbaI restriction sites, in frame with the (His)6 tag sequence at the C-terminus. P. pastoris strain X33 and the pPICZαA vector are components of the P. pastoris Easy Select Expression System (Invitrogen), all media and protocols are described in the manufacturer's manual (Invitrogen).


Transformation of competent P. pastoris X33 was performed by electroporation with PmeI-linearized pPICZαA recombinant plasmids as described in Bennati-Granier et al Biotechnol. Biofuels, 90 (2015)). Zeocin-resistant P. pastoris transformants were then screened for protein production. The best-producing transformant was grown in 2 l of BMGY containing 1 ml·l−1 Pichia trace minerals 4 (PTM4) salts (2 g·l−1 CuSO4.5H2O, 3 g·l−1 MnSO4.H2O, 0.2 g·l1 Na2MoO4.2H2O, 0.02 g·l1H3BO3, 0.5 g·l−1 CaSO4.2H2O, 0.5 g·l−1 CaCl2, 12.5 g·l−1 ZnSO4.7H2O, 22 g·l−1 FeSO4.7H2O, biotin 0.2 g·l−1, H2SO4 1 ml·l−1) in shaken flasks at 30° C. in an orbital shaker (200 rpm) to an OD600 of 2 to 6. Cells were then transferred to 400 ml of BMMY containing 1 ml·l−1 of PTM4 salts at 20° C. in an orbital shaker (200 rpm) for 3 days, with supplementation with 3% (v/v) methanol every day. Purification was carried out as described in Bennati-Granier et al (2015) and concentrated protein was dialyzed against sodium acetate buffer, pH 5.2 and stored at 4° C.


A.2. Biochemical Analysis

10 μg of recombinant protein samples were loaded onto 10% SDS-PAGE gels (Thermo Fisher Scientific) and were detected by staining the gel with Coomassie Blue. The molecular mass under denaturating conditions was determined with reference standard proteins (PageRuler Prestained Protein Ladder, Thermo Fisher Scientific). Protein concentration was determined by using the Bradford assay (Bio-Rad, Mams-la-Coquette, France).


A.3. Amplex Red Method

A fluorimetric assay to assess the reactivity of the copper-containing proteins based on Amplex Red and horseradish peroxidase was used as described previously (Isaksen et al, Kittl et al, Bennati-Granier et al). Briefly, 10 μM to 40 μM of protein were incubated in 50 mM sodium acetate buffer pH 6.0 containing 50 μM Amplex Red (Sigma-Aldrich, Saint-Quentin Fallavir, France), 7.1 U·ml−1 horseradish peroxidase and 50 μM ascorbate as reductant in a final volume of 100 μl. The reaction was carried out at 30° C. for 30 minutes and fluorescence was detected using an excitation wavelength of 560 nm and an emission wavelength of 595 nm in a Tecan Infinite M200 plate reader (Tecan, Männedorf, Switzerland).


A.4. Saccharification Assays

Cleavage assays were performed using pretreated poplar (steam explosion under acidic conditions), Avicel and birchwood cellulose fibres. Assays were carried out in 1 ml final volume containing 5 mg poplar or 0.5% cellulose, 2.2 μM protein with 1 mM ascorbate in 50 mM sodium acetate buffer pH 5.2. The enzyme reactions were performed in 2-ml tubes and incubated in a thermomixer (Eppendorf, Montesson, France) at 45° C. and 800 rpm for 48 hours. At that time, 1 to 10 μg of T. reesei cocktail TR3012 was added to the mixture and samples were further incubated at 45° C. and 800 rpm. Samples were recovered at various time points, boiled at 100° C. for 10 min to stop the enzymatic reaction and then centrifuged at 14,000 rpm for 15 min at 4° C. to separate the soluble fraction from the remaining insoluble fraction before carbohydrate determination. The AA9 LPMO used in saccharification assays originated from Podospora anserina (PaLPMO9E). It was recombinantly expressed in P. pastoris as described in Bennati-Granier et al.


A.5. Analysis of Oxidized and Non-Oxidized Oligosaccharides

After saccharification, soluble sugar profiles were analysed using high-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) (ICS 3000; Dionex, Sunnyvale, USA) equipped with a carboPac PA-I analytical column (250×2 mm) and guard column. Samples and standards were injected into the HPAEC system and elution was carried out using a mufti-step gradient following the protocol described in Westereng et at. Briefly, the eluents were 0.1 M NaOH (eluent A) and 1 M NaOAc in 0.1 M NaOH (eluent B). Elution was performed at a constant flow rate of 0.25 ml/min at room temperature, using a linear gradient of 0-10% eluent B over 10 min, 10-30% eluent B over 25 min, and an exponential gradient of 30-100% eluent B in 5 min. The initial condition (100% eluent A) was then restored in 1 min and maintained for 9 min to recondition the column,


A.6. Production of P.coccineus AAxx LPMOs


Bioreactor production of the best-producing transformant was carried out in 1.3-L New Brunswick BioFlo® 15 fermentors (Eppendorf, Hamburg, Germany) following the P. pastoris fermentation process guidelines (Invitrogen) with some modifications. First, preculture was performed in 500 mL shake flask containing 100 mL of BMGY medium inoculated with a single colony from YPD agar (20 g·L−1 peptone, 10 g·L−1 yeast extract, 20 g·L−1 glucose, 20 g·L−1 agar) plate. Cells were grown for 16-18 h at 30° C. in a rotary shaker at 200 rpm which resulted in an OD 600 between 4 and 6. A 10% (v/v) inoculum was used to inoculate the bioreactor. The first phase consisted in a batch culture using 400 mL of basal salts medium composed of 40 g·L−1 glycerol; 26.7 mL·L−1H 3 PO4; 14.9 g·L−1 MgSO4.7H2O; 0.93 g·L−1 CaSO4.2H2O; 7.7 g·L−1 KCl; 4.13 g·L−1 KOH; 4.35 mL·L−1 PTM 1 salt solution (6 g·L−1 CuSO4.5H 2 O, 0.08 g·L−1 NaI, 3 g·L−1MnSO4.H 2 O, 0.2 g·L−1 Na2MoO4.2H2O, 0.02 g·L−1H3BO 3, 0.5 g·L−1 CoCl2, 20 g·L−1 ZnCl 2.7H2O, 0.2 g·L−1biotin, 5 mL·L−1H2SO 4, 65 g·L−1 FeSO4.7H 2 O). Batch phase was performed at 30° C., 400 rpm and pH was controlled at 5.0 with ammonium hydroxide (28% v/v). Dissolved oxygen was controlled at 20% with oxygen enrichment cascade (0-50%) using a gas flow rate at 0.5 v.v.m. As an antifoaming agent, 200 μl of Pluriol 8100 (BASF, Ludwigshafen. Germany) were added. After 20-24 h, phase 2 consisted of the simultaneous addition of 50 g of sorbitol and 0.5% of methanol (v/v) to the bioreactor until the yeast cells switched to methanol metabolism (i.e., 5 h later). During this phase, agitation was increased to 500 rpm and pH was slowly increased to pH 6 by addition of ammonium hydroxide (28% v/v). Finally, the induction phase (phase 3) was performed by adding a solution of methanol containing 12 mL·L−1 of PTM 1 salts (containing copper) by a fed-batch mode. The initial feed rate was 1.47 mL·h−1 and was increased after about 14 h of growth at a rate of 2.94 mL·h−1. The induction phase was carried out at 20° C. Dissolved oxygen was maintained to 20% via an agitation (400-800 rpm), gas flow (0.2-1 v.v.m.) and oxygen (0-50%) cascade. The induction phase was carried out for 144 h.


A.7. Purification of PcAAxx LPMOs

The culture supernatants were recovered by pelleting the cells by centrifugation at 2,700 g for 5 min, 4° C. and filtered on 0.45 μm filters (Millipore, Molsheim, France) to remove any remaining cells. For (His) 6-tagged enzymes, the pH was adjusted to 7.8 and the supernatants were filtered once more on 0.2 μm filters and loaded onto 5 ml His Trap HP columns (GE healthcare, Buc, France) connected to an Akta Xpress system (GE healthcare). Prior to loading, the columns were equilibrated in Tris HCl 50 mM pH 7.8; NaCl 150 mM (buffer A). The loaded columns were then washed with 5 column volumes (CV) of 10 mM imidazole in buffer A, before the elution step with 5 CV of 150 mM imidazole in buffer A. Fractions containing the protein were pooled and concentrated onto a 3-kDa vivaspin concentrator (Sartorius, Pulaiseau, France) before loading onto a HiLoad 16/600 Superdex 75 Prep Grade column (GE Healthcare) and separated in acetate buffer 50 mM pH 5.2. Gel filtration analysis showed that both PcAAxx proteins are monomeric in solution even after copper loading. For enzymes without (His) 6-tag, salts contained in the culture media were diluted ten-fold in Tris-HCl 20 mM pH 8, then culture supernatants were concentrated onto a Pellicon-2 10-kDa cutoff cassette (Millipore) to a volume of approx. 200 mL and loaded onto a 20-mL High Prep DEAE column (GE Healthcare). Proteins were eluted using a linear gradient of 1 M NaCl (0 to 700 mM in 200 mL). Fractions were then analyzed by SDS PAGE and those containing the recombinant protein were pooled and concentrated. The concentrated proteins were then incubated with one-fold molar equivalent of CuSO4 overnight before separation on a HiLoad 16/600 Superdex 75 Prep Grade column in acetate buffer 50 mM pH 5.2. Protein-containing fractions were pooled and concentrated onto a 3-kDa vivaspin concentrator (Sartorius).


A.8. Deglycosylation Assays

To remove N-linked glycans, purified enzymes were treated with peptide EndoHf (New England Biolabs, Ipswich, Mass.) under denaturing conditions according to the manufacturer's instructions. Briefly, 10 μg of protein were incubated in 0.5% SDS and 40 mM DTT and heated for 10 min at 100° C. for complete denaturation. Denaturated samples were subsequently incubated with 1,500 units of peptide EndoHf in 50 mM sodium acetate pH 6.0 for 1 h at 37° C. Deglycosylated and control samples were analyzed by SDS-PAGE.


A.9. Crystallization of Purified PcAAxxB Protein

Purified PcAAxxB protein (JGI ID 1372210; GenBank ID #KY769370) was concentrated using 10-kDa polyethersulfone Vivaspin concentrators (Sartorius). The concentration was determined by measuring the A 280 nm using a NanoDrop ND-2000 instrument (Wilmington, Del., USA), All crystallization experiments were carried out at 20° C. by the sitting-drop vapour-diffusion method using %-well crystallization plates (Swissci) and a Mosquito® Crystal (TP labtech) crystallization robot. Reservoirs consisted of 40 μL of commercial screens and crystallization drops were prepared by mixing 100 nL reservoir solution with 100, 200 and 300 nL of protein solution. An initial hit was obtained after 1 week from a condition of the AmSO 4 screen (Qiagen) consisting of 2.4 M (NH4) 2SO4 and 0.1 M citric acid pH 4.0. This condition was further optimized to obtain diffraction-grade crystals by mixing protein solution at 28 mg·mL−1 with precipitant solution consisting of 2.4 M (NH 4) 2 SO4 and 0.1 M citric acid pH 4.4 at a volume ratio of 3:1. PcAAxxB crystals grew to dimensions of 0.15×0.15×0.05 mm in one week. Crystals belong to space group P41212 with cell axes 204×204×110 Å and two molecules per asymmetric unit.


A.10. Data Collection, Structure Determination and Refinement

Crystals of PcAAxxB were soaked for 5 min in a solution where 2.4 M (NH4)2SO4 of the mother liquor was replaced by 2.4 M Li2SO4 for the sake of cryoprotection prior to flash-cooling in liquid nitrogen. As X-ray fluorescence scans on native crystals did not reveal a significant presence of copper within the crystals, a heavy atom derivative was prepared by soaking the crystals in reservoir solution supplemented with 55 mM of the gadolinium complex gadoteridol prior to cryo-cooling. Native diffraction data were collected on beamline ID23-1, while a MAD dataset was collected on beamline ID30B at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. Data were indexed and integrated in space group P41212 using XDS and subsequent processing steps were performed with the CCP4 software suite. Determination of the Gd3+ substructure and subsequent phasing combined with solvent flattening were carried out with SHELXC/D/E, using the SAD data collected at the Gd edge and leading to a pseudo-free correlation coefficient of 71.8%. Starting from experimental phases, an initial model comprising 526 residues (out of 584), was automatically built with Buccaneer and manually completed with Coot (44). This initial model was used for rigid body refinement followed by restrained refinement against native data with the program Ref mac. A random set of 5% of reflections was set aside for cross-validation purposes. Model quality was assessed with internal modules of Coot (44) and using the Molprobity server. Data collection and refinement statistics are summarized herebelow:









TABLE 1







refinement statistics










Property
Value







Space group
P41212



Unit cell parameters
203.75 203.75 110.59



a, b, c, α, β, γ
90.00 90.00 90.00



Wavelength (Å)
0.97625



Resolution range (Å)
44.47-3.01



Completeness (%) (outer shell)
98.5 (99.4)



Multiplicity (outer shell)
8.3 (8.6)



<I/σ (I)> (outer shell)
15.9 (2.0) 



Rwork/Rfree
0.23/0.24



Ramachandran statistics (%)
100%



Favored & Allowed










A.11. Bioinformatic Analysis of AAxx LPMOs


P. coccineus AAxx sequences (Genbank ID KY769369 and KY769370) were compared to the NCBI non redundant sequences database using BlastP (29) in February 2016. Blast searches conducted with AAxx did not retrieve AA9s, AA10s, AA11s or AA13s with significant scores, and vice-versa. MUSCLE was used to perform multiple alignments. To avoid interference from the presence or absence of additional residues, the signal peptides and C-terminal extensions were moved. Bioinformatic analyses were performed on 286 fungal genomes sequenced and shared by JGI collaborators. Protein clusters are available thanks to the JGI (https://goo.gl/ZAa2NX) for each of these fungi. A phylogenetic tree has been inferred using 100 cleaned and merged alignment of proteins from selected clusters of proteins. Those clusters are present, as much as possible, in all fungi in 1 copy in order to maximize the score Σ1/n (with n, the number of copy in the genome). Sequences from clusters were aligned with Mafft, trimed with Gblocks and a phylogenetic tree was built with concatenation of alignments with Fasttree. Tree is displayed with Dendroscope and Bio::phylo. See FIG. 6 for the phylogenetic tree and FIGS. 8A & 8B, corresponding to a consensus sequence of the catalytic module.


A.12. Copper-Loading Protocol

AAxx enzymes were copper loaded using copper salts (sulphate or acetate) during or after the purification. Proteins were incubated with ten molar equivalents of copper salts between two hours and overnight at 4° C. and excess of copper was removed using diafiltration with a 3-kDa centricon or with a gel filtration chromatography step. The presence of copper can be assessed by inductively coupled plasma mass spectrometry (ICP-MS), as described here after.


A.13. ICP/AIS Analysts

Prior to the analysis, samples are mineralized in a mixture containing ⅔ of nitric acid (Sigma-Aldrich, 65% Purissime) and ⅓ of hydrochloric acid (Fluka, 37%, Trace Select) at 120° C. The residues are diluted in ultra-pure water (2 mL) before ICP/MS analysis. The ICP-MS instrument is an ICAP Q (ThermoElectron, Les Ullis, France), equipped with a collision cell. The calibration curve is obtained by dilution of a certified multi-element solution (Sigma-Aldrich). Copper concentrations are determined using Plasmalab software (Thermo-Electron), at a mass of interest m/r=63.


Example 1: Recombinant Production or the Protein of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3

Proteins of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3 were produced using the heterologous expression system P. pastoris. The native signal peptide of each of the two proteins was conserved allowing for the Histidine residue to be at the N-term position after signal peptide processing in SEQ ID No 1, SEQ ID No 2 and SEQ ID No 3.


Electrophoretic analysis of the recombinant protein of SEQ ID NO. 1, the recombinant protein of SEQ ID NO. 2 and the recombinant protein of SEQ ID NO. 3 after purification revealed a single band (FIG. 1).


Example 2: Production of Hydrogen Peroxide by the Proteins of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3

To assess the functionality of the proteins of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3, their capacity to produce H2O2 in the presence of oxygen and electron donor (ascorbate) was evaluated. Significant H2O2 production was detected (FIG. 2). H2O2 production was in the similar range as for LPMOs from other families described in the literature such as AA9 LPMOs from P. anserina (Bennati-Granier et al., 2015, Biotechnol Biofuels 8, 90). This assay reveals that the proteins of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3 bears a copper ion at the catalytic center as described for LPMOs.


Example 3: Polysaccharide-Degrading Activity of the Proteins of SEQ ID NO. 1 and SEQ ID NO. 2 in a Sequential Lignocellulose Degradation Assay

Degradation of lignocellulosic biomass with proteins of SEQ ID NO. 1 or SEQ ID NO. 2 and T. reesei cellulase cocktail were tested in sequential reactions. Pretreated poplar was first incubated with 2.2 μM (equivalent to 70 μg) protein of SEQ ID NO. 1 or 2.2 μM (equivalent to 70 μg) protein SEQ ID NO. 2 for 48 hours after which 10 μg of T. reesei TR3012 cellulase cocktail was added. The reactions were further incubated for 24 hours. Analyses of soluble sugar release using several methodologies (DNS assay, RTU assay and HPAEC) showed an improvement of released glucose and cello-oligosaccharides (FIG. 3). Addition of increasing amount of the proteins of SEQ ID NO. 1 or SEQ ID NO. 2 resulted in proportional increase of glucose release (FIG. 4).


Example 4: Polysaccharide-Degrading Activity of the Protein of SEQ ID NO. 1 and SEQ ID NO.2 in a Sequential Lignocellulose Degradation Assay in the Presence of AA9 LPMO

Degradation of lignocellulosic biomass with protein of SEQ ID NO. 1 and the AA9 LPMO was tested in sequential reactions. Pretreated poplar was first incubated with (i) Control medium, (ii) 2.2 μM (equivalent to 35 μg) protein of SEQ ID NO. 1, (iii) 2.2. μM of AA9 LPMO and (iv) 1.1 μM protein of SEQ ID NO. 1 and 1.1. μM of AA9 LPMO for 48 hours after which 10 μg of T. reesei TR3012 cellulase cocktail was added. The reactions were further incubated for 24 hours. Analyses of soluble sugar release using several methodologies (DNS assay, RTU assay and HPAEC) showed an improvement of released glucose and cello-oligosaccharides (FIG. 5).


Example 5: A Crystal Structure of the PcAAxxB (JGI ID 1372210; GenBank ID #KY769370) Catalytic Module, Refined at a 3.0 Å Resolution, Reveals a Folded Core Protein and an Active Site Formed by a Canonical Histidine Brace Exposed at the Surface

PcAAxxB (#KY769370) was produced to high yield in Pichia pastoris and purified to homogeneity.


The structure of PcAAxxB was solved by multiple-wavelength anomalous dispersion data recorded at the gadolinium edge, and refined at 3.0 Å resolution. The core of the protein folds into a largely antiparallel P-sandwich, a fold globally similar to that seen in LPMOs from other families.


The active site of PcAAxxB constituted by His1, His99 and Tyr176 forming the canonical histidine brace is exposed at the surface (FIG. 2B).


In contrast to the flat substrate-binding surfaces observed in AA9 LPMOs, the PcAAxxB surface has a rippled shape with a clamp formed by two prominent surface loops, herein (see further herebelow) in a pdb (Protein Data Bank) format. Five N-glycans are attached in the crystal structure to PcAAxxB, through asparagine residues Asn13, Asn76, Asn133, Asn183 and Asn217.


The crystal structure further provides evidence of 10 cysteine residues involved in five disulfure bonds, at the following coupled positions: Cys67 & Cys90; Cys109 & Cys136; Cys153 & Cys158; Cys160 & Cys82; Cys202 & Cys218.


The crystallized structure includes two molecules per assymetric unit. Chain A coordinates are disclosed herein (see further herebelow) in a pdb (Protein Data Bank) file format (see content of the crystal structure, further herebelow). Chain B, which is also part of the assymetric unit is not represented herein.


When viewed under PyMOL© Viewer 1.7.4.5 Edu (Schrodinger, LLC), boundaries of all the 6 β-sheets forming the core antiparallel β-sandwich consist of (by reference to SEQ ID No 2):

    • from residue Phe53 to Glu64;
    • from residue Cys109 to Ala114;
    • from residue Thr128 to Asa133;
    • from residue Phe141 to Val146;
    • from residue Cys158 to Trp164;
    • from residue Met177 to Thr185.


The sequence SEQ ID No7 corresponds to the minimal fragment of SEQ ID No2 comprising the three amino acids which are involved in the copper-binding catalytic triade (which includes the N-terminal histidine residue); and further comprising the antiparallel P-sandwich, up to residue Thr185.


The following residues comprised within SEQ ID No 2 can be further positioned in the consensus sequence derived from FIG. 8 as follows:









TABLE 2A







Consensus Sequence and position in SEQ ID No2









Consensus Sequence















1
20-35
42-60
78-151
136-226
146-241
193-338


















Amino Acid
H
P
P
H
W
Y
Y


Position in
1
28
47
99
164
176
246


SEQ ID 2
















TABLE 2B







Consensus Sequence and position


in SEQ ID No2 (Cysteine Residues)









Consensus Sequence














1
20-35
42-60
78-151
136-226
146-241

















Amino Acid
C
C
C
C
C
C


Position in
153
158
160
182
202
218


SEQ ID 2









Example 6: Saccharification Assay on Pretreated Biomass Including Poplar, Pine and Wheat Straw

We performed saccharification assays on pretreated biomass including poplar and pine using a Trichoderma reesei CL847 cocktail mainly composed of cellulases and xylanases. A boost of glucose release from poplar and pine was observed upon addition of any of the AAxx enzymes to the cocktail (see FIG. 9).


When the reactions were conducted in the absence of a reductant the boost effect was also maintained, suggesting that one of the components from the biomass (e.g. lignin) may act as an electron donor. In a finding with important consequences for biorefinery use of woody biomass as feedstock, the T. reesei CL847 cocktail enriched in AA9 LPMO acting on cellulose was also boosted by PcAAxxA (of SEQ ID NO. 1), suggesting that AA9 and AAxx enzymes may act on different regions within the lignocellulosic matrix.


Because native AAxx members do not harbor any CBM module, we artificially attached a fungal CBM1 module targeting crystalline cellulose to PcAAxxAA. The resulting modular PcAAxA-CBA1 enzyme performed less efficiently than the catalytic module alone (data not shown), suggesting that AAxx enzymes do not require specific binding to the flat crystalline cellulose surface.


Overall, those experiments provide evidence that enzymes belonging to the AAxx family:

    • remain efficient, as polysaccharide-oxidizing enzymes, for targeting a variety of material, and in particular a variety of lignocellulosic material; and
    • when used in polysaccharide-degrading compositions in combination with other enzymes, they may provide a surprisingly synergic activity, for instance by having a distinct attack on a lignocellulosic substrate, and especially on a xylan-comprising lignocellulosic substrate.










SEQUENCE LISTING



SEQ ID NO. 1



HAAFWDKSMYGFNVTAQTFPYDNRPQVPLYNMTFDQWWFHGHKDYPPNEGDFFELPAGGEVNSIISCDKGATP






FYESSPGGDSGYGSNSPCPGQPMSEYHTTGIDDVKGCCMAIAYKPDVNDVQPDDFVVFSCNSTCVWEMNTKFE





IPKLPACPEGGCHCAWFWIHSYDSGAEQIYMNGFKCKVTGDVGTQPLGKPAVPRRCGADPDHGKPDPTPGNCT





IGAKTPNYWYQREGNNMFEDTYDAPYYNPLYGFNDGAQNDIFMDGVIASLA





SEQ ID NO. 2



HIAFWHNSMYGFNVTEQTFPYDNRPVVPLQYMTFQEWWFHNHLDYPPHPGDFFDFPAGKAATAELACNKGATT






WFNSSEGGNIQNGNDPCPGSPPSEYHTTGIDDVKGCAMAIAYESDVRKIKPEDFTVFSVNQTCVWYRFTDFQV





PERMPPCPPGGCHCAWFWIHSPDSGGEQIYMNGFQCNITGSTSHVPLAKPKVARRCGADPDHGRPDAVPGNCT





YGAKQPLYWLQKEGNNEFDDYIAPPFYNDLYNFKDGAQNDIFVDSYPDGI





SEQ ID NO. 3



HVAAFVKGMYCEGGPDPNNYNPNSNTPVNPLWDLPFEQWWMQADRGCNKAPPPDGASVALPAGGQFTVELAHN






QAQTTLSFNGQFAGEWPDGQPHPENWSGPGSPPDCIQDDGAMHTNNQTMAAGTAWAISYNDDISKVTMDNLVV





FSVLEHTPWKRIATYDVPKDLPACPAGGCYCAWLWVPNGCGEPNMYMANYRCHVTNTTSTKQLAQAKPPTWCG





GDSSKCTKGAKQMIAWNQATGNNVQVPNGASPGYNINMGWAPGAQNDIFA





SEQ ID NO. 4



CACGCCGCGTTCTGGGACAAGTCCATGTACGGCTTCAACGTCACCGCACAGACCTTCCCCTACGACAACCGGC






CCCAGGTTCCGCTCTACAACATGACTTTCGACCAATGGTGGTTCCACGGTCACAAAGACTACCCACCCAACGA





GGGCGATTTCTTCGAACTCCCTGCGGGTGGAGAGGTGAACAGCATCATCTCCTGCGATAAGGGTGCGACTCCG





TTCTACGAGTCGTCTCCGGGCGGAGATTCGGGCTATGGCAGCAACTCTCCTTGCCCCGGGCAGCCCATGTCCG





AGTACCACACGACGGGCATTGATGATGTCAAGGGCTSCTGCATGGCCATCGCGTACAAGCCCGATGTCAACGA





TGTGCAGCCAGACGACTTCGTGGTCTTCTCCTGCAACTCGACGTGCGTTTGGGAGATGAACACCAAGTTTGAG





ATCCCGAAGCTCCCTGCCTGCCCCGAAGGTGGTTGCCATTSCGCCTGGTTCTGGATTCACTCCTACGATAGCG





GTGCTGAGCAGATCTATATGAATGGTTTCAAGTGCAAAGTAACCGGCGACGTAGGCACTCAGCCTCTCGGCAA





GCCTGCCGTCCCGCGCAGGTGCGGTGCCGACCCTGATCACGGCAAGCCTGATCCTACTCCCGGTAATTGTACT





ATCGGGGCCAAGACGCCCATGTACTGGTACCAGCGGGAGGGTAACAACATGTTCGAAGACACTTATGACGCCC





CGTACTATAACCCACTCTACGGCTTCAACGATGGGGCGCAGAACGACATTTTCATGGATGGTGTCATCGCGTC





CCTCGCA





SEQ ID NO. 5



CACATCGCCTTCTGGCATAACAGCATGTACGGGTTCAATGTGACGGAACAGACGTTCCCTTACGACAACCGCC






CCGTCGTCCCGCTTCAGTACATGACCTTCCAAGAATGGTGGTTCCACAACCACCTCGACTACCCGCCCCACCC





GGGCGACTTCTTCGACTTCCCGGCCGGCAAGGCCGCGACGGCGGAGCTCGCGTGCAACAAGGGCGCGACCACC





TGGTTCAACTCCTCCGAGGGCGGCAACATCCAGAACGGCAACGACCCGTGCCCGGGGAGCCCCCCGAGCGAGT





ACCACACGACGGGCATCGACGACGTGAAGGGCTGCGCGATGGCGATCGCGTACGAGTCCGACGTCAGGAAGAT





CAAGCCCGAGGACTTCACCGTCTTCAGCGTGAACCAGACGTGCGTCTGGTACCGCTTCACGGACTTCCAGGTC





CCCGAGCGCATGCCGCCGTGCCCTCCTGGCGGCTGTCACTGCGCGTGGTTCTGGATCCACTCGCCCGATAGCG





GCGGTGAGCAGATCTACATGAACGGCTTCCAGTGCAACATCACCGGCTCCACGTCCCACGTCCCGCTCGCAAA





GCCCAAAGTCGCTCGCCGCTGCGGTGCGGACCCGGACCACGGCAAGCCCGACGCCGTCCCCCGCAACTGCACA





TACGGTGCGAAGCAGCCCCTCTACTGGCTCCAGAAGGAGGGCAACAACGAGTTCGACGACTACATCGCGCCGC





CGTTCTACAACGACCTGTACAACTTCAAGGACGGCGCGCAGAACGACATCTTCGTCGACTCGTACCCCGACGG





CATC





SEQ ID NO. 6



ATGTTCTGGACGGTTCCCGTTACACTGGCTCTCGCCTCCGGGGCCTCTGCCCATGTTGCCGCCTTCGTGAAGG






GCATGTACTGCGAGGGTGGCCCCGACCCTAACAACTACAACCCCAACTCCAACACTCCCGTCAACCCTCTCTG





GGATCTTCCTTTCGAGCAGTGGTGGATGCAGGCCGACCGTGGCTGCAACAAGGCTCCTCCTCCTGACGGTGCC





TCCGTTGCTCTGCCTGCCGGCGGCCAGTTCACTGTTGAGCTCGCCCACAACCAGGCCCAGACGACCTTATCCT





TCAATGGACAGTTCGCTGGCGAGTGGCCTGATGGCCAGCCTCACCCAGAGAACTGGAGCGGCCCCGGTAGCCC





CCCTGACTGCATCCAGGACGACGGTGCCATGCATACCAACAACCAGACAATGGCCGCTGGTACCGCTTGGGCC





ATTTCCTACAATGACGACATCTCCAAGGTGACCATGGACAACCTGGTTGTTTTCTCTGTCCTTGAGCACACCC





CTTGGAAGCGCATCGCCACCTATGATGTCCCCAAGGATCTCCCTGCTTGCCCTGCTGGCGGCTGCTACTGCGC





CTGGCTTTGGGTTCCCAACGGGTGCGGCGAGCCCAACATGTACATGGCCAACTACAGGTGCCATGTCACCAAC





ACCACCTCGACCAAGCAGCTTGCTCAAGCCAAGCCCCCCACCTGGTGTGGCGGTGACTCTTCCAAGTGCACCA





AGGGCGCTAAGCAGATGATTGCTTGGAACCAGGCCACAGGCAACAATGTCCAAGTTCCCAATGGCGCTTCCCC





CGGCTACACATCAACATGGGCTGGGCTCCCGGTGCTCAGAACGACATCTTCGCGTAG





SEQ ID NO. 7



HIAFWHNSMYGFNVTEQTFPYDNRPVVPLQYMTFQEWWFHNHLDYPPHPGDFFDFPAGKAATAELACNKGATT






WFNSSEGGNIQNGNDPCPGSPPSEYHTTGIDDVKGCAMAIAYESDVRKIKPEDFTVFSVNQTCVWYRFTDFQV





PERMPPCPPGGCHCAWFWIHSPDSGGEQIYMNGFQCNIT





SEQ ID NO8



MFWTVPVTLALASGASA






SEQ ID NO. 9



MFWTVPVTLALASGASAHVAAFVKGMYCEGGPDPNNYNPNSNTPVNPLWDLPFEQWWMQADRGCNKAPPPDGA






SVALPAGGQFTVELAHNQAQTTLSFNGQFAGEWPDGQPHPENWSGFGSPPDCIQDDGAMHTNNQTMAAGTAWA





ISYNDDISKVTNDNLVVFSVLEHTPWKRIATYDVPKDLPACPAGGCYCAWLWVPNGCGEPNMYMANYRCHVTN





TTSTKQLAQAKPPTWCGGDSSKCTKGAKQMIAWNQATGNNVQVPNGASPGYNINMGWAPGAQNDIFA
















CRYSTAL STRUCTURE OF AAxx (PcAAxxB) of SEQ ID No2






















MODRES
NAG
A
300
NAG-b-D
RENAME



MODRES
NAG
A
301
NAG-b-D
RENAME



MODRES
NAG
A
310
NAG-b-D
RENAME



MODRES
NAG
A
311
NAG-b-D
RENAME



MODRES
MAN
A
313
MAN-a-D
RENAME



MODRES
MAN
A
314
MAN-a-D
RENAME



MODRES
MAN
A
315
MAN-a-D
RENAME



MODRES
NAG
A
320
NAG-b-D
RENAME



MODRES
NAG
A
321
NAG-b-D
RENAME



MODRES
MAN
A
323
MAN-a-D
RENAME



MODRES
MAN
A
324
MAN-a-D
RENAME



MODRES
NAG
A
330
NAG-b-D
RENAME



MODRES
NAG
A
331
NAG-b-D
RENAME



MODRES
MAN
A
333
MAN-a-D
RENAME



MODRES
NAG
A
340
NAG-b-D
RENAME



MODRES
NAG
A
341
NAG-b-D
RENAME



MODRES
MAN
A
343
MAN-a-D
RENAME



MODRES
MAN
A
344
MAN-a-D
RENAME



MODRES
MAN
A
345
MAN-a-D
RENAME



MODRES
MAN
A
346
MAN-a-D
RENAME




















SSBOND
1
CYS
A
67
CYS
A
90



SSBOND
2
CYS
A
109
CYS
A
136



SSBOND
3
CYS
A
153
CYS
A
158



SSBOND
4
CYS
A
160
CYS
A
182



SSBOND
5
CYS
A
202
CYS
A
218






















LINKR
C1
NAG
A
300
ND2
ASN
A
13
NAG-ASN



LINKR
C1
NAG
A
310
ND2
ASN
A
76
NAG-ASN



LINKR
C1
NAG
A
320
ND2
ASN
A
133
NAG-ASN



LINKR
C1
NAG
A
330
ND2
ASN
A
183
NAG-ASN



LINKR
C1
NAG
A
340
ND2
ASN
A
217
NAG-ASN



LINKR

NAG
A
300

NAG
A
301
BETA1-4



LINKR

NAG
A
301

BMA
A
302
BETA1-4



LINKR

NAG
A
310

NAG
A
311
BETA1-4



LINKR

NAG
A
311

BMA
A
312
BETA1-4



LINKR

BMA
A
312

MAN
A
313
ALPHA1-6



LINKR

MAN
A
313

MAN
A
314
ALPHA1-3



LINKR

BMA
A
312

MAN
A
315
ALPHA1-3



LINKR

NAG
A
320

NAG
A
321
BETA1-4



LINKR

NAG
A
321

BMA
A
322
BETA1-4



LINKR

BMA
A
322

MAN
A
323
ALPHA1-3



LINKR

BMA
A
322

MAN
A
324
ALPHA1-6



LINKR

NAG
A
330

NAG
A
331
BETA1-4



LINKR

NAG
A
331

BMA
A
332
BETA1-4



LINKR

BMA
A
332

MAN
A
333
ALPHA1-3



LINKR

NAG
A
340

NAG
A
341
BETA1-4



LINKR

NAG
A
341

BMA
A
342
BETA1-4



LINKR

BMA
A
342

MAN
A
343
ALPHA1-3



LINKR

MAN
A
343

MAN
A
345
ALPHA1-2



LINKR

BMA
A
342

MAN
A
344
ALPHA1-6



LINKR

MAN
A
343

MAN
A
346
ALPHA1-6





















CRYST1
203.754
203.754
110.586
90.00
90.00
90.00
P
41
21
2
















SCALE1
0.004908
0.000000
0.000000
0.00000



SCALE2
−0.000000
0.004908
0.000000
0.00000



SCALE3
0.000000
−0.000000
0.009043
0.00000






















ATOM
1
N
HIS
A
1
84.207
23.023
6.334
1.00
91.64
N


ATOM
2
CA
HIS
A
1
84.466
23.579
7.697
1.00
92.54
C


ATOM
3
CB
HIS
A
1
83.152
23.732
8.477
1.00
96.32
C


ATOM
4
CG
HIS
A
1
82.286
24.858
7.994
1.00
103.06
C


ATOM
5
ND1
HIS
A
1
81.800
24.929
6.705
1.00
107.25
N


ATOM
6
CE1
HIS
A
1
81.067
26.021
6.570
1.00
107.65
C


ATOM
7
NE2
HIS
A
1
81.051
26.657
7.728
1.00
107.39
N


ATOM
8
CD2
HIS
A
1
81.802
25.948
8.636
1.00
107.70
C


ATOM
9
C
HIS
A
1
85.475
22.714
8.468
1.00
89.46
C


ATOM
10
O
HIS
A
1
85.099
21.813
9.220
1.00
87.30
O


ATOM
11
N
ILE
A
2
86.758
22.994
8.247
1.00
85.02
N


ATOM
12
CA
ILE
A
2
87.864
22.287
8.897
1.00
82.47
C


ATOM
13
CB
ILE
A
2
88.504
21.243
7.951
1.00
82.74
C


ATOM
14
CG1
ILE
A
2
87.504
20.143
7.573
1.00
84.37
C


ATOM
15
CD1
ILE
A
2
87.087
19.238
8.714
1.00
84.11
C


ATOM
16
CG2
ILE
A
2
89.744
20.610
8.573
1.00
82.26
C


ATOM
17
C
ILE
A
2
88.930
23.304
9.288
1.00
82.66
C


ATOM
18
O
ILE
A
2
89.091
24.331
8.623
1.00
81.32
O


ATOM
19
N
ALA
A
3
89.659
23.015
10.364
1.00
83.36
N


ATOM
20
CA
ALA
A
3
90.744
23.883
10.810
1.00
83.72
C


ATOM
21
CB
ALA
A
3
90.229
24.884
11.825
1.00
85.46
C


ATOM
22
C
ALA
A
3
91.897
23.099
11.410
1.00
82.57
C


ATOM
23
O
ALA
A
3
91.711
22.006
11.943
1.00
82.43
O


ATOM
24
N
PHE
A
4
93.091
23.676
11.307
1.00
82.50
N


ATOM
25
CA
PHE
A
4
94.289
23.131
11.939
1.00
82.14
C


ATOM
26
CB
PHE
A
4
95.544
23.679
11.248
1.00
81.58
C


ATOM
27
CG
PHE
A
4
96.801
23.534
12.055
1.00
82.24
C


ATOM
28
CD1
PHE
A
4
97.531
22.356
12.025
1.00
84.74
C


ATOM
29
CE1
PHE
A
4
98.696
22.226
12.763
1.00
85.69
C


ATOM
30
CZ
PHE
A
4
99.145
23.281
13.536
1.00
86.18
C


ATOM
31
CE2
PHE
A
4
98.430
24.463
13.568
1.00
85.11
C


ATOM
32
CD2
PHE
A
4
97.267
24.587
12.829
1.00
82.90
C


ATOM
33
C
PHE
A
4
94.243
23.540
13.408
1.00
79.27
C


ATOM
34
O
PHE
A
4
94.223
24.733
13.713
1.00
78.92
O


ATOM
35
N
TRP
A
5
94.214
22.556
14.308
1.00
76.19
N


ATOM
36
CA
TRP
A
5
94.078
22.815
15.748
1.00
73.59
C


ATOM
37
CB
TRP
A
5
92.972
21.947
16.342
1.00
71.23
C


ATOM
38
CG
TRP
A
5
91.616
22.342
15.888
1.00
71.66
C


ATOM
39
CD1
TRP
A
5
90.794
21.643
15.057
1.00
71.88
C


ATOM
40
NE1
TRP
A
5
89.622
22.333
14.860
1.00
73.14
N


ATOM
41
CE2
TRP
A
5
89.674
23.506
15.565
1.00
73.24
C


ATOM
42
CD2
TRP
A
5
90.919
23.547
16.223
1.00
72.48
C


ATOM
43
CE3
TRP
A
5
91.226
24.656
17.018
1.00
72.79
C


ATOM
44
CZ3
TRP
A
5
90.291
25.675
17.132
1.00
73.08
C


ATOM
45
CH2
TRP
A
5
89.059
25.606
16.466
1.00
74.22
C


ATOM
46
CZ2
TRP
A
5
88.733
24.533
15.679
1.00
74.18
C


ATOM
47
C
TRP
A
5
95.360
22.586
16.533
1.00
75.33
C


ATOM
48
O
TRP
A
5
95.922
21.491
16.518
1.00
74.09
O


ATOM
49
N
HIS
A
6
95.804
23.632
17.227
1.00
80.24
N


ATOM
50
CA
HIS
A
6
96.984
23.570
18.089
1.00
80.86
C


ATOM
51
CB
HIS
A
6
98.257
23.467
17.251
1.00
78.51
C


ATOM
52
CG
HIS
A
6
99.432
22.941
18.008
1.00
76.30
C


ATOM
53
ND1
HIS
A
6
100.512
23.725
18.351
1.00
76.28
N


ATOM
54
CE1
HIS
A
6
101.395
22.993
19.006
1.00
76.89
C


ATOM
55
NE2
HIS
A
6
100.923
21.763
19.104
1.00
76.64
N


ATOM
56
CD2
HIS
A
6
99.699
21.704
18.485
1.00
74.93
C


ATOM
57
C
HIS
A
6
97.027
24.823
18.964
1.00
83.70
C


ATOM
58
O
HIS
A
6
96.542
25.872
18.553
1.00
87.03
O


ATOM
59
N
ASN
A
7
97.613
24.720
20.156
1.00
84.93
N


ATOM
60
CA
ASN
A
7
97.683
25.864
21.083
1.00
82.64
C


ATOM
61
CB
ASN
A
7
98.139
25.415
22.476
1.00
82.43
C


ATOM
62
CG
ASN
A
7
99.559
24.883
22.488
1.00
85.12
C


ATOM
63
OD1
ASN
A
7
100.174
24.686
21.440
1.00
88.15
O


ATOM
64
ND2
ASN
A
7
100.089
24.647
23.682
1.00
87.40
N


ATOM
65
C
ASN
A
7
98.571
27.017
20.592
1.00
80.24
C


ATOM
66
O
ASN
A
7
98.520
28.120
21.138
1.00
81.89
O


ATOM
67
N
SER
A
8
99.379
26.753
19.568
1.00
76.92
N


ATOM
68
CA
SER
A
8
100.251
27.760
18.971
1.00
76.31
C


ATOM
69
CB
SER
A
8
101.521
27.099
18.439
1.00
78.16
C


ATOM
70
OG
SER
A
8
101.219
26.179
17.403
1.00
76.69
O


ATOM
71
C
SER
A
8
99.578
28.518
17.828
1.00
74.65
C


ATOM
72
O
SER
A
8
100.198
29.385
17.213
1.00
74.69
O


ATOM
73
N
MET
A
9
98.324
28.191
17.536
1.00
73.77
N


ATOM
74
CA
MET
A
9
97.611
28.834
16.441
1.00
74.84
C


ATOM
75
CB
MET
A
9
96.458
27.949
15.954
1.00
74.96
C


ATOM
76
CG
MET
A
9
95.228
27.964
16.847
1.00
74.10
C


ATOM
77
SD
MET
A
9
94.042
26.680
16.421
1.00
74.41
S


ATOM
78
CE
MET
A
9
93.364
27.372
14.914
1.00
77.74
C


ATOM
79
C
MET
A
9
97.063
30.188
16.849
1.00
75.28
C


ATOM
80
O
MET
A
9
96.799
30.440
18.024
1.00
83.04
O


ATOM
81
N
TYR
A
10
96.888
31.053
15.859
1.00
74.31
N


ATOM
82
CA
TYR
A
10
96.248
32.339
16.074
1.00
74.32
C


ATOM
83
CB
TYR
A
10
96.636
33.330
14.973
1.00
72.98
C


ATOM
84
CG
TYR
A
10
98.026
33.895
15.150
1.00
71.66
C


ATOM
85
CD1
TYR
A
10
99.150
33.108
14.941
1.00
72.01
C


ATOM
86
CE1
TYR
A
10
100.426
33.619
15.115
1.00
72.90
C


ATOM
87
CZ
TYR
A
10
100.586
34.935
15.497
1.00
73.32
C


ATOM
88
OH
TYR
A
10
101.845
35.457
15.668
1.00
75.71
O


ATOM
89
CE2
TYR
A
10
99.486
35.738
15.707
1.00
73.41
C


ATOM
90
CD2
TYR
A
10
98.216
35.216
15.535
1.00
73.15
C


ATOM
91
C
TYR
A
10
94.740
32.106
16.111
1.00
75.52
C


ATOM
92
O
TYR
A
10
94.209
31.290
15.354
1.00
77.48
O


ATOM
93
N
GLY
A
11
94.059
32.813
17.004
1.00
76.98
N


ATOM
94
CA
GLY
A
11
92.618
32.658
17.176
1.00
77.07
C


ATOM
95
C
GLY
A
11
92.251
31.299
17.739
1.00
77.32
C


ATOM
96
O
GLY
A
11
91.217
30.735
17.388
1.00
78.34
O


ATOM
97
N
PHE
A
12
93.100
30.779
18.620
1.00
76.88
N


ATOM
98
CA
PHE
A
12
92.893
29.466
19.228
1.00
77.53
C


ATOM
99
CB
PHE
A
12
94.060
29.150
20.169
1.00
79.12
C


ATOM
100
CG
PHE
A
12
93.945
27.823
20.868
1.00
82.77
C


ATOM
101
CD1
PHE
A
12
93.956
26.638
20.146
1.00
83.25
C


ATOM
102
CE1
PHE
A
12
93.863
25.415
20.785
1.00
83.58
C


ATOM
103
CZ
PHE
A
12
93.771
25.363
22.166
1.00
84.84
C


ATOM
104
CE2
PHE
A
12
93.768
26.534
22.900
1.00
85.08
C


ATOM
105
CD2
PHE
A
12
93.861
27.755
22.253
1.00
85.04
C


ATOM
106
C
PHE
A
12
91.560
29.370
19.972
1.00
78.05
C


ATOM
107
O
PHE
A
12
90.881
28.343
19.906
1.00
79.95
O


ATOM
108
N
ASN
A
13
91.187
30.445
20.664
1.00
79.85
N


ATOM
109
CA
ASN
A
13
89.955
30.483
21.455
1.00
80.66
C


ATOM
110
CB
ASN
A
13
90.259
31.013
22.860
1.00
82.92
C


ATOM
111
CG
ASN
A
13
91.025
30.020
23.719
1.00
85.75
C


ATOM
112
OD1
ASN
A
13
91.179
28.849
23.368
1.00
86.69
O


ATOM
113
ND2
ASN
A
13
91.509
30.497
24.869
1.00
88.38
N


ATOM
114
C
ASN
A
13
88.835
31.321
20.839
1.00
80.10
C


ATOM
115
O
ASN
A
13
87.829
31.582
21.499
1.00
79.99
O


ATOM
116
N
VAL
A
14
88.996
31.732
19.582
1.00
80.60
N


ATOM
117
CA
VAL
A
14
87.972
32.528
18.898
1.00
79.17
C


ATOM
118
CB
VAL
A
14
88.473
33.066
17.539
1.00
78.29
C


ATOM
119
CG1
VAL
A
14
87.331
33.669
16.731
1.00
78.86
C


ATOM
120
CG2
VAL
A
14
89.567
34.101
17.751
1.00
79.23
C


ATOM
121
C
VAL
A
14
86.715
31.690
18.685
1.00
79.96
C


ATOM
122
O
VAL
A
14
86.795
30.543
18.244
1.00
82.35
O


ATOM
123
N
THR
A
15
85.562
32.271
19.007
1.00
81.16
N


ATOM
124
CA
THR
A
15
84.278
31.594
18.853
1.00
83.25
C


ATOM
125
CB
THR
A
15
83.560
31.430
20.208
1.00
82.34
C


ATOM
126
OG1
THR
A
15
83.185
32.715
20.719
1.00
83.75
O


ATOM
127
CG2
THR
A
15
84.461
30.721
21.209
1.00
80.67
C


ATOM
128
C
THR
A
15
83.385
32.364
17.880
1.00
86.18
C


ATOM
129
O
THR
A
15
83.780
33.402
17.344
1.00
86.80
O


ATOM
130
N
GLU
A
16
82.185
31.839
17.656
1.00
90.27
N


ATOM
131
CA
GLU
A
16
81.237
32.423
16.714
1.00
95.92
C


ATOM
132
CB
GLU
A
16
79.978
31.557
16.663
1.00
99.78
C


ATOM
133
CG
GLU
A
16
78.944
31.990
15.636
1.00
101.53
C


ATOM
134
CD
GLU
A
16
77.828
30.973
15.465
1.00
104.50
C


ATOM
135
OE1
GLU
A
16
78.104
29.755
15.519
1.00
106.60
O


ATOM
136
OE2
GLU
A
16
76.670
31.390
15.262
1.00
104.82
O


ATOM
137
C
GLU
A
16
80.870
33.868
17.052
1.00
98.70
C


ATOM
138
O
GLU
A
16
80.799
34.715
16.159
1.00
100.81
O


ATOM
139
N
GLN
A
17
80.660
34.144
18.337
1.00
101.15
N


ATOM
140
CA
GLN
A
17
80.240
35.477
18.794
1.00
101.61
C


ATOM
141
CB
GLN
A
17
79.328
35.375
20.035
1.00
106.37
C


ATOM
142
CG
GLN
A
17
79.957
34.784
21.301
1.00
110.91
C


ATOM
143
CD
GLN
A
17
79.913
33.260
21.369
1.00
112.06
C


ATOM
144
OE1
GLN
A
17
79.731
32.579
20.358
1.00
112.42
O


ATOM
145
NE2
GLN
A
17
80.090
32.721
22.571
1.00
111.28
N


ATOM
146
C
GLN
A
17
81.395
36.460
19.063
1.00
95.82
C


ATOM
147
O
GLN
A
17
81.150
37.635
19.333
1.00
91.71
O


ATOM
148
N
THR
A
18
82.639
35.990
18.977
1.00
93.69
N


ATOM
149
CA
THR
A
18
83.815
36.837
19.228
1.00
91.59
C


ATOM
150
CB
THR
A
18
85.127
36.039
19.082
1.00
89.62
C


ATOM
151
OG1
THR
A
18
85.113
34.926
19.982
1.00
91.84
O


ATOM
152
CG2
THR
A
18
86.335
36.912
19.388
1.00
88.68
C


ATOM
153
C
THR
A
18
83.873
38.056
18.303
1.00
91.59
C


ATOM
154
O
THR
A
18
84.147
39.165
18.756
1.00
93.09
O


ATOM
155
N
PHE
A
19
83.631
37.838
17.013
1.00
92.07
N


ATOM
156
CA
PHE
A
19
83.607
38.916
16.022
1.00
91.00
C


ATOM
157
CB
PHE
A
19
84.372
38.500
14.758
1.00
89.62
C


ATOM
158
CG
PHE
A
19
85.861
38.393
14.941
1.00
86.57
C


ATOM
159
CD1
PHE
A
19
86.713
39.338
14.388
1.00
84.95
C


ATOM
160
CE1
PHE
A
19
88.085
39.234
14.543
1.00
84.49
C


ATOM
161
CZ
PHE
A
19
88.621
38.176
15.253
1.00
84.63
C


ATOM
162
CE2
PHE
A
19
87.785
37.223
15.802
1.00
85.95
C


ATOM
163
CD2
PHE
A
19
86.413
37.332
15.643
1.00
86.68
C


ATOM
164
C
PHE
A
19
82.154
39.213
15.652
1.00
91.80
C


ATOM
165
O
PHE
A
19
81.265
38.417
15.966
1.00
92.30
O


ATOM
166
N
PRO
A
20
81.900
40.359
14.985
1.00
92.36
N


ATOM
167
CA
PRO
A
20
80.544
40.650
14.497
1.00
93.18
C


ATOM
168
CB
PRO
A
20
80.708
41.983
13.761
1.00
93.72
C


ATOM
169
CG
PRO
A
20
81.914
42.610
14.364
1.00
93.17
C


ATOM
170
CD
PRO
A
20
82.827
41.476
14.724
1.00
92.10
C


ATOM
171
C
PRO
A
20
80.048
39.579
13.529
1.00
92.47
C


ATOM
172
O
PRO
A
20
78.861
39.253
13.516
1.00
94.83
O


ATOM
173
N
TYR
A
21
80.973
39.050
12.731
1.00
89.94
N


ATOM
174
CA
TYR
A
21
80.694
37.973
11.791
1.00
87.48
C


ATOM
175
CB
TYR
A
21
81.251
38.310
10.402
1.00
86.87
C


ATOM
176
CG
TYR
A
21
82.767
38.336
10.269
1.00
85.77
C


ATOM
177
CD1
TYR
A
21
83.520
39.408
10.744
1.00
85.72
C


ATOM
178
CE1
TYR
A
21
84.900
39.438
10.599
1.00
86.03
C


ATOM
179
CZ
TYR
A
21
85.545
38.393
9.961
1.00
85.88
C


ATOM
180
OH
TYR
A
21
86.915
38.409
9.808
1.00
85.79
O


ATOM
181
CE2
TYR
A
21
84.817
37.327
9.472
1.00
86.31
C


ATOM
182
CD2
TYR
A
21
83.440
37.305
9.622
1.00
85.97
C


ATOM
183
C
TYR
A
21
81.291
36.676
12.326
1.00
85.29
C


ATOM
184
O
TYR
A
21
82.034
36.690
13.307
1.00
85.15
O


ATOM
185
N
ASP
A
22
80.952
35.556
11.695
1.00
84.23
N


ATOM
186
CA
ASP
A
22
81.479
34.259
12.112
1.00
81.39
C


ATOM
187
CB
ASP
A
22
80.601
33.118
11.595
1.00
79.88
C


ATOM
188
CG
ASP
A
22
80.934
31.781
12.235
1.00
80.48
C


ATOM
189
OD1
ASP
A
22
81.957
31.686
12.950
1.00
80.95
O


ATOM
190
OD2
ASP
A
22
80.167
30.817
12.025
1.00
77.89
O


ATOM
191
C
ASP
A
22
82.899
34.119
11.584
1.00
80.14
C


ATOM
192
O
ASP
A
22
83.105
33.974
10.377
1.00
83.56
O


ATOM
193
N
ASN
A
23
83.871
34.176
12.490
1.00
78.77
N


ATOM
194
CA
ASN
A
23
85.278
34.094
12.118
1.00
78.72
C


ATOM
195
CB
ASN
A
23
85.956
35.449
12.324
1.00
79.93
C


ATOM
196
CG
ASN
A
23
87.323
35.515
11.656
1.00
82.32
C


ATOM
197
OD1
ASN
A
23
88.345
35.469
12.332
1.00
87.78
O


ATOM
198
ND2
ASN
A
23
87.349
35.564
10.327
1.00
82.73
N


ATOM
199
C
ASN
A
23
86.021
33.010
12.901
1.00
77.85
C


ATOM
200
O
ASN
A
23
87.188
33.174
13.256
1.00
76.33
O


ATOM
201
N
ARG
A
24
85.346
31.896
13.167
1.00
77.43
N


ATOM
202
CA
ARG
A
24
85.985
30.779
13.851
1.00
78.84
C


ATOM
203
CB
ARG
A
24
84.961
29.708
14.215
1.00
82.46
C


ATOM
204
CG
ARG
A
24
83.948
30.142
15.261
1.00
87.00
C


ATOM
205
CD
ARG
A
24
82.841
29.113
15.404
1.00
90.70
C


ATOM
206
NE
ARG
A
24
81.997
29.063
14.213
1.00
94.41
N


ATOM
207
CZ
ARG
A
24
81.062
28.146
13.978
1.00
100.00
C


ATOM
208
NH1
ARG
A
24
80.832
27.168
14.850
1.00
102.61
N


ATOM
209
NH2
ARG
A
24
80.355
28.203
12.855
1.00
102.93
N


ATOM
210
C
ARG
A
24
87.049
30.181
12.936
1.00
77.88
C


ATOM
211
O
ARG
A
24
86.931
30.270
11.715
1.00
79.51
O


ATOM
212
N
PRO
A
25
88.092
29.562
13.517
1.00
76.89
N


ATOM
213
CA
PRO
A
25
89.160
28.944
12.722
1.00
76.11
C


ATOM
214
CB
PRO
A
25
89.920
28.115
13.758
1.00
75.95
C


ATOM
215
CG
PRO
A
25
89.723
28.849
15.034
1.00
75.64
C


ATOM
216
CD
PRO
A
25
88.354
29.457
14.964
1.00
75.85
C


ATOM
217
C
PRO
A
25
88.683
28.040
11.575
1.00
76.14
C


ATOM
218
O
PRO
A
25
89.365
27.944
10.553
1.00
78.16
O


ATOM
219
N
VAL
A
26
87.534
27.386
11.750
1.00
74.03
N


ATOM
220
CA
VAL
A
26
87.001
26.463
10.742
1.00
74.16
C


ATOM
221
CB
VAL
A
26
86.097
25.379
11.375
1.00
75.02
C


ATOM
222
CG1
VAL
A
26
86.876
24.575
12.405
1.00
76.87
C


ATOM
223
CG2
VAL
A
26
84.841
25.980
11.996
1.00
75.97
C


ATOM
224
C
VAL
A
26
86.235
27.141
9.608
1.00
76.22
C


ATOM
225
O
VAL
A
26
85.985
26.517
8.578
1.00
80.23
O


ATOM
226
N
VAL
A
27
85.862
28.405
9.788
1.00
77.19
N


ATOM
227
CA
VAL
A
27
85.106
29.132
8.766
1.00
77.16
C


ATOM
228
CB
VAL
A
27
84.644
30.512
9.286
1.00
78.69
C


ATOM
229
CG1
VAL
A
27
84.097
31.382
8.159
1.00
81.69
C


ATOM
230
CG2
VAL
A
27
83.600
30.338
10.378
1.00
78.01
C


ATOM
231
C
VAL
A
27
85.940
29.305
7.493
1.00
75.90
C


ATOM
232
O
VAL
A
27
87.110
29.679
7.569
1.00
76.15
O


ATOM
233
N
PRO
A
28
85.340
29.026
6.321
1.00
76.46
N


ATOM
234
CA
PRO
A
28
86.056
29.172
5.053
1.00
77.60
C


ATOM
235
CB
PRO
A
28
85.147
28.453
4.056
1.00
76.68
C


ATOM
236
CG
PRO
A
28
83.790
28.562
4.637
1.00
77.52
C


ATOM
237
CD
PRO
A
28
83.994
28.461
6.119
1.00
78.17
C


ATOM
238
C
PRO
A
28
86.248
30.626
4.631
1.00
78.58
C


ATOM
239
O
PRO
A
28
85.462
31.496
5.015
1.00
81.59
O


ATOM
240
N
LEU
A
29
87.292
30.865
3.841
1.00
77.97
N


ATOM
241
CA
LEU
A
29
87.631
32.196
3.347
1.00
79.27
C


ATOM
242
CB
LEU
A
29
89.133
32.447
3.503
1.00
77.54
C


ATOM
243
CG
LEU
A
29
89.675
32.775
4.904
1.00
76.54
C


ATOM
244
CD1
LEU
A
29
91.176
32.541
4.937
1.00
75.32
C


ATOM
245
CD2
LEU
A
29
89.013
31.971
6.011
1.00
76.40
C


ATOM
246
C
LEU
A
29
87.228
32.296
1.880
1.00
82.98
C


ATOM
247
O
LEU
A
29
87.705
31.521
1.050
1.00
85.82
O


ATOM
248
N
GLN
A
30
86.360
33.256
1.563
1.00
85.08
N


ATOM
249
CA
GLN
A
30
85.833
33.409
0.207
1.00
84.07
C


ATOM
250
CB
GLN
A
30
84.644
32.461
0.010
1.00
83.65
C


ATOM
251
CG
GLN
A
30
83.505
32.673
1.004
1.00
85.40
C


ATOM
252
CD
GLN
A
30
82.633
31.442
1.217
1.00
85.90
C


ATOM
253
OE1
GLN
A
30
83.118
30.311
1.215
1.00
83.42
O


ATOM
254
NE2
GLN
A
30
81.341
31.665
1.432
1.00
86.12
N


ATOM
255
C
GLN
A
30
85.427
34.856
−0.081
1.00
85.69
C


ATOM
256
O
GLN
A
30
84.653
35.455
0.666
1.00
86.01
O


ATOM
257
N
TYR
A
31
85.965
35.405
−1.167
1.00
89.33
N


ATOM
258
CA
TYR
A
31
85.709
36.788
−1.591
1.00
91.39
C


ATOM
259
CB
TYR
A
31
84.343
36.903
−2.281
1.00
91.41
C


ATOM
260
CG
TYR
A
31
84.183
38.164
−3.108
1.00
92.21
C


ATOM
261
CD1
TYR
A
31
85.077
38.463
−4.132
1.00
93.65
C


ATOM
262
CE1
TYR
A
31
84.937
39.607
−4.898
1.00
94.01
C


ATOM
263
CZ
TYR
A
31
83.888
40.466
−4.653
1.00
94.14
C


ATOM
264
OH
TYR
A
31
83.753
41.599
−5.418
1.00
94.67
O


ATOM
265
CE2
TYR
A
31
82.982
40.191
−3.647
1.00
94.39
C


ATOM
266
CD2
TYR
A
31
83.131
39.043
−2.884
1.00
93.28
C


ATOM
267
C
TYR
A
31
85.835
37.782
−0.434
1.00
89.84
C


ATOM
268
O
TYR
A
31
84.935
38.585
−0.175
1.00
91.00
O


ATOM
269
N
MET
A
32
86.975
37.710
0.248
1.00
87.23
N


ATOM
270
CA
MET
A
32
87.272
38.560
1.394
1.00
84.81
C


ATOM
271
CB
MET
A
32
87.742
37.702
2.566
1.00
83.80
C


ATOM
272
CG
MET
A
32
86.653
36.922
3.268
1.00
84.29
C


ATOM
273
SD
MET
A
32
87.372
35.892
4.557
1.00
88.43
S


ATOM
274
CE
MET
A
32
85.911
35.425
5.482
1.00
88.00
C


ATOM
275
C
MET
A
32
88.370
39.561
1.072
1.00
83.30
C


ATOM
276
O
MET
A
32
89.194
39.332
0.187
1.00
82.99
O


ATOM
277
N
THR
A
33
88.379
40.665
1.812
1.00
84.00
N


ATOM
278
CA
THR
A
33
89.443
41.655
1.708
1.00
85.10
C


ATOM
279
CB
THR
A
33
89.066
42.968
2.408
1.00
86.62
C


ATOM
280
OG1
THR
A
33
88.682
42.694
3.761
1.00
85.39
O


ATOM
281
CG2
THR
A
33
87.911
43.640
1.687
1.00
88.78
C


ATOM
282
C
THR
A
33
90.679
41.072
2.374
1.00
84.97
C


ATOM
283
O
THR
A
33
90.570
40.134
3.167
1.00
84.64
O


ATOM
284
N
PHE
A
34
91.847
41.626
2.068
1.00
84.71
N


ATOM
285
CA
PHE
A
34
93.096
41.070
2.584
1.00
84.09
C


ATOM
286
CB
PHE
A
34
94.300
41.925
2.201
1.00
82.95
C


ATOM
287
CG
PHE
A
34
95.605
41.323
2.623
1.00
81.81
C


ATOM
288
CD1
PHE
A
34
96.087
40.193
1.984
1.00
81.66
C


ATOM
289
CE1
PHE
A
34
97.283
39.618
2.369
1.00
81.94
C


ATOM
290
CZ
PHE
A
34
98.014
40.170
3.406
1.00
80.79
C


ATOM
291
CE2
PHE
A
34
97.540
41.294
4.057
1.00
81.75
C


ATOM
292
CD2
PHE
A
34
96.339
41.863
3.668
1.00
82.13
C


ATOM
293
C
PHE
A
34
93.078
40.861
4.094
1.00
85.55
C


ATOM
294
O
PHE
A
34
93.405
39.779
4.571
1.00
83.63
O


ATOM
295
N
GLN
A
35
92.682
41.892
4.835
1.00
89.59
N


ATOM
296
CA
GLN
A
35
92.652
41.828
6.298
1.00
92.31
C


ATOM
297
CB
GLN
A
35
92.176
43.159
6.884
1.00
97.58
C


ATOM
298
CG
GLN
A
35
92.242
43.228
8.401
1.00
100.31
C


ATOM
299
CD
GLN
A
35
91.806
44.578
8.923
1.00
104.73
C


ATOM
300
OE1
GLN
A
35
90.700
45.025
8.633
1.00
108.24
O


ATOM
301
NE2
GLN
A
35
92.663
45.233
9.703
1.00
108.47
N


ATOM
302
C
GLN
A
35
91.768
40.698
6.819
1.00
87.97
C


ATOM
303
O
GLN
A
35
92.081
40.082
7.840
1.00
88.49
O


ATOM
304
N
GLU
A
36
90.672
40.432
6.115
1.00
83.87
N


ATOM
305
CA
GLU
A
36
89.734
39.383
6.508
1.00
81.96
C


ATOM
306
CB
GLU
A
36
88.388
39.590
5.809
1.00
82.61
C


ATOM
307
CG
GLU
A
36
87.670
40.854
6.258
1.00
84.88
C


ATOM
308
CD
GLU
A
36
86.424
41.172
5.449
1.00
85.92
C


ATOM
309
OE1
GLU
A
36
86.237
40.599
4.356
1.00
88.20
O


ATOM
310
OE2
GLU
A
36
85.633
42.019
5.908
1.00
87.08
O


ATOM
311
C
GLU
A
36
90.264
37.969
6.244
1.00
78.74
C


ATOM
312
O
GLU
A
36
90.151
37.099
7.110
1.00
79.13
O


ATOM
313
N
TRP
A
37
90.850
37.739
5.068
1.00
74.66
N


ATOM
314
CA
TRP
A
37
91.333
36.397
4.715
1.00
71.51
C


ATOM
315
CB
TRP
A
37
91.230
36.128
3.192
1.00
70.80
C


ATOM
316
CG
TRP
A
37
92.341
36.670
2.332
1.00
67.87
C


ATOM
317
CD1
TRP
A
37
92.305
37.789
1.559
1.00
68.80
C


ATOM
318
NE1
TRP
A
37
93.506
37.958
0.912
1.00
69.34
N


ATOM
319
CE2
TRP
A
37
94.342
36.932
1.257
1.00
66.64
C


ATOM
320
CD2
TRP
A
37
93.638
36.096
2.143
1.00
65.97
C


ATOM
321
CE3
TRP
A
37
94.277
34.962
2.649
1.00
67.44
C


ATOM
322
CZ3
TRP
A
37
95.578
34.702
2.256
1.00
68.15
C


ATOM
323
CH2
TRP
A
37
96.251
35.555
1.371
1.00
68.14
C


ATOM
324
CZ2
TRP
A
37
95.650
36.671
0.862
1.00
67.60
C


ATOM
325
C
TRP
A
37
92.741
36.106
5.246
1.00
69.80
C


ATOM
326
O
TRP
A
37
93.022
34.984
5.657
1.00
68.47
O


ATOM
327
N
TRP
A
38
93.619
37.105
5.240
1.00
72.07
N


ATOM
328
CA
TRP
A
38
95.006
36.918
5.697
1.00
75.67
C


ATOM
329
CB
TRP
A
38
95.836
38.173
5.417
1.00
77.42
C


ATOM
330
CG
TRP
A
38
97.241
38.121
5.933
1.00
78.07
C


ATOM
331
CD1
TRP
A
38
97.750
38.830
6.979
1.00
79.20
C


ATOM
332
NE1
TRP
A
38
99.078
38.532
7.153
1.00
79.67
N


ATOM
333
CE2
TRP
A
38
99.453
37.612
6.211
1.00
78.00
C


ATOM
334
CD2
TRP
A
38
98.318
37.326
5.426
1.00
78.69
C


ATOM
335
CE3
TRP
A
38
98.435
36.401
4.383
1.00
81.00
C


ATOM
336
CZ3
TRP
A
38
99.666
35.795
4.164
1.00
80.23
C


ATOM
337
CH2
TRP
A
38
100.773
36.102
4.966
1.00
78.28
C


ATOM
338
CZ2
TRP
A
38
100.686
37.002
5.992
1.00
77.56
C


ATOM
339
C
TRP
A
38
95.084
36.554
7.184
1.00
76.24
C


ATOM
340
O
TRP
A
38
94.643
37.316
8.046
1.00
72.52
O


ATOM
341
N
PHE
A
39
95.648
35.378
7.461
1.00
77.18
N


ATOM
342
CA
PHE
A
39
95.744
34.828
8.819
1.00
76.64
C


ATOM
343
CB
PHE
A
39
96.652
35.693
9.705
1.00
77.48
C


ATOM
344
CG
PHE
A
39
98.059
35.181
9.814
1.00
78.53
C


ATOM
345
CD1
PHE
A
39
98.464
34.469
10.936
1.00
79.16
C


ATOM
346
CE1
PHE
A
39
99.762
33.996
11.045
1.00
79.01
C


ATOM
347
CZ
PHE
A
39
100.670
34.227
10.025
1.00
79.14
C


ATOM
348
CE2
PHE
A
39
100.278
34.935
8.902
1.00
78.45
C


ATOM
349
CD2
PHE
A
39
98.978
35.407
8.801
1.00
78.90
C


ATOM
350
C
PHE
A
39
94.382
34.604
9.482
1.00
76.52
C


ATOM
351
O
PHE
A
39
94.301
34.448
10.702
1.00
81.02
O


ATOM
352
N
HIS
A
40
93.327
34.553
8.669
1.00
74.90
N


ATOM
353
CA
HIS
A
40
91.956
34.369
9.146
1.00
74.06
C


ATOM
354
CB
HIS
A
40
91.817
33.016
9.857
1.00
69.89
C


ATOM
355
CG
HIS
A
40
90.460
32.401
9.730
1.00
66.79
C


ATOM
356
ND1
HIS
A
40
89.299
33.085
10.019
1.00
66.58
N


ATOM
357
CE1
HIS
A
40
88.262
32.290
9.821
1.00
65.80
C


ATOM
358
NE2
HIS
A
40
88.709
31.111
9.428
1.00
65.20
N


ATOM
359
CD2
HIS
A
40
90.081
31.153
9.365
1.00
65.32
C


ATOM
360
C
HIS
A
40
91.552
35.513
10.078
1.00
78.21
C


ATOM
361
O
HIS
A
40
90.708
35.339
10.959
1.00
79.42
O


ATOM
362
N
ASN
A
41
92.157
36.683
9.867
1.00
82.14
N


ATOM
363
CA
ASN
A
41
91.928
37.861
10.703
1.00
82.77
C


ATOM
364
CB
ASN
A
41
90.579
38.500
10.345
1.00
80.83
C


ATOM
365
CG
ASN
A
41
90.473
39.946
10.794
1.00
79.26
C


ATOM
366
OD1
ASN
A
41
91.480
40.641
10.938
1.00
78.80
O


ATOM
367
ND2
ASN
A
41
89.246
40.413
10.996
1.00
79.09
N


ATOM
368
C
ASN
A
41
92.010
37.528
12.198
1.00
84.66
C


ATOM
369
O
ASN
A
41
91.164
37.952
12.989
1.00
88.85
O


ATOM
370
N
HIS
A
42
93.030
36.753
12.568
1.00
84.35
N


ATOM
371
CA
HIS
A
42
93.252
36.351
13.959
1.00
84.97
C


ATOM
372
CB
HIS
A
42
93.240
34.823
14.093
1.00
83.97
C


ATOM
373
CG
HIS
A
42
91.890
34.204
13.916
1.00
83.92
C


ATOM
374
ND1
HIS
A
42
91.717
32.943
13.387
1.00
86.21
N


ATOM
375
CE1
HIS
A
42
90.428
32.654
13.355
1.00
84.60
C


ATOM
376
NE2
HIS
A
42
89.759
33.686
13.838
1.00
82.81
N


ATOM
377
CD2
HIS
A
42
90.650
34.669
14.195
1.00
82.87
C


ATOM
378
C
HIS
A
42
94.569
36.885
14.530
1.00
86.81
C


ATOM
379
O
HIS
A
42
95.054
36.371
15.539
1.00
88.94
O


ATOM
380
N
LEU
A
43
95.141
37.915
13.906
1.00
87.62
N


ATOM
381
CA
LEU
A
43
96.409
38.480
14.379
1.00
87.31
C


ATOM
382
CB
LEU
A
43
96.950
39.518
13.390
1.00
85.45
C


ATOM
383
CG
LEU
A
43
97.366
38.975
12.018
1.00
84.56
C


ATOM
384
CD1
LEU
A
43
97.778
40.109
11.092
1.00
84.45
C


ATOM
385
CD2
LEU
A
43
98.489
37.957
12.145
1.00
84.05
C


ATOM
386
C
LEU
A
43
96.285
39.086
15.781
1.00
90.04
C


ATOM
387
O
LEU
A
43
97.224
39.010
16.576
1.00
91.88
O


ATOM
388
N
ASP
A
44
95.122
39.658
16.089
1.00
90.94
N


ATOM
389
CA
ASP
A
44
94.872
40.239
17.413
1.00
90.81
C


ATOM
390
CB
ASP
A
44
93.751
41.285
17.342
1.00
91.78
C


ATOM
391
CG
ASP
A
44
94.126
42.494
16.497
1.00
93.05
C


ATOM
392
OD1
ASP
A
44
95.329
42.704
16.227
1.00
93.42
O


ATOM
393
OD2
ASP
A
44
93.210
43.246
16.105
1.00
95.74
O


ATOM
394
C
ASP
A
44
94.545
39.189
18.481
1.00
88.30
C


ATOM
395
O
ASP
A
44
94.294
39.538
19.634
1.00
92.18
O


ATOM
396
N
TYR
A
45
94.553
37.912
18.102
1.00
86.07
N


ATOM
397
CA
TYR
A
45
94.333
36.810
19.038
1.00
86.13
C


ATOM
398
CB
TYR
A
45
93.001
36.116
18.743
1.00
83.98
C


ATOM
399
CG
TYR
A
45
91.804
37.000
18.991
1.00
83.67
C


ATOM
400
CD1
TYR
A
45
91.391
37.924
18.038
1.00
83.99
C


ATOM
401
CE1
TYR
A
45
90.297
38.743
18.261
1.00
83.73
C


ATOM
402
CZ
TYR
A
45
89.601
38.644
19.450
1.00
83.17
C


ATOM
403
OH
TYR
A
45
88.513
39.457
19.672
1.00
82.14
O


ATOM
404
CE2
TYR
A
45
89.992
37.733
20.414
1.00
83.17
C


ATOM
405
CD2
TYR
A
45
91.089
36.920
20.182
1.00
82.66
C


ATOM
406
C
TYR
A
45
95.491
35.818
18.937
1.00
86.55
C


ATOM
407
O
TYR
A
45
95.294
34.660
18.566
1.00
86.50
O


ATOM
408
N
PRO
A
46
96.709
36.270
19.281
1.00
88.41
N


ATOM
409
CA
PRO
A
46
97.863
35.396
19.162
1.00
88.47
C


ATOM
410
CB
PRO
A
46
99.037
36.370
19.243
1.00
88.57
C


ATOM
411
CG
PRO
A
46
98.546
37.474
20.115
1.00
88.79
C


ATOM
412
CD
PRO
A
46
97.045
37.515
19.997
1.00
89.40
C


ATOM
413
C
PRO
A
46
97.936
34.393
20.304
1.00
89.24
C


ATOM
414
O
PRO
A
46
97.334
34.616
21.353
1.00
91.06
O


ATOM
415
N
PRO
A
47
98.682
33.295
20.108
1.00
89.74
N


ATOM
416
CA
PRO
A
47
98.854
32.294
21.153
1.00
89.39
C


ATOM
417
CB
PRO
A
47
99.518
31.142
20.405
1.00
89.86
C


ATOM
418
CG
PRO
A
47
100.352
31.832
19.379
1.00
89.43
C


ATOM
419
CD
PRO
A
47
99.525
33.004
18.932
1.00
89.34
C


ATOM
420
C
PRO
A
47
99.786
32.818
22.235
1.00
90.42
C


ATOM
421
O
PRO
A
47
100.293
33.936
22.120
1.00
90.12
O


ATOM
422
N
HIS
A
48
100.019
32.023
23.273
1.00
93.02
N


ATOM
423
CA
HIS
A
48
100.965
32.424
24.307
1.00
94.38
C


ATOM
424
CB
HIS
A
48
100.828
31.565
25.564
1.00
95.13
C


ATOM
425
CG
HIS
A
48
99.486
31.671
26.221
1.00
95.66
C


ATOM
426
ND1
HIS
A
48
98.803
32.864
26.331
1.00
97.19
N


ATOM
427
CE1
HIS
A
48
97.659
32.658
26.959
1.00
97.52
C


ATOM
428
NE2
HIS
A
48
97.581
31.377
27.272
1.00
97.13
N


ATOM
429
CD2
HIS
A
48
98.713
30.738
26.826
1.00
95.64
C


ATOM
430
C
HIS
A
48
102.376
32.351
23.718
1.00
96.28
C


ATOM
431
O
HIS
A
48
102.644
31.505
22.862
1.00
96.29
O


ATOM
432
N
PRO
A
49
103.281
33.240
24.166
1.00
97.64
N


ATOM
433
CA
PRO
A
49
104.614
33.331
23.557
1.00
98.49
C


ATOM
434
CB
PRO
A
49
105.323
34.391
24.414
1.00
99.83
C


ATOM
435
CG
PRO
A
49
104.229
35.170
25.054
1.00
98.41
C


ATOM
436
CD
PRO
A
49
103.136
34.177
25.295
1.00
97.68
C


ATOM
437
C
PRO
A
49
105.431
32.036
23.539
1.00
97.48
C


ATOM
438
O
PRO
A
49
106.244
31.849
22.636
1.00
96.07
O


ATOM
439
N
GLY
A
50
105.216
31.159
24.519
1.00
97.60
N


ATOM
440
CA
GLY
A
50
105.978
29.912
24.628
1.00
96.66
C


ATOM
441
C
GLY
A
50
105.441
28.715
23.858
1.00
94.24
C


ATOM
442
O
GLY
A
50
106.114
27.688
23.777
1.00
96.57
O


ATOM
443
N
ASP
A
51
104.238
28.835
23.296
1.00
91.17
N


ATOM
444
CA
ASP
A
51
103.607
27.733
22.562
1.00
88.43
C


ATOM
445
CB
ASP
A
51
102.084
27.821
22.685
1.00
88.07
C


ATOM
446
CG
ASP
A
51
101.602
27.681
24.121
1.00
88.98
C


ATOM
447
OD1
ASP
A
51
102.338
27.107
24.952
1.00
87.99
O


ATOM
448
OD2
ASP
A
51
100.477
28.141
24.416
1.00
88.52
O


ATOM
449
C
ASP
A
51
104.007
27.717
21.081
1.00
87.45
C


ATOM
450
O
ASP
A
51
103.668
28.632
20.328
1.00
82.48
O


ATOM
451
N
PHE
A
52
104.729
26.669
20.681
1.00
86.67
N


ATOM
452
CA
PHE
A
52
105.177
26.489
19.299
1.00
86.78
C


ATOM
453
CB
PHE
A
52
106.681
26.747
19.178
1.00
88.12
C


ATOM
454
CG
PHE
A
52
107.071
28.187
19.330
1.00
89.61
C


ATOM
455
CD1
PHE
A
52
107.381
28.709
20.577
1.00
90.55
C


ATOM
456
CE1
PHE
A
52
107.750
30.034
20.716
1.00
91.55
C


ATOM
457
CZ
PHE
A
52
107.815
30.856
19.604
1.00
92.08
C


ATOM
458
CE2
PHE
A
52
107.513
30.347
18.354
1.00
90.65
C


ATOM
459
CD2
PHE
A
52
107.148
29.019
18.222
1.00
90.14
C


ATOM
460
C
PHE
A
52
104.900
25.073
18.806
1.00
86.43
C


ATOM
461
O
PHE
A
52
104.956
24.116
19.580
1.00
89.33
O


ATOM
462
N
PHE
A
53
104.608
24.955
17.514
1.00
84.53
N


ATOM
463
CA
PHE
A
53
104.450
23.658
16.861
1.00
82.72
C


ATOM
464
CB
PHE
A
53
103.408
23.744
15.744
1.00
79.11
C


ATOM
465
CG
PHE
A
53
103.052
22.415
15.135
1.00
74.50
C


ATOM
466
CD1
PHE
A
53
101.884
21.762
15.500
1.00
72.03
C


ATOM
467
CE1
PHE
A
53
101.551
20.539
14.944
1.00
70.56
C


ATOM
468
CZ
PHE
A
53
102.389
19.954
14.012
1.00
71.23
C


ATOM
469
CE2
PHE
A
53
103.556
20.594
13.636
1.00
71.89
C


ATOM
470
CD2
PHE
A
53
103.883
21.817
14.194
1.00
73.25
C


ATOM
471
C
PHE
A
53
105.820
23.292
16.290
1.00
83.28
C


ATOM
472
O
PHE
A
53
106.380
24.038
15.488
1.00
82.27
O


ATOM
473
N
ASP
A
54
106.356
22.147
16.700
1.00
84.85
N


ATOM
474
CA
ASP
A
54
107.699
21.737
16.288
1.00
85.30
C


ATOM
475
CB
ASP
A
54
108.404
21.003
17.436
1.00
87.15
C


ATOM
476
CG
ASP
A
54
108.726
21.918
18.607
1.00
88.60
C


ATOM
477
OD1
ASP
A
54
109.024
23.113
18.382
1.00
87.90
O


ATOM
478
OD2
ASP
A
54
108.698
21.435
19.758
1.00
93.39
O


ATOM
479
C
ASP
A
54
107.708
20.870
15.029
1.00
83.18
C


ATOM
480
O
ASP
A
54
106.981
19.880
14.941
1.00
83.58
O


ATOM
481
N
PHE
A
55
108.541
21.258
14.065
1.00
80.53
N


ATOM
482
CA
PHE
A
55
108.739
20.499
12.832
1.00
78.93
C


ATOM
483
CB
PHE
A
55
108.573
21.403
11.604
1.00
79.62
C


ATOM
484
CG
PHE
A
55
107.140
21.707
11.263
1.00
78.94
C


ATOM
485
CD1
PHE
A
55
106.328
20.729
10.701
1.00
78.40
C


ATOM
486
CE1
PHE
A
55
105.009
20.997
10.388
1.00
76.98
C


ATOM
487
CZ
PHE
A
55
104.486
22.254
10.624
1.00
77.19
C


ATOM
488
CE2
PHE
A
55
105.283
23.242
11.175
1.00
77.28
C


ATOM
489
CD2
PHE
A
55
106.603
22.967
11.492
1.00
77.85
C


ATOM
490
C
PHE
A
55
110.137
19.882
12.844
1.00
77.06
C


ATOM
491
O
PHE
A
55
111.126
20.594
12.670
1.00
76.91
O


ATOM
492
N
PRO
A
56
110.228
18.556
13.051
1.00
75.75
N


ATOM
493
CA
PRO
A
56
111.536
17.916
13.097
1.00
77.64
C


ATOM
494
CB
PRO
A
56
111.263
16.636
13.886
1.00
77.83
C


ATOM
495
CG
PRO
A
56
109.837
16.308
13.603
1.00
76.68
C


ATOM
496
CD
PRO
A
56
109.136
17.579
13.209
1.00
76.19
C


ATOM
497
C
PRO
A
56
112.080
17.594
11.707
1.00
80.24
C


ATOM
498
O
PRO
A
56
111.481
16.802
10.979
1.00
83.61
O


ATOM
499
N
ALA
A
57
113.214
18.200
11.359
1.00
80.81
N


ATOM
500
CA
ALA
A
57
113.845
17.992
10.058
1.00
79.94
C


ATOM
501
CB
ALA
A
57
115.173
18.730
9.993
1.00
79.03
C


ATOM
502
C
ALA
A
57
114.053
16.510
9.766
1.00
81.02
C


ATOM
503
O
ALA
A
57
114.479
15.753
10.636
1.00
82.40
O


ATOM
504
N
GLY
A
58
113.730
16.103
8.541
1.00
83.86
N


ATOM
505
CA
GLY
A
58
113.888
14.716
8.109
1.00
84.69
C


ATOM
506
C
GLY
A
58
112.937
13.736
8.771
1.00
84.18
C


ATOM
507
O
GLY
A
58
113.135
12.524
8.674
1.00
85.98
O


ATOM
508
N
LYS
A
59
111.899
14.255
9.427
1.00
82.88
N


ATOM
509
CA
LYS
A
59
110.931
13.430
10.147
1.00
83.70
C


ATOM
510
CB
LYS
A
59
111.279
13.390
11.639
1.00
87.21
C


ATOM
511
CG
LYS
A
59
112.457
12.494
11.985
1.00
90.93
C


ATOM
512
CD
LYS
A
59
112.880
12.671
13.433
1.00
95.35
C


ATOM
513
CE
LYS
A
59
113.889
11.613
13.850
1.00
100.46
C


ATOM
514
NZ
LYS
A
59
114.320
11.783
15.267
1.00
103.42
N


ATOM
515
C
LYS
A
59
109.507
13.947
9.962
1.00
81.27
C


ATOM
516
O
LYS
A
59
109.292
15.090
9.554
1.00
79.60
O


ATOM
517
N
ALA
A
60
108.540
13.091
10.271
1.00
79.91
N


ATOM
518
CA
ALA
A
60
107.128
13.437
10.156
1.00
79.46
C


ATOM
519
CB
ALA
A
60
106.282
12.173
10.104
1.00
81.71
C


ATOM
520
C
ALA
A
60
106.678
14.321
11.315
1.00
77.96
C


ATOM
521
O
ALA
A
60
107.222
14.246
12.418
1.00
81.06
O


ATOM
522
N
ALA
A
61
105.681
15.158
11.049
1.00
74.15
N


ATOM
523
CA
ALA
A
61
105.096
16.029
12.056
1.00
72.68
C


ATOM
524
CB
ALA
A
61
105.499
17.470
11.806
1.00
71.45
C


ATOM
525
C
ALA
A
61
103.584
15.879
11.991
1.00
73.76
C


ATOM
526
O
ALA
A
61
102.958
16.323
11.031
1.00
76.05
O


ATOM
527
N
THR
A
62
102.998
15.252
13.007
1.00
74.78
N


ATOM
528
CA
THR
A
62
101.556
15.021
13.029
1.00
74.22
C


ATOM
529
CB
THR
A
62
101.182
13.889
13.999
1.00
74.44
C


ATOM
530
OG1
THR
A
62
101.914
12.706
13.655
1.00
77.29
O


ATOM
531
CG2
THR
A
62
99.690
13.590
13.929
1.00
74.77
C


ATOM
532
C
THR
A
62
100.789
16.284
13.415
1.00
73.32
C


ATOM
533
O
THR
A
62
101.075
16.906
14.437
1.00
73.85
O


ATOM
534
N
ALA
A
63
99.818
16.648
12.581
1.00
71.65
N


ATOM
535
CA
ALA
A
63
98.959
17.799
12.812
1.00
71.44
C


ATOM
536
CB
ALA
A
63
99.055
18.763
11.646
1.00
72.36
C


ATOM
537
C
ALA
A
63
97.529
17.313
12.972
1.00
72.07
C


ATOM
538
O
ALA
A
63
97.175
16.254
12.454
1.00
72.86
O


ATOM
539
N
GLU
A
64
96.713
18.080
13.691
1.00
73.76
N


ATOM
540
CA
GLU
A
64
95.314
17.714
13.916
1.00
74.96
C


ATOM
541
CB
GLU
A
64
94.972
17.740
15.404
1.00
76.45
C


ATOM
542
CG
GLU
A
64
95.780
16.747
16.224
1.00
79.88
C


ATOM
543
CD
GLU
A
64
95.271
16.604
17.645
1.00
83.26
C


ATOM
544
OE1
GLU
A
64
94.084
16.260
17.822
1.00
84.32
O


ATOM
545
OE2
GLU
A
64
96.063
16.818
18.587
1.00
85.29
O


ATOM
546
C
GLU
A
64
94.378
18.630
13.139
1.00
74.74
C


ATOM
547
O
GLU
A
64
94.387
19.850
13.323
1.00
74.92
O


ATOM
548
N
LEU
A
65
93.577
18.024
12.268
1.00
73.51
N


ATOM
549
CA
LEU
A
65
92.629
18.744
11.431
1.00
71.37
C


ATOM
550
CB
LEU
A
65
92.931
18.473
9.956
1.00
71.01
C


ATOM
551
CG
LEU
A
65
94.395
18.637
9.526
1.00
71.64
C


ATOM
552
CD1
LEU
A
65
94.593
18.148
8.102
1.00
73.33
C


ATOM
553
CD2
LEU
A
65
94.859
20.078
9.664
1.00
71.74
C


ATOM
554
C
LEU
A
65
91.232
18.257
11.782
1.00
69.60
C


ATOM
555
O
LEU
A
65
90.983
17.052
11.773
1.00
68.72
O


ATOM
556
N
ALA
A
66
90.328
19.181
12.104
1.00
69.80
N


ATOM
557
CA
ALA
A
66
88.965
18.808
12.481
1.00
71.86
C


ATOM
558
CB
ALA
A
66
88.952
18.233
13.893
1.00
72.50
C


ATOM
559
C
ALA
A
66
87.972
19.962
12.377
1.00
75.05
C


ATOM
560
O
ALA
A
66
88.357
21.130
12.313
1.00
76.83
O


ATOM
561
N
CYS
A
67
86.689
19.611
12.367
1.00
79.66
N


ATOM
562
CA
CYS
A
67
85.606
20.587
12.285
1.00
84.59
C


ATOM
563
CB
CYS
A
67
84.324
19.913
11.791
1.00
89.06
C


ATOM
564
SG
CYS
A
67
83.623
18.703
12.944
1.00
99.46
S


ATOM
565
C
CYS
A
67
85.349
21.253
13.632
1.00
85.01
C


ATOM
566
O
CYS
A
67
84.738
22.321
13.691
1.00
85.07
O


ATOM
567
N
ASN
A
68
85.799
20.609
14.707
1.00
89.37
N


ATOM
568
CA
ASN
A
68
85.644
21.151
16.053
1.00
93.19
C


ATOM
569
CB
ASN
A
68
84.401
20.587
16.750
1.00
98.47
C


ATOM
570
CG
ASN
A
68
83.562
21.678
17.382
1.00
106.32
C


ATOM
571
OD1
ASN
A
68
84.040
22.438
18.231
1.00
111.29
O


ATOM
572
ND2
ASN
A
68
82.315
21.785
16.947
1.00
110.61
N


ATOM
573
C
ASN
A
68
86.866
20.854
16.898
1.00
89.54
C


ATOM
574
O
ASN
A
68
87.495
19.803
16.752
1.00
91.68
O


ATOM
575
N
LYS
A
69
87.186
21.778
17.795
1.00
86.26
N


ATOM
576
CA
LYS
A
69
88.306
21.598
18.706
1.00
84.37
C


ATOM
577
CB
LYS
A
69
88.599
22.902
19.446
1.00
84.78
C


ATOM
578
CG
LYS
A
69
89.835
22.845
20.325
1.00
85.39
C


ATOM
579
CD
LYS
A
69
90.389
24.228
20.637
1.00
86.09
C


ATOM
580
CE
LYS
A
69
89.394
25.097
21.390
1.00
86.95
C


ATOM
581
NZ
LYS
A
69
89.991
26.410
21.760
1.00
87.92
N


ATOM
582
C
LYS
A
69
88.029
20.447
19.683
1.00
82.18
C


ATOM
583
O
LYS
A
69
88.958
19.835
20.203
1.00
82.98
O


ATOM
584
N
GLY
A
70
86.750
20.150
19.913
1.00
80.13
N


ATOM
585
CA
GLY
A
70
86.350
19.014
20.742
1.00
78.14
C


ATOM
586
C
GLY
A
70
86.766
17.677
20.153
1.00
77.52
C


ATOM
587
O
GLY
A
70
86.987
16.712
20.885
1.00
76.75
O


ATOM
588
N
ALA
A
71
86.878
17.622
18.826
1.00
78.12
N


ATOM
589
CA
ALA
A
71
87.305
16.410
18.126
1.00
75.95
C


ATOM
590
CB
ALA
A
71
86.765
16.412
16.704
1.00
77.32
C


ATOM
591
C
ALA
A
71
88.826
16.241
18.109
1.00
75.03
C


ATOM
592
O
ALA
A
71
89.329
15.288
17.521
1.00
77.75
O


ATOM
593
N
THR
A
72
89.552
17.157
18.748
1.00
75.74
N


ATOM
594
CA
THR
A
72
91.009
17.092
18.825
1.00
77.19
C


ATOM
595
CB
THR
A
72
91.642
18.360
18.225
1.00
77.47
C


ATOM
596
OG1
THR
A
72
91.168
19.515
18.927
1.00
74.39
O


ATOM
597
CG2
THR
A
72
91.290
18.485
16.752
1.00
80.25
C


ATOM
598
C
THR
A
72
91.464
16.948
20.276
1.00
80.88
C


ATOM
599
O
THR
A
72
90.646
16.952
21.196
1.00
82.69
O


ATOM
600
N
THR
A
73
92.776
16.827
20.471
1.00
83.90
N


ATOM
601
CA
THR
A
73
93.373
16.708
21.805
1.00
84.61
C


ATOM
602
CB
THR
A
73
94.884
16.416
21.707
1.00
85.56
C


ATOM
603
OG1
THR
A
73
95.130
15.511
20.625
1.00
85.62
O


ATOM
604
CG2
THR
A
73
95.410
15.811
23.004
1.00
88.69
C


ATOM
605
C
THR
A
73
93.189
17.985
22.634
1.00
84.43
C


ATOM
606
O
THR
A
73
93.260
17.951
23.863
1.00
87.77
O


ATOM
607
N
TRP
A
74
92.934
19.102
21.958
1.00
82.29
N


ATOM
608
CA
TRP
A
74
92.762
20.392
22.617
1.00
80.19
C


ATOM
609
CB
TRP
A
74
93.267
21.503
21.692
1.00
81.10
C


ATOM
610
CG
TRP
A
74
94.650
21.231
21.197
1.00
81.68
C


ATOM
611
CD1
TRP
A
74
95.000
20.674
20.003
1.00
80.85
C


ATOM
612
NE1
TRP
A
74
96.365
20.556
19.917
1.00
82.91
N


ATOM
613
CE2
TRP
A
74
96.923
21.033
21.073
1.00
83.06
C


ATOM
614
CD2
TRP
A
74
95.870
21.458
21.907
1.00
82.46
C


ATOM
615
CE3
TRP
A
74
96.175
21.991
23.163
1.00
81.89
C


ATOM
616
CZ3
TRP
A
74
97.504
22.080
23.541
1.00
83.00
C


ATOM
617
CH2
TRP
A
74
98.530
21.649
22.689
1.00
83.09
C


ATOM
618
CZ2
TRP
A
74
98.262
21.124
21.456
1.00
82.68
C


ATOM
619
C
TRP
A
74
91.308
20.640
23.015
1.00
78.66
C


ATOM
620
O
TRP
A
74
90.870
21.787
23.103
1.00
77.18
O


ATOM
621
N
PHE
A
75
90.576
19.562
23.290
1.00
79.48
N


ATOM
622
CA
PHE
A
75
89.155
19.645
23.638
1.00
81.86
C


ATOM
623
CB
PHE
A
75
88.525
18.248
23.675
1.00
81.03
C


ATOM
624
CG
PHE
A
75
89.025
17.382
24.800
1.00
81.49
C


ATOM
625
CD1
PHE
A
75
88.464
17.474
26.067
1.00
82.81
C


ATOM
626
CE1
PHE
A
75
88.920
16.679
27.106
1.00
82.06
C


ATOM
627
CZ
PHE
A
75
89.945
15.776
26.886
1.00
81.50
C


ATOM
628
CE2
PHE
A
75
90.513
15.675
25.629
1.00
82.26
C


ATOM
629
CD2
PHE
A
75
90.052
16.473
24.593
1.00
81.87
C


ATOM
630
C
PHE
A
75
88.883
20.350
24.966
1.00
84.27
C


ATOM
631
O
PHE
A
75
87.794
20.879
25.167
1.00
83.13
O


ATOM
632
N
ASN
A
76
89.857
20.344
25.874
1.00
88.11
N


ATOM
633
CA
ASN
A
76
89.682
20.985
27.186
1.00
89.63
C


ATOM
634
CB
ASN
A
76
90.845
20.651
28.129
1.00
92.20
C


ATOM
635
CG
ASN
A
76
92.193
21.063
27.577
1.00
94.54
C


ATOM
636
OD1
ASN
A
76
92.288
21.819
26.609
1.00
96.72
O


ATOM
637
ND2
ASN
A
76
93.249
20.564
28.198
1.00
98.59
N


ATOM
638
C
ASN
A
76
89.463
22.498
27.114
1.00
88.24
C


ATOM
639
O
ASN
A
76
88.887
23.084
28.029
1.00
90.63
O


ATOM
640
N
SER
A
77
89.933
23.123
26.036
1.00
87.91
N


ATOM
641
CA
SER
A
77
89.700
24.548
25.801
1.00
88.76
C


ATOM
642
CB
SER
A
77
90.924
25.195
25.151
1.00
87.82
C


ATOM
643
OG
SER
A
77
91.255
24.559
23.934
1.00
88.97
O


ATOM
644
C
SER
A
77
88.456
24.775
24.934
1.00
89.89
C


ATOM
645
O
SER
A
77
88.060
25.916
24.702
1.00
90.07
O


ATOM
646
N
SER
A
78
87.850
23.689
24.453
1.00
94.92
N


ATOM
647
CA
SER
A
78
86.629
23.761
23.649
1.00
99.03
C


ATOM
648
CB
SER
A
78
86.590
22.628
22.623
1.00
99.62
C


ATOM
649
OG
SER
A
78
86.188
21.405
23.222
1.00
97.38
O


ATOM
650
C
SER
A
78
85.422
23.637
24.574
1.00
102.60
C


ATOM
651
O
SER
A
78
85.491
22.969
25.600
1.00
103.92
O


ATOM
652
N
GLU
A
79
84.313
24.267
24.207
1.00
108.55
N


ATOM
653
CA
GLU
A
79
83.107
24.256
25.060
1.00
114.49
C


ATOM
654
CB
GLU
A
79
82.200
25.440
24.691
1.00
123.71
C


ATOM
655
CG
GLU
A
79
80.904
25.532
25.489
1.00
132.76
C


ATOM
656
CD
GLU
A
79
80.009
26.677
25.043
1.00
140.84
C


ATOM
657
OE1
GLU
A
79
80.450
27.508
24.217
1.00
147.37
O


ATOM
658
OE2
GLU
A
79
78.857
26.748
25.519
1.00
143.38
O


ATOM
659
C
GLU
A
79
82.293
22.953
25.091
1.00
109.97
C


ATOM
660
O
GLU
A
79
81.727
22.609
26.129
1.00
106.29
O


ATOM
661
N
GLY
A
80
82.220
22.242
23.971
1.00
110.25
N


ATOM
662
CA
GLY
A
80
81.446
20.997
23.891
1.00
107.47
C


ATOM
663
C
GLY
A
80
81.995
19.802
24.660
1.00
104.12
C


ATOM
664
O
GLY
A
80
81.264
18.857
24.953
1.00
104.62
O


ATOM
665
N
GLY
A
81
83.275
19.851
25.012
1.00
100.72
N


ATOM
666
CA
GLY
A
81
83.952
18.716
25.629
1.00
97.65
C


ATOM
667
C
GLY
A
81
84.530
17.772
24.592
1.00
93.95
C


ATOM
668
O
GLY
A
81
84.514
18.060
23.394
1.00
92.80
O


ATOM
669
N
ASN
A
82
85.027
16.633
25.063
1.00
92.19
N


ATOM
670
CA
ASN
A
82
85.684
15.651
24.207
1.00
90.58
C


ATOM
671
CB
ASN
A
82
86.543
14.713
25.058
1.00
90.22
C


ATOM
672
CG
ASN
A
82
87.370
13.761
24.221
1.00
90.16
C


ATOM
673
OD1
ASN
A
82
87.340
13.811
22.994
1.00
93.93
O


ATOM
674
ND2
ASN
A
82
88.116
12.889
24.882
1.00
90.44
N


ATOM
675
C
ASN
A
82
84.721
14.806
23.376
1.00
91.56
C


ATOM
676
O
ASN
A
82
83.892
14.076
23.922
1.00
92.50
O


ATOM
677
N
ILE
A
83
84.850
14.902
22.054
1.00
91.59
N


ATOM
678
CA
ILE
A
83
84.067
14.083
21.128
1.00
92.28
C


ATOM
679
CB
ILE
A
83
83.002
14.924
20.383
1.00
92.95
C


ATOM
680
CG1
ILE
A
83
83.655
15.994
19.494
1.00
93.81
C


ATOM
681
CD1
ILE
A
83
82.671
16.825
18.698
1.00
94.08
C


ATOM
682
CG2
ILE
A
83
82.048
15.565
21.378
1.00
93.58
C


ATOM
683
C
ILE
A
83
84.953
13.371
20.103
1.00
92.93
C


ATOM
684
O
ILE
A
83
84.443
12.795
19.141
1.00
95.28
O


ATOM
685
N
GLN
A
84
86.269
13.390
20.316
1.00
91.26
N


ATOM
686
CA
GLN
A
84
87.202
12.832
19.337
1.00
91.95
C


ATOM
687
CB
GLN
A
84
88.656
13.183
19.686
1.00
93.42
C


ATOM
688
CG
GLN
A
84
89.228
12.543
20.940
1.00
92.49
C


ATOM
689
CD
GLN
A
84
90.513
13.214
21.412
1.00
91.92
C


ATOM
690
OE1
GLN
A
84
90.641
13.518
22.588
1.00
93.06
O


ATOM
691
NE2
GLN
A
84
91.453
13.469
20.497
1.00
89.11
N


ATOM
692
C
GLN
A
84
87.021
11.331
19.159
1.00
88.78
C


ATOM
693
O
GLN
A
84
86.706
10.617
20.110
1.00
87.28
O


ATOM
694
N
ASN
A
85
87.207
10.875
17.923
1.00
88.53
N


ATOM
695
CA
ASN
A
85
86.994
9.478
17.560
1.00
86.85
C


ATOM
696
CB
ASN
A
85
85.559
9.296
17.050
1.00
88.39
C


ATOM
697
CG
ASN
A
85
85.231
7.852
16.728
1.00
90.44
C


ATOM
698
OD1
ASN
A
85
85.629
6.938
17.448
1.00
91.39
O


ATOM
699
ND2
ASN
A
85
84.495
7.640
15.644
1.00
95.33
N


ATOM
700
C
ASN
A
85
88.000
9.008
16.507
1.00
82.78
C


ATOM
701
O
ASN
A
85
87.668
8.860
15.331
1.00
82.04
O


ATOM
702
N
GLY
A
86
89.235
8.784
16.946
1.00
80.60
N


ATOM
703
CA
GLY
A
86
90.294
8.289
16.072
1.00
78.14
C


ATOM
704
C
GLY
A
86
90.655
9.265
14.972
1.00
76.72
C


ATOM
705
O
GLY
A
86
90.790
10.462
15.217
1.00
78.98
O


ATOM
706
N
ASN
A
87
90.792
8.751
13.753
1.00
76.52
N


ATOM
707
CA
ASN
A
87
91.156
9.571
12.591
1.00
76.73
C


ATOM
708
CB
ASN
A
87
91.836
8.710
11.516
1.00
76.38
C


ATOM
709
CG
ASN
A
87
93.330
8.566
11.734
1.00
75.91
C


ATOM
710
OD1
ASN
A
87
94.020
9.537
12.034
1.00
72.57
O


ATOM
711
ND2
ASN
A
87
93.842
7.354
11.552
1.00
78.45
N


ATOM
712
C
ASN
A
87
90.006
10.355
11.953
1.00
77.29
C


ATOM
713
O
ASN
A
87
90.212
11.019
10.940
1.00
78.45
O


ATOM
714
N
ASP
A
88
88.811
10.293
12.535
1.00
77.80
N


ATOM
715
CA
ASP
A
88
87.659
11.015
11.994
1.00
79.67
C


ATOM
716
CB
ASP
A
88
86.369
10.517
12.654
1.00
79.19
C


ATOM
717
CG
ASP
A
88
85.114
11.001
11.945
1.00
81.31
C


ATOM
718
OD1
ASP
A
88
85.179
11.989
11.182
1.00
84.32
O


ATOM
719
OD2
ASP
A
88
84.050
10.382
12.154
1.00
84.65
O


ATOM
720
C
ASP
A
88
87.826
12.530
12.209
1.00
81.10
C


ATOM
721
O
ASP
A
88
87.862
12.985
13.354
1.00
85.52
O


ATOM
722
N
PRO
A
89
87.937
13.311
11.112
1.00
80.28
N


ATOM
723
CA
PRO
A
89
88.069
14.765
11.244
1.00
80.13
C


ATOM
724
CB
PRO
A
89
88.398
15.231
9.816
1.00
81.36
C


ATOM
725
CG
PRO
A
89
88.773
14.005
9.063
1.00
81.57
C


ATOM
726
CD
PRO
A
89
87.996
12.898
9.700
1.00
81.53
C


ATOM
727
C
PRO
A
89
86.802
15.462
11.738
1.00
81.61
C


ATOM
728
O
PRO
A
89
86.882
16.565
12.271
1.00
82.89
O


ATOM
729
N
CYS
A
90
85.643
14.842
11.545
1.00
83.76
N


ATOM
730
CA
CYS
A
90
84.397
15.408
12.052
1.00
87.12
C


ATOM
731
CB
CYS
A
90
83.756
16.336
11.019
1.00
89.21
C


ATOM
732
SG
CYS
A
90
82.536
17.452
11.749
1.00
97.73
S


ATOM
733
C
CYS
A
90
83.441
14.291
12.475
1.00
87.04
C


ATOM
734
O
CYS
A
90
82.627
13.831
11.676
1.00
88.42
O


ATOM
735
N
PRO
A
91
83.560
13.834
13.736
1.00
88.68
N


ATOM
736
CA
PRO
A
91
82.711
12.766
14.265
1.00
87.95
C


ATOM
737
CB
PRO
A
91
83.210
12.595
15.706
1.00
88.48
C


ATOM
738
CG
PRO
A
91
84.600
13.125
15.697
1.00
89.41
C


ATOM
739
CD
PRO
A
91
84.582
14.252
14.712
1.00
89.53
C


ATOM
740
C
PRO
A
91
81.231
13.133
14.254
1.00
87.89
C


ATOM
741
O
PRO
A
91
80.864
14.231
14.670
1.00
88.66
O


ATOM
742
N
GLY
A
92
80.400
12.216
13.768
1.00
88.83
N


ATOM
743
CA
GLY
A
92
78.956
12.427
13.711
1.00
88.73
C


ATOM
744
C
GLY
A
92
78.455
13.014
12.404
1.00
87.94
C


ATOM
745
O
GLY
A
92
77.247
13.115
12.200
1.00
92.01
O


ATOM
746
N
SER
A
93
79.372
13.401
11.519
1.00
85.11
N


ATOM
747
CA
SER
A
93
79.009
13.950
10.211
1.00
83.68
C


ATOM
748
CB
SER
A
93
79.288
15.455
10.156
1.00
83.96
C


ATOM
749
OG
SER
A
93
80.668
15.729
10.309
1.00
86.87
O


ATOM
750
C
SER
A
93
79.765
13.203
9.102
1.00
81.71
C


ATOM
751
O
SER
A
93
80.841
12.653
9.346
1.00
79.60
O


ATOM
752
N
PRO
A
94
79.195
13.171
7.881
1.00
81.27
N


ATOM
753
CA
PRO
A
94
79.796
12.420
6.781
1.00
79.29
C


ATOM
754
CB
PRO
A
94
78.625
12.248
5.816
1.00
81.13
C


ATOM
755
CG
PRO
A
94
77.800
13.467
6.022
1.00
80.76
C


ATOM
756
CD
PRO
A
94
77.957
13.858
7.462
1.00
80.51
C


ATOM
757
C
PRO
A
94
80.948
13.170
6.107
1.00
78.51
C


ATOM
758
O
PRO
A
94
81.217
14.320
6.464
1.00
77.25
O


ATOM
759
N
PRO
A
95
81.628
12.527
5.134
1.00
76.99
N


ATOM
760
CA
PRO
A
95
82.752
13.168
4.438
1.00
75.51
C


ATOM
761
CB
PRO
A
95
83.280
12.063
3.515
1.00
74.85
C


ATOM
762
CG
PRO
A
95
82.794
10.793
4.113
1.00
76.11
C


ATOM
763
CD
PRO
A
95
81.460
11.127
4.709
1.00
76.90
C


ATOM
764
C
PRO
A
95
82.383
14.411
3.622
1.00
76.85
C


ATOM
765
O
PRO
A
95
83.273
15.177
3.255
1.00
73.77
O


ATOM
766
N
SER
A
96
81.094
14.606
3.337
1.00
79.96
N


ATOM
767
CA
SER
A
96
80.635
15.806
2.632
1.00
81.01
C


ATOM
768
CB
SER
A
96
79.130
15.742
2.356
1.00
82.03
C


ATOM
769
OG
SER
A
96
78.380
15.812
3.556
1.00
81.00
O


ATOM
770
C
SER
A
96
80.958
17.063
3.436
1.00
81.78
C


ATOM
771
O
SER
A
96
81.075
18.153
2.876
1.00
82.50
O


ATOM
772
N
GLU
A
97
81.095
16.898
4.751
1.00
84.85
N


ATOM
773
CA
GLU
A
97
81.482
17.987
5.638
1.00
85.15
C


ATOM
774
CB
GLU
A
97
81.290
17.571
7.102
1.00
87.89
C


ATOM
775
CG
GLU
A
97
81.230
18.728
8.093
1.00
89.90
C


ATOM
776
CD
GLU
A
97
82.591
19.298
8.462
1.00
90.87
C


ATOM
777
OE1
GLU
A
97
82.633
20.470
8.886
1.00
90.84
O


ATOM
778
OE2
GLU
A
97
83.615
18.586
8.340
1.00
90.58
O


ATOM
779
C
GLU
A
97
82.932
18.407
5.363
1.00
82.63
C


ATOM
780
O
GLU
A
97
83.256
19.591
5.449
1.00
80.59
O


ATOM
781
N
TYR
A
98
83.795
17.451
5.010
1.00
81.53
N


ATOM
782
CA
TYR
A
98
85.179
17.784
4.653
1.00
79.61
C


ATOM
783
CB
TYR
A
98
86.205
16.673
4.983
1.00
79.95
C


ATOM
784
CG
TYR
A
98
85.804
15.496
5.847
1.00
80.21
C


ATOM
785
CD1
TYR
A
98
85.165
15.671
7.065
1.00
83.17
C


ATOM
786
CE1
TYR
A
98
84.821
14.580
7.851
1.00
86.71
C


ATOM
787
CZ
TYR
A
98
85.150
13.294
7.436
1.00
85.74
C


ATOM
788
OH
TYR
A
98
84.815
12.204
8.217
1.00
82.99
O


ATOM
789
CE2
TYR
A
98
85.816
13.102
6.243
1.00
81.75
C


ATOM
790
CD2
TYR
A
98
86.147
14.197
5.464
1.00
79.31
C


ATOM
791
C
TYR
A
98
85.281
18.111
3.148
1.00
78.58
C


ATOM
792
O
TYR
A
98
86.383
18.165
2.602
1.00
75.58
O


ATOM
793
N
HIS
A
99
84.138
18.308
2.488
1.00
78.17
N


ATOM
794
CA
HIS
A
99
84.070
18.625
1.056
1.00
78.49
C


ATOM
795
CB
HIS
A
99
84.615
20.029
0.775
1.00
80.65
C


ATOM
796
CG
HIS
A
99
83.839
21.122
1.438
1.00
84.17
C


ATOM
797
ND1
HIS
A
99
82.534
21.414
1.104
1.00
86.58
N


ATOM
798
CE1
HIS
A
99
82.108
22.423
1.841
1.00
87.71
C


ATOM
799
NE2
HIS
A
99
83.091
22.802
2.637
1.00
87.96
N


ATOM
800
CD2
HIS
A
99
84.187
22.006
2.402
1.00
85.49
C


ATOM
801
C
HIS
A
99
84.760
17.591
0.157
1.00
77.06
C


ATOM
802
O
HIS
A
99
85.602
17.933
−0.678
1.00
75.08
O


ATOM
803
N
THR
A
100
84.385
16.328
0.333
1.00
76.26
N


ATOM
804
CA
THR
A
100
84.905
15.243
−0.494
1.00
75.33
C


ATOM
805
CB
THR
A
100
86.259
14.719
0.026
1.00
75.69
C


ATOM
806
OG1
THR
A
100
86.691
13.618
−0.781
1.00
73.34
O


ATOM
807
CG2
THR
A
100
86.161
14.268
1.487
1.00
76.67
C


ATOM
808
C
THR
A
100
83.904
14.094
−0.565
1.00
77.28
C


ATOM
809
O
THR
A
100
83.156
13.852
0.381
1.00
78.28
O


ATOM
810
N
THR
A
101
83.893
13.401
−1.700
1.00
79.81
N


ATOM
811
CA
THR
A
101
83.006
12.257
−1.908
1.00
78.80
C


ATOM
812
CB
THR
A
101
82.726
12.026
−3.405
1.00
78.80
C


ATOM
813
OG1
THR
A
101
83.949
11.727
−4.091
1.00
80.62
O


ATOM
814
CG2
THR
A
101
82.095
13.259
−4.025
1.00
78.50
C


ATOM
815
C
THR
A
101
83.630
10.999
−1.314
1.00
77.63
C


ATOM
816
O
THR
A
101
82.924
10.127
−0.809
1.00
79.35
O


ATOM
817
N
GLY
A
102
84.957
10.912
−1.389
1.00
74.75
N


ATOM
818
CA
GLY
A
102
85.700
9.780
−0.843
1.00
73.71
C


ATOM
819
C
GLY
A
102
87.185
10.075
−0.760
1.00
72.34
C


ATOM
820
O
GLY
A
102
87.616
11.198
−1.013
1.00
71.11
O


ATOM
821
N
ILE
A
103
87.971
9.062
−0.411
1.00
73.72
N


ATOM
822
CA
ILE
A
103
89.422
9.218
−0.295
1.00
77.88
C


ATOM
823
CB
ILE
A
103
90.077
7.954
0.313
1.00
78.60
C


ATOM
824
CG1
ILE
A
103
91.526
8.238
0.723
1.00
79.37
C


ATOM
825
CD1
ILE
A
103
92.155
7.125
1.531
1.00
81.18
C


ATOM
826
CG2
ILE
A
103
90.005
6.774
−0.650
1.00
79.39
C


ATOM
827
C
ILE
A
103
90.080
9.560
−1.638
1.00
81.78
C


ATOM
828
O
ILE
A
103
91.135
10.193
−1.677
1.00
83.03
O


ATOM
829
N
ASP
A
104
89.454
9.131
−2.730
1.00
88.15
N


ATOM
830
CA
ASP
A
104
89.956
9.401
−4.083
1.00
91.83
C


ATOM
831
CB
ASP
A
104
89.357
8.399
−5.089
1.00
98.41
C


ATOM
832
CG
ASP
A
104
87.828
8.292
−4.998
1.00
106.90
C


ATOM
833
OD1
ASP
A
104
87.191
9.093
−4.276
1.00
108.74
O


ATOM
834
OD2
ASP
A
104
87.263
7.390
−5.653
1.00
115.22
O


ATOM
835
C
ASP
A
104
89.704
10.844
−4.547
1.00
87.09
C


ATOM
836
O
ASP
A
104
90.380
11.332
−5.454
1.00
85.40
O


ATOM
837
N
ASP
A
105
88.747
11.520
−3.913
1.00
84.52
N


ATOM
838
CA
ASP
A
105
88.347
12.878
−4.300
1.00
83.78
C


ATOM
839
CB
ASP
A
105
86.818
12.984
−4.220
1.00
83.39
C


ATOM
840
CG
ASP
A
105
86.278
14.287
−4.782
1.00
83.83
C


ATOM
841
OD1
ASP
A
105
86.840
14.809
−5.772
1.00
84.71
O


ATOM
842
OD2
ASP
A
105
85.271
14.779
−4.231
1.00
83.05
O


ATOM
843
C
ASP
A
105
89.006
13.990
−3.462
1.00
82.38
C


ATOM
844
O
ASP
A
105
88.697
15.169
−3.637
1.00
84.48
O


ATOM
845
N
VAL
A
106
89.915
13.623
−2.562
1.00
80.21
N


ATOM
846
CA
VAL
A
106
90.636
14.616
−1.758
1.00
76.79
C


ATOM
847
CB
VAL
A
106
91.240
14.007
−0.473
1.00
76.30
C


ATOM
848
CG1
VAL
A
106
90.152
13.342
0.361
1.00
75.86
C


ATOM
849
CG2
VAL
A
106
92.364
13.028
−0.792
1.00
75.64
C


ATOM
850
C
VAL
A
106
91.732
15.252
−2.613
1.00
77.16
C


ATOM
851
O
VAL
A
106
92.360
14.571
−3.425
1.00
78.52
O


ATOM
852
N
LYS
A
107
91.964
16.550
−2.423
1.00
76.96
N


ATOM
853
CA
LYS
A
107
92.907
17.302
−3.262
1.00
76.64
C


ATOM
854
CB
LYS
A
107
92.202
18.528
−3.844
1.00
78.36
C


ATOM
855
CG
LYS
A
107
90.971
18.201
−4.675
1.00
80.98
C


ATOM
856
CD
LYS
A
107
91.330
17.445
−5.943
1.00
83.14
C


ATOM
857
CE
LYS
A
107
90.093
17.097
−6.748
1.00
85.25
C


ATOM
858
NZ
LYS
A
107
90.459
16.404
−8.012
1.00
89.06
N


ATOM
859
C
LYS
A
107
94.197
17.739
−2.568
1.00
75.69
C


ATOM
860
O
LYS
A
107
95.007
18.443
−3.166
1.00
76.63
O


ATOM
861
N
GLY
A
108
94.386
17.345
−1.313
1.00
75.76
N


ATOM
862
CA
GLY
A
108
95.621
17.655
−0.597
1.00
74.81
C


ATOM
863
C
GLY
A
108
95.705
19.048
0.000
1.00
74.07
C


ATOM
864
O
GLY
A
108
95.023
19.975
−0.442
1.00
74.11
O


ATOM
865
N
CYS
A
109
96.561
19.179
1.012
1.00
73.65
N


ATOM
866
CA
CYS
A
109
96.774
20.438
1.719
1.00
74.38
C


ATOM
867
CB
CYS
A
109
95.952
20.472
3.003
1.00
77.23
C


ATOM
868
SG
CYS
A
109
96.511
19.304
4.250
1.00
86.71
S


ATOM
869
C
CYS
A
109
98.258
20.590
2.034
1.00
70.37
C


ATOM
870
O
CYS
A
109
99.021
19.636
1.884
1.00
70.18
O


ATOM
871
N
ALA
A
110
98.661
21.774
2.492
1.00
68.05
N


ATOM
872
CA
ALA
A
110
100.080
22.073
2.693
1.00
67.71
C


ATOM
873
CB
ALA
A
110
100.606
22.832
1.484
1.00
66.87
C


ATOM
874
C
ALA
A
110
100.396
22.864
3.960
1.00
67.08
C


ATOM
875
O
ALA
A
110
99.507
23.404
4.615
1.00
65.06
O


ATOM
876
N
MET
A
111
101.687
22.911
4.283
1.00
66.62
N


ATOM
877
CA
MET
A
111
102.214
23.716
5.376
1.00
68.59
C


ATOM
878
CB
MET
A
111
102.953
22.855
6.408
1.00
69.75
C


ATOM
879
CG
MET
A
111
102.147
21.746
7.071
1.00
71.01
C


ATOM
880
SD
MET
A
111
100.703
22.240
8.040
1.00
71.63
S


ATOM
881
CE
MET
A
111
101.331
23.608
8.969
1.00
71.26
C


ATOM
882
C
MET
A
111
103.216
24.694
4.768
1.00
70.65
C


ATOM
883
O
MET
A
111
104.177
24.273
4.118
1.00
69.63
O


ATOM
884
N
ALA
A
112
102.993
25.989
4.972
1.00
72.73
N


ATOM
885
CA
ALA
A
112
103.926
27.013
4.511
1.00
73.22
C


ATOM
886
CB
ALA
A
112
103.182
28.138
3.816
1.00
74.60
C


ATOM
887
C
ALA
A
112
104.715
27.550
5.699
1.00
75.00
C


ATOM
888
O
ALA
A
112
104.319
27.354
6.849
1.00
74.54
O


ATOM
889
N
ILE
A
113
105.829
28.223
5.417
1.00
75.76
N


ATOM
890
CA
ILE
A
113
106.684
28.781
6.467
1.00
75.57
C


ATOM
891
CB
ILE
A
113
107.799
27.787
6.871
1.00
74.30
C


ATOM
892
CG1
ILE
A
113
108.525
28.264
8.132
1.00
72.52
C


ATOM
893
CD1
ILE
A
113
109.418
27.209
8.747
1.00
71.73
C


ATOM
894
CG2
ILE
A
113
108.787
27.567
5.729
1.00
74.42
C


ATOM
895
C
ILE
A
113
107.318
30.108
6.057
1.00
78.06
C


ATOM
896
O
ILE
A
113
107.704
30.299
4.903
1.00
78.43
O


ATOM
897
N
ALA
A
114
107.418
31.017
7.023
1.00
81.36
N


ATOM
898
CA
ALA
A
114
108.054
32.312
6.827
1.00
82.37
C


ATOM
899
CB
ALA
A
114
107.010
33.411
6.755
1.00
82.04
C


ATOM
900
C
ALA
A
114
109.006
32.554
7.992
1.00
84.16
C


ATOM
901
O
ALA
A
114
108.574
32.630
9.144
1.00
85.37
O


ATOM
902
N
TYR
A
115
110.297
32.668
7.688
1.00
84.64
N


ATOM
903
CA
TYR
A
115
111.326
32.873
8.709
1.00
84.66
C


ATOM
904
CB
TYR
A
115
112.710
32.503
8.165
1.00
82.76
C


ATOM
905
CG
TYR
A
115
112.967
31.012
8.120
1.00
81.09
C


ATOM
906
CD1
TYR
A
115
114.000
30.445
8.856
1.00
80.03
C


ATOM
907
CE1
TYR
A
115
114.239
29.082
8.820
1.00
79.47
C


ATOM
908
CZ
TYR
A
115
113.434
28.265
8.053
1.00
77.13
C


ATOM
909
OH
TYR
A
115
113.668
26.915
8.019
1.00
73.14
O


ATOM
910
CE2
TYR
A
115
112.398
28.800
7.319
1.00
79.12
C


ATOM
911
CD2
TYR
A
115
112.167
30.165
7.358
1.00
81.10
C


ATOM
912
C
TYR
A
115
111.304
34.313
9.219
1.00
86.07
C


ATOM
913
O
TYR
A
115
112.121
35.147
8.821
1.00
85.81
O


ATOM
914
N
GLU
A
116
110.346
34.586
10.100
1.00
87.27
N


ATOM
915
CA
GLU
A
116
110.166
35.905
10.685
1.00
91.13
C


ATOM
916
CB
GLU
A
116
109.296
36.769
9.766
1.00
93.22
C


ATOM
917
CG
GLU
A
116
108.943
38.140
10.326
1.00
97.30
C


ATOM
918
CD
GLU
A
116
110.159
39.000
10.616
1.00
101.54
C


ATOM
919
OE1
GLU
A
116
111.055
39.082
9.748
1.00
107.29
O


ATOM
920
OE2
GLU
A
116
110.211
39.609
11.706
1.00
102.79
O


ATOM
921
C
GLU
A
116
109.524
35.765
12.065
1.00
93.80
C


ATOM
922
O
GLU
A
116
108.479
35.132
12.210
1.00
92.53
O


ATOM
923
N
SER
A
117
110.159
36.358
13.071
1.00
97.53
N


ATOM
924
CA
SER
A
117
109.664
36.303
14.448
1.00
97.24
C


ATOM
925
CB
SER
A
117
110.806
36.585
15.435
1.00
100.11
C


ATOM
926
OG
SER
A
117
111.643
37.633
14.972
1.00
105.40
O


ATOM
927
C
SER
A
117
108.489
37.255
14.694
1.00
95.90
C


ATOM
928
O
SER
A
117
107.653
36.990
15.558
1.00
94.55
O


ATOM
929
N
ASP
A
118
108.431
38.358
13.946
1.00
96.01
N


ATOM
930
CA
ASP
A
118
107.349
39.340
14.078
1.00
97.66
C


ATOM
931
CB
ASP
A
118
107.911
40.765
13.984
1.00
99.77
C


ATOM
932
CG
ASP
A
118
106.853
41.842
14.212
1.00
101.82
C


ATOM
933
OD1
ASP
A
118
105.746
41.528
14.704
1.00
103.70
O


ATOM
934
OD2
ASP
A
118
107.141
43.018
13.904
1.00
104.07
O


ATOM
935
C
ASP
A
118
106.288
39.116
12.999
1.00
97.06
C


ATOM
936
O
ASP
A
118
106.510
39.421
11.829
1.00
98.49
O


ATOM
937
N
VAL
A
119
105.130
38.604
13.408
1.00
96.94
N


ATOM
938
CA
VAL
A
119
104.030
38.294
12.483
1.00
97.43
C


ATOM
939
CB
VAL
A
119
102.807
37.719
13.242
1.00
99.06
C


ATOM
940
CG1
VAL
A
119
102.134
38.786
14.098
1.00
99.23
C


ATOM
941
CG2
VAL
A
119
101.810
37.093
12.276
1.00
100.11
C


ATOM
942
C
VAL
A
119
103.581
39.492
11.637
1.00
96.97
C


ATOM
943
O
VAL
A
119
103.140
39.322
10.500
1.00
96.72
O


ATOM
944
N
ARG
A
120
103.705
40.695
12.193
1.00
97.92
N


ATOM
945
CA
ARG
A
120
103.284
41.919
11.508
1.00
99.51
C


ATOM
946
CB
ARG
A
120
103.353
43.115
12.466
1.00
103.11
C


ATOM
947
CG
ARG
A
120
102.446
43.008
13.686
1.00
105.30
C


ATOM
948
CD
ARG
A
120
100.973
43.100
13.315
1.00
105.70
C


ATOM
949
NE
ARG
A
120
100.099
42.829
14.454
1.00
105.98
N


ATOM
950
CZ
ARG
A
120
98.769
42.875
14.415
1.00
106.94
C


ATOM
951
NH1
ARG
A
120
98.134
43.189
13.290
1.00
107.36
N


ATOM
952
NH2
ARG
A
120
98.066
42.610
15.511
1.00
108.34
N


ATOM
953
C
ARG
A
120
104.108
42.222
10.255
1.00
98.14
C


ATOM
954
O
ARG
A
120
103.621
42.887
9.341
1.00
98.42
O


ATOM
955
N
LYS
A
121
105.348
41.739
10.217
1.00
96.66
N


ATOM
956
CA
LYS
A
121
106.230
41.955
9.069
1.00
97.00
C


ATOM
957
CB
LYS
A
121
107.695
41.967
9.517
1.00
100.76
C


ATOM
958
CG
LYS
A
121
108.074
43.177
10.355
1.00
105.33
C


ATOM
959
CD
LYS
A
121
109.582
43.288
10.515
1.00
108.74
C


ATOM
960
CE
LYS
A
121
109.983
44.630
11.105
1.00
111.26
C


ATOM
961
NZ
LYS
A
121
111.458
44.828
11.062
1.00
114.12
N


ATOM
962
C
LYS
A
121
106.052
40.929
7.948
1.00
95.26
C


ATOM
963
O
LYS
A
121
106.583
41.120
6.854
1.00
97.97
O


ATOM
964
N
ILE
A
122
105.310
39.853
8.207
1.00
93.34
N


ATOM
965
CA
ILE
A
122
105.126
38.788
7.214
1.00
91.06
C


ATOM
966
CB
ILE
A
122
104.603
37.482
7.850
1.00
89.31
C


ATOM
967
CG1
ILE
A
122
105.591
36.969
8.900
1.00
90.30
C


ATOM
968
CD1
ILE
A
122
105.068
35.813
9.722
1.00
90.61
C


ATOM
969
CG2
ILE
A
122
104.398
36.411
6.784
1.00
87.46
C


ATOM
970
C
ILE
A
122
104.167
39.215
6.107
1.00
91.89
C


ATOM
971
O
ILE
A
122
103.072
39.711
6.378
1.00
92.60
O


ATOM
972
N
LYS
A
123
104.593
39.000
4.864
1.00
93.11
N


ATOM
973
CA
LYS
A
123
103.795
39.318
3.684
1.00
95.03
C


ATOM
974
CB
LYS
A
123
104.570
40.271
2.776
1.00
98.86
C


ATOM
975
CG
LYS
A
123
104.764
41.651
3.385
1.00
102.64
C


ATOM
976
CD
LYS
A
123
105.857
42.439
2.684
1.00
105.78
C


ATOM
977
CE
LYS
A
123
106.091
43.771
3.377
1.00
108.87
C


ATOM
978
NZ
LYS
A
123
107.317
44.453
2.879
1.00
111.78
N


ATOM
979
C
LYS
A
123
103.439
38.027
2.945
1.00
92.62
C


ATOM
980
O
LYS
A
123
104.125
37.017
3.103
1.00
91.55
O


ATOM
981
N
PRO
A
124
102.368
38.053
2.129
1.00
89.62
N


ATOM
982
CA
PRO
A
124
101.920
36.841
1.431
1.00
89.50
C


ATOM
983
CB
PRO
A
124
100.746
37.338
0.581
1.00
91.29
C


ATOM
984
CG
PRO
A
124
100.301
38.592
1.241
1.00
90.38
C


ATOM
985
CD
PRO
A
124
101.553
39.220
1.756
1.00
89.45
C


ATOM
986
C
PRO
A
124
102.984
36.211
0.536
1.00
89.46
C


ATOM
987
O
PRO
A
124
102.998
34.994
0.358
1.00
89.19
O


ATOM
988
N
GLU
A
125
103.867
37.041
−0.011
1.00
89.63
N


ATOM
989
CA
GLU
A
125
104.938
36.569
−0.881
1.00
89.62
C


ATOM
990
CB
GLU
A
125
105.574
37.735
−1.655
1.00
95.09
C


ATOM
991
CG
GLU
A
125
104.612
38.588
−2.484
1.00
99.97
C


ATOM
992
CD
GLU
A
125
103.940
39.715
−1.704
1.00
102.20
C


ATOM
993
OE1
GLU
A
125
104.465
40.128
−0.647
1.00
102.51
O


ATOM
994
OE2
GLU
A
125
102.882
40.202
−2.161
1.00
103.21
O


ATOM
995
C
GLU
A
125
106.033
35.846
−0.096
1.00
86.13
C


ATOM
996
O
GLU
A
125
106.828
35.119
−0.683
1.00
82.74
O


ATOM
997
N
ASP
A
126
106.077
36.053
1.221
1.00
86.04
N


ATOM
998
CA
ASP
A
126
107.130
35.479
2.067
1.00
83.80
C


ATOM
999
CB
ASP
A
126
107.259
36.269
3.375
1.00
86.37
C


ATOM
1000
CG
ASP
A
126
107.607
37.735
3.148
1.00
89.43
C


ATOM
1001
OD1
ASP
A
126
108.014
38.095
2.023
1.00
90.53
O


ATOM
1002
OD2
ASP
A
126
107.479
38.529
4.105
1.00
91.56
O


ATOM
1003
C
ASP
A
126
106.937
33.997
2.385
1.00
79.71
C


ATOM
1004
O
ASP
A
126
107.919
33.277
2.575
1.00
76.75
O


ATOM
1005
N
PHE
A
127
105.687
33.539
2.440
1.00
77.69
N


ATOM
1006
CA
PHE
A
127
105.406
32.127
2.739
1.00
76.03
C


ATOM
1007
CB
PHE
A
127
103.907
31.876
2.959
1.00
74.67
C


ATOM
1008
CG
PHE
A
127
103.461
32.070
4.377
1.00
74.73
C


ATOM
1009
CD1
PHE
A
127
103.999
31.292
5.392
1.00
75.69
C


ATOM
1010
CE1
PHE
A
127
103.590
31.452
6.703
1.00
75.83
C


ATOM
1011
CZ
PHE
A
127
102.619
32.386
7.014
1.00
75.24
C


ATOM
1012
CE2
PHE
A
127
102.064
33.159
6.012
1.00
75.56
C


ATOM
1013
CD2
PHE
A
127
102.481
32.998
4.700
1.00
74.80
C


ATOM
1014
C
PHE
A
127
105.929
31.164
1.670
1.00
76.28
C


ATOM
1015
O
PHE
A
127
105.753
31.386
0.471
1.00
74.14
O


ATOM
1016
N
THR
A
128
106.567
30.093
2.139
1.00
75.69
N


ATOM
1017
CA
THR
A
128
107.117
29.044
1.291
1.00
74.38
C


ATOM
1018
CB
THR
A
128
108.643
28.953
1.456
1.00
74.05
C


ATOM
1019
OG1
THR
A
128
109.244
30.200
1.090
1.00
74.56
O


ATOM
1020
CG2
THR
A
128
109.220
27.834
0.598
1.00
74.60
C


ATOM
1021
C
THR
A
128
106.526
27.704
1.708
1.00
74.11
C


ATOM
1022
O
THR
A
128
106.618
27.328
2.875
1.00
74.98
O


ATOM
1023
N
VAL
A
129
105.926
26.987
0.761
1.00
72.30
N


ATOM
1024
CA
VAL
A
129
105.366
25.665
1.040
1.00
70.81
C


ATOM
1025
CB
VAL
A
129
104.408
25.200
−0.075
1.00
69.00
C


ATOM
1026
CG1
VAL
A
129
103.927
23.778
0.179
1.00
68.01
C


ATOM
1027
CG2
VAL
A
129
103.226
26.152
−0.189
1.00
69.56
C


ATOM
1028
C
VAL
A
129
106.525
24.682
1.177
1.00
72.26
C


ATOM
1029
O
VAL
A
129
107.254
24.448
0.211
1.00
74.48
O


ATOM
1030
N
PHE
A
130
106.701
24.129
2.378
1.00
71.94
N


ATOM
1031
CA
PHE
A
130
107.815
23.214
2.656
1.00
71.73
C


ATOM
1032
CB
PHE
A
130
108.617
23.687
3.876
1.00
73.22
C


ATOM
1033
CG
PHE
A
130
107.899
23.525
5.185
1.00
73.63
C


ATOM
1034
CD1
PHE
A
130
107.111
24.548
5.692
1.00
74.85
C


ATOM
1035
CE1
PHE
A
130
106.451
24.402
6.902
1.00
76.17
C


ATOM
1036
CZ
PHE
A
130
106.577
23.226
7.620
1.00
75.83
C


ATOM
1037
CE2
PHE
A
130
107.363
22.200
7.125
1.00
75.44
C


ATOM
1038
CD2
PHE
A
130
108.022
22.354
5.918
1.00
74.02
C


ATOM
1039
C
PHE
A
130
107.387
21.760
2.844
1.00
71.33
C


ATOM
1040
O
PHE
A
130
108.229
20.862
2.806
1.00
70.69
O


ATOM
1041
N
SER
A
131
106.094
21.525
3.053
1.00
70.85
N


ATOM
1042
CA
SER
A
131
105.587
20.165
3.209
1.00
71.30
C


ATOM
1043
CB
SER
A
131
105.675
19.720
4.669
1.00
73.51
C


ATOM
1044
OG
SER
A
131
105.301
18.360
4.805
1.00
74.55
O


ATOM
1045
C
SER
A
131
104.149
20.060
2.719
1.00
69.79
C


ATOM
1046
O
SER
A
131
103.352
20.980
2.901
1.00
67.79
O


ATOM
1047
N
VAL
A
132
103.834
18.924
2.103
1.00
70.57
N


ATOM
1048
CA
VAL
A
132
102.519
18.674
1.518
1.00
70.58
C


ATOM
1049
CB
VAL
A
132
102.561
18.867
−0.020
1.00
69.36
C


ATOM
1050
CG1
VAL
A
132
101.234
18.487
−0.664
1.00
69.12
C


ATOM
1051
CG2
VAL
A
132
102.931
20.302
−0.365
1.00
69.14
C


ATOM
1052
C
VAL
A
132
102.070
17.248
1.819
1.00
70.20
C


ATOM
1053
O
VAL
A
132
102.897
16.343
1.946
1.00
72.95
O


ATOM
1054
N
ASN
A
133
100.760
17.067
1.957
1.00
68.16
N


ATOM
1055
CA
ASN
A
133
100.165
15.743
2.071
1.00
70.49
C


ATOM
1056
CB
ASN
A
133
99.778
15.417
3.514
1.00
72.09
C


ATOM
1057
CG
ASN
A
133
99.396
13.956
3.699
1.00
72.52
C


ATOM
1058
OD1
ASN
A
133
98.600
13.412
2.932
1.00
72.44
O


ATOM
1059
ND2
ASN
A
133
99.962
13.316
4.724
1.00
74.04
N


ATOM
1060
C
ASN
A
133
98.955
15.720
1.148
1.00
72.68
C


ATOM
1061
O
ASN
A
133
97.956
16.379
1.414
1.00
73.03
O


ATOM
1062
N
GLN
A
134
99.057
14.969
0.056
1.00
74.63
N


ATOM
1063
CA
GLN
A
134
98.015
14.954
−0.969
1.00
74.97
C


ATOM
1064
CB
GLN
A
134
98.548
14.351
−2.269
1.00
76.21
C


ATOM
1065
CG
GLN
A
134
99.637
15.191
−2.909
1.00
77.57
C


ATOM
1066
CD
GLN
A
134
100.043
14.681
−4.275
1.00
80.24
C


ATOM
1067
OE1
GLN
A
134
99.592
13.623
−4.718
1.00
82.97
O


ATOM
1068
NE2
GLN
A
134
100.902
15.434
−4.952
1.00
81.02
N


ATOM
1069
C
GLN
A
134
96.732
14.247
−0.554
1.00
74.40
C


ATOM
1070
O
GLN
A
134
95.684
14.473
−1.157
1.00
80.04
O


ATOM
1071
N
THR
A
135
96.812
13.384
0.452
1.00
74.31
N


ATOM
1072
CA
THR
A
135
95.631
12.701
0.965
1.00
77.03
C


ATOM
1073
CB
THR
A
135
95.939
11.235
1.327
1.00
75.26
C


ATOM
1074
OG1
THR
A
135
96.708
10.634
0.280
1.00
74.35
O


ATOM
1075
CG2
THR
A
135
94.652
10.444
1.522
1.00
75.12
C


ATOM
1076
C
THR
A
135
95.165
13.486
2.190
1.00
82.39
C


ATOM
1077
O
THR
A
135
95.116
12.959
3.307
1.00
82.05
O


ATOM
1078
N
CYS
A
136
94.824
14.756
1.972
1.00
84.83
N


ATOM
1079
CA
CYS
A
136
94.499
15.645
3.077
1.00
86.52
C


ATOM
1080
CB
CYS
A
136
95.175
16.990
2.920
1.00
86.38
C


ATOM
1081
SG
CYS
A
136
94.984
17.997
4.401
1.00
83.29
S


ATOM
1082
C
CYS
A
136
93.022
15.895
3.277
1.00
90.46
C


ATOM
1083
O
CYS
A
136
92.241
15.963
2.326
1.00
85.99
O


ATOM
1084
N
VAL
A
137
92.688
16.096
4.548
1.00
94.32
N


ATOM
1085
CA
VAL
A
137
91.324
16.244
5.012
1.00
87.90
C


ATOM
1086
CB
VAL
A
137
90.656
17.503
4.443
1.00
88.76
C


ATOM
1087
CG1
VAL
A
137
89.238
17.622
4.957
1.00
94.38
C


ATOM
1088
CG2
VAL
A
137
91.460
18.733
4.840
1.00
86.92
C


ATOM
1089
C
VAL
A
137
90.590
14.932
4.727
1.00
85.62
C


ATOM
1090
O
VAL
A
137
89.553
14.884
4.065
1.00
85.99
O


ATOM
1091
N
TRP
A
138
91.219
13.862
5.207
1.00
81.26
N


ATOM
1092
CA
TRP
A
138
90.633
12.533
5.250
1.00
80.06
C


ATOM
1093
CB
TRP
A
138
91.206
11.622
4.161
1.00
78.20
C


ATOM
1094
CG
TRP
A
138
90.416
10.367
4.023
1.00
74.91
C


ATOM
1095
CD1
TRP
A
138
90.803
9.111
4.369
1.00
74.39
C


ATOM
1096
NE1
TRP
A
138
89.790
8.218
4.115
1.00
76.74
N


ATOM
1097
CE2
TRP
A
138
88.714
8.900
3.612
1.00
76.01
C


ATOM
1098
CD2
TRP
A
138
89.073
10.259
3.545
1.00
74.70
C


ATOM
1099
CE3
TRP
A
138
88.142
11.181
3.055
1.00
74.89
C


ATOM
1100
CZ3
TRP
A
138
86.896
10.722
2.655
1.00
76.10
C


ATOM
1101
CH2
TRP
A
138
86.567
9.361
2.733
1.00
77.44
C


ATOM
1102
CZ2
TRP
A
138
87.460
8.436
3.207
1.00
77.43
C


ATOM
1103
C
TRP
A
138
90.904
11.958
6.643
1.00
80.76
C


ATOM
1104
O
TRP
A
138
89.991
11.459
7.303
1.00
79.36
O


ATOM
1105
N
TYR
A
139
92.166
12.034
7.071
1.00
82.51
N


ATOM
1106
CA
TYR
A
139
92.581
11.601
8.401
1.00
81.56
C


ATOM
1107
CB
TYR
A
139
93.916
10.861
8.339
1.00
80.89
C


ATOM
1108
CG
TYR
A
139
94.018
9.811
7.257
1.00
80.17
C


ATOM
1109
CD1
TYR
A
139
93.330
8.606
7.359
1.00
80.27
C


ATOM
1110
CE1
TYR
A
139
93.437
7.637
6.374
1.00
82.65
C


ATOM
1111
CZ
TYR
A
139
94.248
7.865
5.272
1.00
81.80
C


ATOM
1112
OH
TYR
A
139
94.359
6.909
4.287
1.00
81.17
O


ATOM
1113
CE2
TYR
A
139
94.946
9.050
5.155
1.00
80.06
C


ATOM
1114
CD2
TYR
A
139
94.832
10.011
6.144
1.00
79.78
C


ATOM
1115
C
TYR
A
139
92.750
12.826
9.296
1.00
81.52
C


ATOM
1116
O
TYR
A
139
93.288
13.844
8.860
1.00
82.26
O


ATOM
1117
N
ARG
A
140
92.303
12.717
10.546
1.00
81.61
N


ATOM
1118
CA
ARG
A
140
92.458
13.798
11.522
1.00
80.81
C


ATOM
1119
CB
ARG
A
140
91.682
13.503
12.802
1.00
80.92
C


ATOM
1120
CG
ARG
A
140
91.965
14.496
13.916
1.00
81.79
C


ATOM
1121
CD
ARG
A
140
90.903
14.448
14.997
1.00
85.18
C


ATOM
1122
NE
ARG
A
140
90.964
13.227
15.803
1.00
86.47
N


ATOM
1123
CZ
ARG
A
140
91.715
13.062
16.892
1.00
84.38
C


ATOM
1124
NH1
ARG
A
140
91.672
11.905
17.545
1.00
85.39
N


ATOM
1125
NH2
ARG
A
140
92.506
14.034
17.339
1.00
83.04
N


ATOM
1126
C
ARG
A
140
93.927
14.003
11.857
1.00
79.50
C


ATOM
1127
O
ARG
A
140
94.402
15.133
11.904
1.00
79.49
O


ATOM
1128
N
PHE
A
141
94.631
12.903
12.110
1.00
78.69
N


ATOM
1129
CA
PHE
A
141
96.063
12.951
12.362
1.00
78.46
C


ATOM
1130
CB
PHE
A
141
96.504
11.793
13.256
1.00
79.59
C


ATOM
1131
CG
PHE
A
141
95.953
11.862
14.650
1.00
80.07
C


ATOM
1132
CD1
PHE
A
141
96.507
12.721
15.588
1.00
80.90
C


ATOM
1133
CE1
PHE
A
141
96.005
12.785
16.875
1.00
83.01
C


ATOM
1134
CZ
PHE
A
141
94.941
11.980
17.240
1.00
82.71
C


ATOM
1135
CE2
PHE
A
141
94.382
11.119
16.314
1.00
82.15
C


ATOM
1136
CD2
PHE
A
141
94.888
11.062
15.029
1.00
81.39
C


ATOM
1137
C
PHE
A
141
96.782
12.898
11.022
1.00
77.36
C


ATOM
1138
O
PHE
A
141
97.094
11.821
10.518
1.00
77.71
O


ATOM
1139
N
THR
A
142
97.023
14.072
10.447
1.00
76.07
N


ATOM
1140
CA
THR
A
142
97.678
14.188
9.150
1.00
76.31
C


ATOM
1141
CB
THR
A
142
96.990
15.256
8.278
1.00
76.58
C


ATOM
1142
OG1
THR
A
142
95.643
14.850
7.996
1.00
77.62
O


ATOM
1143
CG2
THR
A
142
97.737
15.450
6.964
1.00
77.49
C


ATOM
1144
C
THR
A
142
99.147
14.545
9.334
1.00
76.47
C


ATOM
1145
O
THR
A
142
99.472
15.623
9.829
1.00
76.20
O


ATOM
1146
N
ASP
A
143
100.027
13.633
8.927
1.00
77.81
N


ATOM
1147
CA
ASP
A
143
101.468
13.842
9.038
1.00
78.46
C


ATOM
1148
CB
ASP
A
143
102.212
12.500
9.032
1.00
81.65
C


ATOM
1149
CG
ASP
A
143
101.879
11.633
10.239
1.00
83.58
C


ATOM
1150
OD1
ASP
A
143
101.038
12.040
11.070
1.00
85.51
O


ATOM
1151
OD2
ASP
A
143
102.467
10.539
10.354
1.00
84.80
O


ATOM
1152
C
ASP
A
143
101.993
14.713
7.903
1.00
74.97
C


ATOM
1153
O
ASP
A
143
101.479
14.670
6.785
1.00
77.14
O


ATOM
1154
N
PHE
A
144
103.021
15.498
8.210
1.00
71.79
N


ATOM
1155
CA
PHE
A
144
103.688
16.348
7.237
1.00
71.00
C


ATOM
1156
CB
PHE
A
144
103.379
17.820
7.507
1.00
69.59
C


ATOM
1157
CG
PHE
A
144
101.965
18.210
7.182
1.00
69.05
C


ATOM
1158
CD1
PHE
A
144
100.983
18.185
8.158
1.00
69.25
C


ATOM
1159
CE1
PHE
A
144
99.678
18.543
7.860
1.00
69.31
C


ATOM
1160
CZ
PHE
A
144
99.341
18.931
6.577
1.00
67.47
C


ATOM
1161
CE2
PHE
A
144
100.311
18.962
5.593
1.00
67.42
C


ATOM
1162
CD2
PHE
A
144
101.614
18.600
5.896
1.00
68.29
C


ATOM
1163
C
PHE
A
144
105.190
16.100
7.311
1.00
73.12
C


ATOM
1164
O
PHE
A
144
105.820
16.379
8.328
1.00
71.85
O


ATOM
1165
N
GLN
A
145
105.755
15.570
6.227
1.00
78.05
N


ATOM
1166
CA
GLN
A
145
107.182
15.262
6.170
1.00
77.96
C


ATOM
1167
CB
GLN
A
145
107.504
14.360
4.975
1.00
80.55
C


ATOM
1168
CG
GLN
A
145
106.704
13.064
4.915
1.00
82.81
C


ATOM
1169
CD
GLN
A
145
106.892
12.190
6.142
1.00
85.81
C


ATOM
1170
OE1
GLN
A
145
107.994
12.091
6.688
1.00
87.14
O


ATOM
1171
NE2
GLN
A
145
105.816
11.537
6.575
1.00
87.99
N


ATOM
1172
C
GLN
A
145
107.965
16.559
6.056
1.00
76.90
C


ATOM
1173
O
GLN
A
145
107.702
17.368
5.168
1.00
77.08
O


ATOM
1174
N
VAL
A
146
108.920
16.754
6.961
1.00
75.97
N


ATOM
1175
CA
VAL
A
146
109.732
17.964
6.982
1.00
75.59
C


ATOM
1176
CB
VAL
A
146
110.064
18.389
8.425
1.00
75.15
C


ATOM
1177
CG1
VAL
A
146
110.804
19.720
8.442
1.00
75.39
C


ATOM
1178
CG2
VAL
A
146
108.795
18.483
9.259
1.00
74.27
C


ATOM
1179
C
VAL
A
146
111.029
17.690
6.231
1.00
76.30
C


ATOM
1180
O
VAL
A
146
111.608
16.613
6.385
1.00
76.96
O


ATOM
1181
N
PRO
A
147
111.487
18.649
5.404
1.00
78.68
N


ATOM
1182
CA
PRO
A
147
112.755
18.431
4.701
1.00
81.84
C


ATOM
1183
CB
PRO
A
147
112.881
19.659
3.787
1.00
80.60
C


ATOM
1184
CG
PRO
A
147
111.513
20.234
3.693
1.00
79.84
C


ATOM
1185
CD
PRO
A
147
110.823
19.894
4.977
1.00
79.51
C


ATOM
1186
C
PRO
A
147
113.941
18.347
5.661
1.00
86.08
C


ATOM
1187
O
PRO
A
147
113.938
19.000
6.706
1.00
86.09
O


ATOM
1188
N
GLU
A
148
114.939
17.545
5.307
1.00
91.96
N


ATOM
1189
CA
GLU
A
148
116.120
17.368
6.150
1.00
97.64
C


ATOM
1190
CB
GLU
A
148
116.968
16.200
5.636
1.00
101.74
C


ATOM
1191
CG
GLU
A
148
118.213
15.911
6.463
1.00
107.11
C


ATOM
1192
CD
GLU
A
148
119.079
14.827
5.853
1.00
113.41
C


ATOM
1193
OE1
GLU
A
148
118.525
13.806
5.393
1.00
120.31
O


ATOM
1194
OE2
GLU
A
148
120.318
14.993
5.842
1.00
118.08
O


ATOM
1195
C
GLU
A
148
116.971
18.637
6.223
1.00
98.80
C


ATOM
1196
O
GLU
A
148
117.497
18.973
7.284
1.00
99.60
O


ATOM
1197
N
ARG
A
149
117.092
19.345
5.102
1.00
100.31
N


ATOM
1198
CA
ARG
A
149
117.944
20.535
5.026
1.00
102.05
C


ATOM
1199
CB
ARG
A
149
118.496
20.691
3.602
1.00
109.61
C


ATOM
1200
CG
ARG
A
149
119.367
19.534
3.140
1.00
116.76
C


ATOM
1201
CD
ARG
A
149
119.858
19.745
1.716
1.00
125.71
C


ATOM
1202
NE
ARG
A
149
120.677
18.626
1.239
1.00
133.21
N


ATOM
1203
CZ
ARG
A
149
121.985
18.479
1.460
1.00
133.30
C


ATOM
1204
NH1
ARG
A
149
122.666
19.375
2.173
1.00
135.95
N


ATOM
1205
NH2
ARG
A
149
122.619
17.417
0.970
1.00
129.76
N


ATOM
1206
C
ARG
A
149
117.261
21.839
5.471
1.00
96.88
C


ATOM
1207
O
ARG
A
149
117.676
22.925
5.055
1.00
95.81
O


ATOM
1208
N
MET
A
150
116.233
21.746
6.316
1.00
90.98
N


ATOM
1209
CA
MET
A
150
115.560
22.943
6.824
1.00
89.04
C


ATOM
1210
CB
MET
A
150
114.235
22.594
7.512
1.00
88.98
C


ATOM
1211
CG
MET
A
150
113.137
22.104
6.582
1.00
89.61
C


ATOM
1212
SD
MET
A
150
112.456
23.348
5.461
1.00
90.13
S


ATOM
1213
CE
MET
A
150
111.604
24.446
6.585
1.00
88.70
C


ATOM
1214
C
MET
A
150
116.472
23.659
7.818
1.00
88.28
C


ATOM
1215
O
MET
A
150
116.906
23.054
8.797
1.00
89.76
O


ATOM
1216
N
PRO
A
151
116.768
24.949
7.570
1.00
87.50
N


ATOM
1217
CA
PRO
A
151
117.634
25.717
8.464
1.00
88.75
C


ATOM
1218
CB
PRO
A
151
117.986
26.949
7.630
1.00
87.34
C


ATOM
1219
CG
PRO
A
151
116.809
27.138
6.747
1.00
87.38
C


ATOM
1220
CD
PRO
A
151
116.305
25.760
6.430
1.00
87.98
C


ATOM
1221
C
PRO
A
151
116.922
26.131
9.753
1.00
90.96
C


ATOM
1222
O
PRO
A
151
115.692
26.071
9.816
1.00
91.16
O


ATOM
1223
N
PRO
A
152
117.688
26.558
10.775
1.00
91.63
N


ATOM
1224
CA
PRO
A
152
117.083
26.959
12.038
1.00
91.53
C


ATOM
1225
CB
PRO
A
152
118.278
27.020
12.986
1.00
92.45
C


ATOM
1226
CG
PRO
A
152
119.412
27.417
12.110
1.00
92.47
C


ATOM
1227
CD
PRO
A
152
119.150
26.757
10.786
1.00
92.22
C


ATOM
1228
C
PRO
A
152
116.417
28.324
11.934
1.00
91.29
C


ATOM
1229
O
PRO
A
152
116.912
29.203
11.227
1.00
87.61
O


ATOM
1230
N
CYS
A
153
115.303
28.490
12.638
1.00
95.22
N


ATOM
1231
CA
CYS
A
153
114.562
29.747
12.624
1.00
100.58
C


ATOM
1232
CB
CYS
A
153
113.097
29.506
13.001
1.00
105.48
C


ATOM
1233
SG
CYS
A
153
112.131
28.865
11.616
1.00
110.80
S


ATOM
1234
C
CYS
A
153
115.197
30.783
13.546
1.00
99.11
C


ATOM
1235
O
CYS
A
153
115.962
30.426
14.440
1.00
100.03
O


ATOM
1236
N
PRO
A
154
114.883
32.075
13.328
1.00
99.89
N


ATOM
1237
CA
PRO
A
154
115.453
33.146
14.152
1.00
103.15
C


ATOM
1238
CB
PRO
A
154
114.838
34.426
13.556
1.00
102.45
C


ATOM
1239
CG
PRO
A
154
113.722
33.979
12.679
1.00
101.24
C


ATOM
1240
CD
PRO
A
154
114.096
32.614
12.206
1.00
101.08
C


ATOM
1241
C
PRO
A
154
115.136
33.030
15.655
1.00
106.30
C


ATOM
1242
O
PRO
A
154
114.291
32.223
16.043
1.00
103.59
O


ATOM
1243
N
PRO
A
155
115.820
33.835
16.494
1.00
109.83
N


ATOM
1244
CA
PRO
A
155
115.691
33.817
17.956
1.00
112.03
C


ATOM
1245
CB
PRO
A
155
116.332
35.143
18.369
1.00
114.04
C


ATOM
1246
CG
PRO
A
155
117.382
35.371
17.341
1.00
113.75
C


ATOM
1247
CD
PRO
A
155
116.841
34.809
16.056
1.00
111.64
C


ATOM
1248
C
PRO
A
155
114.265
33.733
18.509
1.00
111.44
C


ATOM
1249
O
PRO
A
155
114.016
32.954
19.434
1.00
112.99
O


ATOM
1250
N
GLY
A
156
113.345
34.518
17.951
1.00
108.40
N


ATOM
1251
CA
GLY
A
156
111.954
34.533
18.417
1.00
107.86
C


ATOM
1252
C
GLY
A
156
111.032
33.536
17.729
1.00
106.15
C


ATOM
1253
O
GLY
A
156
109.811
33.688
17.773
1.00
101.23
O


ATOM
1254
N
GLY
A
157
111.609
32.511
17.105
1.00
106.69
N


ATOM
1255
CA
GLY
A
157
110.837
31.524
16.355
1.00
104.57
C


ATOM
1256
C
GLY
A
157
110.410
32.056
14.998
1.00
101.90
C


ATOM
1257
O
GLY
A
157
110.762
33.174
14.618
1.00
104.11
O


ATOM
1258
N
CYS
A
158
109.652
31.247
14.266
1.00
98.35
N


ATOM
1259
CA
CYS
A
158
109.128
31.629
12.955
1.00
98.02
C


ATOM
1260
CB
CYS
A
158
109.898
30.915
11.840
1.00
99.92
C


ATOM
1261
SG
CYS
A
158
110.210
29.171
12.180
1.00
111.88
S


ATOM
1262
C
CYS
A
158
107.637
31.313
12.888
1.00
93.44
C


ATOM
1263
O
CYS
A
158
107.072
30.765
13.837
1.00
94.72
O


ATOM
1264
N
HIS
A
159
107.001
31.678
11.779
1.00
89.00
N


ATOM
1265
CA
HIS
A
159
105.567
31.461
11.600
1.00
86.06
C


ATOM
1266
CB
HIS
A
159
104.862
32.797
11.384
1.00
86.11
C


ATOM
1267
CG
HIS
A
159
104.714
33.602
12.634
1.00
85.86
C


ATOM
1268
ND1
HIS
A
159
105.771
34.260
13.224
1.00
85.50
N


ATOM
1269
CE1
HIS
A
159
105.349
34.875
14.314
1.00
87.12
C


ATOM
1270
NE2
HIS
A
159
104.056
34.642
14.451
1.00
85.96
N


ATOM
1271
CD2
HIS
A
159
103.634
33.850
13.412
1.00
86.34
C


ATOM
1272
C
HIS
A
159
105.258
30.514
10.447
1.00
83.23
C


ATOM
1273
O
HIS
A
159
105.976
30.474
9.448
1.00
81.54
O


ATOM
1274
N
CYS
A
160
104.185
29.746
10.617
1.00
80.95
N


ATOM
1275
CA
CYS
A
160
103.723
28.792
9.620
1.00
80.06
C


ATOM
1276
CB
CYS
A
160
103.953
27.364
10.107
1.00
82.18
C


ATOM
1277
SG
CYS
A
160
105.680
26.861
10.200
1.00
88.40
S


ATOM
1278
C
CYS
A
160
102.240
28.985
9.361
1.00
78.26
C


ATOM
1279
O
CYS
A
160
101.560
29.715
10.086
1.00
76.85
O


ATOM
1280
N
ALA
A
161
101.743
28.316
8.325
1.00
76.08
N


ATOM
1281
CA
ALA
A
161
100.328
28.373
7.982
1.00
73.79
C


ATOM
1282
CB
ALA
A
161
100.049
29.573
7.094
1.00
73.37
C


ATOM
1283
C
ALA
A
161
99.888
27.088
7.295
1.00
71.21
C


ATOM
1284
O
ALA
A
161
100.631
26.515
6.500
1.00
72.15
O


ATOM
1285
N
TRP
A
162
98.683
26.637
7.625
1.00
69.66
N


ATOM
1286
CA
TRP
A
162
98.103
25.446
7.022
1.00
68.18
C


ATOM
1287
CB
TRP
A
162
97.434
24.575
8.083
1.00
66.71
C


ATOM
1288
CG
TRP
A
162
96.645
23.429
7.522
1.00
64.24
C


ATOM
1289
CD1
TRP
A
162
97.124
22.215
7.134
1.00
63.87
C


ATOM
1290
NE1
TRP
A
162
96.099
21.421
6.686
1.00
62.98
N


ATOM
1291
CE2
TRP
A
162
94.926
22.119
6.779
1.00
62.55
C


ATOM
1292
CD2
TRP
A
162
95.232
23.390
7.304
1.00
62.40
C


ATOM
1293
CE3
TRP
A
162
94.194
24.305
7.505
1.00
63.45
C


ATOM
1294
CZ3
TRP
A
162
92.898
23.927
7.176
1.00
64.28
C


ATOM
1295
CH2
TRP
A
162
92.626
22.655
6.651
1.00
64.06
C


ATOM
1296
CZ2
TRP
A
162
93.625
21.739
6.448
1.00
63.81
C


ATOM
1297
C
TRP
A
162
97.083
25.886
5.988
1.00
67.79
C


ATOM
1298
O
TRP
A
162
96.149
26.617
6.309
1.00
67.02
O


ATOM
1299
N
PHE
A
163
97.266
25.439
4.750
1.00
67.99
N


ATOM
1300
CA
PHE
A
163
96.366
25.793
3.657
1.00
65.65
C


ATOM
1301
CB
PHE
A
163
97.140
26.477
2.538
1.00
62.67
C


ATOM
1302
CG
PHE
A
163
97.753
27.784
2.935
1.00
59.96
C


ATOM
1303
CD1
PHE
A
163
99.060
27.843
3.393
1.00
57.85
C


ATOM
1304
CE1
PHE
A
163
99.628
29.055
3.745
1.00
58.02
C


ATOM
1305
CZ
PHE
A
163
98.889
30.224
3.644
1.00
58.37
C


ATOM
1306
CE2
PHE
A
163
97.584
30.177
3.188
1.00
58.49
C


ATOM
1307
CD2
PHE
A
163
97.023
28.961
2.836
1.00
59.66
C


ATOM
1308
C
PHE
A
163
95.669
24.561
3.102
1.00
65.65
C


ATOM
1309
O
PHE
A
163
96.204
23.462
3.175
1.00
64.46
O


ATOM
1310
N
TRP
A
164
94.484
24.762
2.530
1.00
66.84
N


ATOM
1311
CA
TRP
A
164
93.709
23.672
1.948
1.00
66.24
C


ATOM
1312
CB
TRP
A
164
93.004
22.883
3.057
1.00
66.14
C


ATOM
1313
CG
TRP
A
164
92.024
21.853
2.559
1.00
64.96
C


ATOM
1314
CD1
TRP
A
164
92.256
20.891
1.626
1.00
64.45
C


ATOM
1315
NE1
TRP
A
164
91.129
20.124
1.444
1.00
64.11
N


ATOM
1316
CE2
TRP
A
164
90.145
20.573
2.282
1.00
62.02
C


ATOM
1317
CD2
TRP
A
164
90.674
21.661
3.006
1.00
64.79
C


ATOM
1318
CE3
TRP
A
164
89.861
22.304
3.948
1.00
66.51
C


ATOM
1319
CZ3
TRP
A
164
88.559
21.847
4.128
1.00
64.78
C


ATOM
1320
CH2
TRP
A
164
88.065
20.761
3.389
1.00
61.88
C


ATOM
1321
CZ2
TRP
A
164
88.842
20.112
2.467
1.00
60.20
C


ATOM
1322
C
TRP
A
164
92.684
24.174
0.937
1.00
65.82
C


ATOM
1323
O
TRP
A
164
91.957
25.128
1.202
1.00
65.09
O


ATOM
1324
N
ILE
A
165
92.654
23.531
−0.227
1.00
68.37
N


ATOM
1325
CA
ILE
A
165
91.652
23.797
−1.261
1.00
68.83
C


ATOM
1326
CB
ILE
A
165
92.247
24.510
−2.490
1.00
67.90
C


ATOM
1327
CG1
ILE
A
165
92.757
25.897
−2.091
1.00
67.98
C


ATOM
1328
CD1
ILE
A
165
93.456
26.654
−3.199
1.00
69.23
C


ATOM
1329
CG2
ILE
A
165
91.195
24.624
−3.588
1.00
69.24
C


ATOM
1330
C
ILE
A
165
91.067
22.451
−1.664
1.00
68.08
C


ATOM
1331
O
ILE
A
165
91.808
21.515
−1.962
1.00
69.04
O


ATOM
1332
N
HIS
A
166
89.742
22.366
−1.682
1.00
68.83
N


ATOM
1333
CA
HIS
A
166
89.053
21.102
−1.927
1.00
71.85
C


ATOM
1334
CB
HIS
A
166
87.972
20.887
−0.864
1.00
71.51
C


ATOM
1335
CG
HIS
A
166
86.856
21.878
−0.925
1.00
72.05
C


ATOM
1336
ND1
HIS
A
166
85.731
21.680
−1.693
1.00
75.81
N


ATOM
1337
CE1
HIS
A
166
84.918
22.711
−1.555
1.00
76.33
C


ATOM
1338
NE2
HIS
A
166
85.478
23.574
−0.727
1.00
75.99
N


ATOM
1339
CD2
HIS
A
166
86.693
23.077
−0.320
1.00
74.28
C


ATOM
1340
C
HIS
A
166
88.446
21.000
−3.331
1.00
73.81
C


ATOM
1341
O
HIS
A
166
88.442
21.962
−4.096
1.00
72.40
O


ATOM
1342
N
SER
A
167
87.926
19.817
−3.644
1.00
75.65
N


ATOM
1343
CA
SER
A
167
87.361
19.532
−4.953
1.00
78.55
C


ATOM
1344
CB
SER
A
167
87.006
18.047
−5.042
1.00
82.08
C


ATOM
1345
OG
SER
A
167
86.547
17.699
−6.338
1.00
86.01
O


ATOM
1346
C
SER
A
167
86.119
20.376
−5.238
1.00
78.52
C


ATOM
1347
O
SER
A
167
85.413
20.761
−4.307
1.00
79.61
O


ATOM
1348
N
PRO
A
168
85.852
20.677
−6.526
1.00
78.75
N


ATOM
1349
CA
PRO
A
168
84.641
21.425
−6.881
1.00
78.88
C


ATOM
1350
CB
PRO
A
168
84.899
21.874
−8.326
1.00
78.02
C


ATOM
1351
CG
PRO
A
168
86.326
21.574
−8.603
1.00
78.49
C


ATOM
1352
CD
PRO
A
168
86.703
20.447
−7.704
1.00
78.14
C


ATOM
1353
C
PRO
A
168
83.367
20.588
−6.835
1.00
80.35
C


ATOM
1354
O
PRO
A
168
82.273
21.146
−6.742
1.00
81.61
O


ATOM
1355
N
ASP
A
169
83.510
19.266
−6.896
1.00
80.49
N


ATOM
1356
CA
ASP
A
169
82.354
18.370
−6.936
1.00
82.01
C


ATOM
1357
CB
ASP
A
169
82.756
17.006
−7.512
1.00
84.94
C


ATOM
1358
CG
ASP
A
169
83.697
16.240
−6.606
1.00
87.76
C


ATOM
1359
OD1
ASP
A
169
84.189
16.833
−5.623
1.00
92.11
O


ATOM
1360
OD2
ASP
A
169
83.948
15.046
−6.877
1.00
90.58
O


ATOM
1361
C
ASP
A
169
81.649
18.172
−5.591
1.00
80.62
C


ATOM
1362
O
ASP
A
169
80.693
17.404
−5.515
1.00
80.75
O


ATOM
1363
N
SER
A
170
82.113
18.839
−4.536
1.00
81.20
N


ATOM
1364
CA
SER
A
170
81.455
18.742
−3.232
1.00
83.20
C


ATOM
1365
CB
SER
A
170
82.153
17.712
−2.346
1.00
82.93
C


ATOM
1366
OG
SER
A
170
81.443
17.534
−1.132
1.00
81.13
O


ATOM
1367
C
SER
A
170
81.408
20.090
−2.522
1.00
83.08
C


ATOM
1368
O
SER
A
170
82.436
20.610
−2.093
1.00
82.18
O


ATOM
1369
N
GLY
A
171
80.206
20.652
−2.424
1.00
84.35
N


ATOM
1370
CA
GLY
A
171
79.982
21.907
−1.718
1.00
86.21
C


ATOM
1371
C
GLY
A
171
80.536
23.145
−2.399
1.00
85.87
C


ATOM
1372
O
GLY
A
171
81.128
23.072
−3.480
1.00
85.11
O


ATOM
1373
N
GLY
A
172
80.336
24.287
−1.745
1.00
86.38
N


ATOM
1374
CA
GLY
A
172
80.805
25.574
−2.247
1.00
84.86
C


ATOM
1375
C
GLY
A
172
82.315
25.662
−2.207
1.00
81.45
C


ATOM
1376
O
GLY
A
172
82.956
25.046
−1.357
1.00
81.76
O


ATOM
1377
N
GLU
A
173
82.880
26.442
−3.120
1.00
79.46
N


ATOM
1378
CA
GLU
A
173
84.325
26.534
−3.252
1.00
80.95
C


ATOM
1379
CB
GLU
A
173
84.712
26.590
−4.732
1.00
82.70
C


ATOM
1380
CG
GLU
A
173
86.160
26.234
−5.000
1.00
83.57
C


ATOM
1381
CD
GLU
A
173
86.508
24.803
−4.637
1.00
86.05
C


ATOM
1382
OE1
GLU
A
173
85.904
23.875
−5.209
1.00
88.87
O


ATOM
1383
OE2
GLU
A
173
87.404
24.608
−3.790
1.00
89.20
O


ATOM
1384
C
GLU
A
173
84.884
27.736
−2.490
1.00
80.15
C


ATOM
1385
O
GLU
A
173
84.255
28.792
−2.417
1.00
77.51
O


ATOM
1386
N
GLN
A
174
86.078
27.551
−1.931
1.00
81.16
N


ATOM
1387
CA
GLN
A
174
86.731
28.546
−1.085
1.00
78.07
C


ATOM
1388
CB
GLN
A
174
85.999
28.623
0.256
1.00
76.04
C


ATOM
1389
CG
GLN
A
174
85.976
27.296
1.025
1.00
75.95
C


ATOM
1390
CD
GLN
A
174
84.636
26.569
1.067
1.00
75.19
C


ATOM
1391
OE1
GLN
A
174
84.600
25.370
1.346
1.00
78.72
O


ATOM
1392
NE2
GLN
A
174
83.537
27.274
0.816
1.00
75.03
N


ATOM
1393
C
GLN
A
174
88.182
28.127
−0.826
1.00
78.53
C


ATOM
1394
O
GLN
A
174
88.661
27.152
−1.412
1.00
83.04
O


ATOM
1395
N
ILE
A
175
88.873
28.855
0.051
1.00
76.75
N


ATOM
1396
CA
ILE
A
175
90.186
28.425
0.545
1.00
76.57
C


ATOM
1397
CB
ILE
A
175
91.345
29.321
0.057
1.00
76.05
C


ATOM
1398
CG1
ILE
A
175
91.363
30.668
0.788
1.00
75.36
C


ATOM
1399
CD1
ILE
A
175
92.640
31.458
0.585
1.00
74.21
C


ATOM
1400
CG2
ILE
A
175
91.255
29.508
−1.451
1.00
77.02
C


ATOM
1401
C
ILE
A
175
90.161
28.378
2.070
1.00
76.43
C


ATOM
1402
O
ILE
A
175
89.246
28.910
2.700
1.00
77.44
O


ATOM
1403
N
TYR
A
176
91.169
27.731
2.649
1.00
77.61
N


ATOM
1404
CA
TYR
A
176
91.292
27.601
4.101
1.00
77.05
C


ATOM
1405
CB
TYR
A
176
90.988
26.167
4.531
1.00
76.53
C


ATOM
1406
CG
TYR
A
176
89.539
25.780
4.364
1.00
76.89
C


ATOM
1407
CD1
TYR
A
176
89.042
25.385
3.130
1.00
77.36
C


ATOM
1408
CE1
TYR
A
176
87.714
25.029
2.976
1.00
77.51
C


ATOM
1409
CZ
TYR
A
176
86.865
25.067
4.063
1.00
76.94
C


ATOM
1410
OH
TYR
A
176
85.547
24.719
3.911
1.00
79.19
O


ATOM
1411
CE2
TYR
A
176
87.332
25.456
5.299
1.00
76.88
C


ATOM
1412
CD2
TYR
A
176
88.663
25.809
5.445
1.00
78.44
C


ATOM
1413
C
TYR
A
176
92.696
27.988
4.546
1.00
77.51
C


ATOM
1414
O
TYR
A
176
93.678
27.575
3.932
1.00
75.08
O


ATOM
1415
N
MET
A
177
92.784
28.783
5.610
1.00
80.01
N


ATOM
1416
CA
MET
A
177
94.074
29.209
6.154
1.00
77.80
C


ATOM
1417
CB
MET
A
177
94.488
30.561
5.577
1.00
78.47
C


ATOM
1418
CG
MET
A
177
95.844
31.040
6.070
1.00
77.88
C


ATOM
1419
SD
MET
A
177
96.289
32.658
5.429
1.00
79.52
S


ATOM
1420
CE
MET
A
177
97.914
32.856
6.160
1.00
79.52
C


ATOM
1421
C
MET
A
177
94.028
29.309
7.674
1.00
74.45
C


ATOM
1422
O
MET
A
177
93.098
29.879
8.239
1.00
73.78
O


ATOM
1423
N
ASN
A
178
95.050
28.750
8.317
1.00
72.63
N


ATOM
1424
CA
ASN
A
178
95.213
28.808
9.762
1.00
68.48
C


ATOM
1425
CB
ASN
A
178
94.727
27.510
10.410
1.00
68.50
C


ATOM
1426
CG
ASN
A
178
93.215
27.425
10.498
1.00
71.24
C


ATOM
1427
OD1
ASN
A
178
92.615
26.424
10.105
1.00
73.50
O


ATOM
1428
ND2
ASN
A
178
92.588
28.473
11.026
1.00
72.32
N


ATOM
1429
C
ASN
A
178
96.680
29.037
10.096
1.00
68.03
C


ATOM
1430
O
ASN
A
178
97.489
28.114
10.006
1.00
67.06
O


ATOM
1431
N
GLY
A
179
97.022
30.268
10.467
1.00
69.28
N


ATOM
1432
CA
GLY
A
179
98.395
30.613
10.837
1.00
72.01
C


ATOM
1433
C
GLY
A
179
98.720
30.206
12.266
1.00
75.63
C


ATOM
1434
O
GLY
A
179
97.822
30.091
13.108
1.00
76.00
O


ATOM
1435
N
PHE
A
180
100.002
29.988
12.547
1.00
76.09
N


ATOM
1436
CA
PHE
A
180
100.427
29.579
13.883
1.00
77.15
C


ATOM
1437
CB
PHE
A
180
100.021
28.126
14.143
1.00
78.41
C


ATOM
1438
CG
PHE
A
180
100.700
27.136
13.248
1.00
79.99
C


ATOM
1439
CD1
PHE
A
180
100.268
26.952
11.945
1.00
79.59
C


ATOM
1440
CE1
PHE
A
180
100.890
26.037
11.122
1.00
77.76
C


ATOM
1441
CZ
PHE
A
180
101.948
25.286
11.600
1.00
76.93
C


ATOM
1442
CE2
PHE
A
180
102.382
25.456
12.892
1.00
79.56
C


ATOM
1443
CD2
PHE
A
180
101.759
26.375
13.714
1.00
80.71
C


ATOM
1444
C
PHE
A
180
101.930
29.735
14.095
1.00
79.15
C


ATOM
1445
O
PHE
A
180
102.698
29.831
13.136
1.00
78.34
O


ATOM
1446
N
GLN
A
181
102.337
29.759
15.363
1.00
81.63
N


ATOM
1447
CA
GLN
A
181
103.748
29.842
15.723
1.00
82.49
C


ATOM
1448
CB
GLN
A
181
103.922
30.335
17.160
1.00
85.63
C


ATOM
1449
CG
GLN
A
181
103.581
31.800
17.376
1.00
87.98
C


ATOM
1450
CD
GLN
A
181
103.922
32.281
18.779
1.00
87.06
C


ATOM
1451
OE1
GLN
A
181
104.026
31.487
19.715
1.00
84.92
O


ATOM
1452
NE2
GLN
A
181
104.095
33.590
18.928
1.00
86.83
N


ATOM
1453
C
GLN
A
181
104.379
28.467
15.588
1.00
82.49
C


ATOM
1454
O
GLN
A
181
103.909
27.505
16.197
1.00
81.59
O


ATOM
1455
N
CYS
A
182
105.438
28.377
14.789
1.00
82.33
N


ATOM
1456
CA
CYS
A
182
106.152
27.123
14.597
1.00
82.80
C


ATOM
1457
CB
CYS
A
182
105.926
26.586
13.189
1.00
85.08
C


ATOM
1458
SG
CYS
A
182
106.333
27.768
11.889
1.00
88.27
S


ATOM
1459
C
CYS
A
182
107.642
27.302
14.822
1.00
82.53
C


ATOM
1460
O
CYS
A
182
108.136
28.420
14.963
1.00
80.43
O


ATOM
1461
N
ASN
A
183
108.350
26.180
14.858
1.00
83.98
N


ATOM
1462
CA
ASN
A
183
109.789
26.178
15.038
1.00
87.53
C


ATOM
1463
CB
ASN
A
183
110.127
26.372
16.515
1.00
94.35
C


ATOM
1464
CG
ASN
A
183
111.599
26.621
16.752
1.00
99.90
C


ATOM
1465
OD1
ASN
A
183
112.340
27.000
15.837
1.00
102.98
O


ATOM
1466
ND2
ASN
A
183
112.035
26.415
17.987
1.00
102.09
N


ATOM
1467
C
ASN
A
183
110.364
24.867
14.518
1.00
86.07
C


ATOM
1468
O
ASN
A
183
109.675
23.846
14.509
1.00
84.50
O


ATOM
1469
N
ILE
A
184
111.621
24.899
14.084
1.00
85.52
N


ATOM
1470
CA
ILE
A
184
112.261
23.724
13.500
1.00
85.50
C


ATOM
1471
CB
ILE
A
184
112.902
24.067
12.145
1.00
86.78
C


ATOM
1472
CG1
ILE
A
184
111.855
24.741
11.257
1.00
88.90
C


ATOM
1473
CD1
ILE
A
184
112.291
24.944
9.829
1.00
91.71
C


ATOM
1474
CG2
ILE
A
184
113.462
22.813
11.477
1.00
86.77
C


ATOM
1475
C
ILE
A
184
113.305
23.121
14.431
1.00
85.05
C


ATOM
1476
O
ILE
A
184
114.204
23.814
14.906
1.00
87.23
O


ATOM
1477
N
THR
A
185
113.172
21.819
14.673
1.00
84.65
N


ATOM
1478
CA
THR
A
185
114.090
21.070
15.519
1.00
84.52
C


ATOM
1479
CB
THR
A
185
113.324
20.290
16.607
1.00
83.63
C


ATOM
1480
OG1
THR
A
185
112.565
19.231
16.010
1.00
82.31
O


ATOM
1481
CG2
THR
A
185
112.382
21.212
17.373
1.00
82.88
C


ATOM
1482
C
THR
A
185
114.884
20.089
14.660
1.00
87.43
C


ATOM
1483
O
THR
A
185
114.461
19.731
13.562
1.00
92.86
O


ATOM
1484
N
GLY
A
186
116.033
19.654
15.163
1.00
89.40
N


ATOM
1485
CA
GLY
A
186
116.885
18.702
14.449
1.00
89.10
C


ATOM
1486
C
GLY
A
186
117.567
19.281
13.222
1.00
87.83
C


ATOM
1487
O
GLY
A
186
117.929
18.544
12.304
1.00
86.14
O


ATOM
1488
N
SER
A
187
117.760
20.599
13.215
1.00
87.16
N


ATOM
1489
CA
SER
A
187
118.376
21.288
12.084
1.00
87.75
C


ATOM
1490
CB
SER
A
187
118.233
22.803
12.249
1.00
86.93
C


ATOM
1491
OG
SER
A
187
118.824
23.495
11.163
1.00
87.00
O


ATOM
1492
C
SER
A
187
119.852
20.926
11.941
1.00
88.80
C


ATOM
1493
O
SER
A
187
120.620
21.057
12.892
1.00
91.38
O


ATOM
1494
N
THR
A
188
120.234
20.467
10.750
1.00
91.89
N


ATOM
1495
CA
THR
A
188
121.626
20.126
10.444
1.00
93.80
C


ATOM
1496
CB
THR
A
188
121.803
18.608
10.225
1.00
94.36
C


ATOM
1497
OG1
THR
A
188
121.083
18.199
9.055
1.00
97.73
O


ATOM
1498
CG2
THR
A
188
121.299
17.827
11.429
1.00
95.01
C


ATOM
1499
C
THR
A
188
122.085
20.876
9.193
1.00
95.01
C


ATOM
1500
O
THR
A
188
122.790
20.323
8.349
1.00
94.25
O


ATOM
1501
N
SER
A
189
121.677
22.139
9.084
1.00
97.50
N


ATOM
1502
CA
SER
A
189
122.010
22.974
7.930
1.00
98.32
C


ATOM
1503
CB
SER
A
189
121.191
22.547
6.711
1.00
97.46
C


ATOM
1504
OG
SER
A
189
121.468
23.375
5.596
1.00
96.80
O


ATOM
1505
C
SER
A
189
121.746
24.447
8.228
1.00
100.26
C


ATOM
1506
O
SER
A
189
120.976
24.773
9.128
1.00
100.80
O


ATOM
1507
N
HIS
A
190
122.402
25.327
7.475
1.00
100.89
N


ATOM
1508
CA
HIS
A
190
122.232
26.775
7.622
1.00
101.15
C


ATOM
1509
CB
HIS
A
190
123.489
27.394
8.244
1.00
104.71
C


ATOM
1510
CG
HIS
A
190
123.642
27.110
9.705
1.00
109.21
C


ATOM
1511
ND1
HIS
A
190
124.242
25.965
10.184
1.00
110.75
N


ATOM
1512
CE1
HIS
A
190
124.233
25.986
11.505
1.00
112.14
C


ATOM
1513
NE2
HIS
A
190
123.651
27.104
11.900
1.00
113.10
N


ATOM
1514
CD2
HIS
A
190
123.272
27.825
10.794
1.00
111.06
C


ATOM
1515
C
HIS
A
190
121.908
27.475
6.301
1.00
98.77
C


ATOM
1516
O
HIS
A
190
121.777
28.700
6.269
1.00
99.11
O


ATOM
1517
N
VAL
A
191
121.765
26.708
5.222
1.00
96.73
N


ATOM
1518
CA
VAL
A
191
121.453
27.279
3.913
1.00
92.97
C


ATOM
1519
CB
VAL
A
191
121.734
26.286
2.765
1.00
93.24
C


ATOM
1520
CG1
VAL
A
191
121.399
26.919
1.420
1.00
94.47
C


ATOM
1521
CG2
VAL
A
191
123.188
25.832
2.791
1.00
92.73
C


ATOM
1522
C
VAL
A
191
119.975
27.671
3.907
1.00
89.35
C


ATOM
1523
O
VAL
A
191
119.106
26.804
4.023
1.00
88.41
O


ATOM
1524
N
PRO
A
192
119.685
28.977
3.763
1.00
85.73
N


ATOM
1525
CA
PRO
A
192
118.304
29.454
3.837
1.00
85.92
C


ATOM
1526
CB
PRO
A
192
118.465
30.977
3.882
1.00
85.56
C


ATOM
1527
CG
PRO
A
192
119.733
31.239
3.152
1.00
85.62
C


ATOM
1528
CD
PRO
A
192
120.625
30.062
3.424
1.00
85.73
C


ATOM
1529
C
PRO
A
192
117.431
29.038
2.650
1.00
87.68
C


ATOM
1530
O
PRO
A
192
117.916
28.426
1.694
1.00
87.51
O


ATOM
1531
N
LEU
A
193
116.145
29.368
2.734
1.00
88.68
N


ATOM
1532
CA
LEU
A
193
115.191
29.059
1.675
1.00
88.77
C


ATOM
1533
CB
LEU
A
193
113.762
28.982
2.228
1.00
89.66
C


ATOM
1534
CG
LEU
A
193
113.369
27.730
3.019
1.00
91.71
C


ATOM
1535
CD1
LEU
A
193
114.294
27.487
4.203
1.00
93.84
C


ATOM
1536
CD2
LEU
A
193
111.925
27.843
3.485
1.00
90.96
C


ATOM
1537
C
LEU
A
193
115.258
30.117
0.582
1.00
90.31
C


ATOM
1538
O
LEU
A
193
115.552
31.282
0.852
1.00
90.47
O


ATOM
1539
N
ALA
A
194
114.984
29.701
−0.651
1.00
91.88
N


ATOM
1540
CA
ALA
A
194
114.947
30.620
−1.785
1.00
92.62
C


ATOM
1541
CB
ALA
A
194
115.054
29.851
−3.092
1.00
94.08
C


ATOM
1542
C
ALA
A
194
113.647
31.413
−1.744
1.00
92.46
C


ATOM
1543
O
ALA
A
194
112.663
30.965
−1.151
1.00
92.11
O


ATOM
1544
N
LYS
A
195
113.645
32.593
−2.361
1.00
93.79
N


ATOM
1545
CA
LYS
A
195
112.437
33.415
−2.412
1.00
96.51
C


ATOM
1546
CB
LYS
A
195
112.718
34.780
−3.041
1.00
101.11
C


ATOM
1547
CG
LYS
A
195
113.591
35.670
−2.171
1.00
108.63
C


ATOM
1548
CD
LYS
A
195
113.770
37.056
−2.769
1.00
116.33
C


ATOM
1549
CE
LYS
A
195
114.626
37.937
−1.870
1.00
118.72
C


ATOM
1550
NZ
LYS
A
195
114.852
39.289
−2.453
1.00
120.76
N


ATOM
1551
C
LYS
A
195
111.364
32.666
−3.196
1.00
94.08
C


ATOM
1552
O
LYS
A
195
111.553
32.383
−4.380
1.00
94.57
O


ATOM
1553
N
PRO
A
196
110.239
32.335
−2.537
1.00
89.68
N


ATOM
1554
CA
PRO
A
196
109.214
31.518
−3.174
1.00
89.92
C


ATOM
1555
CB
PRO
A
196
108.264
31.195
−2.021
1.00
90.30
C


ATOM
1556
CG
PRO
A
196
108.366
32.383
−1 .137
1.00
89.69
C


ATOM
1557
CD
PRO
A
196
109.794
32.837
−1.224
1.00
89.48
C


ATOM
1558
C
PRO
A
196
108.480
32.251
−4.291
1.00
88.68
C


ATOM
1559
O
PRO
A
196
108.298
33.467
−4.217
1.00
84.56
O


ATOM
1560
N
LYS
A
197
108.062
31.498
−5.308
1.00
89.24
N


ATOM
1561
CA
LYS
A
197
107.406
32.056
−6.486
1.00
90.03
C


ATOM
1562
CB
LYS
A
197
108.300
31.857
−7.708
1.00
94.64
C


ATOM
1563
CG
LYS
A
197
109.639
32.561
−7.567
1.00
102.22
C


ATOM
1564
CD
LYS
A
197
110.545
32.364
−8.768
1.00
108.84
C


ATOM
1565
CE
LYS
A
197
111.819
33.181
−8.599
1.00
114.08
C


ATOM
1566
NZ
LYS
A
197
112.776
33.008
−9.726
1.00
117.94
N


ATOM
1567
C
LYS
A
197
106.035
31.434
−6.711
1.00
87.01
C


ATOM
1568
O
LYS
A
197
105.739
30.359
−6.192
1.00
86.28
O


ATOM
1569
N
VAL
A
198
105.205
32.120
−7.492
1.00
85.50
N


ATOM
1570
CA
VAL
A
198
103.827
31.689
−7.739
1.00
84.79
C


ATOM
1571
CB
VAL
A
198
103.047
32.737
−8.567
1.00
84.93
C


ATOM
1572
CG1
VAL
A
198
101.643
32.239
−8.896
1.00
84.34
C


ATOM
1573
CG2
VAL
A
198
102.983
34.067
−7.822
1.00
84.73
C


ATOM
1574
C
VAL
A
198
103.783
30.337
−8.452
1.00
83.78
C


ATOM
1575
O
VAL
A
198
104.502
30.119
−9.426
1.00
82.25
O


ATOM
1576
N
ALA
A
199
102.938
29.438
−7.952
1.00
85.82
N


ATOM
1577
CA
ALA
A
199
102.791
28.103
−8.529
1.00
87.01
C


ATOM
1578
CB
ALA
A
199
102.153
27.159
−7.521
1.00
87.79
C


ATOM
1579
C
ALA
A
199
101.950
28.165
−9.799
1.00
86.64
C


ATOM
1580
O
ALA
A
199
100.884
28.778
−9.811
1.00
85.61
O


ATOM
1581
N
ARG
A
200
102.434
27.526
−10.862
1.00
87.46
N


ATOM
1582
CA
ARG
A
200
101.745
27.524
−12.153
1.00
85.78
C


ATOM
1583
CB
ARG
A
200
102.754
27.716
−13.284
1.00
87.93
C


ATOM
1584
CG
ARG
A
200
103.507
29.037
−13.218
1.00
90.52
C


ATOM
1585
CD
ARG
A
200
104.596
29.114
−14.276
1.00
92.57
C


ATOM
1586
NE
ARG
A
200
104.039
29.134
−15.626
1.00
94.90
N


ATOM
1587
CZ
ARG
A
200
103.594
30.223
−16.251
1.00
97.54
C


ATOM
1588
NH1
ARG
A
200
103.104
30.118
−17.481
1.00
100.03
N


ATOM
1589
NH2
ARG
A
200
103.630
31.416
−15.663
1.00
98.92
N


ATOM
1590
C
ARG
A
200
100.978
26.224
−12.355
1.00
83.28
C


ATOM
1591
O
ARG
A
200
101.387
25.176
−11.855
1.00
84.83
O


ATOM
1592
N
ARG
A
201
99.866
26.299
−13.087
1.00
82.76
N


ATOM
1593
CA
ARG
A
201
99.032
25.127
−13.374
1.00
84.44
C


ATOM
1594
CB
ARG
A
201
97.675
25.557
−13.940
1.00
82.09
C


ATOM
1595
CG
ARG
A
201
96.632
24.456
−13.958
1.00
79.77
C


ATOM
1596
CD
ARG
A
201
95.331
24.954
−14.554
1.00
79.28
C


ATOM
1597
NE
ARG
A
201
94.242
23.990
−14.392
1.00
80.17
N


ATOM
1598
CZ
ARG
A
201
93.447
23.899
−13.323
1.00
79.41
C


ATOM
1599
NH1
ARG
A
201
92.485
22.982
−13.298
1.00
79.97
N


ATOM
1600
NH2
ARG
A
201
93.600
24.707
−12.279
1.00
79.24
N


ATOM
1601
C
ARG
A
201
99.786
24.225
−14.352
1.00
87.56
C


ATOM
1602
O
ARG
A
201
99.591
24.278
−15.563
1.00
85.14
O


ATOM
1603
N
CYS
A
202
100.640
23.380
−13.792
1.00
94.65
N


ATOM
1604
CA
CYS
A
202
101.609
22.608
−14.559
1.00
95.70
C


ATOM
1605
CB
CYS
A
202
102.867
22.449
−13.708
1.00
99.41
C


ATOM
1606
SG
CYS
A
202
104.213
21.618
−14.557
1.00
111.34
S


ATOM
1607
C
CYS
A
202
101.142
21.228
−15.009
1.00
93.03
C


ATOM
1608
O
CYS
A
202
101.151
20.921
−16.198
1.00
90.38
O


ATOM
1609
N
GLY
A
203
100.750
20.400
−14.046
1.00
94.84
N


ATOM
1610
CA
GLY
A
203
100.396
19.003
−14.295
1.00
95.40
C


ATOM
1611
C
GLY
A
203
99.189
18.741
−15.174
1.00
94.49
C


ATOM
1612
O
GLY
A
203
98.573
19.662
−15.708
1.00
95.78
O


ATOM
1613
N
ALA
A
204
98.860
17.462
−15.312
1.00
93.19
N


ATOM
1614
CA
ALA
A
204
97.767
17.027
−16.167
1.00
94.27
C


ATOM
1615
CB
ALA
A
204
98.058
15.637
−16.707
1.00
94.46
C


ATOM
1616
C
ALA
A
204
96.443
17.021
−15.425
1.00
98.11
C


ATOM
1617
O
ALA
A
204
96.405
16.857
−14.206
1.00
102.18
O


ATOM
1618
N
ASP
A
205
95.361
17.206
−16.176
1.00
103.96
N


ATOM
1619
CA
ASP
A
205
94.000
17.120
−15.642
1.00
110.17
C


ATOM
1620
CB
ASP
A
205
93.586
18.402
−14.895
1.00
112.33
C


ATOM
1621
CG
ASP
A
205
93.754
19.665
−15.729
1.00
113.97
C


ATOM
1622
OD1
ASP
A
205
94.538
19.648
−16.705
1.00
121.66
O


ATOM
1623
OD2
ASP
A
205
93.104
20.682
−15.395
1.00
108.73
O


ATOM
1624
C
ASP
A
205
93.024
16.790
−16.777
1.00
110.88
C


ATOM
1625
O
ASP
A
205
92.516
17.692
−17.446
1.00
112.06
O


ATOM
1626
N
PRO
A
206
92.781
15.487
−17.013
1.00
110.76
N


ATOM
1627
CA
PRO
A
206
91.870
15.035
−18.068
1.00
113.60
C


ATOM
1628
CB
PRO
A
206
91.710
13.543
−17.767
1.00
113.91
C


ATOM
1629
CG
PRO
A
206
92.992
13.157
−17.117
1.00
113.31
C


ATOM
1630
CD
PRO
A
206
93.432
14.354
−16.327
1.00
111.03
C


ATOM
1631
C
PRO
A
206
90.500
15.726
−18.064
1.00
115.91
C


ATOM
1632
O
PRO
A
206
89.961
16.030
−19.131
1.00
114.76
O


ATOM
1633
N
ASP
A
207
89.960
15.974
−16.872
1.00
115.90
N


ATOM
1634
CA
ASP
A
207
88.638
16.587
−16.709
1.00
115.10
C


ATOM
1635
CB
ASP
A
207
88.322
16.779
−15.220
1.00
116.51
C


ATOM
1636
CG
ASP
A
207
88.249
15.466
−14.456
1.00
118.65
C


ATOM
1637
OD1
ASP
A
207
88.492
14.399
−15.061
1.00
120.29
O


ATOM
1638
OD2
ASP
A
207
87.950
15.505
−13.244
1.00
117.90
O


ATOM
1639
C
ASP
A
207
88.484
17.927
−17.428
1.00
114.57
C


ATOM
1640
O
ASP
A
207
87.439
18.192
−18.023
1.00
120.87
O


ATOM
1641
N
HIS
A
208
89.521
18.760
−17.376
1.00
113.32
N


ATOM
1642
CA
HIS
A
208
89.483
20.096
−17.988
1.00
113.45
C


ATOM
1643
CB
HIS
A
208
90.067
21.132
−17.017
1.00
115.37
C


ATOM
1644
CG
HIS
A
208
89.172
21.444
−15.857
1.00
117.34
C


ATOM
1645
ND1
HIS
A
208
88.893
20.531
−14.863
1.00
120.15
N


ATOM
1646
CE1
HIS
A
208
88.082
21.080
−13.975
1.00
119.71
C


ATOM
1647
NE2
HIS
A
208
87.829
22.320
−14.355
1.00
121.26
N


ATOM
1648
CD2
HIS
A
208
88.499
22.573
−15.528
1.00
119.91
C


ATOM
1649
C
HIS
A
208
90.182
20.175
−19.356
1.00
112.20
C


ATOM
1650
O
HIS
A
208
90.581
21.259
−19.788
1.00
107.64
O


ATOM
1651
N
GLY
A
209
90.323
19.037
−20.036
1.00
114.07
N


ATOM
1652
CA
GLY
A
209
90.876
19.007
−21.392
1.00
116.91
C


ATOM
1653
C
GLY
A
209
92.220
18.320
−21.533
1.00
121.22
C


ATOM
1654
O
GLY
A
209
92.299
17.200
−22.040
1.00
125.14
O


ATOM
1655
N
LYS
A
210
93.276
18.995
−21.081
1.00
123.83
N


ATOM
1656
CA
LYS
A
210
94.650
18.501
−21.232
1.00
123.76
C


ATOM
1657
CB
LYS
A
210
95.645
19.588
−20.823
1.00
129.30
C


ATOM
1658
CG
LYS
A
210
95.595
20.797
−21.742
1.00
137.32
C


ATOM
1659
CD
LYS
A
210
96.602
21.857
−21.349
1.00
141.35
C


ATOM
1660
CE
LYS
A
210
96.470
23.076
−22.249
1.00
142.74
C


ATOM
1661
NZ
LYS
A
210
97.345
24.190
−21.804
1.00
145.82
N


ATOM
1662
C
LYS
A
210
94.936
17.227
−20.440
1.00
118.22
C


ATOM
1663
O
LYS
A
210
94.935
17.261
−19.210
1.00
115.67
O


ATOM
1664
N
PRO
A
211
95.191
16.103
−21.144
1.00
112.92
N


ATOM
1665
CA
PRO
A
211
95.491
14.842
−20.476
1.00
111.37
C


ATOM
1666
CB
PRO
A
211
94.974
13.806
−21.474
1.00
111.45
C


ATOM
1667
CG
PRO
A
211
95.191
14.441
−22.807
1.00
112.22
C


ATOM
1668
CD
PRO
A
211
95.187
15.936
−22.612
1.00
112.40
C


ATOM
1669
C
PRO
A
211
96.986
14.615
−20.204
1.00
108.39
C


ATOM
1670
O
PRO
A
211
97.336
13.704
−19.453
1.00
106.62
O


ATOM
1671
N
ASP
A
212
97.850
15.431
−20.808
1.00
106.42
N


ATOM
1672
CA
ASP
A
212
99.298
15.296
−20.656
1.00
105.63
C


ATOM
1673
CB
ASP
A
212
99.967
15.171
−22.029
1.00
108.37
C


ATOM
1674
CG
ASP
A
212
99.534
13.927
−22.786
1.00
111.39
C


ATOM
1675
OD1
ASP
A
212
99.239
12.896
−22.141
1.00
110.82
O


ATOM
1676
OD2
ASP
A
212
99.505
13.982
−24.034
1.00
113.97
O


ATOM
1677
C
ASP
A
212
99.883
16.499
−19.930
1.00
101.27
C


ATOM
1678
O
ASP
A
212
99.555
17.644
−20.248
1.00
99.99
O


ATOM
1679
N
ALA
A
213
100.766
16.234
−18.970
1.00
96.39
N


ATOM
1680
CA
ALA
A
213
101.421
17.292
−18.205
1.00
92.95
C


ATOM
1681
CB
ALA
A
213
102.143
16.702
−17.007
1.00
93.67
C


ATOM
1682
C
ALA
A
213
102.404
18.066
−19.077
1.00
90.86
C


ATOM
1683
O
ALA
A
213
102.891
17.548
−20.081
1.00
91.44
O


ATOM
1684
N
VAL
A
214
102.694
19.303
−18.683
1.00
89.07
N


ATOM
1685
CA
VAL
A
214
103.615
20.160
−19.426
1.00
90.36
C


ATOM
1686
CB
VAL
A
214
102.894
21.402
−19.986
1.00
90.82
C


ATOM
1687
CG1
VAL
A
214
103.848
22.256
−20.817
1.00
92.38
C


ATOM
1688
CG2
VAL
A
214
101.700
20.974
−20.828
1.00
92.12
C


ATOM
1689
C
VAL
A
214
104.780
20.571
−18.519
1.00
92.80
C


ATOM
1690
O
VAL
A
214
104.756
21.652
−17.931
1.00
94.19
O


ATOM
1691
N
PRO
A
215
105.809
19.705
−18.408
1.00
93.71
N


ATOM
1692
CA
PRO
A
215
106.980
19.938
−17.548
1.00
93.49
C


ATOM
1693
CB
PRO
A
215
108.004
18.906
−18.037
1.00
93.83
C


ATOM
1694
CG
PRO
A
215
107.254
17.909
−18.850
1.00
94.23
C


ATOM
1695
CD
PRO
A
215
105.857
18.391
−19.077
1.00
93.70
C


ATOM
1696
C
PRO
A
215
107.585
21.339
−17.653
1.00
94.44
C


ATOM
1697
O
PRO
A
215
108.031
21.893
−16.649
1.00
95.00
O


ATOM
1698
N
GLY
A
216
107.604
21.896
−18.861
1.00
93.59
N


ATOM
1699
CA
GLY
A
216
108.176
23.218
−19.100
1.00
91.57
C


ATOM
1700
C
GLY
A
216
107.431
24.382
−18.468
1.00
91.34
C


ATOM
1701
O
GLY
A
216
107.971
25.484
−18.381
1.00
93.81
O


ATOM
1702
N
ASN
A
217
106.196
24.145
−18.030
1.00
90.53
N


ATOM
1703
CA
ASN
A
217
105.355
25.193
−17.451
1.00
89.29
C


ATOM
1704
CB
ASN
A
217
103.918
24.992
−17.933
1.00
87.44
C


ATOM
1705
CG
ASN
A
217
103.098
26.271
−17.916
1.00
86.60
C


ATOM
1706
OD1
ASN
A
217
103.606
27.361
−18.182
1.00
82.24
O


ATOM
1707
ND2
ASN
A
217
101.812
26.133
−17.613
1.00
88.48
N


ATOM
1708
C
ASN
A
217
105.377
25.209
−15.921
1.00
90.89
C


ATOM
1709
O
ASN
A
217
104.729
26.049
−15.301
1.00
93.27
O


ATOM
1710
N
CYS
A
218
106.122
24.285
−15.321
1.00
92.57
N


ATOM
1711
CA
CYS
A
218
106.186
24.151
−13.861
1.00
92.13
C


ATOM
1712
CB
CYS
A
218
106.800
22.797
−13.471
1.00
95.46
C


ATOM
1713
SG
CYS
A
218
105.647
21.446
−13.139
1.00
101.99
S


ATOM
1714
C
CYS
A
218
106.993
25.242
−13.171
1.00
89.73
C


ATOM
1715
O
CYS
A
218
107.875
25.855
−13.769
1.00
90.36
O


ATOM
1716
N
THR
A
219
106.663
25.468
−11.902
1.00
89.47
N


ATOM
1717
CA
THR
A
219
107.444
26.320
−11.015
1.00
89.67
C


ATOM
1718
CB
THR
A
219
106.547
27.210
−10.139
1.00
89.31
C


ATOM
1719
OG1
THR
A
219
105.719
28.023
−10.977
1.00
89.54
O


ATOM
1720
CG2
THR
A
219
107.386
28.109
−9.241
1.00
89.94
C


ATOM
1721
C
THR
A
219
108.222
25.325
−10.157
1.00
89.67
C


ATOM
1722
O
THR
A
219
107.624
24.568
−9.388
1.00
88.45
O


ATOM
1723
N
TYR
A
220
109.546
25.319
−10.295
1.00
88.06
N


ATOM
1724
CA
TYR
A
220
110.376
24.283
−9.673
1.00
87.99
C


ATOM
1725
CB
TYR
A
220
111.469
23.834
−10.651
1.00
85.51
C


ATOM
1726
CG
TYR
A
220
110.940
22.896
−11.707
1.00
84.82
C


ATOM
1727
CD1
TYR
A
220
110.797
21.540
−11.438
1.00
85.64
C


ATOM
1728
CE1
TYR
A
220
110.303
20.669
−12.390
1.00
87.79
C


ATOM
1729
CZ
TYR
A
220
109.938
21.150
−13.629
1.00
87.64
C


ATOM
1730
OH
TYR
A
220
109.447
20.273
−14.565
1.00
92.31
O


ATOM
1731
CE2
TYR
A
220
110.066
22.495
−13.923
1.00
85.64
C


ATOM
1732
CD2
TYR
A
220
110.560
23.361
−12.963
1.00
84.72
C


ATOM
1733
C
TYR
A
220
110.982
24.613
−8.309
1.00
89.61
C


ATOM
1734
O
TYR
A
220
111.157
23.715
−7.484
1.00
90.52
O


ATOM
1735
N
GLY
A
221
111.296
25.879
−8.060
1.00
88.76
N


ATOM
1736
CA
GLY
A
221
111.916
26.265
−6.791
1.00
88.20
C


ATOM
1737
C
GLY
A
221
110.953
26.231
−5.612
1.00
84.48
C


ATOM
1738
O
GLY
A
221
110.070
25.375
−5.532
1.00
80.92
O


ATOM
1739
N
ALA
A
222
111.142
27.164
−4.684
1.00
81.28
N


ATOM
1740
CA
ALA
A
222
110.228
27.326
−3.564
1.00
79.28
C


ATOM
1741
CB
ALA
A
222
110.833
28.242
−2.510
1.00
80.09
C


ATOM
1742
C
ALA
A
222
108.935
27.919
−4.105
1.00
76.65
C


ATOM
1743
O
ALA
A
222
108.970
28.817
−4.947
1.00
77.00
O


ATOM
1744
N
LYS
A
223
107.799
27.420
−3.628
1.00
75.17
N


ATOM
1745
CA
LYS
A
223
106.499
27.890
−4.102
1.00
73.94
C


ATOM
1746
CB
LYS
A
223
105.717
26.727
−4.719
1.00
74.06
C


ATOM
1747
CG
LYS
A
223
106.187
26.356
−6.117
1.00
72.01
C


ATOM
1748
CD
LYS
A
223
105.382
25.206
−6.701
1.00
70.96
C


ATOM
1749
CE
LYS
A
223
105.802
23.859
−6.137
1.00
70.20
C


ATOM
1750
NZ
LYS
A
223
107.178
23.471
−6.561
1.00
69.98
N


ATOM
1751
C
LYS
A
223
105.666
28.563
−3.014
1.00
72.76
C


ATOM
1752
O
LYS
A
223
105.661
28.132
−1.863
1.00
77.03
O


ATOM
1753
N
GLN
A
224
104.959
29.622
−3.399
1.00
71.94
N


ATOM
1754
CA
GLN
A
224
104.062
30.330
−2.490
1.00
71.49
C


ATOM
1755
CB
GLN
A
224
103.700
31.707
−3.047
1.00
69.85
C


ATOM
1756
CG
GLN
A
224
104.875
32.633
−3.299
1.00
67.77
C


ATOM
1757
CD
GLN
A
224
104.429
34.012
−3.742
1.00
67.40
C


ATOM
1758
OE1
GLN
A
224
103.238
34.263
−3.939
1.00
68.00
O


ATOM
1759
NE2
GLN
A
224
105.384
34.919
−3.894
1.00
68.81
N


ATOM
1760
C
GLN
A
224
102.772
29.537
−2.320
1.00
71.05
C


ATOM
1761
O
GLN
A
224
102.475
28.664
−3.132
1.00
72.16
O


ATOM
1762
N
PRO
A
225
101.989
29.846
−1.270
1.00
72.77
N


ATOM
1763
CA
PRO
A
225
100.696
29.177
−1.136
1.00
72.88
C


ATOM
1764
CB
PRO
A
225
100.196
29.624
0.248
1.00
72.02
C


ATOM
1765
CG
PRO
A
225
101.396
30.150
0.956
1.00
73.36
C


ATOM
1766
CD
PRO
A
225
102.278
30.714
−0.116
1.00
73.96
C


ATOM
1767
C
PRO
A
225
99.735
29.633
−2.230
1.00
72.69
C


ATOM
1768
O
PRO
A
225
99.995
30.629
−2.903
1.00
73.43
O


ATOM
1769
N
LEU
A
226
98.637
28.904
−2.397
1.00
72.76
N


ATOM
1770
CA
LEU
A
226
97.638
29.223
−3.411
1.00
71.49
C


ATOM
1771
CB
LEU
A
226
96.976
27.935
−3.908
1.00
71.67
C


ATOM
1772
CG
LEU
A
226
97.921
26.901
−4.523
1.00
72.47
C


ATOM
1773
CD1
LEU
A
226
97.232
25.551
−4.637
1.00
72.82
C


ATOM
1774
CD2
LEU
A
226
98.436
27.365
−5.879
1.00
73.04
C


ATOM
1775
C
LEU
A
226
96.579
30.175
−2.857
1.00
71.78
C


ATOM
1776
O
LEU
A
226
95.613
29.740
−2.222
1.00
75.71
O


ATOM
1777
N
TYR
A
227
96.773
31.474
−3.083
1.00
69.55
N


ATOM
1778
CA
TYR
A
227
95.798
32.485
−2.666
1.00
70.32
C


ATOM
1779
CB
TYR
A
227
96.469
33.819
−2.358
1.00
70.40
C


ATOM
1780
CG
TYR
A
227
97.631
33.712
−1.404
1.00
70.85
C


ATOM
1781
CD1
TYR
A
227
97.499
33.054
−0.183
1.00
72.80
C


ATOM
1782
CE1
TYR
A
227
98.562
32.964
0.702
1.00
71.55
C


ATOM
1783
CZ
TYR
A
227
99.771
33.541
0.371
1.00
71.70
C


ATOM
1784
OH
TYR
A
227
100.833
33.460
1.236
1.00
71.35
O


ATOM
1785
CE2
TYR
A
227
99.925
34.200
−0.833
1.00
73.08
C


ATOM
1786
CD2
TYR
A
227
98.858
34.285
−1.710
1.00
71.37
C


ATOM
1787
C
TYR
A
227
94.801
32.649
−3.800
1.00
69.55
C


ATOM
1788
O
TYR
A
227
95.157
33.101
−4.890
1.00
66.57
O


ATOM
1789
N
TRP
A
228
93.548
32.300
−3.531
1.00
70.33
N


ATOM
1790
CA
TRP
A
228
92.557
32.191
−4.585
1.00
70.72
C


ATOM
1791
CB
TRP
A
228
92.648
30.765
−5.144
1.00
70.69
C


ATOM
1792
CG
TRP
A
228
91.719
30.467
−6.247
1.00
70.07
C


ATOM
1793
CD1
TRP
A
228
91.780
30.943
−7.518
1.00
71.56
C


ATOM
1794
NE1
TRP
A
228
90.750
30.431
−8.263
1.00
71.58
N


ATOM
1795
CE2
TRP
A
228
90.004
29.601
−7.472
1.00
68.67
C


ATOM
1796
CD2
TRP
A
228
90.592
29.598
−6.194
1.00
68.31
C


ATOM
1797
CE3
TRP
A
228
90.020
28.817
−5.188
1.00
68.07
C


ATOM
1798
CZ3
TRP
A
228
88.899
28.087
−5.481
1.00
68.67
C


ATOM
1799
CH2
TRP
A
228
88.329
28.114
−6.767
1.00
69.73
C


ATOM
1800
CZ2
TRP
A
228
88.871
28.862
−7.770
1.00
69.10
C


ATOM
1801
C
TRP
A
228
91.139
32.504
−4.106
1.00
71.61
C


ATOM
1802
O
TRP
A
228
90.819
32.346
−2.928
1.00
70.99
O


ATOM
1803
N
LEU
A
229
90.312
32.980
−5.035
1.00
74.68
N


ATOM
1804
CA
LEU
A
229
88.887
33.246
−4.803
1.00
75.33
C


ATOM
1805
CB
LEU
A
229
88.181
31.963
−4.351
1.00
74.13
C


ATOM
1806
CG
LEU
A
229
86.713
31.815
−4.751
1.00
75.62
C


ATOM
1807
CD1
LEU
A
229
86.613
31.384
−6.209
1.00
75.47
C


ATOM
1808
CD2
LEU
A
229
86.015
30.802
−3.857
1.00
76.28
C


ATOM
1809
C
LEU
A
229
88.607
34.376
−3.803
1.00
76.75
C


ATOM
1810
O
LEU
A
229
87.518
34.435
−3.232
1.00
78.50
O


ATOM
1811
N
GLN
A
230
89.568
35.277
−3.607
1.00
78.20
N


ATOM
1812
CA
GLN
A
230
89.400
36.389
−2.668
1.00
81.19
C


ATOM
1813
CB
GLN
A
230
90.621
36.510
−1.748
1.00
80.60
C


ATOM
1814
CG
GLN
A
230
90.956
35.236
−0.995
1.00
80.41
C


ATOM
1815
CD
GLN
A
230
89.756
34.657
−0.267
1.00
80.81
C


ATOM
1816
OE1
GLN
A
230
89.005
35.378
0.385
1.00
81.10
O


ATOM
1817
NE2
GLN
A
230
89.567
33.350
−0.383
1.00
80.45
N


ATOM
1818
C
GLN
A
230
89.173
37.707
−3.393
1.00
83.69
C


ATOM
1819
O
GLN
A
230
89.290
37.785
−4.615
1.00
85.42
O


ATOM
1820
N
LYS
A
231
88.852
38.741
−2.625
1.00
86.49
N


ATOM
1821
CA
LYS
A
231
88.640
40.070
−3.173
1.00
87.59
C


ATOM
1822
CB
LYS
A
231
87.760
40.892
−2.231
1.00
91.33
C


ATOM
1823
CG
LYS
A
231
87.261
42.196
−2.825
1.00
95.93
C


ATOM
1824
CD
LYS
A
231
86.089
42.745
−2.028
1.00
98.90
C


ATOM
1825
CE
LYS
A
231
85.572
44.044
−2.621
1.00
102.14
C


ATOM
1826
NZ
LYS
A
231
84.321
44.487
−1.950
1.00
104.65
N


ATOM
1827
C
LYS
A
231
89.971
40.778
−3.412
1.00
87.28
C


ATOM
1828
O
LYS
A
231
90.073
41.614
−4.307
1.00
88.94
O


ATOM
1829
N
GLU
A
232
90.986
40.440
−2.615
1.00
89.06
N


ATOM
1830
CA
GLU
A
232
92.305
41.067
−2.724
1.00
90.80
C


ATOM
1831
CB
GLU
A
232
92.448
42.184
−1.683
1.00
94.95
C


ATOM
1832
CG
GLU
A
232
91.340
43.231
−1.678
1.00
98.24
C


ATOM
1833
CD
GLU
A
232
91.492
44.250
−0.559
1.00
99.79
C


ATOM
1834
OE1
GLU
A
232
92.363
44.064
0.319
1.00
100.02
O


ATOM
1835
OE2
GLU
A
232
90.727
45.237
−0.549
1.00
101.71
O


ATOM
1836
C
GLU
A
232
93.449
40.074
−2.508
1.00
88.75
C


ATOM
1837
O
GLU
A
232
93.289
39.063
−1.825
1.00
87.80
O


ATOM
1838
N
GLY
A
233
94.604
40.383
−3.095
1.00
87.81
N


ATOM
1839
CA
GLY
A
233
95.838
39.625
−2.874
1.00
86.80
C


ATOM
1840
C
GLY
A
233
95.893
38.203
−3.401
1.00
85.56
C


ATOM
1841
O
GLY
A
233
96.456
37.325
−2.750
1.00
86.63
O


ATOM
1842
N
ASN
A
234
95.327
37.978
−4.582
1.00
85.54
N


ATOM
1843
CA
ASN
A
234
95.341
36.658
−5.210
1.00
85.24
C


ATOM
1844
CB
ASN
A
234
94.073
36.455
−6.043
1.00
85.03
C


ATOM
1845
CG
ASN
A
234
92.838
36.264
−5.192
1.00
84.34
C


ATOM
1846
OD1
ASN
A
234
92.732
35.297
−4.442
1.00
86.46
O


ATOM
1847
ND2
ASN
A
234
91.886
37.171
−5.322
1.00
85.12
N


ATOM
1848
C
ASN
A
234
96.554
36.467
−6.115
1.00
86.89
C


ATOM
1849
O
ASN
A
234
96.942
37.384
−6.843
1.00
87.53
O


ATOM
1850
N
ASN
A
235
97.151
35.278
−6.060
1.00
86.38
N


ATOM
1851
CA
ASN
A
235
98.233
34.899
−6.979
1.00
86.26
C


ATOM
1852
CB
ASN
A
235
99.465
34.387
−6.221
1.00
86.78
C


ATOM
1853
CG
ASN
A
235
99.156
33.219
−5.310
1.00
89.65
C


ATOM
1854
OD1
ASN
A
235
98.019
32.754
−5.232
1.00
91.82
O


ATOM
1855
ND2
ASN
A
235
100.173
32.742
−4.603
1.00
93.67
N


ATOM
1856
C
ASN
A
235
97.753
33.875
−8.019
1.00
86.12
C


ATOM
1857
O
ASN
A
235
98.416
33.661
−9.035
1.00
86.94
O


ATOM
1858
N
GLU
A
236
96.610
33.240
−7.749
1.00
84.08
N


ATOM
1859
CA
GLU
A
236
95.962
32.338
−8.697
1.00
84.15
C


ATOM
1860
CB
GLU
A
236
95.678
30.980
−8.058
1.00
86.71
C


ATOM
1861
CG
GLU
A
236
96.901
30.285
−7.479
1.00
87.83
C


ATOM
1862
CD
GLU
A
236
97.991
30.039
−8.502
1.00
88.15
C


ATOM
1863
OE1
GLU
A
236
97.673
29.826
−9.691
1.00
90.60
O


ATOM
1864
OE2
GLU
A
236
99.171
30.051
−8.107
1.00
91.39
O


ATOM
1865
C
GLU
A
236
94.652
32.977
−9.136
1.00
83.78
C


ATOM
1866
O
GLU
A
236
93.927
33.542
−8.314
1.00
82.36
O


ATOM
1867
N
PHE
A
237
94.351
32.889
−10.431
1.00
82.30
N


ATOM
1868
CA
PHE
A
237
93.163
33.530
−10.991
1.00
79.56
C


ATOM
1869
CB
PHE
A
237
93.587
34.682
−11.900
1.00
78.27
C


ATOM
1870
CG
PHE
A
237
94.560
35.626
−11.260
1.00
77.48
C


ATOM
1871
CD1
PHE
A
237
94.115
36.639
−10.424
1.00
78.26
C


ATOM
1872
CE1
PHE
A
237
95.011
37.512
−9.830
1.00
79.61
C


ATOM
1873
CZ
PHE
A
237
96.368
37.378
−10.069
1.00
80.36
C


ATOM
1874
CE2
PHE
A
237
96.825
36.370
−10.900
1.00
79.83
C


ATOM
1875
CD2
PHE
A
237
95.922
35.499
−11.489
1.00
78.69
C


ATOM
1876
C
PHE
A
237
92.275
32.558
−11.763
1.00
79.29
C


ATOM
1877
O
PHE
A
237
91.539
32.967
−12.664
1.00
81.99
O


ATOM
1878
N
ASP
A
238
92.327
31.279
−11.400
1.00
77.44
N


ATOM
1879
CA
ASP
A
238
91.510
30.265
−12.062
1.00
77.10
C


ATOM
1880
CB
ASP
A
238
91.932
28.856
−11.639
1.00
78.33
C


ATOM
1881
CG
ASP
A
238
93.362
28.523
−12.033
1.00
79.57
C


ATOM
1882
OD1
ASP
A
238
94.279
29.312
−11.712
1.00
79.76
O


ATOM
1883
OD2
ASP
A
238
93.567
27.455
−12.648
1.00
82.19
O


ATOM
1884
C
ASP
A
238
90.031
30.473
−11.746
1.00
75.52
C


ATOM
1885
O
ASP
A
238
89.684
31.143
−10.775
1.00
73.58
O


ATOM
1886
N
ASP
A
239
89.164
29.900
−12.572
1.00
77.44
N


ATOM
1887
CA
ASP
A
239
87.727
30.036
−12.373
1.00
78.86
C


ATOM
1888
CB
ASP
A
239
86.955
29.654
−13.642
1.00
81.52
C


ATOM
1889
CG
ASP
A
239
85.477
30.011
−13.560
1.00
82.95
C


ATOM
1890
OD1
ASP
A
239
84.643
29.085
−13.509
1.00
78.59
O


ATOM
1891
OD2
ASP
A
239
85.153
31.218
−13.519
1.00
85.56
O


ATOM
1892
C
ASP
A
239
87.260
29.164
−11.216
1.00
77.00
C


ATOM
1893
O
ASP
A
239
87.864
28.137
−10.916
1.00
77.36
O


ATOM
1894
N
TYR
A
240
86.175
29.599
−10.584
1.00
77.15
N


ATOM
1895
CA
TYR
A
240
85.514
28.897
−9.484
1.00
78.20
C


ATOM
1896
CB
TYR
A
240
84.096
29.465
−9.351
1.00
78.56
C


ATOM
1897
CG
TYR
A
240
83.250
28.928
−8.219
1.00
78.85
C


ATOM
1898
CD1
TYR
A
240
82.506
27.762
−8.372
1.00
80.37
C


ATOM
1899
CE1
TYR
A
240
81.712
27.279
−7.344
1.00
81.09
C


ATOM
1900
CZ
TYR
A
240
81.641
27.975
−6.150
1.00
79.15
C


ATOM
1901
OH
TYR
A
240
80.854
27.504
−5.126
1.00
80.96
O


ATOM
1902
CE2
TYR
A
240
82.359
29.141
−5.979
1.00
77.95
C


ATOM
1903
CD2
TYR
A
240
83.152
29.616
−7.011
1.00
77.64
C


ATOM
1904
C
TYR
A
240
85.456
27.376
−9.667
1.00
80.18
C


ATOM
1905
O
TYR
A
240
85.729
26.629
−8.727
1.00
81.92
O


ATOM
1906
N
ILE
A
241
85.119
26.926
−10.874
1.00
83.74
N


ATOM
1907
CA
ILE
A
241
84.960
25.487
−11.153
1.00
86.17
C


ATOM
1908
CB
ILE
A
241
83.893
25.231
−12.245
1.00
88.43
C


ATOM
1909
CG1
ILE
A
241
84.370
25.716
−13.623
1.00
93.04
C


ATOM
1910
CD1
ILE
A
241
83.371
25.475
−14.738
1.00
94.29
C


ATOM
1911
CG2
ILE
A
241
82.582
25.897
−11.854
1.00
88.01
C


ATOM
1912
C
ILE
A
241
86.254
24.744
−11.523
1.00
83.81
C


ATOM
1913
O
ILE
A
241
86.244
23.519
−11.653
1.00
82.49
O


ATOM
1914
N
ALA
A
242
87.356
25.474
−11.682
1.00
81.78
N


ATOM
1915
CA
ALA
A
242
88.653
24.872
−12.006
1.00
82.72
C


ATOM
1916
CB
ALA
A
242
89.058
25.243
−13.426
1.00
83.77
C


ATOM
1917
C
ALA
A
242
89.720
25.330
−11.007
1.00
81.87
C


ATOM
1918
O
ALA
A
242
90.746
25.886
−11.403
1.00
86.24
O


ATOM
1919
N
PRO
A
243
89.491
25.078
−9.706
1.00
78.01
N


ATOM
1920
CA
PRO
A
243
90.380
25.570
−8.659
1.00
76.24
C


ATOM
1921
CB
PRO
A
243
89.671
25.135
−7.374
1.00
76.42
C


ATOM
1922
CG
PRO
A
243
88.922
23.922
−7.762
1.00
76.32
C


ATOM
1923
CD
PRO
A
243
88.454
24.189
−9.159
1.00
77.94
C


ATOM
1924
C
PRO
A
243
91.775
24.963
−8.688
1.00
76.10
C


ATOM
1925
O
PRO
A
243
91.943
23.840
−9.163
1.00
79.70
O


ATOM
1926
N
PRO
A
244
92.774
25.704
−8.180
1.00
75.98
N


ATOM
1927
CA
PRO
A
244
94.118
25.170
−8.030
1.00
76.31
C


ATOM
1928
CB
PRO
A
244
94.962
26.420
−7.789
1.00
76.74
C


ATOM
1929
CG
PRO
A
244
94.036
27.354
−7.101
1.00
78.02
C


ATOM
1930
CD
PRO
A
244
92.691
27.103
−7.721
1.00
78.51
C


ATOM
1931
C
PRO
A
244
94.177
24.244
−6.818
1.00
76.54
C


ATOM
1932
O
PRO
A
244
93.361
24.386
−5.906
1.00
77.43
O


ATOM
1933
N
PHE
A
245
95.121
23.306
−6.813
1.00
74.44
N


ATOM
1934
CA
PHE
A
245
95.264
22.362
−5.706
1.00
73.61
C


ATOM
1935
CB
PHE
A
245
94.775
20.975
−6.115
1.00
74.52
C


ATOM
1936
CG
PHE
A
245
93.368
20.944
−6.629
1.00
73.98
C


ATOM
1937
CD1
PHE
A
245
92.323
21.415
−5.855
1.00
74.62
C


ATOM
1938
CE1
PHE
A
245
91.024
21.367
−6.321
1.00
75.77
C


ATOM
1939
CZ
PHE
A
245
90.755
20.825
−7.565
1.00
75.22
C


ATOM
1940
CE2
PHE
A
245
91.788
20.338
−8.340
1.00
74.75
C


ATOM
1941
CD2
PHE
A
245
93.084
20.393
−7.869
1.00
74.29
C


ATOM
1942
C
PHE
A
245
96.709
22.221
−5.263
1.00
72.53
C


ATOM
1943
O
PHE
A
245
97.627
22.606
−5.982
1.00
73.25
O


ATOM
1944
N
TYR
A
246
96.897
21.653
−4.074
1.00
72.91
N


ATOM
1945
CA
TYR
A
246
98.229
21.308
−3.579
1.00
72.22
C


ATOM
1946
CB
TYR
A
246
98.327
21.497
−2.059
1.00
68.60
C


ATOM
1947
CG
TYR
A
246
98.162
22.946
−1.635
1.00
64.47
C


ATOM
1948
CD1
TYR
A
246
99.206
23.855
−1.774
1.00
62.58
C


ATOM
1949
CE1
TYR
A
246
99.059
25.179
−1.400
1.00
61.70
C


ATOM
1950
CZ
TYR
A
246
97.859
25.611
−0.878
1.00
63.67
C


ATOM
1951
OH
TYR
A
246
97.704
26.932
−0.505
1.00
65.65
O


ATOM
1952
CE2
TYR
A
246
96.807
24.728
−0.731
1.00
64.18
C


ATOM
1953
CD2
TYR
A
246
96.963
23.406
−1.110
1.00
63.71
C


ATOM
1954
C
TYR
A
246
98.484
19.868
−4.014
1.00
75.37
C


ATOM
1955
O
TYR
A
246
98.487
18.939
−3.204
1.00
74.50
O


ATOM
1956
N
ASN
A
247
98.678
19.720
−5.325
1.00
79.83
N


ATOM
1957
CA
ASN
A
247
98.830
18.434
−6.003
1.00
80.51
C


ATOM
1958
CB
ASN
A
247
97.544
18.107
−6.774
1.00
80.27
C


ATOM
1959
CG
ASN
A
247
96.464
17.522
−5.903
1.00
83.93
C


ATOM
1960
OD1
ASN
A
247
96.733
16.963
−4.840
1.00
93.05
O


ATOM
1961
ND2
ASN
A
247
95.225
17.621
−6.366
1.00
85.79
N


ATOM
1962
C
ASN
A
247
99.952
18.480
−7.020
1.00
82.01
C


ATOM
1963
O
ASN
A
247
100.646
19.491
−7.160
1.00
78.89
O


ATOM
1964
N
ASP
A
248
100.112
17.371
−7.739
1.00
84.71
N


ATOM
1965
CA
ASP
A
248
101.017
17.314
−8.880
1.00
84.53
C


ATOM
1966
CB
ASP
A
248
100.996
15.918
−9.516
1.00
87.09
C


ATOM
1967
CG
ASP
A
248
101.481
14.828
−8.570
1.00
88.71
C


ATOM
1968
OD1
ASP
A
248
102.396
15.092
−7.764
1.00
90.98
O


ATOM
1969
OD2
ASP
A
248
100.952
13.698
−8.642
1.00
92.33
O


ATOM
1970
C
ASP
A
248
100.591
18.374
−9.902
1.00
81.24
C


ATOM
1971
O
ASP
A
248
101.433
18.957
−10.579
1.00
81.25
O


ATOM
1972
N
LEU
A
249
99.286
18.641
−9.978
1.00
77.42
N


ATOM
1973
CA
LEU
A
249
98.732
19.660
−10.873
1.00
75.67
C


ATOM
1974
CB
LEU
A
249
97.238
19.847
−10.598
1.00
75.24
C


ATOM
1975
CG
LEU
A
249
96.473
20.856
−11.463
1.00
74.40
C


ATOM
1976
CD1
LEU
A
249
96.534
20.491
−12.938
1.00
74.67
C


ATOM
1977
CD2
LEU
A
249
95.028
20.947
−11.005
1.00
74.24
C


ATOM
1978
C
LEU
A
249
99.442
21.014
−10.787
1.00
76.45
C


ATOM
1979
O
LEU
A
249
99.513
21.734
−11.782
1.00
77.11
O


ATOM
1980
N
TYR
A
250
99.941
21.366
−9.604
1.00
77.44
N


ATOM
1981
CA
TYR
A
250
100.709
22.604
−9.418
1.00
76.72
C


ATOM
1982
CB
TYR
A
250
99.971
23.544
−8.460
1.00
76.13
C


ATOM
1983
CG
TYR
A
250
98.875
24.317
−9.151
1.00
77.89
C


ATOM
1984
CD1
TYR
A
250
99.041
25.661
−9.470
1.00
78.85
C


ATOM
1985
CE1
TYR
A
250
98.046
26.370
−10.121
1.00
79.13
C


ATOM
1986
CZ
TYR
A
250
96.873
25.733
−10.478
1.00
77.99
C


ATOM
1987
OH
TYR
A
250
95.886
26.441
−11.125
1.00
78.48
O


ATOM
1988
CE2
TYR
A
250
96.689
24.397
−10.183
1.00
78.51
C


ATOM
1989
CD2
TYR
A
250
97.690
23.696
−9.527
1.00
78.94
C


ATOM
1990
C
TYR
A
250
102.139
22.314
−8.949
1.00
77.37
C


ATOM
1991
O
TYR
A
250
102.786
23.154
−8.319
1.00
79.16
O


ATOM
1992
N
ASN
A
251
102.627
21.124
−9.302
1.00
75.93
N


ATOM
1993
CA
ASN
A
251
103.972
20.654
−8.959
1.00
71.67
C


ATOM
1994
CB
ASN
A
251
105.034
21.535
−9.629
1.00
68.52
C


ATOM
1995
CG
ASN
A
251
106.359
20.814
−9.825
1.00
66.38
C


ATOM
1996
OD1
ASN
A
251
106.408
19.585
−9.907
1.00
63.22
O


ATOM
1997
ND2
ASN
A
251
107.446
21.583
−9.909
1.00
65.44
N


ATOM
1998
C
ASN
A
251
104.234
20.545
−7.451
1.00
72.30
C


ATOM
1999
O
ASN
A
251
105.375
20.673
−6.999
1.00
71.50
O


ATOM
2000
N
PHE
A
252
103.179
20.306
−6.678
1.00
72.57
N


ATOM
2001
CA
PHE
A
252
103.325
20.072
−5.247
1.00
73.19
C


ATOM
2002
CB
PHE
A
252
102.166
20.686
−4.453
1.00
71.29
C


ATOM
2003
CG
PHE
A
252
102.198
22.192
−4.393
1.00
70.12
C


ATOM
2004
CD1
PHE
A
252
103.206
22.851
−3.699
1.00
69.07
C


ATOM
2005
CE1
PHE
A
252
103.239
24.236
−3.636
1.00
67.34
C


ATOM
2006
CZ
PHE
A
252
102.253
24.980
−4.258
1.00
66.91
C


ATOM
2007
CE2
PHE
A
252
101.236
24.338
−4.944
1.00
67.96
C


ATOM
2008
CD2
PHE
A
252
101.209
22.952
−5.006
1.00
69.30
C


ATOM
2009
C
PHE
A
252
103.407
18.563
−5.028
1.00
75.80
C


ATOM
2010
O
PHE
A
252
102.383
17.886
−4.913
1.00
72.23
O


ATOM
2011
N
LYS
A
253
104.634
18.045
−4.987
1.00
81.32
N


ATOM
2012
CA
LYS
A
253
104.864
16.615
−4.785
1.00
85.77
C


ATOM
2013
CB
LYS
A
253
106.331
16.241
−5.026
1.00
92.98
C


ATOM
2014
CG
LYS
A
253
106.767
16.408
−6.472
1.00
99.97
C


ATOM
2015
CD
LYS
A
253
108.226
16.049
−6.675
1.00
106.09
C


ATOM
2016
CE
LYS
A
253
109.129
17.247
−6.439
1.00
111.70
C


ATOM
2017
NZ
LYS
A
253
110.541
16.971
−6.825
1.00
115.13
N


ATOM
2018
C
LYS
A
253
104.424
16.191
−3.387
1.00
86.29
C


ATOM
2019
O
LYS
A
253
104.542
16.954
−2.421
1.00
88.83
O


ATOM
2020
N
ASP
A
254
103.890
14.979
−3.291
1.00
84.69
N


ATOM
2021
CA
ASP
A
254
103.447
14.441
−2.014
1.00
79.32
C


ATOM
2022
CB
ASP
A
254
102.777
13.076
−2.216
1.00
79.03
C


ATOM
2023
CG
ASP
A
254
101.821
12.712
−1.095
1.00
79.95
C


ATOM
2024
OD1
ASP
A
254
101.391
13.611
−0.345
1.00
79.56
O


ATOM
2025
OD2
ASP
A
254
101.476
11.517
−0.979
1.00
83.79
O


ATOM
2026
C
ASP
A
254
104.684
14.321
−1.131
1.00
77.94
C


ATOM
2027
O
ASP
A
254
105.735
13.878
−1.592
1.00
77.26
O


ATOM
2028
N
GLY
A
255
104.570
14.750
0.122
1.00
77.82
N


ATOM
2029
CA
GLY
A
255
105.690
14.703
1.061
1.00
75.19
C


ATOM
2030
C
GLY
A
255
106.428
16.024
1.162
1.00
73.47
C


ATOM
2031
O
GLY
A
255
105.882
17.078
0.847
1.00
73.15
O


ATOM
2032
N
ALA
A
256
107.681
15.961
1.599
1.00
73.11
N


ATOM
2033
CA
ALA
A
256
108.483
17.159
1.825
1.00
73.60
C


ATOM
2034
CB
ALA
A
256
109.684
16.829
2.703
1.00
72.94
C


ATOM
2035
C
ALA
A
256
108.948
17.803
0.522
1.00
74.79
C


ATOM
2036
O
ALA
A
256
109.271
17.110
−0.443
1.00
75.91
O


ATOM
2037
N
GLN
A
257
108.985
19.132
0.514
1.00
74.46
N


ATOM
2038
CA
GLN
A
257
109.469
19.893
−0.628
1.00
74.65
C


ATOM
2039
CB
GLN
A
257
108.696
21.213
−0.770
1.00
74.41
C


ATOM
2040
CG
GLN
A
257
107.178
21.068
−0.734
1.00
74.48
C


ATOM
2041
CD
GLN
A
257
106.627
20.175
−1.841
1.00
75.54
C


ATOM
2042
OE1
GLN
A
257
106.881
20.398
−3.028
1.00
72.96
O


ATOM
2043
NE2
GLN
A
257
105.852
19.169
−1.456
1.00
76.19
N


ATOM
2044
C
GLN
A
257
110.958
20.148
−0.401
1.00
75.86
C


ATOM
2045
O
GLN
A
257
111.344
21.135
0.226
1.00
78.46
O


ATOM
2046
N
ASN
A
258
111.786
19.244
−0.918
1.00
77.15
N


ATOM
2047
CA
ASN
A
258
113.235
19.270
−0.685
1.00
78.64
C


ATOM
2048
CB
ASN
A
258
113.801
17.857
−0.862
1.00
79.34
C


ATOM
2049
CG
ASN
A
258
113.222
16.867
0.135
1.00
80.33
C


ATOM
2050
OD1
ASN
A
258
112.547
15.911
−0.245
1.00
81.10
O


ATOM
2051
ND2
ASN
A
258
113.475
17.098
1.417
1.00
80.45
N


ATOM
2052
C
ASN
A
258
114.042
20.244
−1.549
1.00
79.55
C


ATOM
2053
O
ASN
A
258
115.225
20.467
−1.285
1.00
79.77
O


ATOM
2054
N
ASP
A
259
113.409
20.832
−2.560
1.00
81.95
N


ATOM
2055
CA
ASP
A
259
114.106
21.715
−3.508
1.00
84.57
C


ATOM
2056
CB
ASP
A
259
113.758
21.302
−4.946
1.00
85.64
C


ATOM
2057
CG
ASP
A
259
112.263
21.364
−5.237
1.00
86.82
C


ATOM
2058
OD1
ASP
A
259
111.458
21.428
−4.282
1.00
84.66
O


ATOM
2059
OD2
ASP
A
259
111.893
21.328
−6.427
1.00
87.99
O


ATOM
2060
C
ASP
A
259
113.808
23.204
−3.304
1.00
84.43
C


ATOM
2061
O
ASP
A
259
113.875
23.990
−4.254
1.00
89.08
O


ATOM
2062
N
ILE
A
260
113.514
23.590
−2.064
1.00
81.70
N


ATOM
2063
CA
ILE
A
260
113.126
24.971
−1.751
1.00
79.45
C


ATOM
2064
CB
ILE
A
260
112.008
25.012
−0.679
1.00
78.65
C


ATOM
2065
CG1
ILE
A
260
112.502
24.469
0.671
1.00
79.64
C


ATOM
2066
CD1
ILE
A
260
111.509
24.642
1.801
1.00
79.25
C


ATOM
2067
CG2
ILE
A
260
110.794
24.227
−1.154
1.00
78.74
C


ATOM
2068
C
ILE
A
260
114.287
25.851
−1.286
1.00
78.23
C


ATOM
2069
O
ILE
A
260
114.076
27.007
−0.919
1.00
78.94
O


ATOM
2070
N
PHE
A
261
115.505
25.319
−1.321
1.00
78.47
N


ATOM
2071
CA
PHE
A
261
116.668
26.030
−0.788
1.00
81.03
C


ATOM
2072
CB
PHE
A
261
117.508
25.080
0.067
1.00
79.65
C


ATOM
2073
CG
PHE
A
261
116.687
24.280
1.040
1.00
77.23
C


ATOM
2074
CD1
PHE
A
261
116.206
24.862
2.201
1.00
76.79
C


ATOM
2075
CE1
PHE
A
261
115.435
24.136
3.089
1.00
75.75
C


ATOM
2076
CZ
PHE
A
261
115.130
22.814
2.818
1.00
75.19
C


ATOM
2077
CE2
PHE
A
261
115.597
22.224
1.660
1.00
75.46
C


ATOM
2078
CD2
PHE
A
261
116.367
22.957
0.776
1.00
76.57
C


ATOM
2079
C
PHE
A
261
117.507
26.667
−1.884
1.00
83.24
C


ATOM
2080
O
PHE
A
261
117.356
26.345
−3.063
1.00
86.36
O


ATOM
2081
N
VAL
A
262
118.393
27.575
−1.481
1.00
86.71
N


ATOM
2082
CA
VAL
A
262
119.223
28.325
−2.422
1.00
88.45
C


ATOM
2083
CB
VAL
A
262
120.044
29.424
−1.709
1.00
89.79
C


ATOM
2084
CG1
VAL
A
262
120.955
30.146
−2.697
1.00
91.60
C


ATOM
2085
CG2
VAL
A
262
119.120
30.418
−1.016
1.00
90.85
C


ATOM
2086
C
VAL
A
262
120.166
27.404
−3.198
1.00
90.80
C


ATOM
2087
O
VAL
A
262
120.316
27.547
−4.413
1.00
95.70
O


ATOM
2088
N
ASP
A
263
120.784
26.457
−2.497
1.00
90.45
N


ATOM
2089
CA
ASP
A
263
121.726
25.519
−3.118
1.00
88.68
C


ATOM
2090
CB
ASP
A
263
122.763
25.043
−2.087
1.00
89.04
C


ATOM
2091
CG
ASP
A
263
122.158
24.179
−0.984
1.00
88.58
C


ATOM
2092
OD1
ASP
A
263
120.943
24.289
−0.721
1.00
89.30
O


ATOM
2093
OD2
ASP
A
263
122.909
23.391
−0.373
1.00
89.57
O


ATOM
2094
C
ASP
A
263
121.055
24.306
−3.779
1.00
87.09
C


ATOM
2095
O
ASP
A
263
121.750
23.446
−4.325
1.00
85.49
O


ATOM
2096
N
SER
A
264
119.723
24.235
−3.731
1.00
87.15
N


ATOM
2097
CA
SER
A
264
118.981
23.097
−4.287
1.00
87.74
C


ATOM
2098
CB
SER
A
264
117.471
23.291
−4.125
1.00
91.73
C


ATOM
2099
OG
SER
A
264
117.102
23.275
−2.756
1.00
94.76
O


ATOM
2100
C
SER
A
264
119.312
22.849
−5.749
1.00
85.13
C


ATOM
2101
O
SER
A
264
119.709
21.745
−6.108
1.00
82.83
O


ATOM
2102
N
TYR
A
265
119.149
23.876
−6.579
1.00
86.01
N


ATOM
2103
CA
TYR
A
265
119.461
23.775
−8.008
1.00
87.83
C


ATOM
2104
CB
TYR
A
265
118.352
24.418
−8.842
1.00
84.66
C


ATOM
2105
CG
TYR
A
265
117.039
23.670
−8.788
1.00
81.02
C


ATOM
2106
CD1
TYR
A
265
116.038
24.033
−7.890
1.00
80.85
C


ATOM
2107
CE1
TYR
A
265
114.836
23.343
−7.840
1.00
78.37
C


ATOM
2108
CZ
TYR
A
265
114.629
22.274
−8.691
1.00
77.16
C


ATOM
2109
OH
TYR
A
265
113.448
21.578
−8.654
1.00
73.76
O


ATOM
2110
CE2
TYR
A
265
115.605
21.897
−9.589
1.00
77.96
C


ATOM
2111
CD2
TYR
A
265
116.801
22.592
−9.633
1.00
79.46
C


ATOM
2112
C
TYR
A
265
120.810
24.444
−8.309
1.00
93.04
C


ATOM
2113
O
TYR
A
265
120.899
25.672
−8.296
1.00
95.54
O


ATOM
2114
N
PRO
A
266
121.863
23.643
−8.588
1.00
97.30
N


ATOM
2115
CA
PRO
A
266
123.201
24.199
−8.834
1.00
98.80
C


ATOM
2116
CB
PRO
A
266
124.093
22.954
−8.953
1.00
99.77
C


ATOM
2117
CG
PRO
A
266
123.288
21.837
−8.389
1.00
99.49
C


ATOM
2118
CD
PRO
A
266
121.873
22.178
−8.724
1.00
98.32
C


ATOM
2119
C
PRO
A
266
123.274
25.015
−10.113
1.00
99.63
C


ATOM
2120
O
PRO
A
266
123.742
26.152
−10.089
1.00
100.28
O


ATOM
2121
N
ASP
A
267
122.797
24.431
−11.210
1.00
102.03
N


ATOM
2122
CA
ASP
A
267
122.783
25.090
−12.511
1.00
104.39
C


ATOM
2123
CB
ASP
A
267
122.805
24.049
−13.637
1.00
107.27
C


ATOM
2124
CG
ASP
A
267
124.012
23.135
−13.566
1.00
110.11
C


ATOM
2125
OD1
ASP
A
267
125.147
23.647
−13.457
1.00
111.81
O


ATOM
2126
OD2
ASP
A
267
123.821
21.904
−13.637
1.00
110.35
O


ATOM
2127
C
ASP
A
267
121.564
26.002
−12.678
1.00
103.12
C


ATOM
2128
O
ASP
A
267
121.354
26.534
−13.764
1.00
102.02
O


ATOM
2129
N
GLY
A
268
120.760
26.172
−11.625
1.00
101.76
N


ATOM
2130
CA
GLY
A
268
119.619
27.079
−11.662
1.00
100.79
C


ATOM
2131
C
GLY
A
268
118.421
26.487
−12.372
1.00
100.45
C


ATOM
2132
O
GLY
A
268
118.362
25.281
−12.615
1.00
101.51
O


ATOM
2133
N
ILE
A
269
117.471
27.354
−12.712
1.00
99.07
N


ATOM
2134
CA
ILE
A
269
116.263
26.968
−13.431
1.00
97.44
C


ATOM
2135
CB
ILE
A
269
114.996
27.165
−12.561
1.00
97.79
C


ATOM
2136
CG1
ILE
A
269
115.128
26.365
−11.255
1.00
96.99
C


ATOM
2137
CD1
ILE
A
269
115.244
27.208
−10.004
1.00
97.80
C


ATOM
2138
CG2
ILE
A
269
113.731
26.752
−13.309
1.00
99.53
C


ATOM
2139
C
ILE
A
269
116.176
27.798
−14.713
1.00
97.53
C


ATOM
2140
O
ILE
A
269
115.593
28.878
−14.708
1.00
98.28
O


ATOM
2141
N
PRO
A
270
116.793
27.312
−15.808
1.00
98.11
N


ATOM
2142
CA
PRO
A
270
116.708
27.974
−17.115
1.00
98.64
C


ATOM
2143
CB
PRO
A
270
117.383
26.973
−18.050
1.00
99.56
C


ATOM
2144
CG
PRO
A
270
118.402
26.311
−17.193
1.00
100.10
C


ATOM
2145
CD
PRO
A
270
117.822
26.255
−15.806
1.00
99.54
C


ATOM
2146
C
PRO
A
270
115.277
28.264
−17.590
1.00
97.88
C


ATOM
2147
O
PRO
A
270
115.063
29.227
−18.329
1.00
99.51
O


ATOM
2148
N
LEU
A
271
114.317
27.437
−17.170
1.00
95.54
N


ATOM
2149
CA
LEU
A
271
112.901
27.631
−17.509
1.00
95.53
C


ATOM
2150
CB
LEU
A
271
112.035
26.515
−16.919
1.00
93.02
C


ATOM
2151
CG
LEU
A
271
111.789
25.274
−17.775
1.00
91.39
C


ATOM
2152
CD1
LEU
A
271
113.066
24.535
−18.101
1.00
89.61
C


ATOM
2153
CD2
LEU
A
271
110.834
24.345
−17.046
1.00
93.51
C


ATOM
2154
C
LEU
A
271
112.338
28.975
−17.055
1.00
100.00
C


ATOM
2155
O
LEU
A
271
111.328
29.430
−17.586
1.00
103.24
O


ATOM
2156
N
GLU
A
272
112.974
29.598
−16.068
1.00
105.60
N


ATOM
2157
CA
GLU
A
272
112.547
30.912
−15.595
1.00
111.95
C


ATOM
2158
CB
GLU
A
272
113.237
31.255
−14.272
1.00
115.04
C


ATOM
2159
CG
GLU
A
272
112.796
30.355
−13.123
1.00
115.05
C


ATOM
2160
CD
GLU
A
272
113.542
30.617
−11.825
1.00
116.07
C


ATOM
2161
OE1
GLU
A
272
114.662
31.175
−11.865
1.00
115.23
O


ATOM
2162
OE2
GLU
A
272
113.005
30.252
−10.757
1.00
113.02
O


ATOM
2163
C
GLU
A
272
112.778
32.014
−16.640
1.00
114.41
C


ATOM
2164
O
GLU
A
272
112.257
33.118
−16.497
1.00
115.45
O


ATOM
2165
N
GLN
A
273
113.557
31.715
−17.681
1.00
118.50
N


ATOM
2166
CA
GLN
A
273
113.747
32.640
−18.800
1.00
125.42
C


ATOM
2167
CB
GLN
A
273
114.790
32.092
−19.781
1.00
125.39
C


ATOM
2168
CG
GLN
A
273
115.017
32.962
−21.010
1.00
125.94
C


ATOM
2169
CD
GLN
A
273
116.022
32.366
−21.977
1.00
127.86
C


ATOM
2170
OE1
GLN
A
273
115.685
32.049
−23.118
1.00
127.00
O


ATOM
2171
NE2
GLN
A
273
117.259
32.198
−21.522
1.00
129.88
N


ATOM
2172
C
GLN
A
273
112.422
32.879
−19.529
1.00
132.03
C


ATOM
2173
O
GLN
A
273
112.161
33.984
−20.010
1.00
133.87
O


ATOM
2174
N
LYS
A
274
111.592
31.840
−19.601
1.00
138.59
N


ATOM
2175
CA
LYS
A
274
110.282
31.923
−20.253
1.00
141.98
C


ATOM
2176
CB
LYS
A
274
109.711
30.519
−20.480
1.00
144.49
C


ATOM
2177
CG
LYS
A
274
110.568
29.656
−21.397
1.00
147.46
C


ATOM
2178
CD
LYS
A
274
110.051
28.230
−21.495
1.00
149.98
C


ATOM
2179
CE
LYS
A
274
110.973
27.373
−22.348
1.00
151.33
C


ATOM
2180
NZ
LYS
A
274
110.500
25.966
−22.455
1.00
152.26
N


ATOM
2181
C
LYS
A
274
109.295
32.783
−19.456
1.00
143.02
C


ATOM
2182
O
LYS
A
274
108.337
33.311
−20.018
1.00
141.96
O


ATOM
2183
N
LEU
A
275
109.533
32.916
−18.152
1.00
149.30
N


ATOM
2184
CA
LEU
A
275
108.716
33.777
−17.291
1.00
154.74
C


ATOM
2185
CB
LEU
A
275
108.867
33.374
−15.819
1.00
158.31
C


ATOM
2186
CG
LEU
A
275
108.535
31.925
−15.445
1.00
162.45
C


ATOM
2187
CD1
LEU
A
275
108.845
31.673
−13.976
1.00
161.31
C


ATOM
2188
CD2
LEU
A
275
107.082
31.590
−15.755
1.00
162.69
C


ATOM
2189
C
LEU
A
275
109.105
35.249
−17.455
1.00
154.01
C


ATOM
2190
O
LEU
A
275
108.273
36.138
−17.273
1.00
153.38
O


ATOM
2191
N
ILE
A
276
110.371
35.496
−17.792
1.00
155.71
N


ATOM
2192
CA
ILE
A
276
110.884
36.858
−17.988
1.00
155.92
C


ATOM
2193
CB
ILE
A
276
112.436
36.874
−18.018
1.00
156.41
C


ATOM
2194
CG1
ILE
A
276
112.996
36.460
−16.651
1.00
155.75
C


ATOM
2195
CD1
ILE
A
276
114.482
36.168
−16.645
1.00
153.90
C


ATOM
2196
CG2
ILE
A
276
112.967
38.256
−18.385
1.00
155.85
C


ATOM
2197
C
ILE
A
276
110.315
37.506
−19.259
1.00
154.59
C


ATOM
2198
O
ILE
A
276
110.170
38.728
−19.320
1.00
152.55
O


ATOM
2199
N
SER
A
277
109.987
36.690
−20.261
1.00
154.98
N


ATOM
2200
CA
SER
A
277
109.430
37.192
−21.524
1.00
153.95
C


ATOM
2201
CB
SER
A
277
109.402
36.082
−22.582
1.00
150.69
C


ATOM
2202
OG
SER
A
277
108.569
35.007
−22.185
1.00
147.26
O


ATOM
2203
C
SER
A
277
108.027
37.791
−21.363
1.00
156.19
C


ATOM
2204
O
SER
A
277
107.674
38.743
−22.061
1.00
157.19
O


ATOM
2205
N
GLU
A
278
107.239
37.231
−20.446
1.00
156.49
N


ATOM
2206
CA
GLU
A
278
105.871
37.700
−20.194
1.00
152.92
C


ATOM
2207
CB
GLU
A
278
105.094
36.667
−19.369
1.00
151.29
C


ATOM
2208
CG
GLU
A
278
104.885
35.335
−20.078
1.00
150.66
C


ATOM
2209
CD
GLU
A
278
104.176
34.299
−19.219
1.00
149.23
C


ATOM
2210
OE1
GLU
A
278
104.099
34.478
−17.984
1.00
145.23
O


ATOM
2211
OE2
GLU
A
278
103.700
33.292
−19.784
1.00
148.65
O


ATOM
2212
C
GLU
A
278
105.854
39.051
−19.480
1.00
149.61
C


ATOM
2213
O
GLU
A
278
106.758
39.374
−18.709
1.00
145.55
O


HETATM
2214
C1
NAG
A
300
92.231
29.653
25.803
1.00
88.06
C


HETATM
2215
C2
NAG
A
300
93.546
29.976
26.521
1.00
88.70
C


HETATM
2216
N2
NAG
A
300
94.628
30.106
25.559
1.00
88.07
N


HETATM
2217
C7
NAG
A
300
94.728
31.148
24.730
1.00
88.36
C


HETATM
2218
O7
NAG
A
300
93.922
32.075
24.698
1.00
86.86
O


HETATM
2219
C8
NAG
A
300
95.899
31.162
23.792
1.00
89.47
C


HETATM
2220
C3
NAG
A
300
93.936
28.982
27.618
1.00
93.40
C


HETATM
2221
O3
NAG
A
300
94.906
29.554
28.468
1.00
91.90
O


HETATM
2222
C4
NAG
A
300
92.725
28.576
28.442
1.00
97.32
C


HETATM
2223
O4
NAG
A
300
93.069
27.586
29.395
1.00
107.70
O


HETATM
2224
C5
NAG
A
300
91.667
28.059
27.480
1.00
94.56
C


HETATM
2225
C6
NAG
A
300
90.444
27.489
28.189
1.00
95.47
C


HETATM
2226
O6
NAG
A
300
89.905
28.462
29.053
1.00
98.19
O


HETATM
2227
O5
NAG
A
300
91.261
29.151
26.700
1.00
88.89
O


HETATM
2228
C1
NAG
A
301
93.078
28.120
30.733
1.00
119.47
C


HETATM
2229
C2
NAG
A
301
92.849
26.984
31.739
1.00
125.81
C


HETATM
2230
N2
NAG
A
301
91.499
26.413
31.646
1.00
126.51
N


HETATM
2231
C7
NAG
A
301
90.352
27.055
31.942
1.00
121.91
C


HETATM
2232
O7
NAG
A
301
90.283
28.222
32.329
1.00
120.28
O


HETATM
2233
C8
NAG
A
301
89.070
26.285
31.782
1.00
117.84
C


HETATM
2234
C3
NAG
A
301
93.193
27.361
33.192
1.00
131.36
C


HETATM
2235
O3
NAG
A
301
93.482
26.189
33.923
1.00
130.30
O


HETATM
2236
C4
NAG
A
301
94.367
28.330
33.322
1.00
133.81
C


HETATM
2237
O4
NAG
A
301
94.322
28.954
34.594
1.00
141.80
O


HETATM
2238
C5
NAG
A
301
94.319
29.408
32.244
1.00
130.44
C


HETATM
2239
C6
NAG
A
301
95.511
30.359
32.319
1.00
130.22
C


HETATM
2240
O6
NAG
A
301
96.715
29.646
32.140
1.00
133.23
O


HETATM
2241
O5
NAG
A
301
94.303
28.769
30.987
1.00
122.75
O


HETATM
2242
C1
BMA
A
302
95.375
28.514
35.477
1.00
149.86
C


HETATM
2243
O5
BMA
A
302
94.924
27.535
36.414
1.00
151.87
O


HETATM
2244
C5
BMA
A
302
95.978
27.001
37.222
1.00
152.13
C


HETATM
2245
C6
BMA
A
302
95.407
25.922
38.135
1.00
149.41
C


HETATM
2246
O6
BMA
A
302
96.469
25.123
38.669
1.00
146.07
O


HETATM
2247
C4
BMA
A
302
96.644
28.114
38.030
1.00
154.34
C


HETATM
2248
O4
BMA
A
302
97.780
27.590
38.726
1.00
158.54
O


HETATM
2249
C3
BMA
A
302
97.086
29.262
37.127
1.00
152.99
C


HETATM
2250
O3
BMA
A
302
97.557
30.359
37.919
1.00
152.44
O


HETATM
2251
C2
BMA
A
302
95.929
29.708
36.241
1.00
151.92
C


HETATM
2252
O2
BMA
A
302
94.893
30.288
37.041
1.00
152.03
O


HETATM
2253
C1
NAG
A
310
94.583
20.869
27.777
1.00
109.65
C


HETATM
2254
C2
NAG
A
310
95.465
21.038
29.004
1.00
117.28
C


HETATM
2255
N2
NAG
A
310
94.903
22.024
29.913
1.00
119.62
N


HETATM
2256
C7
NAG
A
310
94.647
21.772
31.201
1.00
120.08
C


HETATM
2257
O7
NAG
A
310
94.862
20.689
31.749
1.00
116.82
O


HETATM
2258
C8
NAG
A
310
94.062
22.903
31.995
1.00
120.22
C


HETATM
2259
C3
NAG
A
310
96.852
21.445
28.534
1.00
119.67
C


HETATM
2260
O3
NAG
A
310
97.726
21.550
29.634
1.00
119.10
O


HETATM
2261
C4
NAG
A
310
97.370
20.405
27.550
1.00
122.93
C


HETATM
2262
O4
NAG
A
310
98.524
20.918
26.929
1.00
135.19
O


HETATM
2263
C5
NAG
A
310
96.349
20.102
26.453
1.00
118.12
C


HETATM
2264
C6
NAG
A
310
96.764
18.929
25.573
1.00
118.70
C


HETATM
2265
O6
NAG
A
310
96.949
17.778
26.368
1.00
116.86
O


HETATM
2266
O5
NAG
A
310
95.092
19.805
27.013
1.00
111.69
O


HETATM
2267
C1
NAG
A
311
99.746
20.381
27.460
1.00
146.81
C


HETATM
2268
C2
NAG
A
311
100.639
20.109
26.250
1.00
148.11
C


HETATM
2269
N2
NAG
A
311
100.161
18.923
25.555
1.00
144.86
N


HETATM
2270
C7
NAG
A
311
100.351
18.733
24.248
1.00
143.26
C


HETATM
2271
O7
NAG
A
311
100.947
19.539
23.536
1.00
143.90
O


HETATM
2272
C8
NAG
A
311
99.804
17.470
23.646
1.00
142.28
C


HETATM
2273
C3
NAG
A
311
102.113
19.945
26.600
1.00
155.81
C


HETATM
2274
O3
NAG
A
311
102.863
20.077
25.415
1.00
155.79
O


HETATM
2275
C4
NAG
A
311
102.529
20.992
27.627
1.00
163.01
C


HETATM
2276
O4
NAG
A
311
103.872
20.824
28.030
1.00
170.20
O


HETATM
2277
C5
NAG
A
311
101.598
20.888
28.828
1.00
162.22
C


HETATM
2278
C6
NAG
A
311
102.043
21.767
29.996
1.00
160.93
C


HETATM
2279
O6
NAG
A
311
101.095
21.690
31.037
1.00
156.34
O


HETATM
2280
O5
NAG
A
311
100.320
21.283
28.383
1.00
155.90
O


HETATM
2281
C1
BMA
A
312
104.801
21.457
27.128
1.00
173.77
C


HETATM
2282
O5
BMA
A
312
105.738
20.504
26.637
1.00
175.56
O


HETATM
2283
C5
BMA
A
312
106.642
21.022
25.661
1.00
174.38
C


HETATM
2284
C6
BMA
A
312
107.457
19.854
25.107
1.00
173.09
C


HETATM
2285
O6
BMA
A
312
106.897
19.386
23.867
1.00
173.14
O


HETATM
2286
C4
BMA
A
312
107.488
22.118
26.308
1.00
174.90
C


HETATM
2287
O4
BMA
A
312
108.372
22.697
25.341
1.00
170.26
O


HETATM
2288
C3
BMA
A
312
106.560
23.196
26.872
1.00
176.32
C


HETATM
2289
O3
BMA
A
312
107.308
24.319
27.392
1.00
179.24
O


HETATM
2290
C2
BMA
A
312
105.549
22.571
27.845
1.00
175.80
C


HETATM
2291
O2
BMA
A
312
106.163
21.983
28.997
1.00
179.19
O


HETATM
2292
C1
MAN
A
313
105.668
18.645
24.052
1.00
173.82
C


HETATM
2293
C2
MAN
A
313
105.951
17.157
24.240
1.00
173.85
C


HETATM
2294
O2
MAN
A
313
104.749
16.562
24.671
1.00
170.58
O


HETATM
2295
C3
MAN
A
313
106.456
16.548
22.927
1.00
175.11
C


HETATM
2296
O3
MAN
A
313
106.892
15.191
23.021
1.00
179.56
O


HETATM
2297
C4
MAN
A
313
105.468
16.852
21.794
1.00
173.27
C


HETATM
2298
O4
MAN
A
313
106.007
16.404
20.573
1.00
171.08
O


HETATM
2299
C5
MAN
A
313
105.196
18.355
21.719
1.00
173.04
C


HETATM
2300
C6
MAN
A
313
104.164
18.707
20.645
1.00
169.96
C


HETATM
2301
O6
MAN
A
313
102.944
18.034
20.866
1.00
163.68
O


HETATM
2302
O5
MAN
A
313
104.756
18.830
22.980
1.00
175.64
O


HETATM
2303
C1
MAN
A
314
105.922
14.184
23.394
1.00
178.69
C


HETATM
2304
C2
MAN
A
314
106.171
13.732
24.832
1.00
175.17
C


HETATM
2305
O2
MAN
A
314
105.094
12.927
25.259
1.00
167.65
O


HETATM
2306
C3
MAN
A
314
107.477
12.949
24.950
1.00
175.89
C


HETATM
2307
O3
MAN
A
314
107.610
12.413
26.248
1.00
175.01
O


HETATM
2308
C4
MAN
A
314
107.523
11.824
23.924
1.00
177.70
C


HETATM
2309
O4
MAN
A
314
108.804
11.232
23.946
1.00
175.31
O


HETATM
2310
C5
MAN
A
314
107.221
12.378
22.532
1.00
179.10
C


HETATM
2311
C6
MAN
A
314
107.184
11.279
21.474
1.00
177.74
C


HETATM
2312
O6
MAN
A
314
106.145
10.367
21.754
1.00
177.31
O


HETATM
2313
O5
MAN
A
314
105.974
13.053
22.545
1.00
180.90
O


HETATM
2314
C1
MAN
A
315
107.996
24.177
28.656
1.00
178.04
C


HETATM
2315
C2
MAN
A
315
107.861
25.503
29.400
1.00
176.71
C


HETATM
2316
O2
MAN
A
315
108.273
25.337
30.738
1.00
176.35
O


HETATM
2317
C3
MAN
A
315
108.691
26.587
28.720
1.00
174.62
C


HETATM
2318
O3
MAN
A
315
108.650
27.779
29.472
1.00
174.02
O


HETATM
2319
C4
MAN
A
315
110.134
26.123
28.555
1.00
174.24
C


HETATM
2320
O4
MAN
A
315
110.840
27.087
27.806
1.00
169.00
O


HETATM
2321
C5
MAN
A
315
110.186
24.763
27.856
1.00
175.46
C


HETATM
2322
C6
MAN
A
315
111.599
24.182
27.804
1.00
172.54
C


HETATM
2323
O6
MAN
A
315
112.577
25.196
27.752
1.00
170.89
O


HETATM
2324
O5
MAN
A
315
109.361
23.825
28.526
1.00
178.20
O


HETATM
2325
C1
NAG
A
320
99.704
11.932
5.032
1.00
78.00
C


HETATM
2326
C2
NAG
A
320
101.063
11.242
5.063
1.00
79.63
C


HETATM
2327
N2
NAG
A
320
101.690
11.279
3.754
1.00
81.27
N


HETATM
2328
C7
NAG
A
320
102.732
12.057
3.458
1.00
83.86
C


HETATM
2329
O7
NAG
A
320
103.272
12.831
4.251
1.00
85.89
O


HETATM
2330
C8
NAG
A
320
103.254
11.957
2.055
1.00
84.99
C


HETATM
2331
C3
NAG
A
320
100.933
9.788
5.507
1.00
79.53
C


HETATM
2332
O3
NAG
A
320
102.213
9.258
5.761
1.00
78.00
O


HETATM
2333
C4
NAG
A
320
100.100
9.685
6.772
1.00
80.67
C


HETATM
2334
O4
NAG
A
320
99.818
8.327
7.056
1.00
85.62
O


HETATM
2335
C5
NAG
A
320
98.796
10.457
6.615
1.00
78.92
C


HETATM
2336
C6
NAG
A
320
97.984
10.436
7.902
1.00
81.04
C


HETATM
2337
O6
NAG
A
320
98.777
10.903
8.973
1.00
82.77
O


HETATM
2338
O5
NAG
A
320
99.095
11.795
6.297
1.00
77.52
O


HETATM
2339
C1
NAG
A
321
100.443
7.908
8.284
1.00
90.18
C


HETATM
2340
C2
NAG
A
321
99.708
6.704
8.850
1.00
90.56
C


HETATM
2341
N2
NAG
A
321
98.319
7.015
9.118
1.00
86.90
N


HETATM
2342
C7
NAG
A
321
97.320
6.575
8.360
1.00
86.04
C


HETATM
2343
O7
NAG
A
321
97.469
5.880
7.356
1.00
86.02
O


HETATM
2344
C8
NAG
A
321
95.949
6.988
8.795
1.00
86.14
C


HETATM
2345
C3
NAG
A
321
100.336
6.267
10.162
1.00
95.00
C


HETATM
2346
O3
NAG
A
321
99.774
5.031
10.540
1.00
94.11
O


HETATM
2347
C4
NAG
A
321
101.852
6.146
10.078
1.00
99.90
C


HETATM
2348
O4
NAG
A
321
102.343
6.206
11.401
1.00
111.46
O


HETATM
2349
C5
NAG
A
321
102.493
7.282
9.281
1.00
97.44
C


HETATM
2350
C6
NAG
A
321
103.947
6.969
8.938
1.00
97.10
C


HETATM
2351
O6
NAG
A
321
103.999
6.031
7.886
1.00
97.63
O


HETATM
2352
O5
NAG
A
321
101.790
7.546
8.083
1.00
94.30
O


HETATM
2353
C1
BMA
A
322
102.661
4.906
11.925
1.00
122.99
C


HETATM
2354
O5
BMA
A
322
101.525
4.109
12.255
1.00
127.83
O


HETATM
2355
C5
BMA
A
322
101.884
2.771
12.618
1.00
133.51
C


HETATM
2356
C6
BMA
A
322
100.615
1.981
12.924
1.00
137.04
C


HETATM
2357
O6
BMA
A
322
99.842
2.620
13.953
1.00
142.80
O


HETATM
2358
C4
BMA
A
322
102.860
2.751
13.801
1.00
134.12
C


HETATM
2359
O4
BMA
A
322
103.375
1.426
13.966
1.00
134.46
O


HETATM
2360
C3
BMA
A
322
104.027
3.719
13.595
1.00
134.38
C


HETATM
2361
O3
BMA
A
322
104.824
3.820
14.788
1.00
140.14
O


HETATM
2362
C2
BMA
A
322
103.480
5.082
13.190
1.00
128.00
C


HETATM
2363
O2
BMA
A
322
102.656
5.617
14.234
1.00
123.99
O


HETATM
2364
C1
MAN
A
323
106.165
4.289
14.504
1.00
144.86
C


HETATM
2365
C2
MAN
A
323
107.113
3.102
14.303
1.00
145.83
C


HETATM
2366
O2
MAN
A
323
108.221
3.519
13.532
1.00
142.79
O


HETATM
2367
C3
MAN
A
323
107.599
2.476
15.614
1.00
148.36
C


HETATM
2368
O3
MAN
A
323
108.743
1.684
15.376
1.00
147.23
O


HETATM
2369
C4
MAN
A
323
107.926
3.522
16.674
1.00
148.74
C


HETATM
2370
O4
MAN
A
323
108.112
2.888
17.920
1.00
149.10
O


HETATM
2371
C5
MAN
A
323
106.804
4.549
16.777
1.00
147.56
C


HETATM
2372
C6
MAN
A
323
107.115
5.600
17.840
1.00
145.14
C


HETATM
2373
O6
MAN
A
323
106.520
6.836
17.507
1.00
142.88
O


HETATM
2374
O5
MAN
A
323
106.646
5.160
15.511
1.00
147.26
O


HETATM
2375
C1
MAN
A
324
98.715
1.788
14.313
1.00
148.42
C


HETATM
2376
C2
MAN
A
324
97.413
2.512
13.959
1.00
148.60
C


HETATM
2377
O2
MAN
A
324
96.396
1.554
13.757
1.00
150.22
O


HETATM
2378
C3
MAN
A
324
96.973
3.530
15.015
1.00
149.37
C


HETATM
2379
O3
MAN
A
324
95.624
3.891
14.809
1.00
147.64
O


HETATM
2380
C4
MAN
A
324
97.141
2.995
16.432
1.00
149.92
C


HETATM
2381
O4
MAN
A
324
96.913
4.039
17.352
1.00
148.37
O


HETATM
2382
C5
MAN
A
324
98.542
2.423
16.616
1.00
150.46
C


HETATM
2383
C6
MAN
A
324
98.735
1.846
18.015
1.00
148.18
C


HETATM
2384
O6
MAN
A
324
98.707
2.883
18.969
1.00
148.30
O


HETATM
2385
O5
MAN
A
324
98.741
1.389
15.673
1.00
152.09
O


HETATM
2386
C1
NAG
A
330
113.415
26.632
18.299
1.00
110.44
C


HETATM
2387
C2
NAG
A
330
113.451
27.224
19.699
1.00
114.33
C


HETATM
2388
N2
NAG
A
330
112.698
28.467
19.720
1.00
110.83
N


HETATM
2389
C7
NAG
A
330
111.815
28.817
20.662
1.00
109.92
C


HETATM
2390
O7
NAG
A
330
111.216
29.888
20.603
1.00
108.90
O


HETATM
2391
C8
NAG
A
330
111.543
27.895
21.819
1.00
109.21
C


HETATM
2392
C3
NAG
A
330
114.898
27.468
20.090
1.00
118.83
C


HETATM
2393
O3
NAG
A
330
114.967
27.874
21.436
1.00
118.84
O


HETATM
2394
C4
NAG
A
330
115.703
26.186
19.892
1.00
123.15
C


HETATM
2395
O4
NAG
A
330
117.068
26.467
20.115
1.00
134.68
O


HETATM
2396
C5
NAG
A
330
115.502
25.610
18.490
1.00
117.64
C


HETATM
2397
C6
NAG
A
330
116.192
24.267
18.296
1.00
115.10
C


HETATM
2398
O6
NAG
A
330
115.595
23.304
19.137
1.00
110.28
O


HETATM
2399
O5
NAG
A
330
114.125
25.419
18.271
1.00
113.09
O


HETATM
2400
C1
NAG
A
331
117.623
25.577
21.098
1.00
141.38
C


HETATM
2401
C2
NAG
A
331
119.097
25.938
21.284
1.00
142.10
C


HETATM
2402
N2
NAG
A
331
119.820
25.923
20.014
1.00
137.18
N


HETATM
2403
C7
NAG
A
331
120.034
24.827
19.278
1.00
132.94
C


HETATM
2404
O7
NAG
A
331
119.651
23.703
19.593
1.00
130.56
O


HETATM
2405
C8
NAG
A
331
120.795
25.006
17.995
1.00
132.22
C


HETATM
2406
C3
NAG
A
331
119.740
25.076
22.372
1.00
146.26
C


HETATM
2407
O3
NAG
A
331
121.036
25.546
22.661
1.00
145.00
O


HETATM
2408
C4
NAG
A
331
118.870
25.127
23.623
1.00
152.12
C


HETATM
2409
O4
NAG
A
331
119.398
24.297
24.638
1.00
162.28
O


HETATM
2410
C5
NAG
A
331
117.443
24.712
23.273
1.00
149.81
C


HETATM
2411
C6
NAG
A
331
116.516
24.666
24.486
1.00
149.59
C


HETATM
2412
O6
NAG
A
331
116.467
25.929
25.110
1.00
150.33
O


HETATM
2413
O5
NAG
A
331
116.951
25.649
22.340
1.00
144.92
O


HETATM
2414
C1
BMA
A
332
119.957
25.093
25.701
1.00
168.28
C


HETATM
2415
O5
BMA
A
332
121.230
25.636
25.363
1.00
170.32
O


HETATM
2416
C5
BMA
A
332
121.709
26.581
26.321
1.00
168.05
C


HETATM
2417
C6
BMA
A
332
123.071
27.095
25.858
1.00
163.68
C


HETATM
2418
O6
BMA
A
332
122.918
28.350
25.187
1.00
159.66
O


HETATM
2419
C4
BMA
A
332
121.806
25.969
27.721
1.00
171.45
C


HETATM
2420
O4
BMA
A
332
121.940
27.054
28.648
1.00
169.83
O


HETATM
2421
C3
BMA
A
332
120.602
25.100
28.112
1.00
173.51
C


HETATM
2422
O3
BMA
A
332
120.940
24.206
29.186
1.00
179.72
O


HETATM
2423
C2
BMA
A
332
120.106
24.243
26.951
1.00
170.13
C


HETATM
2424
O2
BMA
A
332
121.018
23.165
26.702
1.00
165.46
O


HETATM
2425
C1
MAN
A
333
120.952
24.832
30.488
1.00
181.80
C


HETATM
2426
C2
MAN
A
333
122.387
24.853
31.001
1.00
181.64
C


HETATM
2427
O2
MAN
A
333
122.457
25.624
32.180
1.00
179.83
O


HETATM
2428
C3
MAN
A
333
122.877
23.433
31.267
1.00
180.97
C


HETATM
2429
O3
MAN
A
333
124.163
23.465
31.847
1.00
178.86
O


HETATM
2430
C4
MAN
A
333
121.903
22.692
32.178
1.00
181.14
C


HETATM
2431
O4
MAN
A
333
122.278
21.333
32.241
1.00
179.06
O


HETATM
2432
C5
MAN
A
333
120.464
22.813
31.673
1.00
179.97
C


HETATM
2433
C6
MAN
A
333
119.472
22.252
32.688
1.00
175.98
C


HETATM
2434
O6
MAN
A
333
118.313
21.812
32.017
1.00
171.57
O


HETATM
2435
O5
MAN
A
333
120.127
24.167
31.426
1.00
181.86
O


HETATM
2436
C1
NAG
A
340
100.888
27.243
−17.586
1.00
88.88
C


HETATM
2437
C2
NAG
A
340
99.518
26.573
−17.707
1.00
90.13
C


HETATM
2438
N2
NAG
A
340
99.446
25.405
−18.592
1.00
92.46
N


HETATM
2439
C7
NAG
A
340
99.882
25.283
−19.848
1.00
92.58
C


HETATM
2440
O7
NAG
A
340
99.757
24.207
−20.432
1.00
91.08
O


HETATM
2441
C8
NAG
A
340
100.517
26.438
−20.572
1.00
94.41
C


HETATM
2442
C3
NAG
A
340
98.440
27.624
−17.910
1.00
89.36
C


HETATM
2443
O3
NAG
A
340
97.185
26.988
−17.974
1.00
89.82
O


HETATM
2444
C4
NAG
A
340
98.497
28.556
−16.702
1.00
89.59
C


HETATM
2445
O4
NAG
A
340
97.691
29.694
−16.929
1.00
94.05
O


HETATM
2446
C5
NAG
A
340
99.924
29.020
−16.373
1.00
88.48
C


HETATM
2447
C6
NAG
A
340
99.977
29.712
−15.011
1.00
87.61
C


HETATM
2448
O6
NAG
A
340
99.455
28.875
−14.001
1.00
84.45
O


HETATM
2449
O5
NAG
A
340
100.874
27.967
−16.379
1.00
88.47
O


HETATM
2450
C1
NAG
A
341
96.435
29.594
−16.232
1.00
96.35
C


HETATM
2451
C2
NAG
A
341
95.794
30.976
−16.163
1.00
96.82
C


HETATM
2452
N2
NAG
A
341
96.637
31.906
−15.427
1.00
95.78
N


HETATM
2453
C7
NAG
A
341
97.606
32.617
−16.010
1.00
95.58
C


HETATM
2454
O7
NAG
A
341
97.874
32.543
−17.210
1.00
95.58
O


HETATM
2455
C8
NAG
A
341
98.401
33.540
−15.131
1.00
95.35
C


HETATM
2456
C3
NAG
A
341
94.416
30.892
−15.520
1.00
99.78
C


HETATM
2457
O3
NAG
A
341
93.789
32.152
−15.588
1.00
99.67
O


HETATM
2458
C4
NAG
A
341
93.591
29.840
−16.252
1.00
104.00
C


HETATM
2459
O4
NAG
A
341
92.301
29.715
−15.684
1.00
111.33
O


HETATM
2460
C5
NAG
A
341
94.327
28.504
−16.243
1.00
102.77
C


HETATM
2461
C6
NAG
A
341
93.552
27.414
−16.979
1.00
104.49
C


HETATM
2462
O6
NAG
A
341
93.598
27.650
−18.370
1.00
105.18
O


HETATM
2463
O5
NAG
A
341
95.577
28.676
−16.876
1.00
98.21
O


HETATM
2464
C1
BMA
A
342
91.328
30.498
−16.408
1.00
119.64
C


HETATM
2465
O5
BMA
A
342
91.085
31.765
−15.791
1.00
120.34
O


HETATM
2466
C5
BMA
A
342
90.208
32.602
−16.547
1.00
121.32
C


HETATM
2467
C6
BMA
A
342
90.160
33.985
−15.906
1.00
121.40
C


HETATM
2468
O6
BMA
A
342
91.453
34.603
−16.035
1.00
124.56
O


HETATM
2469
C4
BMA
A
342
88.838
31.936
−16.610
1.00
123.92
C


HETATM
2470
O4
BMA
A
342
87.945
32.698
−17.428
1.00
121.93
O


HETATM
2471
C3
BMA
A
342
88.953
30.537
−17.203
1.00
128.89
C


HETATM
2472
O3
BMA
A
342
87.672
29.893
−17.113
1.00
140.69
O


HETATM
2473
C2
BMA
A
342
90.035
29.699
−16.517
1.00
124.67
C


HETATM
2474
O2
BMA
A
342
89.623
29.265
−15.215
1.00
123.88
O


HETATM
2475
C1
MAN
A
343
87.247
29.408
−18.403
1.00
151.30
C


HETATM
2476
C2
MAN
A
343
85.721
29.263
−18.399
1.00
154.03
C


HETATM
2477
O2
MAN
A
343
85.137
28.979
−19.667
1.00
161.06
O


HETATM
2478
C3
MAN
A
343
85.324
28.143
−17.439
1.00
150.64
C


HETATM
2479
O3
MAN
A
343
83.935
27.917
−17.508
1.00
147.95
O


HETATM
2480
C4
MAN
A
343
86.065
26.864
−17.811
1.00
151.44
C


HETATM
2481
O4
MAN
A
343
85.807
25.852
−16.867
1.00
146.63
O


HETATM
2482
C5
MAN
A
343
87.571
27.112
−17.856
1.00
153.70
C


HETATM
2483
C6
MAN
A
343
88.343
25.860
−18.278
1.00
155.05
C


HETATM
2484
O6
MAN
A
343
87.459
24.892
−18.810
1.00
158.77
O


HETATM
2485
O5
MAN
A
343
87.851
28.175
−18.751
1.00
154.50
O


HETATM
2486
C1
MAN
A
345
85.695
29.622
−20.841
1.00
166.37
C


HETATM
2487
C2
MAN
A
345
85.634
31.158
−20.781
1.00
167.59
C


HETATM
2488
O2
MAN
A
345
86.580
31.692
−21.683
1.00
167.20
O


HETATM
2489
C3
MAN
A
345
84.245
31.731
−21.075
1.00
166.74
C


HETATM
2490
O3
MAN
A
345
84.322
33.124
−21.288
1.00
162.83
O


HETATM
2491
C4
MAN
A
345
83.617
31.055
−22.288
1.00
167.34
C


HETATM
2492
O4
MAN
A
345
82.280
31.482
−22.423
1.00
162.36
O


HETATM
2493
C5
MAN
A
345
83.684
29.542
−22.101
1.00
168.99
C


HETATM
2494
C6
MAN
A
345
83.040
28.783
−23.255
1.00
168.07
C


HETATM
2495
O6
MAN
A
345
83.134
27.399
−22.995
1.00
164.56
O


HETATM
2496
O5
MAN
A
345
85.042
29.160
−22.008
1.00
168.63
O


HETATM
2497
C1
MAN
A
344
91.467
35.742
−16.924
1.00
128.05
C


HETATM
2498
C2
MAN
A
344
92.582
35.574
−17.955
1.00
130.27
C


HETATM
2499
O2
MAN
A
344
92.454
36.565
−18.952
1.00
128.74
O


HETATM
2500
C3
MAN
A
344
93.959
35.658
−17.296
1.00
130.86
C


HETATM
2501
O3
MAN
A
344
94.974
35.677
−18.278
1.00
129.03
O


HETATM
2502
C4
MAN
A
344
94.078
36.901
−16.419
1.00
129.88
C


HETATM
2503
O4
MAN
A
344
95.251
36.794
−15.641
1.00
125.41
O


HETATM
2504
C5
MAN
A
344
92.861
37.074
−15.505
1.00
129.52
C


HETATM
2505
C6
MAN
A
344
92.875
38.441
−14.825
1.00
129.77
C


HETATM
2506
O6
MAN
A
344
93.749
38.437
−13.718
1.00
128.61
O


HETATM
2507
O5
MAN
A
344
91.648
36.961
−16.230
1.00
127.47
O


HETATM
2508
C1
MAN
A
346
88.141
23.896
−19.600
1.00
161.77
C


HETATM
2509
C2
MAN
A
346
88.219
24.347
−21.060
1.00
161.25
C


HETATM
2510
O2
MAN
A
346
89.132
23.525
−21.752
1.00
159.91
O


HETATM
2511
C3
MAN
A
346
86.856
24.287
−21.743
1.00
161.31
C


HETATM
2512
O3
MAN
A
346
86.990
24.544
−23.123
1.00
161.03
O


HETATM
2513
C4
MAN
A
346
86.221
22.919
−21.532
1.00
159.90
C


HETATM
2514
O4
MAN
A
346
84.913
22.924
−22.053
1.00
159.25
O


HETATM
2515
C5
MAN
A
346
86.185
22.604
−20.039
1.00
159.17
C


HETATM
2516
C6
MAN
A
346
85.541
21.251
−19.747
1.00
155.90
C


HETATM
2517
O6
MAN
A
346
86.162
20.229
−20.493
1.00
152.47
O


HETATM
2518
O5
MAN
A
346
87.505
22.631
−19.523
1.00
163.55
O








Claims
  • 1-13. (canceled)
  • 14. A method for oxidizing a polysaccharide comprising a step of contacting one or more polysaccharides with one or more polysaccharide-oxidizing enzymes wherein, when a polysaccharide-oxidizing enzyme of the one or more polysaccharide-oxidizing enzymes is compared to the reference polypeptide of SEQ ID NO. 1 by using the BLAST-P comparison method, (i) the polysaccharide-oxidizing enzyme possesses an amino acid identity of 20% or more with the reference polypeptide and (ii) the BLAST-P comparison method results in an E-value of 10 e−3 or less, or with a composition comprising the polysaccharide-oxidizing enzyme.
  • 15. The method according to claim 14, wherein the one or more polysaccharides are comprised in a polysaccharide-containing biomass.
  • 16. The method according to claim 14, wherein the one or more polysaccharides are contained in a lignocellulosic-containing material.
  • 17-20. (canceled)
  • 21. The method of claim 14 wherein the polysaccharide-oxidizing enzyme possesses an amino acid identity of 60% or more with the reference polypeptide.
  • 22. The method of claim 14, wherein the polysaccharide-oxidizing enzyme has at least 90% amino acid identity with a polypeptide selected from the group consisting of the polypeptides of SEQ ID NO. 1, SEQ ID NO. 2 and SEQ ID NO. 3.
  • 23. The method of claim 14, wherein the contacting step is performed in combination with one or more lytic polysaccharide monooxygenases.
  • 24. The method of claim 14 wherein the contacting step is performed in combination with one or more polysaccharide-degrading enzymes selected from the group consisting of cellulases, hemicellulases, ligninases, and carbohydrate oxidases.
  • 25. The method of claim 24 wherein the polysaccharide-degrading enzymes are selected from the group consisting of exoglucanases, endoglucanases, cellobiohydrolases, cellulose phosphorylases, pectinases, pectate lyases, polygalacturonase, pectin esterases, cellobiose dehydrogenases, beta mannanases, arabino furanosidases, feruoyl esterases, arabino furanosidases, fructofuranosidases, alpha galactosidases, beta galactosidases, alpha amylases, acetylxylan esterases, chitin deacetylases, chitinases, and beta glucosidases.
  • 26. The method of claim 14 wherein the contacting step is performed in combination with a lytic polysaccharide monooxygenase selected from the group consisting of AA9, AA10, AA11 and AA13.
Priority Claims (1)
Number Date Country Kind
16306162 Sep 2016 EP regional
Divisions (1)
Number Date Country
Parent 16330928 Mar 2019 US
Child 17164897 US