1. Field of the Invention
This invention generally relates to a polysulfone composition useful for coating an implantable device such as a drug eluting stent.
2. Description of the Background
Blood vessel occlusions are commonly treated by mechanically enhancing blood flow in the affected vessels, such as by employing a stent. Stents are used not only for mechanical intervention but also as vehicles for providing biological therapy. To effect a controlled delivery of an active agent in stent medication, the stent can be coated with a biocompatible polymeric coating. The biocompatible polymeric coating can function either as a permeable layer or a carrier to allow a controlled delivery of the agent.
Polymeric coatings for delivery of therapeutic agents on implantable devices, e.g., drug-eluting stents, often suffer from poor mechanical properties, poor surface properties and poor biocompatibility. A coating on a stent with such shortcomings would be unsatisfactory for use in a patient. For example, a stent with poor biocompatibility may illicit undesirable immuno reactions from the patient, and a stent with poor surface properties may not be effective in controlling release rate of an agent in the coating. Therefore, there is a need for polymeric coating compositions that provide coatings with balanced mechanical properties, optimal permeability and good biocompatibility.
The polymer and methods of making the polymer disclosed herein address the above described problems and needs.
Disclosed herein are a polymeric composition and a coating formed therefrom comprising an elastomeric polymer, a polysulfone polymer, and optionally a bioactive agent. The elastomeric polymer can be any polymer which is elastomeric and biostable. In one embodiment, the elastomeric polymer can be, for example, polyacrylate or polymethacrylate with long side chains such as poly(butyl methacrylate) or poly(lauryl methacrylate), polyisobutylene, polyhexafluoropentene, or polysiloxane. Representative long side chains include any side chains having at least two or more carbon atoms such ethyl, propyl, isopropyl, butyl, isobutyl, lauryl, hexyl, etc.
The polysulfone polymer and the elastomeric polymer can form a simple blend or a conjugate. The conjugate can be formed by a direct chemical bonding, hydrogen bonding, or ionic bonding. The conjugate can be, for example, an ionic pair or a block copolymer. In one embodiment, the conjugate has one of the following structures:
wherein R1 is C1 to C10 alkyl, C2, C4 and C6 hydroxyalkyl, C1 to C6 fluoroalkyl, phenyl, substituted phenyl, polyethylene glycol, and polyalkylene oxide such as ethylene oxide or propylene oxide;
wherein R2, R4, R5, R7 and R8 are independently hydrogen, C1 to C6 alkyl, C2, C4 and C6 hydroxyalkyl, C1 to C6 fluoroalkyl, phenyl, substituted phenyl, carboxyl, amido, or ester groups bearing a polyethylene glycol, and polyalkylene oxide;
wherein R3 is hydrogen, alkyl, cycloalkyl, phenyl, carboxyl, halo, amino, hydroxyl, amido, sulfido, and polyalkylene oxide;
wherein R6 is a perfluoroalkyl group; and
wherein n and m are independently positive integers.
The coating composition thus formed can be coated onto an implantable device such as a drug-eluting stent (DES). The release rate of the bioactive agent on the implantable device can be controlled by varying the ratio of the polysulfone polymer over the elastomeric polymer, e.g., varying the n/m ratio of the copolymer described above.
Disclosed herein are a polymeric composition comprising an elastomeric polymer, a polysulfone polymer, and optionally a bioactive agent. The composition can form a coating on an implantable device such as a DES. The implantable device thus formed can be used for treating a disorder in an animal such as a human being.
The polysulfone polymer and the elastomeric polymer can be present in the present application in any ratio, for example, a ratio of between about 99.5:0.5 and 0.5:99.5, between about 99:1 and 1:99, between about 95:5 and 5:95, between about 90:10 and 10:90, between about 80:20 and 20:80, between about 75:25 and 25:75, between about 70:30 and 30:70, between about 60:40 and 40:60, or about 50:50. The polysulfone polymer and the elastomeric polymer can be present in the form of polymer blends or conjugates.
As used herein, the term “conjugate” refers to a group of at least two materials, e.g., two molecules of different polymers, associated with each other in the form of an interaction such as ionic interaction, direct chemical bonding, hydrogen bonding, or van der Waals interaction. Exemplary conjugates include, but are not limited to, ion pairs, block copolymers such as one comprising a block of a polysulfone polymer and another block of an elastomeric polymer such as poly(butyl methacrylate) or poly(lauryl methacrylate).
Polysulfone surfaces have long been known to be protein and cell resistant. The material has been used in several medical applications. Among them are kidney dialysis membranes and blood oxygenator membranes. Polysulfone polymers can be generated in laboratories via routine laboratory operations or commercially available. For example, there are two types of commercially available polysulfone polymers, one is one polyethersulfone, and the other was derivatized from bisphenol.
The elastomeric polymers useful for forming the blend or conjugate with the polysulfone polymer described herein can be any biocompatible elastomeric polymers. Representative examples of such elastomeric polymers include, but not limited to, natural rubber, polyisobutylene, nylon, polysiloxanes, polyperfluoroalkylene such as polyhexafluoropropylene, polymers and copolymers of acrylates or methacrylates with long side chains such as poly(butyl methacrylate), poly(lauryl methacrylate), and polyalkylene oxide or polyalkylene oxide acrylates. In one embodiment, the blend or conjugate can exclude any of the aforementioned elastomeric polymers.
In accordance with one aspect of the invention, the conjugates disclosed herein can be ion pairs or can be conjugates having other ionic interaction, hydrogen bonding, or van der Waals interaction. Conjugates of this nature can be formed by mixing a solution of the polysulfone polymer described herein with a solution of the elastomeric polymer.
In accordance with one aspect of the invention, the conjugates comprises a copolymer that comprises at least one block of a polysulfone polymer (A) and at least one block of an elastomeric polymer (B) in a general formula such as AB, ABA or BAB.
In one embodiment, the block copolymer has a structure of any of the following formulae:
wherein R1 is C1 to C10 alkyl, C2, C4 and C6 hydroxyalkyl, C1 to C6 fluoroalkyl, phenyl, substituted phenyl, polyethylene glycol, and polyalkylene oxide such as ethylene oxide or propylene oxide; wherein R2, R4, R5, R7 and R8 are independently hydrogen, C1 to C6 alkyl, C2, C4 and C6 hydroxyalkyl, C1 to C6 fluoroalkyl, phenyl, substituted phenyl, carboxyl, amido, or ester groups bearing a polyethylene glycol, and polyalkylene oxide; wherein R3 is hydrogen, alkyl, cycloalkyl, phenyl, carboxyl, halo, amino, hydroxyl, amido, sulfido, and polyalkylene oxide; wherein R9 and R10 are independently H, CH3, F and CF3; wherein R6 is a perfluoroalkyl group; and wherein n and m are independently positive integers. In an example, R1 is butyl, isobutyl or isopropyl; R2 is hydrogen or methyl; R3 is hydrogen, halo, or methyl; R4 and R5 are independently hydrogen, methyl, ethyl, isopropyl, butyl, isobutyl, or phenyl; R6 is F, CF3, CF2CF3, CF2CF2CF3, perfluoroisopropyl, perfluorobutyl or perfluoroisobutyl; R7 and R8 are independently methyl, ethyl, propyl, isopropyl, butyl, or isobutyl group. In another example, R1 is butyl; R2 is methyl; R3 is hydrogen; R4 and R5 are methyl groups; R6 is CF3; and R7 and R8 are methyl group. In a further example, the copolymer has one of the following structures:
The copolymers described herein can be formed by linking the polysulfone block and the elastomeric block by chemical reaction. Generally, block copolymers described herein can be formed by (1) attaching a functional group to either the polysulfone or elastomeric polymer or both, and (2) forming the block copolymer by linking the polysulfone and the elastomeric polymer via the functional group. For example, where the polysulfone is a polyether sulfone block copolymer, it can be synthesized by a variety of techniques via the formation of a polymer graft, the formation of a pseudo-living free-radical polymer by ATRP (atom-transfer radical polymerization), reverse-ATRP (see, for example, Qin, et al., J. Polym Sci. Part A, Polym Chem. 39:3464-3473 (2001)), thermal (see, for example, Liu, et al., J. Macromol. Sci-Pure Appl. Chem. A38(2):209-219 (2001)) or photo-initiator (see, for example, Otsu, et al., Makromolek Chem. Rapid Commun. 3:127 (1982)) using a macro-initiator, or the formation of appropriate reactive functionalities with anionic polymerizations. For example, hydrophilic components such as methacrylic acid, hydroxyl ethyl methacrylate, etc. can be introduced into the copolymer by polymerizing one of the hydrophilic components with a useful monomer such as a long chain methacrylate.
Schemes I-IV illustrate some exemplary methods of making the copolymer comprising at least a block of the polysulfone polymer and at least a second block of an elastomeric polymer. Scheme I shows the synthesis of a tolyl endcapped macromer of methacrylate (Mw: 10,000 to 100,000 Daltons):
As shown in Scheme I, a methacrylate can be first subjected to polymerization with an initiator, for example, an anionic initiator. The polymerization can be then terminated with a material having a desired functionality, for example, tolyl halide with a phenyl ring, forming a macromer of methacrylate endcapped with the desired functionality. The tolyl-endcapped-methacrylate macromer can then be used to terminate the Friedels Craft condensation reaction of an aromatic compound such as phenol ether or bibenzene with the acrylate tolyl functionality (Scheme II):
Alternatively, the copolymer can be synthesized via the formation of a macromer of polysulfone followed by the formation of the block of an elastomeric polymer (Schemes III-IV). In Scheme III, the Friedels Craft condensation reaction of an aromatic compound such as phenol ether or bibenzene is terminated with toluene, forming a toluene endcapped macromer of sulfone. The toluene is further derivatized to form a macro-initiator of a polysulfone macromer.
The macro-initiator of polysulfone macromer can then be used to initiate the polymerization of acrylate or methacrylate under thermal conditions, for example, heating at about 80° C. in the presence of a base such as (CH3)3COK in a solvent such as tetrahydrofuran (THF) to generate the block copolymer, poly(ether sulfone-block-acrylate) or poly(ether sulfone-block-methacrylate) (Scheme IV).
The block copolymer of polysulfone and an elastomeric polymer can be synthesized via other routes and techniques documented in the field (see, for example, Hadjichristidis, et al., Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley Europe (2002)).
The bioactive agent can be any agent which is biologically active, for example, a therapeutic, prophylactic, or diagnostic agent. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Compounds with a wide range of molecular weight can be used, for example, between 100 and 500,000 grams or more per mole. Examples of suitable materials include proteins such as antibodies, receptor ligands, and enzymes, peptides such as adhesion peptides, saccharides and polysaccharides, synthetic organic or inorganic drugs, and nucleic acids. Examples of materials which can be encapsulated include enzymes, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator; antigens for immunization; hormones and growth factors; polysaccharides such as heparin; oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Representative diagnostic agents are agents detectable by x-ray, fluorescence, magnetic resonance imaging, radioactivity, ultrasound, computer tomagraphy (CT) and positron emission tomagraphy (PET). Ultrasound diagnostic agents are typically a gas such as air, oxygen or perfluorocarbons.
In the case of controlled release, a wide range of different bioactive agents can be incorporated into a controlled release device. These include hydrophobic, hydrophilic, and high molecular weight macromolecules such as proteins. The bioactive compound can be incorporated into the polymeric coating in a percent loading of between 0.01% and 70% by weight, more preferably between 5% and 30% by weight.
In one embodiment, the bioactive agent can be for inhibiting the activity of vascular smooth muscle cells. More specifically, the bioactive agent can be aimed at inhibiting abnormal or inappropriate migration and/or proliferation of smooth muscle cells for the inhibition of restenosis. The bioactive agent can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. For example, the bioactive agent can be for enhancing wound healing in a vascular site or improving the structural and elastic properties of the vascular site. Examples of active agents include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The bioactive agent can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S.A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, tacrolimus, dexamethasone, rapamycin, Everolimus, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent required to inhibit the desired cellular activity of the vascular region can depend upon factors such as the particular circumstances of the patient; the nature of the trauma; the nature of the therapy desired; the time over which the ingredient administered resides at the vascular site; and if other active agents are employed, the nature and type of the substance or combination of substances. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, to determine the biological effect of a particular dose curve as established by pharmokinetic and pharmodynamic studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
The polysulfone composition can be coated onto any implantable device by any established coating process, e.g., a spray process. Generally, the coating process involves dissolving or suspending the composition in a solvent to form a solution or a suspension of the coating composition, and then applying the solution or suspension to an implantable device such as a DES.
As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. A preferred implantable device is DES. Examples of stents include self-expandable stents, balloon-expandable stents, and stent-grafts. Other exemplary implantable devices include grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316 L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention.
While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4329383 | Joh | May 1982 | A |
4733665 | Palmaz | Mar 1988 | A |
4800882 | Gianturco | Jan 1989 | A |
4882168 | Casey et al. | Nov 1989 | A |
4886062 | Wiktor | Dec 1989 | A |
4941870 | Okada et al. | Jul 1990 | A |
4977901 | Ofstead | Dec 1990 | A |
5112457 | Marchant | May 1992 | A |
5165919 | Sasaki et al. | Nov 1992 | A |
5221724 | Li et al. | Jun 1993 | A |
5272012 | Opolski | Dec 1993 | A |
5292516 | Viegas et al. | Mar 1994 | A |
5298260 | Viegas et al. | Mar 1994 | A |
5300295 | Viegas et al. | Apr 1994 | A |
5306501 | Viegas et al. | Apr 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5380299 | Fearnot et al. | Jan 1995 | A |
5417981 | Endo et al. | May 1995 | A |
5447724 | Helmus et al. | Sep 1995 | A |
5455040 | Marchant | Oct 1995 | A |
5462990 | Hubbell et al. | Oct 1995 | A |
5464650 | Berg et al. | Nov 1995 | A |
5569463 | Helmus et al. | Oct 1996 | A |
5578073 | Haimovich et al. | Nov 1996 | A |
5605696 | Eury et al. | Feb 1997 | A |
5609629 | Fearnot et al. | Mar 1997 | A |
5624411 | Tuch | Apr 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5649977 | Campbell | Jul 1997 | A |
5658995 | Kohn et al. | Aug 1997 | A |
5667767 | Greff et al. | Sep 1997 | A |
5670558 | Onishi et al. | Sep 1997 | A |
5679400 | Tuch | Oct 1997 | A |
5700286 | Tartaglia et al. | Dec 1997 | A |
5702754 | Zhong | Dec 1997 | A |
5716981 | Hunter et al. | Feb 1998 | A |
5735897 | Buirge | Apr 1998 | A |
5746998 | Torchilin et al. | May 1998 | A |
5776184 | Tuch | Jul 1998 | A |
5788979 | Alt et al. | Aug 1998 | A |
5800392 | Racchini | Sep 1998 | A |
5820917 | Tuch | Oct 1998 | A |
5824048 | Tuch | Oct 1998 | A |
5824049 | Ragheb et al. | Oct 1998 | A |
5830178 | Jones et al. | Nov 1998 | A |
5837008 | Berg et al. | Nov 1998 | A |
5837313 | Ding et al. | Nov 1998 | A |
5851508 | Greff et al. | Dec 1998 | A |
5858746 | Hubbell et al. | Jan 1999 | A |
5865814 | Tuch | Feb 1999 | A |
5869127 | Zhong | Feb 1999 | A |
5873904 | Ragheb et al. | Feb 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5877224 | Brocchini et al. | Mar 1999 | A |
5925720 | Kataoka et al. | Jul 1999 | A |
5955509 | Webber et al. | Sep 1999 | A |
5971954 | Conway et al. | Oct 1999 | A |
5980928 | Terry | Nov 1999 | A |
5980972 | Ding | Nov 1999 | A |
5997517 | Whitbourne | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6013099 | Dinh et al. | Jan 2000 | A |
6015541 | Greff et al. | Jan 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6042875 | Ding et al. | Mar 2000 | A |
6051576 | Ashton et al. | Apr 2000 | A |
6051648 | Rhee et al. | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6060451 | DiMaio et al. | May 2000 | A |
6060518 | Kabanov et al. | May 2000 | A |
6080488 | Hostettler et al. | Jun 2000 | A |
6096070 | Ragheb et al. | Aug 2000 | A |
6099562 | Ding et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6110483 | Whitbourne et al. | Aug 2000 | A |
6113629 | Ken | Sep 2000 | A |
6120536 | Ding et al. | Sep 2000 | A |
6120904 | Hostettler et al. | Sep 2000 | A |
6121027 | Clapper et al. | Sep 2000 | A |
6129761 | Hubbell | Oct 2000 | A |
6153252 | Hossainy et al. | Nov 2000 | A |
6165212 | Dereume et al. | Dec 2000 | A |
6203551 | Wu | Mar 2001 | B1 |
6231600 | Zhong | May 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6245753 | Byun et al. | Jun 2001 | B1 |
6251136 | Guruwaiya et al. | Jun 2001 | B1 |
6254632 | Wu et al. | Jul 2001 | B1 |
6258121 | Yang et al. | Jul 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283949 | Roorda | Sep 2001 | B1 |
6284305 | Ding et al. | Sep 2001 | B1 |
6287628 | Hossainy et al. | Sep 2001 | B1 |
6299604 | Ragheb et al. | Oct 2001 | B1 |
6306176 | Whitbourne | Oct 2001 | B1 |
6331313 | Wong et al. | Dec 2001 | B1 |
6335029 | Kamath et al. | Jan 2002 | B1 |
6346110 | Wu | Feb 2002 | B2 |
6358556 | Ding et al. | Mar 2002 | B1 |
6379381 | Hossainy et al. | Apr 2002 | B1 |
6395326 | Castro et al. | May 2002 | B1 |
6419692 | Yang et al. | Jul 2002 | B1 |
6451373 | Hossainy et al. | Sep 2002 | B1 |
6494862 | Ray et al. | Dec 2002 | B1 |
6503556 | Harish et al. | Jan 2003 | B2 |
6503954 | Bhat et al. | Jan 2003 | B1 |
6506437 | Harish et al. | Jan 2003 | B1 |
6527801 | Dutta | Mar 2003 | B1 |
6527863 | Pacetti et al. | Mar 2003 | B1 |
6540776 | Sanders Millare et al. | Apr 2003 | B2 |
6544223 | Kokish | Apr 2003 | B1 |
6544543 | Mandrusov et al. | Apr 2003 | B1 |
6544582 | Yoe | Apr 2003 | B1 |
6555157 | Hossainy | Apr 2003 | B1 |
6558733 | Hossainy et al. | May 2003 | B1 |
6565659 | Pacetti et al. | May 2003 | B1 |
6572644 | Moein | Jun 2003 | B1 |
6585765 | Hossainy et al. | Jul 2003 | B1 |
6585926 | Mirzaee | Jul 2003 | B1 |
6605154 | Villareal | Aug 2003 | B1 |
20010018469 | Chen et al. | Aug 2001 | A1 |
20010037145 | Guruwaiya et al. | Nov 2001 | A1 |
20020077693 | Barclay et al. | Jun 2002 | A1 |
20020091433 | Ding et al. | Jul 2002 | A1 |
20020155212 | Hossainy | Oct 2002 | A1 |
20030065377 | Davila et al. | Apr 2003 | A1 |
20030099712 | Jayaraman | May 2003 | A1 |
20050129731 | Horres et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
0 301 856 | Feb 1989 | EP |
0 514 406 | Nov 1992 | EP |
0 604 022 | Jun 1994 | EP |
0 623 354 | Nov 1994 | EP |
0 665 023 | Aug 1995 | EP |
0 701 802 | Mar 1996 | EP |
0 716 836 | Jun 1996 | EP |
0 809 999 | Dec 1997 | EP |
0 832 655 | Apr 1998 | EP |
0 850 651 | Jul 1998 | EP |
0 879 595 | Nov 1998 | EP |
0 910 584 | Apr 1999 | EP |
0 923 953 | Jun 1999 | EP |
0 953 320 | Nov 1999 | EP |
0 970 711 | Jan 2000 | EP |
0 982 041 | Mar 2000 | EP |
1 273 314 | Jan 2003 | EP |
WO 9112846 | Sep 1991 | WO |
WO 9510989 | Apr 1995 | WO |
WO 9640174 | Dec 1996 | WO |
WO 9710011 | Mar 1997 | WO |
WO 9745105 | Dec 1997 | WO |
WO 9746590 | Dec 1997 | WO |
WO 9817331 | Apr 1998 | WO |
WO 9836784 | Aug 1998 | WO |
WO 9901118 | Jan 1999 | WO |
WO 9938546 | Aug 1999 | WO |
WO 9963981 | Dec 1999 | WO |
WO 0002599 | Jan 2000 | WO |
WO 0012147 | Mar 2000 | WO |
WO 0018446 | Apr 2000 | WO |
WO 0064506 | Nov 2000 | WO |
WO 0101890 | Jan 2001 | WO |
WO 0115751 | Mar 2001 | WO |
WO 0117577 | Mar 2001 | WO |
WO 0145763 | Jun 2001 | WO |
WO 0149338 | Jul 2001 | WO |
WO 0174414 | Oct 2001 | WO |
WO 0203890 | Jan 2002 | WO |
WO 0226162 | Apr 2002 | WO |
WO 0234311 | May 2002 | WO |
WO 02056790 | Jul 2002 | WO |
WO 03000308 | Jan 2003 | WO |
WO 03022323 | Mar 2003 | WO |
WO 03028780 | Apr 2003 | WO |
WO 03037223 | May 2003 | WO |
WO 03039612 | May 2003 | WO |