Claims
- 1. A photographic film unit comprising as essential elements, a negative component which comprises at least one light-sensitive silver halide layer associated with a dye image-providing material and a positive component which includes at least a layer dyeable by the dye-image providing material and a quantity of an aqueous alkaline processing composition which provides silver halide developing agents for the light-sensitive layer said processing composition also including opaque layer-providing materials dispersed therein, said dispersed materials comprising an inorganic reflecting pigment and at least one pH-sensitive, organic, optical filter agent, said processing composition being adapted to be spread as a layer between said components so that said dispersed materials can provide an opaque layer between said components, said dispersed materials being characterized as having a tendency to undergo a phase separation whereby certain random areas of the so provided opaque layer suffer a reduction in the quantum of said reflecting pigment, said processing composition further including a photographically innocuous polysilicate cation exchange resin providing a cation exchange capacity between about 0.45 to about 2.70 millequivalents of cation per gram of resin, the amount of said cation exchange resin being sufficient to inhibit effectively said phase separation.
- 2. A film unit of claim 1 wherein said composition is confined in a rupturable container so positioned as to be capable, upon rupturing, of spreading said processing composition confined therein in a substantially uniform layer between said positive and negative components.
- 3. A film unit of claim 2 where the concentration of said polysilicate cation exchange resin is at least 3% by weight of the processing composition.
- 4. A film unit of claim 1 where said polysilicate cation exchange resin comprises a natural or synthetic clay.
- 5. A photographic film unit which comprises, in combination, a photosensitive element including in order, a composite structure containing, as essential layers, a dimensionally stable, opaque support layer; at least two selectively sensitized silver halide emulsion layers possessing predominant spectral sensitivity to separate regions of the visible electromagnetic spectrum; each of said emulsion layers having associated therewith in the same or in an adjacent layer, a dye image-providing material capable of providing, as a function of development, an imagewise distribution of dye image-providing material which is soluble and diffusible in an alkaline processing composition having a first pH, each of said dye image-providing materials possessing a spectral absorption range subsequent to processing substantially complementary to the predominant sensitivity range of its associated emulsion layer; an image-receiving element including in order, a stratum dyeable by said imagewise distribution; a layer possessing acid capacity effective to reduce the alkalinity of an alkaline processing composition possessing said first pH to a second pH at which said imagewise distribution of dye image-providing material is substantially non-diffusible and a dimensionally stable transparent layer; means for securing said layers in substantially fixed relationship; and means for retaining an aqueous alkaline processing composition possessing said first pH, said means being positioned so that on the application of compressive force, said processing composition having said first pH can be applied between said dyeable stratum and the selectively sensitized silver halide emulsion layer next adjacent thereto to provide silver halide developing reagents for said silver halide emulsion, said processing composition including opaque layer-providing materials dispersed therein, said dispersed materials comprising an inorganic reflecting pigment and at least one pH-sensitive, organic optical filter agent, said processing composition having a pH above the pKa of said optical filter agent and being adapted, upon application in a layer to evelop said exposed photosensitive layer(s) and to provide sufficient opacity during the development period to prevent fogging of said photosensitive layer(s) by actinic light incident on said applied layer of said dispersed materials when said film unit is developed in the presence of said actinic light, said dispersed materials being characterized as having a tendency to undergo a phase separation whereby certain random areas of said applied layer of said dispersed materials suffer a reduction in the quantum of said reflecting pigment, said composition further including a photographically innocuous polysilicate cation exchange resin providing a cation exchange capacity between about 0.45 to about 2.70 millequivalents of cation per gram of resin the amount of said cation exchange resin being sufficient to inhibit effectively said phase separation.
- 6. A film unit of claim 5 where said means for retaining said processing composition comprises a rupturable container confining said processing composition.
- 7. A film unit of claim 5 where said processing composition includes a viscosity-increasing reagent.
- 8. A film unit of claim 5 where the concentration of said polysilicate cation exchange resin is at least 3% by weight of said processing composition.
- 9. A film unit of claim 5 where said polysilicate cation resin comprises a natural or a synthetic clay.
- 10. A film unit of claim 5 where the concentration of said optical filter agent in said composition is so great as to result, in the absence of said polysilicate cation resin, in a further phase separation of said filter agent so as to render said applied layer of said composition incapable of effectively preventing fogging of said photosensitive layer from light incident on said applied layer during said development period and said concentration of said polysilicate cation exchange resin is sufficient to prevent effectively said further phase separation.
- 11. A film unit which comprises, in combination, a photosensitive element including a composite structure containing, as essential layers, in sequence, a dimensionally stable, alkaline solution impermeable, opaque layer; a redsensitive silver halide emulsion layer having associated therewith cyan dye; a green-sensitive silver halide emulsion layer having associated therewith magenta dye; a bluesensitive silver halide emulsion layer having associated therewith yellow dye, each of the cyan, magenta and yellow dyes being silver halide developing agents and being soluble and diffusible, in alkali, at a first pH; an alkaline solution permeable and dyeable polymeric layer; a polymeric layer containing sufficient acidifying capacity to effect reduction of a processing composition having the first pH to a second pH at which the dyes are substantially non-diffusible; a dimensionally stable alkaline solution impermeable transparent layer; means for securing said layers in substantially fixed relationship; and a rupturable container retaining an aqueous alkaline processing composition having said first pH, said container being adapted so that on the application of compressive force, said processing composition can be applied as a layer between said dyeable polymeric layer and the selectively sensitized silver halide emulsion layer next adjacent thereto to provide silver halide developing reagents for said silver halide emulsions; said processing composition including opaque layer-providing materials dispersed therein, said dispersed materials comprising titanium dioxide and at least one pH-sensitive, organic optical filter agent substantially non-diffusible from said composition when said composition is applied as a layer to develop an exposed film unit containing a developable image, said optical filter agent possessing a pKa below the pH of said composition whereby to exhibit at said pH maximum spectral absorption over a predetermined range, said titanium dioxide and said filter agent being present in a quantity sufficient upon application as a layer to provide to said applied layer an optical transmission density >.about.6.0 density units with respect to incident actinic radiation and an optical reflection density <.about.1.0 density units with respect to incident visible radiation, said dispersed materials being characterized as having a tendency to undergo phase separation whereby certain random areas of said applied layer of said dispersed materials suffer a reduction in the quantum of said reflecting pigment, said processing composition further including a photographically innocuous polysilicate cation exchange resin providing a cation exchange capacity between about 0.45 to about 2.70 millequivalents of cation per gram of resin, the amount of said cation exchange resin being sufficient to inhibit effectively said phase separation.
- 12. A film unit of claim 11 where the concentration of said polysilicate cation exchange resin is at least 3% by weight of the processing composition.
- 13. A film unit of claim 11 where said polysilicate cation exchange resin comprises a natural or synthetic clay.
- 14. In a photographic process wherein a photosensitive element which comprises a negative component including at least one exposed silver halide layer containing a developable image; said layer having a dye image-providing material associated therewith, said element further including a positive component comprising at least a dyeable stratum adapted for receiving a color transfer image by development of said photosensitive element and wherein said element is developed by applying, between said positive and negative components, an aqueous alkaline processing composition which provides silver halide developing reagents to said photosensitive element and said processing composition includes opaque layer-providing materials dispersed therein, said dispersed materials comprising an inorganic reflecting pigment and at least one pH-sensitive, organic, optical filter agent, said processing composition having a pH above the pKa of said optical filter agent and being adapted, upon application in a layer to develop an exposed photosensitive layer and to provide sufficient opacity during the development period to prevent fogging of said photosensitive layer by actinic light incident on said applied layer of said dispersed materials when said film unit is developed in the presence of said actinic light, said dispersed materials being characterized as having a tendency to undergo a phase separation whereby certain random areas of said applied layer of said dispersed materials suffer a reduction in the quantum of said reflecting pigment; the improvement wherein said processing composition includes a photographically innocuous polysilicate cation exchange resin providing a cation exchange capacity between about 0.45 to about 2.70 millequivalents of cation per gram of resin, the amount of said cation exchange resin being sufficient to inhibit effectively said phase separation.
- 15. A photographic process of claim 14 where the concentration of said dispersed materials is sufficient to provide upon application of said processing composition in a layer to develop said film unit, a layer exhibiting an optical transmission density >.about.6.0 density units with respect to incident radiation actinic to said photosensitive layer and an optical reflection density <.about.1.0 density units with respect to incident visible radiation.
- 16. A photographic film unit which comprises a plurality of sequential layers including a layer opaque to incident actinic radiation; a photosensitive silver halide layer having associated therewith a dye image-forming material for providing, as a function of development, an imagewise distribution of dye image-providing material which is soluble and diffusible in the processing composition employed to develop said film unit; a layer adapted to receive solubilized dye image-forming material diffusing thereto; and a rupturable container retaining an aqueous alkaline processing composition which can provide silver halide developing reagents for the photosensitive layer and which includes opaque layer-providing materials dispersed therein, said dispersed materials comprising an inorganic reflecting pigment and at least one pH-sensitive, organic, optical filter agent, said processing composition having a pH above the pKa of said optical filter agent, said rupturable container retaining said processing composition positioned so as to be capable, upon application of compressive pressure to said container, of discharging said processing composition between said silver halide layer and said receptive layer to provide a layer to develop exposed photosensitive layer(s) and to provide sufficient opacity during the development period to prevent fogging of said photosensitive layer(s) by actinic light incident on said applied layer of said dispersed materials when said film unit is developed in the presence of said actinic light, said dispersed materials being characterized as having a tendency to undergo a phase separation whereby certain random areas of said applied layer of said dispersed materials suffer a reduction in the quantum of said reflecting pigment, said processing composition further including a photographically innocuous polysilicate cation exchange resin in an amount sufficient to inhibit effectively said phase separation said cation exchange resin being selected from the group consisting of natural or synthetic clays and providing a cation exchange capacity between about 0.45 to about 2.70 millequivalents of cation per gram of resin.
- 17. A film unit as of claim 16 where said dye image-forming material is initially soluble and diffusible in said processing composition.
- 18. A film unit of claim 16 where said dye image-providing material is a dye developer.
- 19. A film unit of claim 16 including a polymeric layer containing sufficient acidifying capacity to effect reduction from the pH of said processing composition above the pKa of said optical filter agent to a lower pH below the pKa of said filter agent.
- 20. A film unit of claim 16 where the concentration of said polysilicate cation exchange resin is at least 3% by weight of said processing composition.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
This application is a continuation-in-part of U.S. application Ser. No. 673,196 filed Apr. 2, 1976 (now abandoned) which in turn is a continuation-in-part of U.S. application Ser. No. 456,799 filed Apr. 1, 1974 (now abandoned) which in turn is a continuation-in-part of U.S. application Ser. No. 186,087 filed Oct. 4, 1971 (now abandoned).
US Referenced Citations (3)
Non-Patent Literature Citations (1)
Entry |
Cab-O-Sil Properties and Functions, Cabot Corporation, Boston, Mass. |
Continuation in Parts (3)
|
Number |
Date |
Country |
Parent |
673196 |
Apr 1976 |
|
Parent |
456799 |
Apr 1974 |
|
Parent |
186087 |
Oct 1971 |
|